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Quantum random-walk search algorithm
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Quantum random walks on graphs have been shown to display many interesting properties, including
exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear
how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we
present a quantum search algorithm based on the quantum random-walk architecture that provides such a
speedup. It will be shown that this algorithm performs an oracle search on a database ofN items withO(AN)
calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum
random-walk formulation has considerable flexibility, presenting interesting opportunities for development of
other, possibly novel quantum algorithms.
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I. INTRODUCTION

Recent studies of quantum random walks have sugge
that they may display different behavior than their classi
counterparts@1–5#. One of the promising features of thes
quantum random walks is that they provide an intuiti
framework on which to build novel quantum algorithm
Since many classical algorithms can be formulated in te
of random walks, it is hoped that some of these may
translated into quantum algorithms which run faster th
their classical counterparts. However, previous to a very
cent paper by Childset al. @6#, there had been no quantu
algorithms based on the random-walk model. In this pa
we show that a quantum search algorithm can be der
from a certain kind of quantum random walk. Optimal qua
tum search algorithms are already well known@7–9#. The
search algorithm from a quantum random walk we pres
here shows some differences from the established searc
gorithms and may possess useful properties with respe
robustness to noise and ease of physical implementatio
also provides a new direction for design of quantum al
rithms from random walks, which may eventually lead
entirely new algorithms.

Current research uses two distinct models for quan
random walks, based on either discrete-time steps or
continuous-time evolution. Discrete time quantum rand
walks were introduced as a possible new tool for quant
algorithms generalizing discrete classical Markov chains@2#.
The discrete-time walk can be thought of as a successio
unitary operations, each of which has a nonzero transi
amplitude only between neighboring nodes of the graph.
relation of these to classical Markov chains provides con
erable motivation for exploration of discrete random wal
Within the field of classical algorithms, the application
classical Markov chains inclassical algorithms has been
quite revolutionary, providing new approximation and op
mization algorithms. By analogy, it might reasonably
hoped that similar algorithmic advances could be obtai
for quantum algorithms from development of the quant
random walks. The second quantum random-walk mode
1050-2947/2003/67~5!/052307~11!/$20.00 67 0523
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the continuous-time quantum random walk, introduced
Refs.@4–6#. In the continuous-time walk, the adjacency m
trix of the graph is used to construct a Hamiltonian whi
gives rise to a continuous-time evolution. This model diffe
from the discrete-time walk in that even for small times the
is an ~exponentially small! probability of transition to non-
adjacent nodes. In this paper, we will consider the discre
time model only.

The paper is organized as follows. Section II provide
brief introduction to discrete-time quantum random walk
Section III describes the random-walk search algorithm a
provides a proof of its correctness. Section IV summari
the similarities and differences between the random-w
search algorithm and Grover’s search algorithm. Conclusi
are presented in Sec. V.

Notation. Following standard computer science notati
we will use the following to characterize the growth of ce
tain functions: We will sayf (n)5O„g(n)… if there are posi-
tive constantsc and k such that 0< f (n)<cg(n) for n>k.
Similarly f (n)5V„g(n)… if 0<cg(n)< f (n) for constants
c,k>0 andn>k.

II. BACKGROUND

The discrete-time random walk can be described by
repeated application of a unitary evolution operatorU. This
operator acts on a Hilbert spaceH C

^ H S, whereH C is the
Hilbert space associated with a quantum coin~coin space!
andH S is the Hilbert space associated with the nodes of
graph. The operatorU can be written as@2#

U5SC, ~1!

whereS is a permutation matrix which performs a controlle
shift based on the state of the coin space, andC is a unitary
matrix which corresponds to ‘‘flipping’’ the quantum coin
We will call C the quantum coin. This operation can be v
sualized by analogy to a classical random walk. In each
eration of a discrete-time classical random walk on a gra
the coin is flipped. The walker then moves to an adjac
©2003 The American Physical Society07-1
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SHENVI, KEMPE, AND WHALEY PHYSICAL REVIEW A 67, 052307 ~2003!
node specified by the outcome of the coin flip. An equival
process occurs in the quantum random walk, with the mo
fication that the coin is a quantum coin, and can theref
exist in a superposition of states. This modification can le
to dramatic differences in behavior between the classical
quantum random walks. However, it should be noted tha
the state of the coin is measured after each flip, then
quantum random walk reverts to a classical random w
~and similarly if the state of the nodes is measured a
every step!.

An important feature of the discrete-time quantum ra
dom walk that has significance for its use in the developm
of quantum algorithms is that by virtue of its definition on
quantum computer this walk will be efficiently implemen
able whenever its classical counterpart is efficiently imp
mentable on a classical computer.@By efficient we mean tha
the walk can be simulated by a circuit with a number of ga
that is polynomial in the number of bits~qubits!.# This is due
to the very similar structure of both these walks. To illustra
this, assume that we have an efficient way to implement
classical random walk on the underlying graph, i.e., to p
form the coin flip and subsequent shift. The shift is con
tional on the outcome of the coin flip~which determines the
direction of the next step!, i.e., we have a classical efficien
circuit that performs a controlled shift on the basis states
is straightforward@10# to translate this circuit into a quantum
circuit that performs the unitary controlled shift of Eq.~1!.
Similarly, if there is an efficient procedure to flip the clas
cal coin of the random walk, there will be an efficient way
implement a quantum coin. Hence implementation of
discrete-time random walk is automatically efficient if th
underlying classical walk is efficiently implementable.

