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Signatures of two-body random matrix ensembles in Sm
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Configuration interaction calculations for the $d=0* and 4" with matrix dimensions 1351 and 7325 are
carried out. The eigenvalues and eigenfunctions are analyzed for density of states, strength functions, and
information entropy in wave functions and compared with the Gaussian forms given by two-body random
matrix ensemble$TBRE). Signatures of TBRE are clearly seen in the ISemample.
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Canonical random matrix theoryRMT) defined by EGOHKZ1+2) also applies to atoms. In order to probe into this
Gaussian orthogonalGOE), unitary, and symplectic en- question, in this paper, we studied the structure ofiSm
sembles applies to a wide variety of quantum systems suckigenfunctions structure in terms Bf(E) andS"(E).
as nuclei, atoms, molecules, quantum dots, Ei¢. Very Rare earth elements are chosen in the studies, investigat-
early, Rosensweig and Por{&], and Camard§3] analyzed ing the signatures of RMT in atomic systems as these have
atomic energy level data for the nearest-neighbor spacing€ry complicated spectra due to the large number of valence

distribution (NNSD) and Dyson-Mehta\ statistic, and es- electrons in partially filled 4 valence shell and other close

tablished that GOE describes the local level fluctuations irJIylng electronic shells. The atomic Snused in the present

atoms. More recently, this was further confirmed by Iarges'tUdy has 62 electrons of which eight are in the valence

configuration interaction calculations of atomic spectra 01‘5heIIS 4 and &, which can be treated as active. Hence,1Sm
9 > SP is a better candidate to test the general properties of TBRE
Cel and Pr | by Flambauret al.[4,5] and Cummingt al.

L L ; compared to Ceand Pn, which have only four and five
[6]. In addition to the level statistics, they also confirmed theactive electrons each. The ground state of ISis

operation of the Porter-Thomas forfgiven by GOB for  4¢6652 15  The Dirac-Coulomb Hamiltonian is used in the
strength fluctuations. Although GOE applies for fluctuations,present study as it is an appropriate choice for Higatom

in a pioneering paper Flambauet al. [4] pointed out, by  sych as Sm. The Dirac-Coulomb Hamiltonian of Mrelec-
studying Ce in detail, quantities such as strength functionsion atom is

[F«(E)] and information entropyS™(E)] or equivalently

the number of principal componerftd PC)g] are most im- N Z(r.) NN
portant ingredients of an interacting many particle system; HP®=Y |ca;-p+c3(Bi—1)— — |+ >, ——,
F(E), S™(E), and (NP C) are defined later, and also note =1 i =i il
that strength functions and occupation numbers determine @

transition strengths. At this stage, it should be pointed out ] ] ) )

that GOE implies that the interaction ia body for am  Wheree; andg; are the Dirac matriceg; is the linear mo-
particle system. However, for systems such as atoms, th@entum of the electrorz_(ri) is the effective nuclear charge_:
interaction is essentially a mean-field one body plus a com@t i, and the last term is the electron-electron coulomb in-
plexity generating two-body interaction. As a result of this, teraction. It is to be_ noted that all the calculations with Eq.
the m particle Hamiltonian matrix becomes a sparse matrix(1) are in atomic units, wheré=1, me=1, ande=1. The
(many matrix elements are zero due to two-body selectio@ccupied orbitals (+6)sy2, (2-5)p12, (2—5)psp, (3
rules. By examining the Ce Hamiltonian matrix(for 3 —4)dsz2, (3—4)ds;, and 45, are generated by a self-
=4~ andJ=4"), Flambaunet al. invoked banded random consistent Dirac-Fock calculation of the configuration
matrices to describe the calculatég(E) and S™(E). A 42,657, The orbitals are frozen, andpg,, 6pz, 50,
more detailed numerical study of this type was carried oubds;;, and 4, are generated by a sequence of Dirac-Fock
recently by Cummingst al. [7], and they considered Ce calculations of the configurationf8,6s, ., wherey is the
and Pn with Is and jj couplings. On the other hand, it is orbital to be generated. Using the orbitals, a basis set of
well known from the structure studies of atomic nuclei thatconfiguration state function€CSF'9 {|®,)} is constructed.
for an interacting particle system with sufficiently large num-A configuration interactioCl) calculation within the CSF
ber of particles (n=6), two-body random matrix ensembles space generates a set of atomic state functiohSF)
(TBRE) describe F,(E), S"°(E), transition matrix ele- {|Wg)}, each of the ASF is a linear combination of the CSF’s
ments, etc[8]. TBRE is also called embedded GOE of two- |\PE)=EkCE|<I>k> and are eigenfunctions of the Dirac-
body interactions or simply EGGB. With one plus two- Coulomb Hamiltonian. The Dirac-Fock calculations are done
body interactions, one has in fact EGQE 2). In additionto  using the multiconfiguration Dirac-Fock cod&AsP92[12],
nuclei, EGOE1+2) is shown to describe some properties of which is a relativistic adaptation of the multi-configuration
guantum dots and small metallic graif®10]. They are also Hartree-Fock(MCDF) [13]. Previous calculations of Sm
used in the discussion of operatability of quantum computerproperties such as lifetime, excitation energies, and hyperfine
[11]. With these, it is natural to expect that TBRE or constants are compared with the experimental
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data[14], and established that method of calculations such as ©°98[ ' ' ' ' T

