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Signatures of two-body random matrix ensembles in SmI
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Configuration interaction calculations for the SmI J501 and 41 with matrix dimensions 1351 and 7325 are
carried out. The eigenvalues and eigenfunctions are analyzed for density of states, strength functions, and
information entropy in wave functions and compared with the Gaussian forms given by two-body random
matrix ensembles~TBRE!. Signatures of TBRE are clearly seen in the SmI example.
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Canonical random matrix theory~RMT! defined by
Gaussian orthogonal~GOE!, unitary, and symplectic en
sembles applies to a wide variety of quantum systems s
as nuclei, atoms, molecules, quantum dots, etc.@1#. Very
early, Rosensweig and Porter@2#, and Camarda@3# analyzed
atomic energy level data for the nearest-neighbor spa

distribution ~NNSD! and Dyson-MehtaD̄3 statistic, and es-
tablished that GOE describes the local level fluctuations
atoms. More recently, this was further confirmed by lar
configuration interaction calculations of atomic spectra
CeI and Pr I by Flambaumet al. @4,5# and Cummingset al.
@6#. In addition to the level statistics, they also confirmed
operation of the Porter-Thomas form~given by GOE! for
strength fluctuations. Although GOE applies for fluctuatio
in a pioneering paper Flambaumet al. @4# pointed out, by
studying CeI in detail, quantities such as strength functio
@Fk(E)# and information entropy@Sinfo(E)# or equivalently
the number of principal components@(NPC)E# are most im-
portant ingredients of an interacting many particle syste
Fk(E), Sinfo(E), and (NPC)E are defined later, and also no
that strength functions and occupation numbers determ
transition strengths. At this stage, it should be pointed
that GOE implies that the interaction ism body for a m
particle system. However, for systems such as atoms,
interaction is essentially a mean-field one body plus a co
plexity generating two-body interaction. As a result of th
the m particle Hamiltonian matrix becomes a sparse ma
~many matrix elements are zero due to two-body selec
rules!. By examining the CeI Hamiltonian matrix ~for J
542 andJ541), Flambaumet al. invoked banded random
matrices to describe the calculatedFk(E) and Sinfo(E). A
more detailed numerical study of this type was carried
recently by Cummingset al. @7#, and they considered CeI

and PrI with ls and j j couplings. On the other hand, it i
well known from the structure studies of atomic nuclei th
for an interacting particle system with sufficiently large nu
ber of particles (m*6), two-body random matrix ensemble
~TBRE! describe Fk(E), Sinfo(E), transition matrix ele-
ments, etc.@8#. TBRE is also called embedded GOE of tw
body interactions or simply EGOE~2!. With one plus two-
body interactions, one has in fact EGOE~112!. In addition to
nuclei, EGOE~112! is shown to describe some properties
quantum dots and small metallic grains@9,10#. They are also
used in the discussion of operatability of quantum compu
@11#. With these, it is natural to expect that TBRE
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EGOE~112! also applies to atoms. In order to probe into th
question, in this paper, we studied the structure of SI

eigenfunctions structure in terms ofFk(E) andSinfo(E).
Rare earth elements are chosen in the studies, invest

ing the signatures of RMT in atomic systems as these h
very complicated spectra due to the large number of vale
electrons in partially filled 4f valence shell and other clos
lying electronic shells. The atomic SmI used in the presen
study has 62 electrons of which eight are in the valen
shells 4f and 6s, which can be treated as active. Hence, SI
is a better candidate to test the general properties of TB
compared to CeI and PrI, which have only four and five
active electrons each. The ground state of SmI is
4 f 66s2 1S0. The Dirac-Coulomb Hamiltonian is used in th
present study as it is an appropriate choice for high-Z atom
such as Sm. The Dirac-Coulomb Hamiltonian of anN elec-
tron atom is

HDC5(
i 51

N S cai•pi1c2~b i21!2
Z~r i !

r i
D1(

i . j

N,N
1

ur i2r j u
,

~1!

whereai andb i are the Dirac matrices,pi is the linear mo-
mentum of the electron,Z(r i) is the effective nuclear charg
at r i , and the last term is the electron-electron coulomb
teraction. It is to be noted that all the calculations with E
~1! are in atomic units, where\51, me51, ande51. The
occupied orbitals (126)s1/2, (225)p1/2, (225)p3/2, (3
24)d3/2, (324)d5/2, and 4f 5/2 are generated by a self
consistent Dirac-Fock calculation of the configurati
4 f 5/2