Note that if no measurement is made, the quantum wa
controlled by a unitary operator rather than a stochastic o
This implies that there is no limiting stationary distributio
@2,11#. Nevertheless, several recent works have shown
consistent notions of mixing time can be formulated, a
have shown polynomial speedup in these quantum mix
times relative to the classical analog@2,11#. Another quantity
for which quantum walks have shown speedup relative
their classical analogs is the hitting time@12,13#. Under cer-
tain conditions this speedup can be exponential compare
the classical analog. We refer the reader to the recent pa
@2,3,11#, and @12# for some results obtained from discret
time quantum random walks.

Our random-walk search algorithm will be based on
random walk on then cube, i.e., the hypercube of dimensio
n @11,12#. The hypercube is a graph withN52n nodes, each
of which can be labeled by ann-bit binary string. Two nodes
on the hypercube described by bitstringsxW and yW are con-
nected by an edge ifuxW2yW u51, whereuxW u is the hamming
weight of xW . In other words, ifxW and yW differ by only a
single-bit flip, then the two corresponding nodes on
graph are connected. Thus, each of the 2n nodes on then
cube has degreen ~i.e., it is connected ton other nodes!, so
the Hilbert space of the algorithm isH5H n

^ H 2n
. Each

state inH can be described by a bit stringxW , which specifies
the position on the hypercube, and a directiond, which
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specifies the state of the coin. The shift operatorS maps a
stateud,xW & onto the stateud,xW % ed

W &, whereed
W is thedth basis

vector on the hypercube.S can be written explicitly as

S5 (
d50

n21

(
xW

ud,xW % ed
W &^d,xW u. ~2!

To completely specify the unitary evolution operatorU,
the coin operatorC must also be chosen. Normally, the co
operator is chosen such that the same coin action is app
to each node on the graph. This is the case in previous s
ies of discrete quantum walks on the line@2,3,14# and on the
hypercube@11,12#. In other words, the coin operatorC can
be written in a separable way as

C5C0^ I, ~3!

whereC0 is an3n unitary operator acting on the coin spa
H C. In this case the action on the coin spaceH C does not
depend on the state of the node spaceH S. If C is separable
according to Eq.~3! then the eigenstates ofU are simply the
tensor product of the eigenstates of an operatorCkW on the
coin space and of the Fourier modes of the hypercube~la-
beled byn-bit stringskW ) @11#. One frequently chosen sepa
rable coin is Grover’s ‘‘diffusion’’ operator on the coin
space, given by

C05G52I12usC&^sCu, ~4!

where usC& is the equal superposition over alln directions,
i.e., usC&51/An(d51

n ud& @11#. This coin operator is invarian
to all permutations of then directions, so it preserves th
permutation symmetry of the hypercube. The use of
Grover diffusion operator as a coin for the hypercube w
proposed in Ref.@11#, where it was pointed out that thi
operator is the permutation invariant operator farthest aw
from the identity operator@11#. So, heuristically, it should
provide the most efficient mixing over states, from any giv
initial state. The nontrivial eigenvalues and eigenvectors
U are given by@11#

e6 ivk512
2k

n
6

2i

n
Ak~n2k!, ~5!

uvkW&,uvkW&* 5(
xW ,d

~21!kW•xW
22n/2

A2
ud,xW &

3H 1/Ak if kd51

7 i /An2k if kd50.
~6!

Note that the equal superposition over all states,uc0&5usC&
^ usS&, where usS& is the equal superposition over the 2n

nodes, is an eigenvector ofU with eigenvalue 1. So repeate
application ofU leaves the stateuc0& unchanged.

In order to create a search algorithm using the quan
random-walk architecture, we now consider a small per
bation of the unitary operatorU. In the standard setting of a
search algorithm we have an oracleOf , which ‘‘marks’’ a
single bitstringxW target . More specifically the oracle com
7-2
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QUANTUM RANDOM-WALK SEARCH ALGORITHM PHYSICAL REVIEW A 67, 052307 ~2003!
putes a functionf such thatf (xW target)51 and f (xW )50 if xW

ÞxW target . The query complexity of a search algorithm
defined to be the number of queries toOf that need to be
made to find the marked stringxW target with high probability.
In the quantum case the oracleU f is implemented via a
reversible unitary operation; in the standard setting the or
shifts the phase of the marked item. For our implementa
the coin operator will take the function of the oracle. Sp
cifically, we consider ‘‘marking’’ a single arbitrary node b
applying a special coin action to that node. The oracle w
act by applying a ‘‘marking coin’’C1 to the marked node an
the original coinC0 to the unmarked nodes, i.e., the co
action will be conditioned on the node.~Note that this modi-
fied coin is still unitary.!

This ‘‘coin oracle’’ can be easily obtained from the sta
dard oracle of quantum search. To simulate the coin ora
we setup the standard oracle on the node space, and the
a conditionalC0 or C1 operation, respectively, at the outpu
This is illustrated in Fig. 1.

