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Entanglement sharing in one-particle states
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Entanglement sharing among sites of one-particle states is considered using the measure of concurrence.
These are the simplest in a hierarchy of number-specific states of many qubits and correspond to ‘‘one-
magnon’’ states of spins. We study the effects of onsite potentials that are both integrable and nonintegrable. In
the integrable case, we point to a metal-insulator transition that reflects on the way entanglement is shared. In
the nonintegrable case, the average entanglement content increases and saturates along with a transition to
classical chaos. Such quantum chaotic states are shown to have universal concurrence distributions that are
modified Bessel functions derivable within random matrix theory. Time-reversal breaking and time-evolving
states are shown to possess significantly higher entanglement sharing capacity than eigenstates of time-reversal
symmetric systems. We use the ordinary Harper and the kicked Harper Hamiltonians as model systems.
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I. INTRODUCTION

Entanglement is a property of quantum systems, wh
sets it apart from those that are classical. Although it
been recognized as such from the early days of quan
mechanics, a spurt of understanding entangled states,
mathematically and generating them experimentally, has
curred in the past few years. Due to its potential as a reso
in various tasks of quantum-information processing, it h
moved from philosophical debates to the center stage
large body of concrete work. For a recent review on the id
involved, we refer to Ref.@1#.

Entanglement within pure states of a bipartite system
be measured by the von Neumann entropy of the redu
density matrices. For a mixed state, while the entanglem
can be measured as the average entanglement of its
state decomposition, the existence of an infinite numbe
such decompositions makes their minimization over this
a nontrivial task. Hill and Wootters@2# carried out such a
procedure for the case of two two-state~qubit! systems and
showed that a new quantity they called concurrence wa
measure of entanglement. This facilitated the study of
tanglement sharing among many qubits. One view of qu
tum entanglement, as a correlation that is much stronger
any other that is classical, is borne out here as two m
mally entangled qubits cannot be entangled with any oth
they will necessarily have to give up some of their corre
tion in order to share it with a third. At this stage, the natu
of entanglement sharing among many-qubits is being stu
intensively. Results are known for specific subsets of sta
in the many qubit Hilbert spaces@3#. A recent work has ex-
plored entanglement sharing among higher-state~higher than
qubits! systems@4#.

Due to the possibility of using spins as qubits in quant
computers, there have been many studies on the eigens
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of well-known spin Hamiltonians such as the Heisenbe
model, Ising model in a transverse field, etc.@3,5#, and re-
lated itinerant fermion systems@6#. There has been a conjec
ture that for complex quantum systems, entanglement wil
an indicator of quantum phase transitions@7,8#. While these
latter works have explored complexity from the viewpoint
many-particle, thermodynamic systems, few-particle syste
that are classically chaotic are also complex in their own w
with well-studied spectral transitions occurring in the qua
tum systems@9,10#. For bipartite systems of this kind,
pure-state entanglement has been shown to be sensitiv
the presence of classical chaos, and the typical value of
tanglement has been calculated from random matrix the
~RMT!, including the distribution of the eigenvalues of th
reduced density matrices@11–13#.

In this paper, we study states in the simplest subspac
the 2N-dimensional Hilbert space ofN qubits, the
N-dimensional subspace spanned by vectors with only
qubit in a different state from the rest, in some fixed sing
qubit basis. These are the ‘‘single-particle states’’ with
which we calculate entanglement sharing amongst theN qu-
bits. Thus we think of a one-dimensional chain ofN sites
with a single-particle hopping among these. The entang
ment among the qubits is then the entanglement among
sites themselves. We will use the~spinless! fermion lan-
guage, since the connection between the fermion opera
and the spin-half algebra of Pauli matrices is establis
through the Jordan-Wigner transformation@14#. Although,
we do not need to use these here due to our restrictio
single-particle states, the extension to higher number of
ticles then becomes straightforward.

