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A theory for ion-atom collisions at low energies based on the hyperspherical close-cai{ieg) method
is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer
approximation where the adiabatic channel functions are calculatedBasgiline basis functions while the
coupled hyperradial equations are solved by a combinatioR-ofatrix propagation and the slow/smooth
variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for
He?" +H(1s)—He"(n=2)+H" reactions at center-of-mass energies from 10 eV to 4 keV. The results are
shown to be in general good agreement with calculations based on the molecular @iYakxpansion
method where electron translation fact@SF's) or switching functions have been incorporated in each MO.
However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to
study low-energy ion-atom collisions without the need to introduceathbocETF’s, and the results are free
from ambiguities associated with the traditional MO expansion approach.
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I. INTRODUCTION beyond the PSS model have been calculated by introducing
modifications through electron translation factqisTF's)
Charge-transfer processes in slow ion-atom collisions arl4,15. The ETF’s were first adopted in the semiclassical
examples of rearrangement collisions that are difficult totreatment of ion-atom collisions at higher energies where the
treat theoretically. One of the main difficulties stems frominternuclear motion is treated classicali6,3). In the PSS
the fact that there is not a single coordinate system that ig10del, the asymptotic limit of each molecular orbital is re-
suitable for describing all the different arrangements of theduced to an atomic orbital. For an atom-atom or ion-atom
constituent particles. At low collision velocities, the electron collision, each atomic electron is supposedly moving with

is expected to be shared between the two slowly movin@"€ ©F the other atom with a well-defined velocity in the
nuclei such that the collision complex can be approximate symptotic region. This translational motion is represented

as a transient molecule. Therefore, molecular orb{di®’s) y attaching a plane wave ETF to each atomic orbital. Such

are the natural representation for describing slow ion-ator§. procedure does not specify how the translational motion

collisions. At low eneraies. a full quantum mechanical treat-ShOUId be accounted for at finite internuclear separations;
. gies, d C thus different types of switching functionier ETF's) have
ment for both the electronic and the nuclear motion is als

. . Deen proposed and used in actual calculat{d?s18. Such
required. The well-known perturbed stationary SURSS  50aches are widely used in the literature and we will de-
approximation, introduced by Massey and Snfitf more  gniine them as MO-ETF models in this paper. The introduc-

than half a century ago, is based on the MO expansion, or thgn of ETF’s in MO-ETF models means that the basis func-
adiabatic Born-OppenheimeBO) approximation. In the  tions do satisfy the correct asymptotic boundary conditions
PSS model, electronic transitions occur via nonadiabatigng the calculated cross sections are Galilean invariant.
couplings between different molecular orbitals. However, thQ{owever, thesead hoc ETF’s are semiclassical in nature,
adiabatic BO approximation is known to have severe defieven though the same formulation has been applied to quan-
ciencies, originating from the fact that the molecular orbitalstum mechanical formulations as w¢il5,14.
do not satisfy the correct asymptotic boundary conditions. In spite of these limitations, a large number of calcula-
The fundamental defects associated with the PSS model haviens based on the MO-ETF models have been carried out for
been well documented, including incorrect dissociationlow-energy ion-atom collisions, and the results often com-
thresholds, nonvanishing asymptotic couplings and nonpare reasonably well with experiments. On the other hand,
Galilean-invariant calculated cross sectig@s-5]. Although  ion-atom collision experiments at low energies are very dif-
these problems have been well known for decades, the renficult and experiments often can determine total charge-
edies are less obvioy®,7]. Approaches based on the so- transfer cross sections only. Thus the validity of the MO-
called reaction coordinatéRC'’s) have been proposd8,9], ETF-type calculations has not been fully tested at the high-
but very few calculations have been carried ¢u0-13.  precision level. In this paper we present a theoretical
Even within the RC method, there still exists some arbitrari-approach for ion-atom collisions at low energies. Our goal is
ness in the choice of reaction coordinates. to provide results for elementary ion-atom collision systems
Most of the low-energy ion-atom collision calculations so that they can be used to evaluate the validity of other

1050-2947/2003/63)/05270%12)/$20.00 67 052705-1 ©2003 The American Physical Society



LIU et al. PHYSICAL REVIEW A 67, 052705 (2003

methods such as the MO-ETF-type models. As a numerica e
implementation of this theory, charge transfer cross section:
in HE "+ H collisions are presented.

The simplest ion-atom collision system consists of two P,
heavy nuclei and one electron. They belong to a special clas
of Coulomb three-body systems. In recent decades, the hy
perspherical close-couplingHSCQO approach has been 2
shown to provide a powerful framework for obtaining struc- He
ture parameters and scattering cross sections involving thre
particles[19]. The method has been used to study helium
atoms[20], positron-atom collision§21] (two light particles
and one heavy atom-diatom collisiong 22,23, muonic - _
molecules[24], and three-body recombinatiof&5] (three e ° / e
particles of identical or nearly identical masgds was em- p
phasized earlier by Fano and co-workg26] that the funda- P P
mental difficulties of the PSS model can be avoided if one N
formulates ion-atom collisions within the hyperspherical ./ ./x.
framework. However, few actual calculations have been ", P2 2
done. For ion-atom collisions, even at thermal energies, thée P He t
number of partial waves needed to reach a converged totau p-set ¥-se
cross section calculation easily runs into hundreds or thou-
sands. In the standard HSCC method, unlike the PSS ap-