Without loss of generality, we can assume that the mar
node corresponds to the all-zero stringxW target50W . Then our
coin operator becomes

C85C0^ I1~C12C0! ^ u0W &^0W u. ~7!

The marking coinC1 can be anyn3n unitary matrix. For
simplicity, we will consider here the case whereC152I.
Numerical studies@15# have shown that other choices for th
coin C1 yield similar results. As seen from Eq.~7! the coin
operator is now a composite unitary and its action is con
tioned on the node register. Our perturbed unitary evolut
operatorU8 is given by

U85SC8

5S~G^ I2~G1I! ^ u0W &^0W u!

5U22S~ usC&^sCu ^ u0W &^0W u!. ~8!

Analysis of the effects of this perturbation leads directly
the definition of the random-walk search algorithm, as
described in the following section.

FIG. 1. Modified standard oracle that simulates the coin ora
The standard oracle acts on the node space asU f :uxW & ^ uy&→uxW &
^ uy% f (x)&. The controlled coin operation, denoted byC0 /C1, ap-
pliesC0 on the coin space if the control qubit is in the stateu0&, and
C1 if it is in the stateu1&.
05230
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III. RANDOM WALK SEARCH ALGORITHM

A. Overview of the algorithm

We define the search space of the algorithm to be the
of all n-bit binary strings,xW5$0,1%n. We consider the func-
tion f (xW )5$0,1%, such thatf (xW )51 for exactly one input
xW target . Our goal is to findxW target . Using the mapping of
n-bit binary string to nodes on the hypercube, this sea
problem is then equivalent to searching for a single mar
node amongst theN52n nodes on then cube. For purposes
of the proof, we have set the marked node to bexW target50W ,
but the location of the marked node has no significance.

The random-walk search algorithm is implemented as
lows.

~1! Initialize the quantum computer to the equal superp
sition over all states,uc0&5usC& ^ usS&. This can be accom-
plished efficiently on the node space by applyingn single-bit
Hadamard operations to theu0W & state. A similar procedure
works for the direction space.

~2! Given a coin oracleC8 which applies the coinC0

5G to the unmarked states and the coinC152I to the
marked state, apply the perturbed evolution operator,U8
5SC8, t f5p/2A2n times.

~3! Measure the state of the computer in theud,xW & basis.

It is our claim that with probability1
2 2O(1/n), the out-

come of the measurement will be the marked state. By
peating the algorithm a constant number of times, we
determine the marked state with an arbitrarily small deg
of error. In the remainder of this section we provide a pro
of this algorithm.

The general outline of the proof that we will present is t
following. We need to determine the result of the operat
(U8) t on the initial stateuc0&. To do this, we will first sim-
plify the problem by showing that the perturbed walk on t
hypercube can be collapsed to a walk on the line~Theorem
1!. Next, by constructing two approximate eigenvectors
U8, uc0& and uc1&, we will show that there are exactly tw
eigenvalues ofU8 that are relevant@i.e., the initial stateuc0&
has high overlap with the space spanned by the corresp
ing eigenvectors~see Theorem 2 and Theorem 3!#. We de-
note these eigenvalues byeiv08 ande2 iv08. We will then show
that the corresponding eigenvectorsuv08& and u2v08& can be
well approximated by linear combinations of the initial sta
uc0& and the second stateuc1& ~Theorem 4!. As a result, our
random walk search algorithm can be approximated b
two-dimensional rotation in theuv08&,u2v08& plane away
from the initial stateuc0&'1/A2(uv08&1u2v08&) and towards
uc1&' i /A2(2uv08&1u2v08&), which constitutes a very clos
approximation to the target stateuxW target&. Finally, we show
that each application of the evolution operatorU8 corre-
sponds to a rotation angle of approximately 1/A2n21 Theo-
rem ~5!. Hence, the search is completed after approxima
(p/2)A2n21 steps, i.e., afterO(AN) calls to the oracle,
whereN52n is the number of nodes.

.

7-3



o
g

th
lin
ts
th
r,
s
lu

a

-

,

n

re
e
ig

at

o-

om
the

tion
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B. Proof of correctness

In general, analytic determination of the eigenspectrum
a large matrix is a daunting task, so we will take advanta
of the symmetries inherent inU8 to simplify the problem.
Let us first show that the perturbed random walk on
hypercube can be collapsed onto a random walk on the
Let Pi j be the permutation operator which swaps the bii
and j, in both the node space and the coin space. In o
words, given a stateud,xW &, under the permutation operato
Pi j , the i th and j th bits of xW are swapped and the direction
d5 i andd5 j are swapped. Clearly, the unperturbed evo
tion operatorU commutes withPi j since every direction in
the unperturbed walk is equivalent.

Theorem 1. U8 commutes withPi j , i.e., the perturbed
walk on the hypercube can be effectively regarded as a w
on the line.

Proof.

Pi j
† U8Pi j 5Pi j

† UPi j 22Pi j
† S•~ usC&^sCu ^ u0W &^0W u!Pi j

5U2
2

An
(
d50

n21

Pi j
† ud,ed

W &^d,0uPi j

5U8. ~9!