In the integrable case, we show how the onsite poten
can decrease the average entanglement present in a sta
point to a sharp fall that can be identified in the Harp
Hamiltonian to a metal-insulator transition. In the nonint
grable case, we show that the average entanglement co
increases and saturates along with a classical transitio
complete chaos. Simultaneously, near-neighbor entanglem
gets destroyed and distant qubits start to get significa
entangled. The effect of time-reversal symmetry breaking
significant and leads to a larger entanglement content in
©2003 The American Physical Society04-1
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state. Random matrix theory is then used to explain th
features and is shown to be successful in predicting the
tribution of concurrence in an ensemble of chaotic states

II. PRELIMINARIES

In this section, we collect results that set the formali
and notation. For completeness we first recall the definit
of concurrence. Consider a bipartite composite system
subsystemsA andB. A pure stateuc& of the composite sys
tem is separable if it can be written as an outer produc
states fromA and B. In general, this is possible only if th
reduced density matrix, after tracing out eitherA or B is itself
a pure-state density matrix. Thus, the von Neumann entr
of the reduced density matrices is a measure of how
tangled the pure stateuc& is, and this is also the Shanno
entropy of the state in the Schmidt decomposed form@15#.
The entanglementE(uc&) in this case is defined to be th
von Neumann entropy of the subsytems described byrA or
rB , which are obtained by tracing out the states correspo
ing to subsystemsB andA, respectively,

E~ uc&)52tr„rAlog2~rA!…52tr„rBlog2~rB!…. ~1!

For bipartite density matrices, the measures of entan
ment are not so easily calculable. The entanglement of
mation for a general staterAB is defined in the following
way. For a given decomposition of the mixed state in ter
of ensembles of pure statesuc i& specified with probabilities
pi ,

rAB5(
i

pi uc i&^c i u, ~2!

one may find the average entanglement present in all
pure states involved. The entanglement of formation is t
defined as the minimum of this average over all such p
sible pure-state decompositions:

E~rAB!5min(
i

piE~ uc i&). ~3!

This is one of the measures of entanglement, and is ca
the entanglement of formation, since it refers to the optim
ability to form such mixed states from maximally entangl
pure states using only local operations on subsystemsA and
B and classical communication between them@16#. For a
general bipartite mixed state, no explicit equation is kno
for this quantity. For a pair of qubits, Wootters@2# found
such an expression that enables one to calculate the enta
ment of formation from a knowledge ofrAB, which we recall
for completeness.

Defining a spin-flip operator, which takesrAB[r to

r̃5~sy^ sy!r* ~sy^ sy!, ~4!

the concurrence ofr is defined to be

C~r!5max$Al12Al22Al32Al4,0%, ~5!
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where l i are the eigenvalues of the non-Hermitian mat
rr̃. Wootters@2# showed that the entanglement of formatio
of rAB is a monotonic function of its concurrence, and that
the concurrence varies over its possible range@0,1#, the en-
tanglement of formation also varies from 0 to 1; thus co
currence is itself a good measure of entanglement.

For eigenstates of the number operator, as we will c
sider in this paper, the reduced density matrix of two si
has a special form that has already been studied and
ploited in the literature. We recall for convenience the stru
ture of these. Consider theN fermion density operatorr that
commutes with the number operatorN̂5( i 51

N ĉi
†ĉi . The site

occupation basis is

un1 ,n2 , . . . ,nN&5c1
†n1c2

†n2
•••cN

†nNu0&, ~6!

whereni50,1 andu0& is the vacuum. Note that there is a
isomorphism between these states and the states ofN qubits.
Consider the reduced density matrixr i j

R of two sitesi and j,
where without loss of generality we can assumei , j . Due to
the restriction that( i 51

N ni5m, this operator has the form:

r i j
R5S v i j 0 0 0

0 w1i j zi j* 0

0 zi j w2i j 0

0 0 0 ui j

D . ~7!