proach, each partial wave is an independent calculation; thysher calculations. At higher energies the present results are
the hyperspherical approach would require huge computay general agreement with other calculations and experi-
tional resources. However, it has been shown recently by,onts However, we found significant discrepancy with the
Igarashi and Liff27] that 5|m.pI|f|cat'|ons similar tp .those .Of. MO-ETF calculation§15] at low energies. In the low-energy
the PSS model can be applied to ion-atom collisions withinegion, our results are in good agreement with those obtained
the hyperspherical approach. Using a simple two-channé},m he distorted atomic orbital methdd1], despite the
model, charge trarlsfer cross sections in-EH(1s) colli-  act that the latter has never been fully developed into a
sions[27] and inw” +H(1s) collisions[28] have been ob-  hactical computational tool because of its mathematical

tained, but only for energies up to a few eV. To generaliz€,mplexity. In Sec. II, we describe the hyperspherical close-
these earlier studies to many-channel problems and to ta upling method. The details of the computational proce-

advantage of simplifications similar to the PSS model, a3y res and tests are described in Sec. Ill. In Sec. IV, we
detailed below, the hyperspherical approach has to be formusresent our calculated charge-transfer cross sections for

lated in the body frame of the three-body system, and a nume2+ 4 (1) collisions and compare them with other theo-
ber of numerical difficulties have to be overcome if it is to beretical calculations. The last section gives a summary and

extended to the tens of keV region. conclusions.
In this paper we present a full account of the hyperspheri-

cal close-coupling method for ion-atom collisions. The for-

mulation is similar to the PSS model except that the hyper-

radius is used as the adiabatic parameter. Computationally,

we adopted the following techniques. First, the total wave | this section we describe the theoretical methods and the
function is expanded in the body-fixed frame, with the inter-computational techniques used in the hyperspherical method
nuclear axis chosen to be the body-frame quantization axiger treating ion-atom collisions. A detailed description of hy-
The adiabatic hyperspherical channel functions are calcuyerspherical coordinates for arbitrary three-body systems is
lated using B-spline basis functions. Second, the slow/giyen in the review by Lir{19]. Here we give only the basic

smooth variable discretizatid®VD) method 29], combined  gquations and the computational methods used in the present
with the R-matrix propagation method of Kato and Watanabegrk.

[30], is used to solve the coupled hyperradial equations. The
latter method allows us to avoid calculating nonadiabatic
coupling matrix elements. Third, tHematrix from the inner
region and the asymptotic solutions are matched at a large For collisions such as Hé + H, we describe the collision
hyperradius to obtain th& matrix and then the scattering process in the center-of-mass frame. Using atomic units, we
cross sections. Simplifications and modifications of the prodesignate the mass of each of the three particlesifpym,,
cedures used by Kato and Watandi38] needed for ion- andmg, respectively. Three sets of Jacobi coordinates can be
atom collision systems are also explained. used to describe the relative motion of the parti¢kee Fig.

For a pilot calculation, we studied the charge transfer pro4). In the “molecular” frame, or thex set of coordinates, the
cess in slow H&" +H(1s) collisions at center-of-mass ener- first Jacobi vectop; is from HE™ to H*, with reduced mass
gies from 10 eV to 4.0 keV. The results are compared withu,; and the second Jacobi vectps is from the center of

P
o—set

FIG. 1. Three sets of Jacobi coordinates.

Il. HYPERSPHERICAL METHOD
FOR ION-ATOM COLLISIONS

A. Elements of the hyperspherical close-coupling method
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mass of H&" and H' to the electron, with reduced mags. terms of the normalized and symmetrized rotation functions
The hyperradiufk and hyperangleb are defined by D [32] and the body-frame adiabatic basis functions

” . @, (R Q):
R=\/—pi+ 25, (D) ) 3
Wi VROD=3 T FuRIPu(ROIB (01,020,
o

6
tang= Hab2 (2 ©

H1p1 whereu is the channel index] is the total angular momen-

. . . tum, | is the absolute value of the projectionbélong thez’
Note thatu is arbitrary. Anoth_er angle, Qeflned to be the axis, andM , is the projection of) along the space-fixed
angle between the two Jacobi vectors, will also be used later,

. axis.
g'e range ofg is from 0 to /2 andg ranges from 0 tor. In the body frame, the\? operator takes the form
early, one can also define the two other sets of coordinates
in Fig. 1. In thes-set coordinates, the first Jacobi vector is A2=To+Ty+T,—1/4, 7
from HE" to the electron, and the second Jacobi vector is
from the center of mass of (Fé,e”) to H'. This set is where
used to describe the scattering of the proton with the bound

He" ion. Similar y-set Jacobi coordinates can be defined to P 1 al . 0
describe H&" and the (H,e”) system. For each Jacobi TO__aT,Z_ sirf¢ cog sing 36 sin6zg), ©®
coordinate system, a set of new mass-weighted hyperspheri-

cal coordinates similar to Egél) and(2) can be defined. A ~ = ) 1 2
special notable feature is that the hyperradius thus defined is (D|MJ|T1|D|/MJ): ' (sin2¢ co2hsitd code
identical for the three sets of Jacobi coordinates. In the fol-

lowing we will express the equations using theset of co- 1

ordinates. When quantities are expresseg4ror y-set co- +J(J+1) m) } Sy €)

ordinates, superscripts @ or v will be used. In thea-set

coordinates the formulation of the hyperspherical close- §J |1 83 =23 K 85, . +~+0 hi .6,
coupling method is very similar to the PSS model. We will (Ol [T2IDiw )= Hrcacadirieat 7 af 1911
chooseu to be the reduced mass of the two heavy nuclei. =

The hyperradiufk then becomes very close to the internu- =Tz, (10
clear distance. From Edl), the difference is of the order of with
Vol g, which is roughly the square root of the mass of the
electron over the reduced mass of the two heavy particles. 1 d
We first introduce the rescaled wave function hyy 1% o9 *ogt(Ix1)cotd), (11
O 3/2 o .
V(R 0)=yRsing cosé: ® Mer=—[1+(2-1)8[(3+1+1)I-D]*2 (12
then the Schdinger equation is of the form 7|J| = _[1+(\/§_1)5|0][(J_ 1+1)(3+1)]¥2 (13
19 d 15 R . . -
— 2 —R2—+ —+H(R:Q)— uR%E |¥(R,Q,)=0, Note that the brackets||} denote an integration oves.
2R JR 8 Only T, couples the internal motion to the external rotation.