the present one can describe 5m [ & oy
The configurations considered in our calculation are gen

erated by all possible single and double excitations fromsg ]

4%6s? to the 5 and & orbitals. The possible even parity %[ A T

configurations in nonrelativistic notations aref®8s5d, [ f

4156s%6p, 4f85d2, 4f%6p?, 4f°6s5d6p, 4f*6s°5d?, and 002 i T
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4f46s%6p®. The CSF's havingl=0",4" within this con- ook B M
figuration space are considered and two separate Cl calcule "~ _,~ _; o > 4 6 P
tions are done. The number of relativistic CSF’'s are 1351 (E-¢)/0

and 7325 fod=0" andJ=4", respectively and eigen spec- . . . o
tra have a span of 2.65 hartree and 2.46 hartree, respectivegaiﬁiérl] ' CS;SSIZ?eda nien?égﬁ:lziﬂed?an:tltfyev?,f Ssttma(ssr:fdhl?s;
where the span is the difference between the lowest and the ' €9 9

. - d Ed th ted G i@ot-dashed li
highest eigenvalue. Hereafter, the number of the CSF's or the" geworth corrected Gaussiatot-dashed line

dimension of the Hamiltonian matrix is referred todsThe follows from the location of the centroids mentioned earlier.

energy span shows that=4" has a denser spectra as a . o P co
consequence of the larger number of relativistic CSF’s genl_:|owever, a Gaussiamg(E) = (1/v2m)exp(-E72), where