Here

v i j 5^~12n̂i !~12n̂ j !&, ~8!

ui j 5^n̂i n̂ j&, ~9!

w1i j 5^~12n̂i !n̂ j&, ~10!

w2i j 5^n̂i~12n̂ j !&, ~11!

zi j 5K ĉ j
†ĉi )

l 5 i 11

j 21

~122n̂l !L , ~12!

and ^Â&5tr(Âr). The entanglement between the sites~or
qubits! i and j is measured here by the concurrence betw
them, which is given by

Ci j 5C~r i j
R!52 max~ uzi j u2Aui j v i j ,0!. ~13!

For the casem51, the single-particle subspaceui j 50
and the string of operators in the definition ofzi j is not there.
If we write u l &5u0, . . . ,1l , . . . ,0&, a general one-particle
state is the superposition

ua&5(
l 51

N

f l
(a)u l &, ~14!

wheref l
(a)5^ l ua&. This then implies that the pairwise con

currence in this state are
4-2
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ENTANGLEMENT SHARING IN ONE-PARTICLE STATES PHYSICAL REVIEW A67, 052304 ~2003!
Ci j
a 52uf i

(a)f j
(a)u. ~15!

States that have a large minimum pairwise concurre
can be said to share entanglement better. As a gross but
ful measure of entanglement sharing, we propose and s
the average pairwise concurrence in a given state. For sin
particle states, then

^Ca&5
1

d (
i , j

Ci j
a 5

1

d S S (
i 51

N

uf i
(a)u D 2

21D , ~16!

whered5N(N21)/2. From the structure of the average, w
see that it has connections to measures of localization
particular, the generalized entropies such as the Renyi
tropy are related to the averaged concurrence. For a g
discrete probability distribution$pi , i 51, . . . ,N%, the Renyi
entropy of orderq is defined as

Sq
R@p#5

1

12q
ln(

i 51

N

pi
q . ~17!

This reduces to the usual information entropy asq→1.
Thus,

^Ca&5
1

d
@exp~S1/2

R !21#, ~18!

whereS1/2
R is the Renyi entropy of order one-half. Therefo

we expect that delocalized states share entanglement b
as an extreme case the site localized stateu l & has zero aver-
age concurrence, as indeed it is a completely separable s
For a study connecting the Renyi entropy to localization
refer to @17#. It must be noted that we make this connecti
between localization and entanglement in the case of o
particle states; it remains to be seen if there is such a co
spondence in the case of many-particle states.

We also note that̂Ca&<2/N. This implies that for one-
particle states of qubits there cannot be states whose m
mum pairwise concurrence exceeds 2/N. This is the concur-
rence of isotropic states, which are defined by identical p
wise density matrices. It is not yet known if the above is tr
for states with larger number of particles@4#.We go beyond
the average and also study thedistribution of concurrence,
p(C), in a given ensemble of states, which will be repres
tative of single states. In principle then we can study vario
other averages of concurrence such as its square, etc
though we do not pursue this here.

We show that for eigenstates of quantized classically c
otic systems, the presence or absence of time-reversal
metry, possibly a generalized time reversal, leads to v
different distributions. Near-zero concurrence are improba
for eigenstates of time-reversal violating Hamiltonians, wh
they are most probable otherwise. Time-evolving states
the other hand, in either case, behave as the eigenstat
time-reversal violating Hamiltonians. We use, as a t
model, the Harper Hamiltonian@18# ~for a recent review and
references, we point to Ref.@19#!, which is an approximate
model for electrons in a two-dimensional crystal subjected
a perpendicular magnetic field. This is a model with a r
05230
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spectral structure and a metal-insulator transition that con
ues to be studied from various viewpoints.

III. EFFECT OF ONSITE POTENTIALS

A. Integrable case

In this section, we study the effect of onsite potentia
with a view of also comparing an integrable situation to
nonintegrable one, a more complex one to follow in the f
lowing section. We consider the Hamiltonian

H5
1

2 (
j 51

N

ĉj
†ĉ j 111

g

2 (
k51

N

d̂k
†d̂k111H.c.