(4)  while both matrix elements of, and T, are diagonal in
B N I, T, couples adjacerits.
where Q={¢,6}, and » denotes the three Euler angles ' 5" grder to efficiently treat a large number of partial

{w1,0p,05} of the body-frame axes with respect to the yayes A2 is separated into two parts, each of which depends
space-fixed frameH 4 is the adiabatic Hamiltonian, only onl andJ, respectively,

. A2 = ~
Had RiQ,) = —+uRC(Q), (5) (Bim [ TalDiw ) =1°T1a+ I+ 1) Ty (14)

. The adiabatic basis functionB,(R;{)) are chosen to sat-
where A< is the square of the grand angular momentum op;g

erator andC/R is the total Coulomb interaction among the
three charges. Equati@d) can be solved in a manner similar [T,+12T,,+2uC R](I)MI(R;Q)=2/_LR2ULL(R)(I)MI(R;Q)_
to the Born-Oppenheimer approximation witR being (15)
treated as a slow variable.

We solved the wave function in the body frame, where theThe @, are obtained by solving the eigenvalue problem
z' axis is chosen to be along and the three particles are on with a large two-dimensional and ¢)B-spline basis set
the x’z’ plane. The rescaled wave function is expanded ir{33], thus determining adiabatic potential cur\Leg(R) for
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eachl and a set of orthonormal adiabatic basis functionsplete even if the sector size is reduced to Z&9). In prac-
@, (R;¢,0) that depend parametrically dR Specifically, tice, this means slower convergence in the calculation.
the channel functions are expanded onto a direct product of Here we adopt yet another efficient method to solve the
fifth-order B splines in¢ and #; the details are described in hyperradial equations. It is a combination of tRematrix
the next section. Note thdt | is not an eigenfunction of the propagation method40], which propagates th& matrix
adiabatic HamiltoniaH 4 in Eq. (5). The eigenfunctions of from one sector to the next, and the SVD meth28] within
the adiabatic Hamiltonian can be obtained by diagonalizinggach sector, where the Hamiltonian is a smoothly varying
the tridiagonal block matrix constructed by function of R. This method was adopted by Kato and Wa-
=0 . tanabe[30] for solving the two-electron atomic Schiinger

A B equation and by Tolstikhin and Nakamufél] for atom-

B~ ATl . (16) diatom collisions. The key elements of the method and modi-
fications that are needed for the present ion-atom collision
problems are presented below.

where The R-matrix propagation method is a stable and efficient
way to solve a set of coupled differential equati¢ag]. In

A'W(R):ZMRZU'M5W+J(JJr (D | Top D), (17) this approach, the hyperradius is divided into many small

finite intervals. Solutions within each interval are calculated

Bi(R):<¢M||?2|CDV|:1>: 7|J| :1<¢’M||h||:1|¢’ulr1>- and propagat'ed with re--speCt to the hyperradlus. .
(18 We start with the Schiinger equation, Eq4). Solutions
within an interval[ a,b] can be formally written in terms of
Note that the bracket§|) denote integration ove. the Green’s function defined within the interval

The advantage of this partition is that these basis func- .
tions® need to be calculated only once for all this. So do _ / / PO’ / Y
the matrix elementé® || T1p| P ) and(PD ,|hyj +1| P, +1), V(RQ) LdR f dO'G(R, QR QD LROW (R, Q)
which are required in constructing matricAsand B. As a (19
result, constructing the adiabatic Hamiltonian for a givken
involves only fast algebraic operations within a giesub-  where£ is the Bloch operator defined as
space. Such an efficient approach is critical since hundreds or
thousands of partial waves need to be included in order to
obtain a converged cross section even for collisions at ther- L(R)=R?
mal energies and above.

J J
5(R—b)ﬁ— 5(R_a)ﬁ . (20)

A spectral resolution of the Green’s function can be written
B. R-matrix propagation with SVD method as

The standard method of solving the Safirger equation o,
[cf. Eq. (4)] with the expansion of Eq(6) is to project out GROR 0= u(R,Q)u(R", Q%) 21)
the adiabatic basis functions, resulting in a set of coupled e M(Ex—E) '
differential equations for the hyperradial functiofg, . It is
well known that such COUpled differential equations are dif-Where {uk(Raﬂ)ka} are the solutions of the eigenva]ue
ficult to solve accurately since the coupling matrix elementsyroplem
change rapidly in the avoided crossing regions. Two well-
known procedures have been used to address such numerica[l 1 9 9

difficulties. The first is the “diabatization” of the subset of | — > ﬁRz(g_R”L %5+ Had R; Q)+ L—RZuE U (R,Q)
adiabatic functions, commonly employed in ion-atom and

ion-molecule collision calculations within the PSS or =0. (22)
MO-ETF model[14,34-38§. Before the diabatization proce-

dure, one needs to Obtail_’l nonadiabatic coupling matrix e'_eThis equation is to be solved using the SVD method devel-
ments _accurately, a_nd this ha_s to be done very carefully_naped by Tolstikhin et al. [29]. The method treats the
the region of an avoided crossing. The second method, Whic8:ngjinger equation in the discrete-variable representation
was designed to bypass the calculation of nonadiabatic COYDVR) [42] with respect toR. A set of DVR basis functions

pling matrix elements, is the so-called diabatic-by-sectoryie constructed using orthonormal basis functions based on
method[20,37. This method was used in earlier hyper- 5500hi polynomials of degrees upb—1 within the inter-