erated from each of the configuration. The centroids of thée=(E—¢€)/o is the standardized variable characterized by
spectra located at 0.68 hartree S+ 0" and 0.63 hartree for the centroide and widtha of the p™(E), after neglecting the
J=4"% measured from the ground state, reflect the asymmdast few states matches well with the Cl results as shown in
try of the density of states. Now we will turn to the statistical Fig. 1. Note thatp"(E)dE= 7(E)dE. The 7¢(E) can fur-
analysis of the eigenvalues and eigenfunctions in terms dher be refined to an Edgeworth corrected Gaus8a20)]
EGOE. First let us briefly describe EGOE. 5
EGOEK) for many (m) fermion systems is generated by A Y1 -~ Y2 ~ Y1 A
defining the Hamiltonia, which is, sayk body, to be GOE ~ 7eolB) = 16(E)| 1+-Hes(E) +57Hes(B) +27Hes(E) 1
in k-particle space and then propagating it eparticle 2
spaces by using the geometry of timeparticle spaces. Here, R
one assumes that the-particle space is a direct product where He(E) are Hermite polynomials, ang;, and y, are
space of single-particle statésay N in numbej, for ex-  skewness and excess, respectively. In generating Fig. 1, these
ample, as in the Smcalculation. Now a EGOE1+ 2) is  are calculated using the definitiong =((E—€)3)/o> and
defined by {H}=[h(1)]+{V(2)}, where {V(2)} is y,=((E-e€)*/o*—3. The shift of thenep(E) peak reflects
EGOH?2) (say, with two particle matrix elements variance the asymmetry ofp™(E), which may be partly due to the
la(ij [V(2)|kl)a[*=v?, wherea means antisymmetrizg@nd limited excitations from the valence shells. Figure 1 shows
[h(1)] is a fixed one-body Hamiltoniafor an ensemble that bulk of the spectrum is well represented by the Edge-
with single-particle energies , i=1, ... N having an aver- worth corrected Gaussian and this is quite different from the
age spacingA. With N=wv/A, it is easily seen that Wigner's semicircle of the canonical RMT]. It should be
EGOH1+2) behaves as EGAB as A—x>. It is well mentioned that TBRE has ergodic eigenstates in the middle
known that for EGOR2) in the dilute limit (m—o, N of its spectrum but there could be deviations at the edges
—o, and m/N—0), the ensemble averaggdmoothedl [21]. Gaussian like density of states was also observed in the
state densitiep™(E) approach the Gaussian forf8,15]. Smix spectra by O'Sullivaret al. [22].
Moreover, for EGOEL+2) one can define two “quantum The strength functions or local density of stateqE)
chaos” markers\; and\g,_so that forn>\, there is chaos :EE’|CE,|25(E_ E')ZWP(E) for EGOH1+2) under-
in the sense that the level fluctuations start coming close tgoes aé function — Breit-Wigner (BW) — Gaussian tran-
GOE fluctuationg 16] and for)\>7\Fk (note that)\c<)\Fk) sition as A makes a O-Nc— N, transition [8,18]. The

one has the Gaussian form not only for the smoothed state,(E) centroid e=(®H|®,) and variance a'ﬁ

densities but also for the strength functidii¥,18,9. The =(®|H?|®,)— 2. The BW form is defined by the Lorent-

A>NE, region is galled the Gaussian domain. Forms valid in 5, (1/27)TI[ (E—E,)2+T'2/4], wherel is the spreading
this domain forS"°(E) and (NPC)g are derived recently \idth andE, is the centroid. The"(E) being close to the
[17]. In the discussion ahead, no distinction is made betweegayssian except for the tailalso level statistics following
TBRE and EGOEL+2) as we will be comparing Smcal-  GOE as shown in Fig. 3 ahea is to be expected that the
culations with the results valid in the Gaussian domain. It iSFk(E)’s should follow the Gaussian form for the middle
to be noted thak.~1/m°N and\¢ ~1/Jm, see Refs[16]  CSF's. This result is tested in Fig. 2. For example, wkth
and[19], respectively. Therefore, it is easily seen that ap-=3000 and 3300 fod=4" shows that the Gaussian features
proach to the Gaussian domain will be faster with largerare more prominent iff, (E)’s of medium energy CSF’s. A
numberm of active electrons. Our aim in this paper is to closer examination of the tail part and the central portion of
verify whether Sm with m=8 is in the Gaussian domain. the calculated~,(E)’s, shown in Fig. 2 clearly points out
The density of states™(E) of the spectra exhibits a long that the Lorentzian will not give a good fit. This is unlike the
tail in contrast to the TBRE prediction of a Gaussian. Thiscase with Ce [4] and Pn [7] which do not have sufficient
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this could be due to the selection rules and nature of the
two-body interaction. This will be investigated in detail else-
where. Beside&(E) one can also study the closely related
function[17] that gives the spreading of the eigenfunctions,
i.e.,|Cg|? versusE, [4,6]. Before going further, it should be
added that the calculated nearest-neighbor spacing distribu-
tion andA 5 for the middle part of the spectrum follow GOE.
Figure 3 shows the results fdr;. Gaussian densities with
level fluctuations following GOE is a feature of EGQE-2)

with A>\. [1,8]. In fact, even a noninteracting fermion sys-
tem gives Gaussian level densities but with Poisson fluctua-
tions. Finally, in indefinite spaces, in fact, the level density
approaches the well-known exp(E), but this is of no con-
cern in this paper.