5(
j 51

N F1

2
~ ĉ j

†ĉ j 111H.c.!1gcos~2p j /N!ĉ j
†ĉ j G . ~19!

Here,

d̂k5
1

AN
(
j 51

N

exp~2p ik j /N!ĉ j ~20!

is the Fourier transform of the site annihilation operator a
k is a momentum index. We will assume periodic bounda
conditions first: ĉN115 ĉ1 , d̂N115d̂1 . H is a one-
dimensional Harper Hamiltonian with the onsite potential b
ing cos(2pq). We can think of the large-N limit as approach-
ing a flow on the unit torus, with the classical Hamiltonia

cos~2pp!1g cos~2pq!, ~21!

and that we are considering its finite quantum mechan
with N states.

We briefly indicate the reasoning involved. Note that t
operators

V̂5(
j 51

N

ĉj 11
† ĉ j , Û5 (

k51

N

d̂k
†d̂k11 ~22!

are unitary translation operators on the statesu l & and uk&
[d̂k

†u0&: V̂u l &5u l 11& and^k11u5^kuU. Thus, the site and
the momentum states span a lattice on the conventional
torus phase space with the translation operatorsV and U
obeying a finite Weyl commutation relation; they are discr
versions of exp(2ip̂a/\) and exp(2ix̂b/\) ~where a,b are
phase space shifts!, respectively@20#. The torus quantization
implies the condition\5h/(2p)5A/(2pN), whereA51 is
the area of the unit torus phase space. Also witha5b
51/N, a lattice translation unit in phase space, and with
eigenvalues of position and momentum beingl /N andk/N,
leads to the large-N or classical Hamiltonian as specifie
above.

Thus, we see that the original Hamiltonian is an integra
one in the classical limit, since it has only a single degree
freedom. From a Bethe-Ansatz perspective the integrab
of this Hamiltonian is discussed in Ref.@21#. We can also
now easily visualize the eigenstates of the Hamiltonian
being localized on the constant energy curves of the class
4-3
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A. LAKSHMINARAYAN AND V. SUBRAHMANYAM PHYSICAL REVIEW A 67, 052304 ~2003!
Hamiltonian. Thus, although we cannot solve the eigenva
problem analytically, we can understand the features of
the states involved.

Another modification of the Hamiltonian is the cla
where the onsite potential is incommensurate with the latt
and herein the Harper Hamiltonian shows a rich struct
which has been studied extensively. In particular, we w
modify the Hamiltonian to read

H5(
j 51

N F1

2
~ ĉ j

†ĉ j 111H.c.!1g cos~2ps j /N!ĉ j
†ĉ j G ,

~23!

where s is a real incommensurability parameter. Fors/N
that is a fixed irrational number~in the original Harper
model, this is the ratio of the flux through a lattice cell to o
flux quantum! asN tends to infinity a metal-insulator trans
tion occurs atg51 where the spectrum is a Cantor set.

First, the caseg50, s51 corresponds to an itineran
particle on the lattice and the eigenfunctions are simply
momentum statesuk&. These clearly have pairwise concu
rence 2/N for all pairs and represent optimally delocalize
states in the site basis as far as the concurrence go. Du
double degeneracy, however, there also exist eigenstates
have smaller entanglement. Forg.0, s51, the classical
Hamiltonian above provides us the well-known phase sp
of the Harper flow with two elliptic fixed points and tw
hyperbolic fixed points per cell. From the Hamiltonian w
know that the energy eigenvalues are bounded by212g
<E<11g. The classical phase space will consist of tw
separatrices corresponding to energies of the equilibr
points (0,1/2) and (1/2,0). Thus, we know that for 0,g
,1, the quantum states with energies in the range211g
,E,12g are dominantly Kolmogorov-Arnold-Mose
~KAM ! rotational states that are spread along the sites w
the edge states being separatrix states.