spherical close-coupling calculations and in atom-diatom '€al [a,b]. The solutionu, then is expanded in terms of

active scattering calculation22,23,38. In this approach, i ice DUR  basis  functions 7 (R) within an
the hyperradius is divided into many small sectors and withi _dimensional subspace y

each sector the channel functions are fixed and chosen to be

the adiabatic channel functions at the midpoint within the M
sector. The diabatic-by-sector method simplifies the calcula- RQO)= (RO (O 23
tion but the method in principle is not mathematically com- Ud(R.£D) jgl (RO, 23
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Note that DVR basis functions have the important property u(R,Q) o

that 7j(R;/)=x; *3;;,, wherex is a weight constant de- Y(R,Q)= 2 2(E—E) b <Uk 0_R>

pending on the indices of the Jacobi polynomials. Then, Eq. R=b

(22) is transformed into a set of coupled differential equa- Ea)

tions with respect to the coefficien@;(€2), —az< Uy ﬁ> : (32)
R=a

_ The R matrix with respect to the adiabatic channels is de-
) + s o =
2d Ry )O3 (Q) 12_1 Ky =Py nBAOp D) fined at the boundaries of the interval as
(24)

where

I
P ) (32)

The propagation formula for thR matrix is in the form

<<1>n|\If>=§ an<R><

b 1 a 15
(25 Rom(b)=Gon— 2, E GRlG*+R(a)], Gl
(33

b
p”,zL 7 (R)R?m (R)dR. (26) where

These coefficients can be expanded in terms of the adiabatic GRR=R/R 2 (Pn(Ry)|uk(Ry)){u( R2)|¢m(Rz)>
channel functionsp, 12 w(E—E)
(34)

O () =2 (R}, Q)Chj, 27 The R matrix is set to zero a@R=0. Solutions are calcu-
" lated and propagated to largein order to obtain theR
matrix at an asymptotic hyperradius, where the hyperspheri-
cal channels converge to various atomic target state-gnd
can be matched to asymptotic solutions. The advantage of
the R-matrix propagation is its stability. Unlike the wave
function itself, there are no exponentially decreasing or in-
M creasing functions in the propagation. Also, the basis func-
o _ _ o o _ tions used in constructing the propagators are energy inde-
E, U“”'(RJ)C”'JK+]-§1 [Kjj =Py mBAOni i Coryr pendent, making it efficient to obtain wave functions for
different energies. Further details of the methods can be
=0, (28)  found in Refs[29,30.

wheren={ul} and theR;’s are the quadrature abscissas of
the Jacobi polynomial of degréé within the interval a,b].
The set of coupled differential equatiof®4) is then trans-
formed into an algebraic generalized eigenvalue problem,

where C. Matching to the asymptotic solutions

The R-matrix propagation method can be continued up to
a large hyperspherical radit&, beyond which one particle is
far away from the other pair of particles. In this work we do
Onj,n’j’:<q)n(Rj)|‘Dn’(Rj’)>- (30 not consider the three-body breakup process; thus the
asymptotic wave functio’ ;{R,) of the dissociated system
85 represented by

Unnr(R)=(® (R [Had @/ (R))), (29)

The M-point Gauss quadrature is used to evaluate the int
gration overR in Egs. (28), (29), and (30). Therefore, we
need to solve the eigenvalue problem EfH) only at the N

values ofR corresponding to the quadrature abscissas of theW i py,p,) = E [fi(Ki.p3) Six
Jacobi polynomials of degred within each interval.

Using the SVD method, there is no need to calculate — (kD)Ko o (D) V) S AT T
nonadiabatic coupling matrix elements; their effects are im- 9i(kizp2)Kinlei(p1) Visizom,(P1.P2) p1p2:
plicitly incorporated by the overlap matrix elements of the (35)
adiabatic channels at different hyperrafi Note that the
calculation of the overlap matrix elements at different valuesvhere the wave function is expressed in the laboratory-fixed
of the hyperradius is time consuming. However, these overframe and the base functions are givensis - or y-set
lapping matrix elements need to be calculated only oncegoordinates. For the present Coulomb three-body sys¢em,
since the adiabatic channéls. Eq.(15)] are independent of is a hydrogenic radial wavefunction with angular momentum

the total angular momentuth I,, and the relative angular momentum between the hydro-
Once the basis functions, are obtained, the solution genlike atom and the heavy particleljs coupled to form a
VT (R,()) can be readily constructed: total angular momentum functiq)?l,l,ZJMJ, with total angular
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momentumJ and its projection with respect to the laboratory roots of Eq.(39) are all roughly equal to the ratio of the mass
fixed quantization axisM ;. f andg are the regular and ir- of the electron to the mass of the heavy particle for any set of
regular asymptotic functions. For the HetH asymptotic ~ Jacobi coordinates, &, we can approximate
limit, they are Bessel functions and Neumann functions, re-
spectively. For the H+ He" asymptotic limit, they are regu- 17 /Mg [u3
lar and irregular Coulomb functions, respectively. Note that Ro= T PraT N7 P2T N P2y (40)
the wave vectok depends on the Jacobi coordinates used.
They are related to the kinetic energy for each channel by By settingu= ', the argument of the Bessel and/or Cou-
lomb function in theg-set coordinate zp5 , from Egs.(36)
1, 1 2o 1 CoE—U and(40), is equal tok,,Ry. The same is true for the argument
2Ka= B= y=E—=U,(»). (36 . ’ ; :
218 2ub 213 in the y-set coordinates. In other words, the argument in the
Bessel and/or Coulomb functions for each channel calculated
The general asymptotic solutidgB5) is matched to the inner from the a-set coordinates does agree with the argument

solution obtained from th&matrix propagation, calculated in theB-set andy-set coordinates. Since the adia-
batic energies calculated in hyperspherical coordinates do
1 N a approach the correct asymptotic energies in the dissociation
> Ho W7 (Ro) =3 p1,02) r=r, limit, at least to order of B? [43], it is possible to skip the