So, @U8,Pi j #50. j

Because the initial stateuc0& is an eigenvector ofPi j
with eigenvalue 1 for alli and j, and @U8,Pi j #50, any
intermediate stateuc t&5(U8) tuc0& must also be an eigen
vector of eigenvalue 1 with respect toPi j . Thus, (U8) t

preserves the symmetry ofuc0& with respect to bit
swaps. It is therefore useful to define 2n basis states
uR,0&,uL,1&,uR,1&, . . . ,uR,n21&,uL•n&, where

uR,x&5A 1

~n2x!S n

xD (
uxW u5x

(
xd50

ud,xW &, ~10!

uL,x&5A 1

xS n

xD (
uxW u5x

(
xd51

ud,xW &, ~11!

which are also invariant to bit swapsPi j . These states spa
the eigenspace of eigenvalue 1 ofPi j . Using these basis
states, we can project out all but one spatial degree of f
dom and effectively reduce the random walk on the hyp
cube to a random walk on the line. This is illustrated in F
2. The marked node corresponds now touR,0&. We can re-
write U, U8, anduc0& in this collapsed basis. First note th
the shift operatorS in this basis acts as

S5 (
x50

n21

uR,x&^L,x11u1uL,x11&^R,xu ~12!

and the unperturbed coin acts as
05230
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C05 (
x50

n S cosvx sinvx

sinvx 2cosvx
D ^ ux&^xu, ~13!

where cosvx5122x/n and sinvx5(2/n)Ax(n2x) and
where the first part acts on the space spanned by$uR&,uL&%
and the second part acts on the positions$u0&, . . . ,un&% on
the line. Note that the coin of the collapsed walk is not h
mogeneous in space any more. The unitary operatorU on the
restricted space acts as

U5 (
x50

n21

uR,x&(2cosvx11^L,x11u1sinvx11^R,x11u!

1 (
x51

n

uL,x&~sinvx21^L,x21u1cosvx21^R,x21u!.

~14!

Similarly,

U85U1DU5U22uL,1&^R,0u. ~15!

Note that the only difference betweenU andU8 is in the sign
of the matrix element in position (uL,1&,uR,0&). Finally,

uc0&5
1

A2n
uR,0&1

1

A2n
uL,n&1 (

x51

n21 SAS n21

x21D
2n

uL,x&

1AS n21

x D
2n

uR,x&D . ~16!

FIG. 2. Collapsing a random walk on the hypercube to a rand
walk on the line. The states on the hypercube are mapped to
state on the line based on their Hamming weight and the direc
in which they point~see text!.
7-4
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SinceU and Pi j are mutually diagonalizable, the eigenve
tors of U in the reduced space are also bit-flip invaria
Examining Eq.~5!, it is clear that if we take the equal supe
positions of all eigenvectors of same eigenvalueuvkW& such
that ukW u5k, the resulting eigenvector will be bit-swap invar
ant. Thus we define

uvk&5
1

AS n

k D (
ukW u5k

uvkW&, ~17!

which are the eigenvectors ofU with eigenvalueseivk in the
collapsed~symmetric! space.

Note that bothU andU8 are represented by real matrice
therefore, their eigenvalues and eigenvectors will come
complex-conjugate pairs.

Having determined these general properties of the p
turbed matrixU8, we now turn to the problem of analyzin
the eigenvalue spectrum ofU8. Let A be the arc on the uni
circle containing all complex numbers of unit norm with re
part greater than 122/(3n). In other words,

A5H z:Rez.12
2

3n
,uzu51J . ~18!

Figure 3 shows the geometrical representation ofA together
with the eigenvalue spectra of the unperturbed and pertu
matrices forn58. We will prove thatA contains exactly two
eigenvalueseiv08 ande2 iv08 of U8. First, we will prove that
there areat mosttwo eigenvalues with real part greater th
122/(3n). Then we will show that there areat least two
eigenvalues onA. From these facts, it follows that there a
exactly two eigenvalues ofU8 on A.

Theorem 2. There are at most two eigenvalues ofU8 with
real part greater than 122/(3n).

Proof.We will prove by contradiction. Let us assume th
there are three eigenvalues,eiv08, eiv18, and eiv28, with real
part greater than 122/(3n). Let uv08&, uv18&, anduv28& be the
corresponding eigenvectors. Then,

FIG. 3. The results of numerical spectral analysis ofU andU8
for n58. The circles indicate eigenvalues ofU. The crosses indi-
cate eigenvalues ofU8.
05230
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i

^v i8uU8uv i8& D 5ReS (
i

eiv i8^v i8uv i8& D .322/n.

~19!

Let us defineV to be the subspace spanned byuv08&, uv18&,
uv28&. Then we can write Eq.~19! as the partial trace ofU8
over V,

Re TrVU8.322/n. ~20!

Let us now defineuc2&51/A2(u0,R&2u1,L&). We can ex-
pand theuv08&, uv18&, anduv28& in terms ofuc0&, uc2&, and a
residual vector,

uv08&5c008 uc0&1c018 uc2&1c028 ur 08&,

uv18&5c108 uc0&1c118 uc2&1c118 ur 18&, ~21!

uv28&5c208 uc0&1c218 uc2&1c228 ur 28&,

where ur i8& is a normalized vector orthogonal touc0& and
uc2&. We now observe that, due to the basis invariance
the trace, Eq.~20! holds for any linear combination ofuv08&,
uv18&, anduv28&. Thus, we can construct three new orthono
mal vectors,ua0&, ua1&, andua2& by taking linear combina-
tions of uv08&, uv18&, anduv28&, such that

^a2uc0&5^a2uc2&50. ~22!