There are states that will be localized in the site ba
corresponding to torus-quantized states around the ell
fixed points, while the hyperbolic orbits will provide th
separatrix states. Wheng,1, there are smooth phase-spa
curves along the momentum direction and the separatr
localize states in momentum, while atg51 the two separa-
trices form a single diamond square, and forg.1 the sepa-
ratrices tend to localize states along the position. It is evid
that asg→`, there are states that are completely site loc
ized. Thus, the classical picture also singles outg51 as a
special point.

Thus, this elementary picture then indicates that asg in-
creases, the average concurrence will tend to decrease.
further gross measure we also average over all the statesa in
the spectrum, and show in Fig. 1 the decrease in the ave
concurrence (̂C&) as a function ofg. Thus, onsite potentials
decrease concurrence as they tend to localize states.
point g50 has an exact double degeneracy, while the m
mentum states are eigenstates with the maximum con
rence of 2/N, and as soon asg.0 this degeneracy is broke
and the states are continuation of combinations of the de
erate states with smaller entanglement. As an effect, the
parentg→0 limit is smaller than 2 in Fig. 1.
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In the same figure, we also show the effect ofs. Whens
is an irrational number larger than unity, the transition ag
51 becomes sharply visible. We note that the average c
currence decreases dramatically asg crosses unity, corre-
sponding to a metal-insulator transition in the infinite inco
mensurate chain. This is again a reflection of the fact t
wave functions change from a ballistic regime to an exp
nentially localized one. For rational values ofs close to
these irrational values, a transition is still seen due to finiteN
effects. Thus, apart from quantum phase transitions, it is p
sible that the signature of entanglement will also be pres
in metal-insulator transitions.

Scaling behavior with the size of the latticeN is illustrated
in Fig. 2, where a transition is seen from the scaling l
^C&;N21 for the metallic regimeg,1 to ^C&;N22 for the
insulating regimeg.1. The scaling in the localized or insu
lating regime is intuitively reasonable, since there will
only a small number of significant components, and he
only number of pairs of order unity can be expected to ha
significant concurrence; hence, the average will go appro
mately as the inverse of the number of pairs. In the meta
regime there is a more democratic spread of concurrence
results in the 1/N scaling which we will later see to be th
rule for chaotic and random states. At the critical pointg
51, there does not seem to be a simple good power-law
for the range ofN ~101–808! values used here, and whil
this warrants further study, we do not pursue this in t
paper.

In Fig. 3 is shown the average concurrence in individu
states of a given spectrum as a function of the energy of
state, appropriately scaled. Forg,1, we see that there is
plateau of large concurrence corresponding to states on
rotational KAM invariant curves extending over all of theq
space, while the edges are the separatrix states. The tai
either side correspond to states that are localized around

FIG. 1. Spectral averaged concurrence as a function of on
potential strength for the Harper Hamiltonian.N5101 and g
5(A521)/2.
4-4
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ENTANGLEMENT SHARING IN ONE-PARTICLE STATES PHYSICAL REVIEW A67, 052304 ~2003!
elliptic fixed points and represent low-entanglement states
the average, having a tendency to form coteries. Asg in-
creases, the plateau gets squeezed out of existence and
the separatrix states remain atg51. For largerg, the invari-
ant curves between the separatrices extend over the mo
tum space rather than the position and tend to start locali
in the site basis. The very low concurrence states corresp
to those that are spread in momentum maximally and th
fore highly site localized.

FIG. 2. Scaling of the spectral averaged concurrence withN for
s5Ng, g5(A521)/2. Shown are three cases corresponding
metallic, critical, and insulating regimes, the short lines corresp
to lines with slope 1 (g50.9) and slope 2 (g51.1).