5/2 o —
Ry“sind cos¢ o=1 two-dimensional matching all together, and obtain khma-

87 trix directly within the a-set coordinates. This is called one-
where the inner solution is expresseddrset coordinates dimensional matching. We have tested our calculations using
and the matching is to be carried out RER,. Such a one-dimensional and two-dimensional matching methods, by
matching procedure was discussed and employed by zhdthanging the matching radius, and concluded that one-
and Lin[21] for e* +H(1s) collisions previously. It involves ~dimensional matching is adequate in general except at very
transforming thes- and y-set wave functions into tha-set ~ 10W energies. o _
coordinates, from where integration over all the angular co- FOr the present He +H collision system, there is one
ordinates aR= R, is carried out. In practice, this requires a additional complication which we need to address. For the
two-dimensional numerical integration involvings(6) and ~ charge transfer to Hg2s) or He'(2p) states, the
the procedure is called two-dimensional matching. From thé&Symptotic limits are degenerate. The adiabatic channel func-

resultingK matrix, the partial cross sections are obtained: tions from the inside region are correlated with the dipole
stateq 44,45 with noninteger or even complex angular mo-

47(2J+1)| K ‘2 mentum for each partial wavd We do not consider this
0ij= K2 1—iK\._ : (38) complication in the matching procedure in the present work.
: 1 However, we established that thelependent charge transfer

Since the wave functions beyofR} are represented in either Cr0SS sections to£plus 2p states thus obtained are not
the 8- or y-set Jacobi coordinates depending on the dissodependent on the matching radius. Thus we do not consider

ciation channels, there is no spurious coupling between thEharge-transfer cross sections to individuala 2p states in
channels. this work. We comment that cross sections to such individual

Calculation of theK matrix using the two-dimensional degenerate hydrogenic final states can be calculated directly

matching method is often used for calculations at higher pretSing the two-dimensional matching procedure, or in a one-

cision and at low collision energies. For ion-atom collisionsdimensional maiching procedure if dipole states are used in-
where the matching has to be carried out for each partigpt€@d of Coulomb functiongi4,45.

wave, it is desirable to simplify the calculation. Consider the
Bessel and Coulomb functions, which are writterf és p?3) lll. NUMERICAL DETAILS

andg(k,p5) in Eq. (39); the argument has been written in | gn51ving the hyperspherical close-coupling method to
terms of Jacobi coordinates. Let the masses of each of thgn_atom collisions, special care is needed in two areas in the
three particles beny, m,, and 1.0, where the last is the mass yymerical implementation. We us@spline basis functions

of the electron. The hyperspherical radius is relateshtand 1 optain adiabatic channel functions, but the choice of the

p2 for each Jacobi set by grid distributions has to be tailored to the nature of the chan-
~ ~ 7 7 nel functions that are concentrated in the region of srpall
R= 1 2 (M2 o M2 2 M1 o This is clearly seen from E¢2), which shows that the range
- pla+ aP2a= p2,3+ ,Bplﬁ i
o 5 “ MY of ¢ is of the order of the square root of the mass of the
electron with respect to the mass of the nuclei. Furthermore,
_ M_g 2 +M_I 2 (39) attractive Coulomb singularities occur at smaills, at ¢,
N VP abuy =5.25x 103 and ¢,= 2.08x 10" 2 rad, respectively, for the

present H&" + H system. Thep grids were chosen such that
At the matching radiu®,, p; is of the same order g5 for ~ they are concentrated in the smallregion. Specifically, we
the a set, butp, is much larger tharp, for the two other divided ¢=[0,7/2] into four intervals, withN; points in
sets. Since the ratios of the reduced masses within the squdr@,¢»1], N, points in [¢4,(d1+ d2)/2], N3 points in
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[(p1+ ¢h2)/2,05], andN, points in[ ¢,,/2]. Within each TABLE I. Comparison of the partial wave charge transfer cross

interval [ ¢, ,¢,], an exponential sequence of grid points is sections(in a.u) obtained by using exact and interpolated matrix
chosen according to elements. The number in square brackets denotes the power of 10.

See the text for more detail.

erli-1_1

$i=dat (b~ ba)— - (41) Ecn=210 eV Ecn=510 eV

e’ -1 J capture cross section  capture cross section

for i=1,... N. In the present calculation we chose 1 “exact” 0.25213 — 4] 0.10101—3]
=0.3,N;=14,N,=N3=16, andN,= 34 such that there are interpl 0.2521B-4] 0.10101—-3]
80 points in¢. Only ten points were used for the interval interp2 0.2432¢— 4] 0.11399—3]
¢=[0.17/2] in this grid distribution. For thed grids, we
used 61 points in the rand®,7]. The grids are distributed 10 “exact” 0.15530 — 2] 0.11910-2]
symmetrically about= /2, in an exponential sequence ac- interpl 0.15530- 2] 0.11910-2]
cording to Eq.(41), with y=0.075. The parameters in the interp2 0.15368— 2] 0.11896 2]
grid distributions were varied to reach at least six-digit accu-
racy in the eigenvalues for the rangeRDf interest. Differ- 109 “exact” 0.35516— 2] 0.72555— 2]
ent grid distributions can be used in different rangefanh interpl 0.3551p- 2] 0.72548— 2]
the method, but in the present calculation this particular set interp2 0.3548¢— 2] 0.71972-2]
of grid points was used in the final calculation.