In other words, we can expandua0&, ua1&, andua2& as

ua0&5c00uc0&1c01uc2&1c02ur 0&,

ua1&5c10uc0&1c11uc2&1c12ur 1&, ~23!

ua2&5ur 2&.

Sinceua0&, ua1&, andua2& still form a basis forV, from Eq.
~20! it follows that

322/n,Re(
i

^a i uU8ua i&. ~24!

SinceU8 is a unitary operator, we know that Re^a i uU8ua i&
<1 for all ua i&. Thus, applying this inequality to the firs
two terms in the sum, we obtain

Re(
i

^a i uU8ua i&<21Rê a2uU8ua2&. ~25!

Since,U85U1DU, we can write

Rê a2uU8ua2&5Rê a2uUua2&1Rê a2uDUua2&. ~26!

Let us first consider̂ a2uUua2&. We can expandua2& in
terms of the unperturbed eigenstates,ua2&5( jbj uv j&. So,
Rê a2uUua2&5( j ubj u2cosvj . However, sincê a2uc0&50,
there is no contribution from the eigenvalue with value
The eigenvalue with the next-largest real part iseiv151
22/n1 i (2/n)An21. Thus,
7-5
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Rê a2uUua2&<122/n. ~27!

Next, we consider^a2uDUua2&. Let uc1&51/A2(u0,R&
1u1,L&). Using Eq. ~15! we can expressDU in terms of
uc2& and uc1&,

DU5uc2&^c2u1uc2&^c1u2uc1&^c2u2uc1&^c1u.
~28!

But since^a2uc2&50 @see Eq.~22!#,

^a2uDUua2&5~2u^c1ua2&u2!<0. ~29!

Then, Rêa2uU8ua2&<122/n. Combining Eqs.~25!, ~27!,
and ~29!, we obtain

Re(
i

^a i uU8ua i&<322/n. ~30!

Since this contradicts Eq.~24!, our assumption must b
false. j

Theorem 3.There are at least two eigenvalues ofU8 on
A.

Proof.We will construct two approximate eigenvectors
U8, uc0& anduc1&. uc0& is given by Eq.~16!. Using Eq.~15!,

U8uc0&5uc0&22/A2nuL,1&, ~31!

and

^c0uU8uc0&5^c0uc0&2^c0uL,1&^R,0uc0&

5121/2n21. ~32!

So, apart from a small residual,uc0& is also ‘‘almost’’ an
eigenvector ofU8 with eigenvalue 1. Now, we need to find
second approximate eigenvectoruc1&. Let

uc1&5S (
x50

n/221 1

A2S n21

x D
uR,x&

2
1

A2S n21

x D
uL,x11&D Y c, ~33!

wherec is a normalization constant,

c5A (
x50

n/221
1

S n21

x D . ~34!

Using this definition and Eq.~14!, we see that

U8uc1&5uc1&2
1

cA2S n21

n/2 D
~ uR,n/221&1uL,n/211&).

~35!
05230
Hence,

^c1uU8uc1&512
1

2c2S n21

n/2 D . ~36!

Expanding Eq.~34! we find 1,c2,112/n for sufficiently
largen. Thus, except for a small residual,uc1& is ‘‘almost’’
an eigenvector ofU8 with eigenvalue 1.

Now let us verify that there is at least one eigenvalue
U8 on A. Let us assume that there are no eigenvalues ofU8
on A. Then cosvj8,122/(3n) for all j. Then using Eq.~32!,

121/2n215Rê c0uU8uc0&

5(
j

u^c0uv j8&u
2cosv j8

,„122/~3n!…(
j

u^c0uv j8&u
2

5122/~3n!, ~37!

which is wrong forn.3. Hence our assumption is false an
there must be at least one eigenvalue ofU8 on A.

Now let us assume that there is exactly one eigenvalu

U8, eiv08, on A. Then,

12
1

2n21
5Rê c0uU8uc0&

5(
j

u^c0uv j8&u
2cosv j8

5u^c0uv08&u
2cosv081(

j Þ0
u^c0uv j8&u

2cosv j8

<u^c0uv08&u
21~12u^c0uv08&u

2!„122/~3n!….

~38!

Rearranging terms,

u^c0uv08&u
2>12

3n

2n
. ~39!

If we use uc1& as a trial vector and follow the same arg
ments, we obtain the inequality

u^c1uv08&u
2>12

3n

4c2S n21

n/2 D . ~40!

But since uc0& and uc1& are orthonormal, this leads to
contradiction, since,
7-6
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15^v08uv08&>u^c0uv08&u
21u^c1uv08&u

2

>22
3n

2n
2

3n

4c2S n21

n/2 D , ~41!

which is not true for largen. Hence, there must be at lea
two eigenvalues on the arcA. j

As noted above, the eigenvalues and eigenvectors ofU8
come in complex-conjugate pairs. In particular, the two
genvalues onA must be a complex-conjugate pair; lete6 iv08

be the two eigenvalues onA. The corresponding eigenvec
tors obeyu2v08&5uv08&* ~if eiv085e2 iv0851, then we can
construct linear combinations ofuv08& and u2v08& for which
this statement is true!. We will now show thatu6v08& can be
well approximated by linear combinations ofuc0& and uc1&.

