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Preparation of engineered two-photon entangled states for multidimensional quantum information
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We put forward an experimentally feasible technique to generate engineered entangled states in
d-dimensional Hilbert spaces in parametric down-conversion of photons. The scheme is based on the orbital
angular momentum of light and translates the classical, topological information imprinted in the light beam that
pumps the two-photon source into quantum information contained in the weights and phases of the quantum
entangled two-photon states.

DOI: 10.1103/PhysRevA.67.052313 PACS number~s!: 03.67.Mn, 42.50.Dv
os
o
io

b
lti-

d

ec
-
n

e
re

e
-
op
e
T
o
t

e

th
tia
rt

m
n
-

la
n

ifie
er
r-
ir
e

he

ta

ted.
ary

ble

on,
on-

-

an-

dits
e-

a-

aist

l

ont
s a

the
tri-
Entanglement of identical particles is one of the m
genuine features of the quantum world, and it forms the c
of quantum cryptography, computing, and teleportat
@1–6#. To date research has focused on quantum states
longing to two-dimensional Hilbert spaces, or qubits. Mu
dimensional entangled states, or qudits, provide higher
mensional alphabets, thus enhancing the potential
quantum techniques. For example, by using qudits the s
rity of quantum key distribution cryptography can be im
proved @7#, and the efficiency of quantum communicatio
protocols can be enhanced@8#. However, the challenge is th
implementation of thed-dimensional quantum channel. He
we put forward a feasible technique to preparearbitrary en-
gineered entangled statesin any d-dimensional Hilbert
space. The scheme is based on the entanglement of th
bital angular momentum of light@9# in the process of spon
taneous parametric down-conversion, and translates t
logical information imprinted in the pump light into th
amplitudes of the generated entangled quantum states.
makes possible the proof-of-principle implementation
capacity-increased protocols based on qudits, and allows
experimental exploration of deeper quantum featur
such as hyperentanglement in arbitrary,on-demandHilbert
dimensions.

The key ingredient of the scheme put forward here is
engineering of the quantum state by controlling the spa
shape of the laser beam that pumps the down-conve
source. The approach bears similarities with the spatial
nipulation of pump beams for quantum imaging applicatio
~see, e.g.,@10,11#!. This is in contrast to the direct manipu
lation of the quantum state output of the crystal. In particu
manipulation of the orbital angular momentum of the dow
converted photons by properly designed holograms mod
the corresponding quantum state allowing, e.g., the gen
tion of states that maximally violate multidimensional ve
sions of Bell inequalities as demonstrated recently by Vaz
Weihs, and Zeilinger@12#. Such approach relies on th
multiple-step manipulation of theinformation imprinted on
the quantum state. On the contrary, our scheme relies on t
single-step manipulation of theinformation imprinted on the
classical beamthat pumps the quadratically nonlinear crys
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where the desired two-photon quantum state is genera
Thus, it can be readily employed in to generate arbitr
qudits in arbitrary Hilbert dimensions.

Spontaneous parametric down-conversion is a relia
source for the generation of entangled photon pairs@13,14#.
Pairs of down-converted photons entangled in polarizati
or spin angular momentum, were used, e.g., in the dem
stration of quantum teleportation@3#, and in the recent real
ization of a quantum universalNOT gate @4#. However, the
down-converted photons can also be entangled in orbital
gular momentum~OAM! @9#, which belongs to an infinite
dimensional Hilbert space and thus allows encoding qu
with arbitrary d @15#. The quantum state of a photon is d
scribed by a mode function. Any mode functionC(r,w,z)
with an arbitrary amplitude profile can be expanded into L
guerre Gaussian~LG! modes,

C~r,w,z!5 (
l 52`

`

(
p50

`

AlpLGp
l ~r,w,z!. ~1!

The normalized Laguerre Gaussian mode at its beam w
(z50) is given in cylindrical coordinates by

LGp
l ~r,w!5A 2p!

p~ u l u1p!!

1

w0
SA2r

w0
D u l u

Lp
u l uS 2r2

w0
2 D

3exp~2r2/w0
2!exp~ i l w!, ~2!

whereLp
l (r) are the associated Laguerre polynomials,

Lp
u l u~r!5 (

m50

p

~21!m
~ u l u1p!!