In the SVD methoc! the c;hanngl functions are tp bg cglcu— “exact” 0.17987- 3] 0.32464 3]
lated at the hyperradial points dictated by the grid distribu- interpl 0.1798p- 3] 0.32465—3]
tions chosen for th&-matrix propagation, following the pro- interp2 0.176937 3] 0'3212$73]
cedure of Sec. IIB. Thus the ran®,Ry] is divided into ' '
many intervals. Within each interval, the hyperradial grid . .,
points are determined by the order of the Jacobi polyno- 1000 "&xact 0.96640 4] 0.21897-2]
mials used in the DVR representation of the hyperradial Interpl 0.9664D-4] 021896 -2]
functions. Ideally one would like to have about ten points per interp2 0.93522-4] 0.21724-2]
wavelength in the hyperradial function. Such a prescription
was used by Kato and Watanapg0], who applied this 2000  “exact’ 0.22715—6] 0.80458 3]
method to electron-atom collisions. A straightforward appli- interpl 0.2271[/- 6] 0.80452—3]
cation of their procedure to ion-atom collisions is not prac- interp2 0.2534p—6] 0.80061 3]

tical. Due to the large reduced mass, the momentum that
enters Eq(4), as given byw/2u(E—U), becomes quite large

even at thermal energies. For example, for the presergmooth, although in principle one can interpolate near the
He? " +H system at center-of-mass energy of, say, 500 eVavoided crossing region as well if more points are initially
we would need about 10 000 points within the intervaRof calculated in the region.

=[0,40] if we wish to have about ten points per wavelength In Table | we compare partial wave cross sectiohsl¢-

in the hyperradial function. Since the calculation of the chanpendencgfor charge transfer into the Hén=2) states ob-
nel function is the most time-consuming part, this is clearly

not desirable. On the other hand, while the radial wave func- 0.24

tions oscillate rapidly, all the matrix elements entering the
SVD method are slow-varying functions of the hyperradius. 0.14 ]
Thus, instead of calculating all the matrices needed in the 0.04
SVD method, we obtained these matrix elements by interpo-  °" | |
lation. 8 006 | |
Specifically, instead of calculating the matrix elements ?
S -016 1
(P u(Ri;0,0)[T1p|P,(Ri;6,4)), S
§ -026 1
(P u(Ri;0,0)|hy+1|D 1 +1(R;;6,0)), < 036 | |
and the overlap$® , (R;;0,0)| P, (R;;0,¢)) at all hyper- 046 | |
radial grid points required for SVD anB-matrix propaga- ’
tion, we calculated them at a much smaller number of points  -056 : :

0 10 20 30

and then use interpolations to obtain the required matrix el- H i
yperradius (a.u.)

ements. In practice, we used cubibicubic for two-
dimensional interpolation of the overlgpsplines. In the FIG. 2. Hyperspherical potential curvés, [cf. Eq. (15)] for
present calculation we chose to interpolate only in the regiomeH*. Threel =0 channels and onke=1 channel are shown by
where the overlaps, as functions of the hyperradius, areolid and dashed lines, respectively.
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tained with the interpolation procedure at center-of-mass en. 10’ T -
ergies of 210 and 510 eV. All the calculations were carried
out using the four channels shown in Fig. 2 and the propa- 10" |
gation inR was carried out fronR=0 to R=32.32 a.u. In '
the “exact” calculation we employed the straightforward 19 |
SVD method within each sector where all the relevant matrix -,
elements were calculated directly from the adiabatic channeg °
functions. At 510 eM210 e\) this would require usto cal- §
culate channel functions and all the relevant matrix elementsg T
at about 10006000 hyperradial grid points. For the two % o |
interpolation procedures, Interpl and Interp2, we calculatec®
adiabatic channel functions only at 2520 and 630 hyperradia 5 |
grid points, respectively, from which we obtained the SVD
matrix elements at the same grid points as in the “exact” ;4
calculation. In the present work, we did not perform interpo-
lation in the intervaR=[0,0.5], where the channel functions 10 \ .
vary rapidly with R, and the interval§1.5,2] and[3.5,4], 10 Rl o) 1000
where they are near the avoided crossingfRatl.65 a.u. o
and 3.62 a.u., respectively. In these intervals we simply cal- FIG. 3. Charge-transfer cross sections for the process” He
culate channel functions at denser grid points. +H(1s)—He" +p. Solid line: present results): van Hemertet

In Table I, we note that the results from the Interpl cal-al. [15]; +: Fukuda and Ishiharg81]; A: Winter and Hattorj49];
culation are essentially identical to the “exact” calculations. V: Erreaet al.[50]; ¢ : Grozdanov and Solov'ef51].
The errors introduced in the Interp2 calculation are within
1% for most of the partial waves. In particular, the re|atiV9hyperradiu§( is approximate|y equa| to the internuclear dis-
errors are smaller for partial waves where the cross SeCtiOﬁance as long aR is not very small. But there are small
are larger. We thus conclude that the interpolation procedurgifferences. We found that, except f&<1.5 a.u., the dif-
works adequately. ferences between the hyperspherical potential curves and the

From Egs.(14) and(17), the matrix elements of;p, Of  BQ potential curves are less than 1%. Also, the BO potential
of 1/cog¢, with respect to the adiabatic channel functionscurves do not converge to correct thresholds, whereas the
have to be evaluated. The channel functions are sharply Igwperspherical potentials do, although the energy difference
calized neakp=0.0, the more so at largé&t. From Eq.(14),  atR—w is very small, about 3 10~ * a.u., owing to the fact
we note that we need to ad@J+ 1)T,;, to obtain the matrix  that in the BO approximation the mass of the nucleus is
elementT ;. For largeJ, in particular, forJ>10°, any small  assumed to be infinity, but in the HSCC the correct mass of
numerical error froni 1, is greatly enhanced in comparison the nucleus is included. In the present HSCC calculation, we
with T,,. For largeJ, we found that it is preferable to re- ysed one-dimensional matching B=32.32 a.u. forE.
place the matrix element df,,, by 1.0 instead. In fact, this greater than 200 eV and,=80.79 a.u. at lower energies.