FIG. 2. F((E) of selected CSF'sk denotes the CSF number.
The dashed, dot-dashed, and dot-dot-dot-dashed curves are the
Gaussian, Edgeworth corrected Gaussian, and Lorentzian, respec-
tively.

number of active electrons for the Gaussian form to operate.
Typically, o~ 0.12 hartree in contrast 10~ 0.18 hartree for
J=4%, T is obtained by the Breit-Wigner fit. The Gaussian
form of the F(E)’s of selected CSF’s, shown in Fig. 2,
brings out the action of TBRE in SmHowever, it should be
pointed out that thé-,(E)’s show multimodal structure, for g
example, thel=4" andk=3300 has two pronounced local %

maxima atE~ — 1 and 0. As pointed by Flambauet al.[4]
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FIG. 3. Calculatedxg(L) is compared with the Poisson and
GOE values. To calculatés(L), the cumulative number of energy

The

number of
=(2JC/H ™t and
=exd (S0)1/(0.4&d) with Sf™= — =, |CE|?In|CE]? are mea-
sures of complexity of the eigenfunctions, whatds the
dimension of the Hamiltonian matrix. Hereafter, for a com-
parison, NPC)¢ is also normalized to unity by dividing
with the GOE value ofi/3 and it is called RNPC¢; note
thatl,, is 1 for GOE. EGOEL+2) in the Gaussian domain
predicts[17]

(RNPC)E=\/1§4exrr<

principal
localization

components NPC)g
length 1,(E)

§2E2
1+22

2 262
Ih(E)= Jl—zzexp( i)exm(gﬂ, ®3)

(=V1-o%0?,

(E-¢)/a

FIG. 4. Normalized number of principal componen®&NP Q¢

statesN(E) are unfolded using the fourth order polynomial within andl,(E) compared with the TBRE predicted values given by Eq.
selected region of the spectra; 30—800 and 170-5000 eigenvalu€3). The histogram gives the calculated values and the dashed curve

of theJ=0" andJ=4", respectively, are considered.
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Whereg_ﬁz(l/d)ziﬂHfj and UEF(l/d)Ei(Ei— €)? are the CSF'’s showed for the first time that atoms with sufficiently
variance of the off-diagonal Hamiltonian matrix elementslarge number of active electrons exhibit TBRE characteris-
and eigenvalues, respectively, see Reg] for (NPC)g in tics. The tails ofp™(E), multi-modal forms ofF(E), and

BW domain. As¢ in Eq. (3) varies from 0 to 1, theNNPC)g  stronger localizatiorf compared even to TBREn some of

and I, change from GOE value to complete localizationthe eigenstates seen in the calculation may be partly due to
value. A comparison of the calculateRNP Qg andl,(E), truncation of the CSF basis and partly also due to the nature
and TBRE predicted values are shown in Fig. 4. The enveef interelectron interaction. The sources of the deviations
lope of the RNPQg and I,(E) shows that the overall from the TBRE are being studied further. Here partitioned
trends are in a good agreement with the TBRE predictionsSEGOE (see Ref[8]) may be relevant. Although the value

The correlation coefficient~0.85 for bothJ=0* and 4". of EGOH1+2) that maps the Hamiltoniafl) is not deter-

It is seen that there are deviations in the lower tail region anénined in this paper, it is established that thealue exceeds
also for the eigenstates above the centroid. This indicates thaqck as the Gaussian domain results are seen im, 8rnereas

the states are more localized than what TBRE prediwte  cg| and Pn exhibits BW feature§4,6]. We plan to carry out
that GOE value for bothRNPQg and In(E) is 1]. The  gyydies of Nd and Pm to establish BW to Gaussian transi-

calculated results are much closer to TBRE as compared on with the increase of active electrons among the rare
GOE but at the same time several states exhibit much morg,th elements.

localization than what TBRE gives. The source of this local-
ization need to be understood. One of the authorD.A.) would like to thank Vijay Sheo-

A statistical analysis of Smeigenvalues and eigenfunc- rey for the useful discussions. All the calculations presented
tions for J=0" and J=4" states with large number of in the paper were carried out on an IBM-SP machine.
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