~p2m!! ~ u l u1m!!m!
rm, ~3!

w0 is the beam width,p is the number of nonaxial radia
nodes of the mode, and the indexl, referred to as the winding
number, describes the helical structure of the wave fr
around a phase dislocation. When the mode function i
pure LG mode with winding numberl, the quantum state is
an eigenstate of the OAM operator with eigenvaluel\ @16#.
State vectors, which are not represented by a pureLG mode,
correspond to photons in a superposition state, with
weights of the quantum superposition dictated by the con
bution of thel th angular harmonics.
©2003 The American Physical Society13-1
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When a thin quadratic nonlinear crystal of lengthL is
illuminated by a quasimonochromatic laser pump be
propagating in thez direction, with wave numberkp and
waist w0, the generated two-photon quantum state is giv
by @17#

uC&5E dr'F~r'!as
†~r'!ai

†~r'!u0,0&, ~4!

wherer' is the radial coordinate in the transverseX-Y plane,
u0,0& is the vacuum state andas

† andai
† are creation opera

tors for the signal and idler modes. HereF(r') is the spatial
distribution of the pump beam at the input faced of the cr
tal. A photon state described by a pure LG mode can
written as

u lp&5E dr'LGp
l ~r'!a†~r'!u0&. ~5!

Using I 5( lpu lp&^ lpu, one can express the quantum sta
uC& using the eigenstates of the orbital angular momen
operator as

uC&5 (
l 1 ,p1

(
l 2 ,p2

Cp1 ,p2

l 1 ,l 2 u l 1 ,p1 ; l 2 ,p2&, ~6!

where (l 1 ,p1) correspond to the signal mode and (l 2 ,p2)
correspond to the idler mode. The expression of the proba
ity amplitudeCp1 ,p2

l 1 ,l 2 is given by@18,19#

Cp1 ,p2

l 1 ,l 2 ;E dr'F~r'!@LGp1

l 1 ~r'!#* @LGp2

l 2 ~r'!#* . ~7!

The pump beamF(r') can be expanded into spiral harmo
ics to get

F~r,w!5 (
l 52`

`

al~r!exp~ i l w!. ~8!

Therefore, the quantum probability amplitudeCp1 ,p2

l 1 ,l 2 de-

pends only on the radial profile of the (l 11 l 2)th angular
harmonic of the pump beam. Thus, such harmonic conten
the pump beam translates to the complex probability am
tude of the quantum states withl 11 l 25m. The weights of
the quantum superposition are given byPp1 ,p2

l 1 ,l 2

5uCp1 ,p2

l 1 ,l 2 u2/h, which gives the value of the joint detectio

probability for finding one photon in the signal mode (l 1 ,p1)
and one photon in the idler mode (l 2 ,p2). The two-photon
state produced in the down-conversion process is a cohe
superposition of an infinite number of states of the fo
u l 1 ,p1 ; l 2 ,p2&, so that using eigenstates with indexl
50, . . . ,d21, produces qudits of arbitraryd. We thus con-
sider a detection scheme that projects the OAM two-pho
state intod-dimensional Hilbert subspaces, denotedSd . h is
a normalization constant that depends on the particular
bert subspace that is considered. For illustrative purpo
here we consider only states withp15p250, denoted
u l 1 ,l 2&.
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The technique put forward here is based on the use
coherent, engineerable superposition of modes as a p
signal. More precisely, we suggest to encode such mode
the form of N single-charge topological screw wave fro
dislocations, or vortices, nested on a laser beam~e.g., by
properly designed computer generated holograms, or re
figurable spatial light modulators!. Such beam can be writte
as @20#

F~r,w!5A0)
j 51

N

@r exp~ iw!2r j exp~ iw j !#exp~2r2/w0
2!,

~9!

where (r j ,w j ) are the radial and azimuthal positions of th
j th vortex,w0 is the beam width andA0 is a constant. Pro-
jection of the vortex-pancake~9! onto LG modes yields@20#

F~r,w!5A0Ap(
l 50

N

~21!N2 lS w0

A2
D l 11

3AG~ l 11!BN2 lLG0
l ~r,w!, ~10!

where

Bn5(
j 1

(
j 2

•••(
j n

)
l 51

n

r j l
exp~ iw j l

!, ~11!

with j lP@1,N#, and j l, j l 11. Using Eqs.~7! and ~10! one
finds that the spatial field distribution given by Eq.~9! can
only generate down-converted entangled photons in a qu
tum superposition of states with 0< l 11 l 2<N, with

al 11 l 2
~r!5A0Ap~21!N2 l 12 l 2S w0

A2
D l 11 l 211

AG~ l 11 l 211!

3BN2 l 12 l 2
u0

l 11 l 2~r!, ~12!

where

u0
l ~r!5LGp

l ~r,w!exp~2 i l w!. ~13!