0 1000 2000 3000 4000

replacement does not affect the result for sndagither. We In Fig. 3, total electron-transfer cross sections to"He
note that this is the same approximation employed in the PS&ates are presented from 10 eV to 4 keV. Note that the cal-
calculation. culated charge-transfer cross section decreases rapidly as the
collision energy is decreased. From 4 keV to 200 eV, it drops
IV. RESULTS by a factor of 50(see insgt but from 200 eV to 10 eV, it

drops by 12 orders of magnitude. The small cross sections at

In this paper we applied the HSCC method to calculateahe low energies are calculated to compare with other exist-
charge-transfer cross sections for?Hle- H(1s) collisions at  ing calculations. Note that at low energies radiative charge-
center-of-mass energies from 10 eV up to 4 keV, or for relatransfer cross sections are much larger. The latter was calcu-
tive collision velocityv from 0.0223 a.u. to 0.447 a.u.. The |ated to be about IC a.u. atE= 10 eV[46]. Unlike that for
dominant reaction channels are charge transfer tmth@  the nonradiative process, the cross section for the radiative
excited states of He Thus we include only four channels in charge transfer increases with decreasing collision energy.
the present calculation: the initial channel 2Me-H(1s), How do the results obtained here compare to existing ex-
and the three final channels Hn=2)+H". In Fig. 2 the  perimental data and other calculations? For energies below
four adiabatic hyperspherical potential curves correspondin@00 eV, there are no experimental data available. There are
to these four dissociation channels are shown: three curvesio previous theoretical calculations where the motion of the
for I =0 and one foll =1, for R up to 30 a.u. The incident heavy particles was treated quantum mechanically. One was
channel is identified with the lowest curve of Fig. 2 and theby van Hemeret al.[15] and the other by Fukuda and Ishi-
three charge transfer channels are associated with the thrlara[31]. The former performed calculations using molecu-
upper curves. lar orbitals with common translational factor basis functions.

The potential curves in Fig. 2 are very close to the BOFrom Fig. 3 it is clear that our results are significantly dif-
potential curves in the standard PSS approach. This is ndérent from theirs below 200 eV. In fact, by comparing with
surprising since with the choice @f=pu, [cf. Eq.(1)], the  the actual numbers, as shown in Table I, we note that their
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TABLE II. Charge-transfer cross sections in units of #0cn?. 3 , | - .
The numbers in square brackets are powers of 10. WH: Winter anc 3
Hatton[49], CTF: Erreaet al. [50], DMO-ETF: van Hemertt al. & (@
[15], DAO: Fukuda and Ishiharg81], HSCC: present results. o2t E.n=106V
E(eV) WH CTF DMO-ETF DAO HSCC g
20 34-71  7.4-9] 7.1-9] g 1r 1
50 4.4-5] 79-5] 8.0-5] g
100 1.1-2]  33-2] 34-2] S ) \
200 2.7-1] 1.3-1] 24-1] 24-1] 0 50 100 150
600 149 156 1.74 2 ' '
1000 3.78 2.69 4.42 = (b)
; 15 1
1600 6.30 6.62 7.56 K E, =30 eV
2000 8.07 5.73 9.86 o o
4000 12.2 12.8 16.2 T 1r .
[*]
£
b 05 -
results are larger than ours by a factor of 50 at 20 eV, but a
theirs are smaller by a factor of 2, 3, and 2, respectively, at

50, 100, and 200 eV. Interestingly, in this energy region our 0
results are in perfect agreement with the calculation of
Fukuda and Ishiharg81]. They used the so-called distorted
atomic orbital(DAO) method and carried out the calculation ~ FIG. 4. Charge transfer partial cross sectionEgy, =10 eV (a)
up to 200 eV. This method introduces adiabatic distortedandE¢ =30 eV (b).
atomic orbitals, defined not with respect to the internuclear
separation, but with respect to the relative coordinates opared at a few energy points in Table Il. Except for van
each arrangement chanrielr p, of g-set andy-set coordi- Hemertet al. at 200 eV, all the other calculations were car-
nates. In other words, they used basis functions from theried out using the semiclassical method where the internu-
B-set and from they-set coordinates. In the DAO method clear motion is treated classically. All these calculations also
the wave function is expanded using correct relative coordiused the molecular orbital expansion metth®d,48,49,51
nates such that there are no spurious asymptotic couplingghe difference is mainly in the number of channels and the
From Fig. 3, we note that their results agree with ours quitedifferent form of electron translational factors used, except
well. This agreement is even more clearly seen in Table II. for Grozdanov and Solov’ep51] where the calculation was

From comparing the three calculations in the low-energybased on the hidden crossing theory. From Fig. 3, we note
region, we may conclude that the results of van Heraeal.  that most of the theoretical results agree with each other.
[15] are less reliable. At present, the origin of the differenceHowever, all of these other calculations essentially used the
is not clear. The cross sections are quite small in the lowsame method and agreement among themselves is not sur-
energy region. The discrepancy could be due to the someprising. Comparing with available experimental data in this
what arbitrary character of the common electron translationagnergy region, all the results are within the experimental er-
factors used in their model, or possibly due to insufficientrors. Our results appear to be slightly higher than these cal-
numerical accuracy in the calculation. Understanding the orieulations. In the future we need to increase the number of
gin of this discrepancy is essential, however, since their MO<channels in the higher-energy region to test the convergence
ETF approach is the most widely used method for treatingf the present results.
low-energy ion-atom collision§10,12,14. On the other We next show charge-transfer cross sections vs partial
hand, to trace the origin of the discrepancy, a comparison awvavesJ at a few energy points. In Fig.(@, the results for
the level of partial wave cross sections should be carried ot=10 eV are shown. It takes about 100 partial waves to get
in the future. The comparison also appears to establish thiéne converged total cross section. At 30 eV, as shown in Fig.
validity of the DAO approach. Since two sets of Jacobi co-4(b), we need to sum over about 250 partial waves to get the
ordinates were used in this formulation, the result is a set ofotal charge-transfer cross section, but a large portion of it is
coupled integro-differential equations which can be solvedcontributed by partial waves less than 20. Note the seven
only with special numerical techniques. The DAO methodorders of magnitude difference in the partial cross sections at
has been applied only to the present collision system and tthese two energies. In Fig. 5 we show our calculated partial
muonic collisiond47] so far. It has not been further explored wave cross sections for 200 eV and compare the results with
due to its numerical complications. those presented by Fukuda and Ishih@4d] for J between