6 6s1/2
2 . The orbitals are frozen, and 6p1/2, 6p3/2, 5d3/2,

5d5/2, and 4f 7/2 are generated by a sequence of Dirac-Fo
calculations of the configuration 4f 5/2

6 6s1/2c, wherec is the
orbital to be generated. Using the orbitals, a basis se
configuration state functions~CSF’s! $uFk&% is constructed.
A configuration interaction~CI! calculation within the CSF
space generates a set of atomic state functions~ASF!
$uCE&%, each of the ASF is a linear combination of the CSF
uCE&5(kCk

EuFk& and are eigenfunctions of the Dirac
Coulomb Hamiltonian. The Dirac-Fock calculations are do
using the multiconfiguration Dirac-Fock codeGRASP92@12#,
which is a relativistic adaptation of the multi-configuratio
Hartree-Fock~MCDF! @13#. Previous calculations of SmI
properties such as lifetime, excitation energies, and hyper
constants are compared with the experimen
©2003 The American Physical Society08-1
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D. ANGOM AND V. K. B. KOTA PHYSICAL REVIEW A 67, 052508 ~2003!
data@14#, and established that method of calculations such
the present one can describe SmI.

The configurations considered in our calculation are g
erated by all possible single and double excitations fr
4 f 66s2 to the 5d and 6p orbitals. The possible even parit
configurations in nonrelativistic notations are 4f 66s5d,
4 f 56s26p, 4f 65d2, 4f 66p2, 4f 56s5d6p, 4f 46s25d2, and
4 f 46s26p2. The CSF’s havingJ501,41 within this con-
figuration space are considered and two separate CI calc
tions are done. The number of relativistic CSF’s are 13
and 7325 forJ501 andJ541, respectively and eigen spec
tra have a span of 2.65 hartree and 2.46 hartree, respect
where the span is the difference between the lowest and
highest eigenvalue. Hereafter, the number of the CSF’s or
dimension of the Hamiltonian matrix is referred to asd. The
energy span shows thatJ541 has a denser spectra as
consequence of the larger number of relativistic CSF’s g
erated from each of the configuration. The centroids of
spectra located at 0.68 hartree forJ501 and 0.63 hartree for
J541 measured from the ground state, reflect the asym
try of the density of states. Now we will turn to the statistic
analysis of the eigenvalues and eigenfunctions in terms
EGOE. First let us briefly describe EGOE.

EGOE(k) for many ~m! fermion systems is generated b
defining the HamiltonianH, which is, say,k body, to be GOE
in k-particle space and then propagating it tom-particle
spaces by using the geometry of them-particle spaces. Here
one assumes that them-particle space is a direct produ
space of single-particle states~say N in number!, for ex-
ample, as in the SmI calculation. Now a EGOE~ 11 2! is
defined by $H%5@h(1)#1$V(2)%, where $V(2)% is
EGOE~2! ~say, with two particle matrix elements varianc
za^ i j uV(2)ukl&az25v2, wherea means antisymmetrized! and
@h(1)# is a fixed one-body Hamiltonian~or an ensemble!
with single-particle energiese i , i 51, . . . ,N having an aver-
age spacingD. With l5v/D, it is easily seen tha
EGOE~112! behaves as EGOE~2! as l→`. It is well
known that for EGOE~2! in the dilute limit (m→`, N
→`, and m/N→0), the ensemble averaged~smoothed!
state densitiesrH(E) approach the Gaussian form@8,15#.
Moreover, for EGOE~112! one can define two ‘‘quantum
chaos’’ markerslc andlFk

so that forl.lc , there is chaos
in the sense that the level fluctuations start coming clos
GOE fluctuations@16# and for l.lFk

~note thatlc,lFk
)

one has the Gaussian form not only for the smoothed s
densities but also for the strength functions@17,18,8#. The
l.lFk

region is called the Gaussian domain. Forms valid

this domain forSinfo(E) and (NPC)E are derived recently
@17#. In the discussion ahead, no distinction is made betw
TBRE and EGOE~112! as we will be comparing SmI cal-
culations with the results valid in the Gaussian domain. I
to be noted thatlc;1/m2N andlFk

;1/Am, see Refs.@16#

and @19#, respectively. Therefore, it is easily seen that a
proach to the Gaussian domain will be faster with larg
numberm of active electrons. Our aim in this paper is
verify whether SmI with m58 is in the Gaussian domain.