This expression is a direct consequence of the conserva
of the OAM in spontaneous down-conversion in colline
phase-matching geometries as those considered here, wh
pump beam with azimuthal quantum numberl 0 can only
generate down-converted photons, which yieldl 11 l 25 l 0.
Whenp15p250, substitution of Eq.~12! into Eq.~7! yields

C0,0
l 1 ,l 2;~21!N2 l 12 l 2

2(u l 1u1u l 2u)/2A0w0
l 11 l 2

3( l 11 l 21u l 1u1u l 2u)/2

3
G~@ l 11 l 21u l 1u1u l 2u#/211!

AG~ u l 1u11!G~ u l 2u11!
BN2 l 12 l 2

, ~14!

for 0< l 11 l 2<N. The value of constantBn depends solely
on the location of the vortices. Thus, through the manipu
tion of the position of the vortices one can control the pha
and weight of the probability amplitudesC0,0

l 1 ,l 2 . This can be
3-2
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employed to generate, e.g., qu-quarts. For example, Fig.~a!
shows the intensity profile of the pump beam that gener
the maximally entangled qu-quart

uC&5 1
2 @2u0,0&1exp~ iu1!u1,1&1exp~ iu2!u2,2&1u3,3&],

~15!

in the subspaceS45$u0,0&,u1,1&,u2,2&,u3,3&%. The corre-
sponding quantum amplitudes and phases are shown in
1~b!. Additional qu-quarts can be generated by simple to
logical transformations. For example, a global rotation of
pump by an angleu generates the new maximally entangl
qu-quart

uC&5 1
2 @2exp~ i6u!u0,0&1exp~ iu11 i4u!u1,1&

1exp~ iu21 i2u!u2,2&1u3,3&]. ~16!

FIG. 1. Intensity profile of the pump beam that generates
maximally entangled qu-quart C51/2@2u00&1exp(iu1)u11&
1exp(i u2)u22&1u33&]. ~a! Intensity profile,~b! the generated quan
tum state. In~a!, the transverse coordinates are normalized to
beam widthw0. In ~b!, the bars show the weight distribution an
the clocks show the phase distribution of the quantum state.
phases areu152111° andu2584°. Locations of the vortex:r1

50.65w0 , r251.85w0 , r351.06w0 , r450.54w0 , r551.53w0 ,
r651.24w0, andw i5 ip/3 for i 51,6.
05231
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There ared2 maximally entangled states that form an o
thonormal base for the space of two entangled qubits.
explicit form of one base is

uCm,n&5
1

Ad
(
j 50

d21

exp~ i2p jn/d!u j ,~ j 1m!mod-d&, ~17!

wherem and n run from 0 tod21. For d52, they corre-
spond to the usual Bell states for qubits. The correspond
base, but for qutrits, can be generated by a pump beam
N54, which corresponds to four vortices nested off ax
The diagrams of Fig. 2 sketch the location of the vortic
needed to generate the six vectors corresponding to the b
uC0n& and uC1n& with n50,1,2. The maximally entangled
states uC0n& describe a base of the subspaceS3
5$u0,0&,u1,1&,u2,2&%, while uC1n& is the corresponding bas
for S35$u0,1&,u1,2&,u2,0&%. The probability amplitudes of
statesu l 1 ,l 2& and u l 2 ,l 1& are always found to be equal, thu
the same topology of the pump beam can generate the q
tum statesuC1n& and uC2n&. Figures 3~a!–3~c! show the

FIG. 2. Diagrams sketching the locations of the topologi
screw dislocations of the pump beam that generates the six ve
C0n and C1n (n50,1,2). The transverse coordinates are norm
ized to the beam widthw0. The ‘‘clocks’’ show the phase of the
amplitude of the corresponding statesu0,0&, u1,1&, and u2,2& for
~a!–~c!, and for the statesu0,1&, u1,2&, and u2,0& in ~d!–~f!. ~a!
uC00&, ~b! uC01&, ~c! uC02&, ~d! uC10&, ~e! uC11&, and~f! uC12&. For
~a!–~c!: r15r25r35r45(16/27)1/4 and for ~d!–~f!: r152/3, r2

5r35(A8/3)1/2, r450. The angles are~a! w1575°, w25105°,
w352105°, w45275°, ~b! w152165°, w252135°, w3515°,
w4545°, ~c! w15135°, w25165°, w35245°, w45215°, ~d!
w15180°, w2590°, w35290°, ~e! w15260°, w252150°, w3

530°, and~f! w1560°, w25230°, w35150°.

e

e

e
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weights and quantum phases of the three statesuC0n&, all of
which are maximally entangled.