Theorem 4. The two eigenvectors with eigenvalues clo
to 1 can be well approximated by linear combinations of
initial state uc0& and the stateuc1&, as u6v08&'1/A2(uc0&
6 i uc1&). More precisely,

uv08&5Ap0uc0&1Ap1eihuc1&1A12p02p1ur 0&,

u2v08&5Ap0uc0&1Ap1e2 ihuc1&1A12p02p1ur 0&* ,
~42!

where p05u^v08uc0&u25u^2v08uc0&u2, p15u^ṽ80uc1&u2

5u^2ṽ08uc1&u2, and ur 0& is a normalized vector orthogona
to uc0& and uc1&. Furthermore, 1/2>p0>1/223n/2n11 and

1/2>p1>1/22
3n

8c2S n21

n/2 D ,

with eih5 i 1D, where

uDu5OS n

S n21

n/2 D D .

Proof. Since uc0& and uc1& are real vectors,u^v08uc0&u2

5u^2v08uc0&u2<1/2 and u^v08uc1&u25u^2v08uc1&u2<1/2.
Using Eq.~32!,

12
1

2n21
5Rê c0uU8uc0&

5(
j

cosv j8u^v j8uc0&
2u

52p0 cosv081(
j Þ0

cosv j8u^v j8uc0&u2

,2p01„122/~3n!…~122p0!. ~43!

Rearranging terms, we obtain
05230
-

e

p0>1/22
3n

2n11
. ~44!

Using Eq.~36! and the same arguments as above we obt

p1>1/22
3n

8c2S n21

n/2 D . ~45!

Up to a global phaseuv08& can be written as

uv08&5u^v08uc0&uuc0&1u^v08uc1&ueihuc1&1A12p02p1ur 0&,
~46!

which yields Eq.~42! for uv08& and u2v08&.
To estimateeih note that sinceuv08& andu2v08& are eigen-

vectors of a unitary matrix, they must be orthogonal. Con
quently,

05^2v08uv08&5p01p1~eih!21~12p02p1!^r 0* ur 0&.
~47!

Solving for eih, we obtain

Re~eih!25
2p02~12p02p1!Rê r 0* ur 0&

p1
. ~48!

Assume Rêr 0* ur 0&>0. Then, using 1/(12x)<112x for
small x, we get

211
3n

2n
>2

p0

p1

>Re~eih!2

>2

p01S 3n

2n11
1

3n

8c2S n21

n/2 D D
p1

>2122S 3n

2n11
1

3n

8c2S n21

n/2 D D
24S 3n

8c2S n21

n/2 D D , ~49!

which in turn implies thateih5 i 1D with uDu5O(n/2
n21). A

similar reasoning holds if Re^r 0* ur 0&<0. j

This means that the initial state can be approximat
written as uc0&'1/A2(uv08&1u2v08&) and evolves as

(U8) tuc0&'1/A2(eitv08uv08&1e2 iv08u2v08&).
As a last ingredient we need to bound the anglev08 .

These bounds are provided in the following final theorem
7-7
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Theorem 5. Each application of the evolution operatorU8
corresponds to a rotation of angle approx. 1/A2n21 in the
basis of the two eigenvectorsu6v08&. More precisely

21/(cA2n21)2b<v08<21/(cA2n21)1b, where b
5O(n3/2/2n)

Proof. We will approximate eiv085^v08uU8uv08& by
^auU8ua&, where ua&51/A2(uc0&1eihuc1&). Let us first

evaluateueiv082^auU8ua&u. We can expandU8 in terms of
its eigenvectors to obtain

ueiv082^auU8ua&u5Ueiv082(
j

U^v j8ua&u2eiv j8u. ~50!

We then note that from Eq.~42!,

u^v08ua&u25Ap0/21Ap1/2. ~51!

So,

ueiv082^auU8ua&u5Ueiv082~Ap0/21Ap1/2!eiv08

1 (
uv j8&Þuv08&

u^v j8ua&u2eiv j8U
<ueiv08~12Ap0/22Ap1/2!u

1 (
uv j8&Þuv08&

u^v j8ua&u2

<2~12Ap0/22Ap1/2!

<2S 3n

2n11
1

3n

8c2S n21

n/2 D D ~52!

with A12x>12x for 0<x<1. Using the fact that the bi
nomial coefficients approach the Gaussian distribution
largen, such that

S n

xD 5A 2

pn
e2(x2n/2)/n/22n, ~53!

we can rewrite Eq.~52! taking the leading order terms inn.
Recalling thatc.1, we obtain

ueiv082^auU8ua&u5OS n3/2

2n D . ~54!

Equation~54! is an explicit formula which bounds the dis
tance in the complex plane between the eigenvalue of in

est,eiv08, and the matrix element^auU8ua&. Figure 4 shows
the geometric representation of Eq.~54!. Note that

usinv082Im^auU8ua&u5uIm~eiv082^auU8ua&!u

<ueiv082^auU8ua&u. ~55!
05230
r

r-

Next, we evaluate Im̂auU8ua& using Eqs.~31! and ~35!,

Im^auU8ua&5Im~eih^c0uU8uc1&2eih^c1uU8uc0&!