The density of statesrH(E) of the spectra exhibits a lon
tail in contrast to the TBRE prediction of a Gaussian. T
05250
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follows from the location of the centroids mentioned earli
However, a GaussianhG(Ê)5(1/A2p)exp(2Ê2/2), where
Ê5(E2e)/s is the standardized variable characterized
the centroide and widths of therH(E), after neglecting the
last few states matches well with the CI results as shown
Fig. 1. Note thatrH(E)dE5h(Ê)dÊ. The hG(Ê) can fur-
ther be refined to an Edgeworth corrected Gaussian@8,20#

hED~Ê!5hG~Ê!H 11
g1

6
He3~Ê!1

g2

24
He4~Ê!1

g1
2

72
He6~Ê!J ,

~2!

where Her(Ê) are Hermite polynomials, andg1 andg2 are
skewness and excess, respectively. In generating Fig. 1, t
are calculated using the definitionsg15^(E2e)3&/s3 and
g25^(E2e)4&/s423. The shift of thehED(Ê) peak reflects
the asymmetry ofrH(E), which may be partly due to the
limited excitations from the valence shells. Figure 1 sho
that bulk of the spectrum is well represented by the Ed
worth corrected Gaussian and this is quite different from
Wigner’s semicircle of the canonical RMT@1#. It should be
mentioned that TBRE has ergodic eigenstates in the mid
of its spectrum but there could be deviations at the ed
@21#. Gaussian like density of states was also observed in
SmIX spectra by O’Sullivanet al. @22#.

The strength functions or local density of statesFk(E)

5(E8uCk
E8u2d(E2E8)5uCk

Eu2r(E) for EGOE~112! under-
goes ad function → Breit-Wigner ~BW! → Gaussian tran-
sition as l makes a 0→lc→lFk

transition @8,18#. The

Fk(E) centroid ek5^FkuHuFk& and variance sk
2

5^FkuH2uFk&2ek
2 . The BW form is defined by the Lorent

zian (1/2p)G/@(E2Ek)
21G2/4#, whereG is the spreading

width andEk is the centroid. TherH(E) being close to the
Gaussian except for the tails~also level statistics following
GOE as shown in Fig. 3 ahead! it is to be expected that the
Fk(E)’s should follow the Gaussian form for the midd
CSF’s. This result is tested in Fig. 2. For example, withk
53000 and 3300 forJ541 shows that the Gaussian featur
are more prominent inFk(E)’s of medium energy CSF’s. A
closer examination of the tail part and the central portion
the calculatedFk(E)’s, shown in Fig. 2 clearly points ou
that the Lorentzian will not give a good fit. This is unlike th
case with CeI @4# and PrI @7# which do not have sufficien

FIG. 1. Binned and normalized density of states~solid line!;
Gaussian calculated, neglecting the last few states~dashed line!;
and Edgeworth corrected Gaussian~dot-dashed line!.
8-2
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SIGNATURES OF TWO-BODY RANDOM MATRIX . . . PHYSICAL REVIEW A67, 052508 ~2003!
number of active electrons for the Gaussian form to oper
Typically, sk;0.12 hartree in contrast toG;0.18 hartree for
J541, G is obtained by the Breit-Wigner fit. The Gaussia
form of the Fk(E)’s of selected CSF’s, shown in Fig. 2
brings out the action of TBRE in SmI. However, it should be
pointed out that theFk(E)’s show multimodal structure, fo
example, theJ541 andk53300 has two pronounced loca
maxima atÊ;21 and 0. As pointed by Flambaumet al. @4#

FIG. 2. Fk(E) of selected CSF’s;k denotes the CSF numbe
The dashed, dot-dashed, and dot-dot-dot-dashed curves ar
Gaussian, Edgeworth corrected Gaussian, and Lorentzian, re
tively.