We next illustrate with two examples how the scheme c
be employed to generate engineered quantum states fo
timal quantum protocols. Consider a pump topology w
four off-axis vortices equiseparated from the beam axis,
distancer15r25r35r45(16/27)1/4, and with angular lo-
cations given byw15u1D, w25u2D1p, w35u1D
1p, andw45u2D. Such topology generates quantum e
tangled states belonging to the subspaceS3
5$u0,0&,u1,1&,u2,2&%, with the general form

uC&5
1

A214 cos2~2D!/3
Fexp~ i4u!u0,0&

2
2

A3
cos~2D!exp~ i2u!u1,1&1u2,2&G . ~18!

Different possibilities are possible. For example, whenD
575° and u50°,60°,120°, the quantum states genera
correspond to the three vectorsuC0n&, respectively, which
are maximally entangled states with equal amplitudes
different phases of the constituent pure states. WhenD

FIG. 3. Generation of selected quantum superposition states~a!
uC00&, ~b! uC01&, ~c! uC02&, ~d! uC&51/A3@ u0,0&1u2,2&], ~e! uC&
51/A3@2u0,0&1u2,2&], and ~f! uC&51/A21g2@ u0,0&1gu1,2&
1u2,2&] with g5(A112A3)/2. The bars show the weight of th
projections into pure modes and the clocks show the phases o
quantum states.
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515°, the state is still a maximally entangled state, but n
with a quantum phase reversal imposed to the stateu1,1&.
When D545°, the contribution of the stateu1,1& is sup-
pressed, and by rotating the whole configuration byu, one
can generate quantum states with an arbitrary phase d
betweenu0,0& and u2,2&. Two important concrete example
are shown in Figs. 3~d! and 3~e!.

Direct applications of the possibilities open by Eq.~18!
occur in all d-dimensional quantum communication prot
cols. For example, Brukner and co-workers showed that
efficiency of quantum two-party communication complex
problems can be enhanced over any classical protoco
using qutrits@8#, provided that they violate Bell inequalitie
in the form defined by Collinset al. @21#, and Acin et al.
showed that the qutrit

uC&5
1

A21g2
u0,0&1gu1,1&1u2,2&, ~19!

with g5(A112A3)/2, violates Bell inequality stronger tha
any maximally entangled state@22#. Such state can be readil
generated with our technique: The topology required to g
erate such state shown in Fig. 3~f! is u50 and
cos(2D)52A3g/2 ~i.e., D.67°).

FIG. 4. Generation of nine quantum vectors for three mutua
unbiased bases. The transverse coordinates are normalized t
beam widthw0. The clocks show the phase of the amplitude of t
corresponding statesu0,1&, u1,2&, and u2,0&. In all casesr15A2,
r25r35@2A2/3#1/2, andw35w21p. ~a! w15180°, w2590°, ~b!
w1560°, w25150°, ~c! w15260°, w2530°, ~d! w15180°, w2

5150°, ~e! w15260°, w2590°, ~f! w1560°, w2530°, ~g! w1

5180°, w2530°, ~h! w1560°, w2590°, and~i! w15260°, w2

5150°.

he
3-4
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Another direct application of the technique holds in ge
eralizations of the Bennet-Brassard quantum key distribu
protocol@24#, which make use ofN-dimensional systems an
M mutually unbiased bases. To set a secret key requires
Alice chooses one of theM3N vectors and sends a quantu
state represented by that vector. The use of higher value
N andM provides better security than obtainable with qub
and two bases@7,23#. One can constructM5d11 mutually
unbiased bases withd5pk, wherep is a prime number andk
an integer@25#. This can also be implemented with our tec
nique using the setS35$u0,1&,u1,2&,u2,0&% and aN53 vor-
tex pancake withr15A2, r25r35@2A2/3#1/2 and w35w2
1p. By tuningw1 andw2, one can generate the nine vecto
of the form uC&51/A3@mu0,1&1nu2,0&1u1,2&], where m
and n are given by any combination m,n
51,exp(i2p/3),exp(2i2p/3), which allow to generate thre
of the mutually unbiased bases. An additional base can
obtained by generating the statesu0,1&, u2,0&, and u1,2&, by
using pump beams with al 51,2,3 on-axis vortex~Fig. 4!.

We conclude by noticing that pancakes of topological d
locations can be nested in host laser beams by diffe
-
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methods, including computer-generated holography and
tial light modulators@26–29#. Holographic mode splitters
similar to those recently employed to demonstrate the vio
tion of Bell inequalities with qutrits@12# can be used to
project the quantum states into the Hilbert subspaces. S
experimental demonstration confirms that the scheme
posed here can be implemented within the current tech
logical state of the art in the manipulation and detection
OAM eigenstates. We finally conjecture that OAM topol
gies should be storable in quantum memories made of c
atoms @30,31#, and phase imprinted in atomic-molecul
Bose-Einstein condensates@32#, for the matter implementa
tion of the technique.
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