5Im
1

2 S 2
eih

cA2S n21

n/2 D
~^c0uR,n/221&

1^c0uL,n/211&!2eihS 2
2

A2n
^c1uL,1& D D

52Im
eih

cA2n21

52
1

cA2n21
2OS n

A2nS n21

n/2 D D . ~56!

Then, using Theorem 4, Eqs.~54! and ~56!, we can write

Usinv081
1

cA2n21
1OS n

A2nS n21

n/2 D D U5OS n3/2

2n D .

~57!

Using sinx5x1O(x3) and keeping only leading order term
solving for v08 gives us

2
1

cA2n21
2OS n3/2

2n D <v08<2
1

cA2n21
1OS n3/2

2n D . j

~58!

We can now quantitatively describe the overall operat
of the algorithm. Starting with initial stateuc0&, we consider

FIG. 4. Geometric representation of Theorem 5, which pro

that the eigenvalue,eiv08, must be located on a disc of radiu
n/8c2(n/2

n21) centered at̂auU8ua&. The position of the eigenvalue i
denoted by a cross.
7-8
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the state of the computer aftert applications ofU8. Then
using Theorem 4 we can expanduc0& as

uc0&5Ap0~ uv08&1u2v08&)1dur &, ~59!

whered5A122p05O(An/2n) andur & is a residual normal-
ized vector orthogonal touv08& and u2v08&. Now

~U8! tuc0&5Ap0~eiv08tuv08&1e2 iv08tu2v08&)1dur 8&

52p0 cosv08tuc0&22Ap0p1~sinv08t

1Reeiv08tD!uc1&1A12p02p1~eiv08tur 0&

1e2 iv08tur 0* &)1dur &

5cosv08tuc0&2sinv08tuc1&1OS n3/4

A2nD u r̃ &,

~60!

whereu r̃ & is some residual normalized vector~not necessar-
ily orthogonal touc0& and uc1&).

Starting withuc0& and applyingU8 for t f5p/2uv08u steps,
we approximately rotate fromuc0& to uc1&. From uc1& we
can obtainuxW target&5u0W & with high probabilityp using Eq.
~33! and 111/(2n)<c2<112/n for largen @following from
Eq. ~34!#,

p5(
d

u^d,0uc1&u2

5u^R,0uc1&u2

5
1/2

c2
>

1/2

112/n

5
1

2
2O~1/n!. ~61!

Finally, to obtaint f in terms ofn, we make use of the bound
on v08 provided by Theorem 5,

t f5
pc

2
A2n21F16OS n3/2

A2nD G . ~62!

Using the inequality 111/(2n)<c2<112/n to get 1
11/(4n)<c<111/n, we obtain

t f5
p

2
A2n21F11OS 1

nD G . ~63!

If we set the number of time steps to bet f5(p/2)A2n21 ~or
the closest integer! then

2sinv08t f5sin
p

2 F12OS 1

nD G512OS 1

n2D . ~64!
05230
So the probability to measureuxW target& after t f

5(p/2)A2n21 steps is stillpsuccess51/22O(1/n). Hence,
by repeating the algorithm a constant number of times,
probability of error can be made arbitrarily small. Note t
periodic nature of the evolution underU8 @Eq. ~60!#; this
means that if we measure att.t f the probability of success
will decrease and later increase again.

In summary, we arrived at the final result that the mark
state is identified afterO(AN) calls to the oracle.

IV. CONNECTION TO GROVER’S ALGORITHM

The main point of this paper is to give a first algorithm
the discrete-time random-walk setting. We have shown h
to realize quantum search in this scenario, without losing
of the quantum speedup obtained in Grover’s search a
rithm. Although the layout of our algorithm is very differen
from Grover’s search, there are several similarities to Gr
er’s algorithm.

Both algorithms begin in the equal superposition st
over all bit strings. Both algorithms make use of the Grov
diffusion operatorG ~sometimes known as the Grover ite
ate!. Both algorithms can be viewed as a rotation in a tw
dimensional subspace. Both algorithms use an oracle w
marks the target state with a phase of21. Both algorithms
have a running time ofO(AN). In both algorithms we have
to measure at a specific time to obtain maximum probabi
of success. However, there are several important differen
between the two search algorithms. In this section, we
attention to the ways in which the random-walk search al
rithm is distinct from Grover’s algorithm, and consider ho
these differences affect performance and implementation

It is well known that Grover’s algorithm can be mappe
exactly onto a rotation in the two-dimensional subspa
spanned by the equal-superposition stateuc0& and the
marked stateu0& @7#. Each iteration in Grover’s algorithm
corresponds to a rotation in this subspace. In this paper
have shown that the random-walk search algorithm can
be viewed as a rotation in a two-dimensional subspace. H
ever, there are two important distinctions. First, the rand
walk search algorithm can only beapproximatelymapped
onto a two-dimensional subspace. Unlike Grover’s alg
rithm, this mapping is not exact. Second, the tw
dimensional subspace in which the random-walk search
gorithm is approximately contained is spanned byuc0& and
uc1&, not by uc0& andu0&. Hence, the final state of the algo
rithm is not exactly the pure marked stateu0& as it is in
Grover’s algorithm. It is a linear combination of states whi
is composed primarily of the marked state, but also posse
small contributions from its nearest neighbors, seco
nearest neighbors, etc. Thus, the random-walk search a
rithm contains traces of the underlying topology of the h
percube on which it is based.