FIG. 3. CalculatedD̄3(L) is compared with the Poisson an

GOE values. To calculateD̄3(L), the cumulative number of energ
statesN(E) are unfolded using the fourth order polynomial with
selected region of the spectra; 30–800 and 170–5000 eigenv
of the J501 andJ541, respectively, are considered.
05250
e.

this could be due to the selection rules and nature of
two-body interaction. This will be investigated in detail els
where. BesidesFk(E) one can also study the closely relate
function @17# that gives the spreading of the eigenfunction
i.e., uCk

Eu2 versusEk @4,6#. Before going further, it should be
added that the calculated nearest-neighbor spacing dist
tion andD̄3 for the middle part of the spectrum follow GOE
Figure 3 shows the results forD̄3. Gaussian densities with
level fluctuations following GOE is a feature of EGOE~112!
with l.lc @1,8#. In fact, even a noninteracting fermion sy
tem gives Gaussian level densities but with Poisson fluc
tions. Finally, in indefinite spaces, in fact, the level dens
approaches the well-known exp(aAE), but this is of no con-
cern in this paper.

The number of principal components (NPC)E

5((kuCk
Eu4)21 and localization length l h(E)

5exp@(SE
info)#/(0.48d) with SE

info52(kuCk
Eu2lnuCk

Eu2 are mea-
sures of complexity of the eigenfunctions, whered is the
dimension of the Hamiltonian matrix. Hereafter, for a com
parison, (NPC)E is also normalized to unity by dividing
with the GOE value ofd/3 and it is called (RNPC)E ; note
that l h is 1 for GOE. EGOE~112! in the Gaussian domain
predicts@17#

~RNPC!E5A12z4exp2S z2Ê2

11z2D ,

l h~E!5A12z2expS z2

2 Dexp2S z2Ê2

2
D , ~3!

z5A12sk
2/sH

2 ,

the
ec-

es

FIG. 4. Normalized number of principal components (RNPC)E

and l h(E) compared with the TBRE predicted values given by E
~3!. The histogram gives the calculated values and the dashed c
is the TBRE.
8-3
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D. ANGOM AND V. K. B. KOTA PHYSICAL REVIEW A 67, 052508 ~2003!
wheresk
25(1/d)( iÞ jHi j

2 and sH
2 5(1/d)( i(Ei2e)2 are the

variance of the off-diagonal Hamiltonian matrix elemen
and eigenvalues, respectively, see Ref.@23# for (NPC)E in
BW domain. Asz in Eq. ~3! varies from 0 to 1, the (NPC)E
and l h change from GOE value to complete localizati
value. A comparison of the calculated (RNPC)E and l h(E),
and TBRE predicted values are shown in Fig. 4. The en
lope of the (RNPC)E and l h(E) shows that the overal
trends are in a good agreement with the TBRE predictio
The correlation coefficientz;0.85 for bothJ501 and 41.
It is seen that there are deviations in the lower tail region
also for the eigenstates above the centroid. This indicates
the states are more localized than what TBRE predicts@note
that GOE value for both (RNPC)E and l h(E) is 1#. The
calculated results are much closer to TBRE as compare
GOE but at the same time several states exhibit much m
localization than what TBRE gives. The source of this loc
ization need to be understood.

A statistical analysis of SmI eigenvalues and eigenfunc
tions for J501 and J541 states with large number o
nd

-

o-

B

B

h,

.
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CSF’s showed for the first time that atoms with sufficien
large number of active electrons exhibit TBRE characte
tics. The tails ofrH(E), multi-modal forms ofFk(E), and
stronger localization~ compared even to TBRE! in some of
the eigenstates seen in the calculation may be partly du
truncation of the CSF basis and partly also due to the na
of interelectron interaction. The sources of the deviatio
from the TBRE are being studied further. Here partition
EGOE ~see Ref.@8#! may be relevant. Although thel value
of EGOE~112! that maps the Hamiltonian~1! is not deter-
mined in this paper, it is established that thel value exceeds
lFk

as the Gaussian domain results are seen in SmI, whereas
CeI and PrI exhibits BW features@4,6#. We plan to carry out
studies of NdI and PmI to establish BW to Gaussian trans
tion with the increase of active electrons among the r
earth elements.
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