We next compare the present results with other calculal50 and 950. Our results agree quite well with theirs, which
tions at higher energies where more calculations and somie turn have been shown to agree well with the semiclassical
experimental data are available. The results for center-ofealculation of Winter and Hattof49]. Interestingly, these
mass energy from 200 eV to 4 keV are shown more clearlyywo groups did not present results at small partial waves or
in the inset of Fig. 3. The numerical values are also comsmall impact parameters, even though the total charge-

0 100 200 300
Partial wave J
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with J=kb, wherek is the momentum. In Fig. 6 we compare
the impact parameter dependence of the calculated charge-
transfer probabilities with those calculated by Hatetral.

[48] at 600 eV and by Winter and Hattdd9] at 1.6 keV.

One can observe that there is a general agreement of our
1] results with theirs, in terms of the impact parameters, where
the weighted probabilities are at the maxima or minima, but
our probabilities are somewhat higher at the peaks, resulting
T in our cross sections being somewhat higher compared to
others. Since we used only four channels in the present cal-
culation as compared to 10 channels in their calculations, the
discrepancy can be better understood after we have per-
formed calculations with a larger number of channels. The
comparison illustrates that the present HSCC method can be
extended to higher collision energies where semiclassical

0 200 400 600 800 1000 methods are valid.
Partial wave J

0.008 -

0.006

0.004 -

Cross section (a.u.)

0.002

FIG. 5. Same as Fig. 4 but fd&_ ,,=200 eV. The dashed line
in the inset is taken from Fukuda and IshihfB4]. V- SUMMARY AND CONCLUSIONS

In this paper we presented the hyperspherical close-

transfer cross section comes primarily frantess than 150. coupling method for treating direct and charge-transfer reac-
Since the total cross sections from these three calculatiori#ns in ion-atom collisions at low energies. As stated in the
are in good agreement we assume that the partial cross sdgtroduction the HSCC method has been used in many areas
tions at smallJ are also identical. In comparing the partial of three-body problems in atomic, molecular, and nuclear
wave cross sections from the quantum calculation with théhysics. The present implementation is targeted at systems
transition probabilities from the semiclassical calculation, wewith two heavy particles and a light one. This class of prob-
employ this relation: lems is characterized by the large momentum of the collision
partners, and thus special care and approximations should be
adopted before the HSCC method is used to obtain reaction
2mbP(b) cross sections at energies of interest.
= (42 . . . :

In implementing the HSCC method for ion-atom colli-
sions, we also adopted numerical technologies that have be-
come available in the last two decades. We usedtkpline
functions to solve the two-dimensional adiabatic hyper-
spherical channel functions. We also adopted the slow/
smooth variable discretization technique dchatrix propa-
gation method to solve the hyperradial equation. Due to the
rapid oscillations of the hyperradial wave functions, we
modified the latter method with an interpolation procedure
such that the number of hyperradial grid points where chan-
nel functions need to be calculated does not increase with
collision energies. We also took advantage of the special
properties of ion-atom collision systems such that the chan-
nel functions for the thousands % needed are calculated
only once. These implementations make it possible to em-
ploy the HSCC method to treat ion-atom collisions over a
broad range of energies.

We applied the HSCC method to obtain charge-transfer
cross sections for the process ?Me- H(1s)—He" (n=2)
+H" at center-of-mass energies below 4 keV. We presented
our calculated charge-transfer cross sections. In the center-
of-mass energy range between 10 and 200 eV, the total non-
radiative charge-transfer cross section drops very rapidly
with decreasing energies and our results agree with those
from the distorted atomic orbital method of Fukuda and Ishi-

FIG. 6. Probability of charge transfer times impact parameter fofara[31], but not with the quantum molecular orbital calcu-
E.n=600 eV (a) andE.,=1.6 keV (b). Solid lines: present re- lations of van Hemeret al. At 200 eV, we showed that our
sults; dashed lines: Hattoet al. [48] and Winter and Hattop49]  partial wave cross sections also agree with the results of
for 600 eV and 1.6 keV, respectively. Fukuda and Ishihara.

Probability times impact parameter (a.u.)

Impact parameter (a.u.)
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We have extended the calculations to higher collision enculations based on reaction coordinates. The latter methods
ergies so that we can compare our results with those obtainette the standard approaches for treating many-electron ion-
using the semiclassical approximation and with experimentsatom collision systems, and calculations based on the HSCC
Our results are slightly higher than the semiclassical calcumethod for one-electron ion-atom collisions are desirable to
lations of Winter and Hatto49], but both are within the provide theoretical data for comparison in view of the lack of
experimental errors. We also compared our partial wavgccurate experimental data available for low-energy ion-

cross sections with their impact parameter dependent prolgtom collisions except for total charge-transfer cross sec-
abilities and there is a general agreement. tions.

Our results clearly demonstrate that it is possible to em-
ploy the HSCC method to obtain cross sections for ion-atom
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