Another crucial difference is the locality of the unitar
transformations used during the algorithm. In the rando
walk search algorithm the shift operator is local in the top
ogy of the hypercube, i.e. it shifts amplitude only betwe
the n nearest neighbors. The coin operator shifts amplitu
only on then-dimensional coin space. So we can say that
7-9



ly

ei

he
s
s

ic
o

ic
et
th
v
ly,

d
s
is

e
he

in
-
a
a
w
o
a
o

fo
iffi

rc

e
al

r of
r’s
lly

o-
me
as

olu-

n a
th-
o-

di-
dic
di-
o-

of

s
tion.
alk
ew
e-
arch
any
lk
on

o’’
ar
m.

by
n
ith
go-
alk
o-

ent

n
d-

n-
SF

SHENVI, KEMPE, AND WHALEY PHYSICAL REVIEW A 67, 052307 ~2003!
our operations in an iteration aren local. Compared to this
the reflection operator used in Grover’s algorithm is high
nonlocal.

Another difference between the two algorithms is th
use of the Grover diffusion operatorG. In Grover’s algo-
rithm, this operator is applied to the entire 2n-dimensional
search space~corresponding to the node space in t
random-walk search algorithm!. On the other hand, Grover’
diffusion operatorG in the random-walk algorithm is used a
the quantum coin, and acts only on then-dimensional coin
space. This fact may be of practical use for certain phys
implementations since many physical implementations
quantum computers contain multiple types of qubits, wh
have different natural gate sets. We could exploit this vari
using the random-walk search algorithm by choosing
coin space to be represented by qubits on which it is con
nient to implement the Grover diffusion operator. Similar
it might be natural and easy for some physical systems
implement the shift operator rather than the gates require
Grover’s search algorithm. It is ultimately the physical sy
tem that will determine which of the search algorithms
more advantageous.

Another similarity between the two algorithms is th
implementation of the oracle. In Grover’s algorithm, t
oracle marks the target state with a phase of21. To arrive at
this random walk search algorithm, we chose the mark
coin C1 to be the2I coin. This choice was actually moti
vated because it yielded a result that was amenable to an
sis, and while the emergence of Grover’s algorithm appe
natural in hindsight, it was not obvious at the outset. Ho
ever, more generally, it is not clear whether this choice
marked coin is either optimal or unique. In fact, numeric
simulations have shown us that many different types
marking coins will yield search algorithms@15#. Unfortu-
nately, analytic treatment of the quantum random walk
more complicated coins has proven substantially more d
cult than the instance analyzed here forC152I. It is an
open question what~constant factor! gains might be made by
using different marking coins to implement the search.

V. CONCLUSIONS

In this paper, we have shown that the random-walk sea
algorithm can search a list of 2n items in time proportional to
A2n. The lower bound on a quantum search of anN-item list
is known to beV(AN) @9#. Thus, up to a constant factor, th
random-walk search algorithm is optimal. However,
y

a-
o

pp. 60–69.

05230
r

al
f

h
y
e
e-

to
in
-

g

ly-
rs
-
f
l
f

r
-

h

-

though after repetition of the algorithm a constant numbe
times the result is arbitrarily close to the result of Grove
search, the random-walk search algorithm is not identica
equivalent to Grover’s algorithm. In particular, the final s
lution obtained by the random-walk search still retains so
of the underlying character of the hypercube on which it w
based, with a small admixture of states other than the s
tion at the marked node.

The random walk search analyzed here was based o
discrete walk on the hypercube. In general, a similar me
odology can be applied to any regular graph, e.g., a tw
dimensional hexagonal lattice with periodic boundary con
tions, a three-dimensional rectangular lattice with perio
boundary conditions, etc. We have numerical evidence in
cating that this methodology will yield quantum search alg
rithms when applied to other regularn-dimensional lattices.
Future studies will investigate the extent of optimality
such search algorithms.

The intriguing possibility of finding novel algorithm
based on the random walk also remains an open ques
The results described here indicate that the random-w
search algorithm provides a suggestive framework for n
algorithms. Though the optimality of Grover’s algorithm pr
cludes the construction of an improved oracle-based se
algorithm based on a quantum walk, nevertheless, m
other oracle problems still exist for which a quantum wa
may be advantageous. For instance, the lower bound
quantum search holds only for oracles that provide ‘‘yes/n
information@9#. Our choice of marking coin here has a cle
relation to an identifiable component of Grover’s algorith
In general, the marking coin can be an arbitraryn3n unitary
matrix. The marking coin provides a intuitive means
which to introduce a large amount of information to a
oracle problem. Thus, it is possible that unique coins w
interesting properties may give rise to an entirely new al
rithm. Overall we conclude that the quantum random w
provides a means for insight into existing quantum alg
rithms and offers a potentially vast source for developm
of new algorithms.
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