FIG. 3. Average concurrence in the individual states of
Harper Hamiltonian as a function of energy, withN5101, s51 at
various values of the onsite potential.
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B. Nonintegrable Hamiltonians

Nonintegrable Hamiltonians are the rule for systems w
more than one degree of freedom, or for many-particle s
tems. While there are many important interacting models
condensed-matter physics such as the Heisenberg mode
which entanglement sharing has been studied, the cas
nonintegrability with the possibility of chaos has yet to
explored. We begin again with the simplest case of a sing
particle spectrum. Building upon the Harper Hamiltoni
that we have just discussed, the kicked Harper Hamilton
then provides us with a suitable model. The fact that we w
to remain on a one-dimensional lattice means that we hav
introduce a time-dependent onsite potential to introduce n
integrability. The kick type of time dependence leads
simple models that have been extensively studied in the c
text of quantum chaos. It has been pointed out that sim
models are of relevance in cyclotron resonance experim
in antidot arrays@22#.

Thus, the Hamiltonian we will consider is

H5(
j 51

N F1

2
~ ĉ j

†ĉ j 111H.c.!

1g cos~2p j /N!ĉ j
†ĉ j (

n52`

`

d~2pt/t2n!G . ~24!

A train of impulses is provided at intervals of timet/(2p).
As t→0, we recover the integrable Harper equations. N
that we have set for the nonintegrable cases51. The cor-
responding large-N, classical Hamiltonian is

H5cos~2pp!1g cos~2pq! (
n52`

`

d~2pt/t2n!, ~25!

from which we get the canonical~area-preserving! map of
the unit torus to itself connecting phase-space variables
mediately after two consecutive impulses

qn115qn2t sin~2ppn!,

pn115pn1tg sin~2pqn11!. ~26!

This map has been studied extensively and develops
fledged chaos for larget @23#. For completeness, we illus
trate this transition to classical chaos in Fig. 4, fixingg51 as
in the subsequent calculations, too.

As is standard, the Floquet operator~quantum map! con-
necting states just after impulses is the quantum propag

Û~t!5exp@2 i tg cos~2pq̂!/h#exp@2 i t cos~2p p̂!/h#.

~27!

With h51/N, we get the quantum version in the bas
spanned by the site-localized statesu l &. The spectrum of the
Floquet operator is then of interest. We study the aver
concurrence and the distribution of concurrence in the eig
states of the above quantum map. The spectra of quant
chaotic systems are very sensitive to whether time-reve
~TR! symmetry is present or not. However, it was seen

o
d

e

4-5
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A. LAKSHMINARAYAN AND V. SUBRAHMANYAM PHYSICAL REVIEW A 67, 052304 ~2003!
Ref. @12# that the entanglement in pure states of bipar
chaotic systems, consisting of Hilbert spaces of large dim
sions, is not sensitive to TR symmetry. This is because o
the density of eigenvalues of the reduced density matrix
termines the entanglement in the case studied there. We
see below that concurrence sharing among many qubi
affected crucially by this symmetry. To show this, we chan
the boundary condition on the statesu l & and introduce a
phase, or equivalently change the boundary conditions on
site creation operators

u l 1N&5exp~22p ib!u l &; cl 1N
† 5exp~22p ib!cl

† ,
~28!

where 0,b,1/2. This shifts the momentum eigenvalues
(k1b)/N. We retain periodic boundary conditions on th
momentum statesuk&, and note that in this kinematic frame
work the momentum-site transformation is the Fourier tra
form

d̂k5
1

AN
(
j 51

N

exp@2p i ~k1b! j /N# ĉ j . ~29!

The phaseb is like a magnetic flux line threading the per
odic chain, which is a standard way to break the TR symm
try.

In Fig. 5 the average concurrence is shown as a func
of t for various values of the TR breaking phaseb. For any
value of this phase, it is clear that along with a transition
classical chaos there is an increase in the average pair
concurrence, and this corresponds to an increasing delo
ization of the states. The concurrence sharing saturates
a transition to classical chaos, at aroundt50.6, and we ex-

FIG. 4. The phase space (q,p) of the classical map forg51 and
t50.1, 0.3, 0.5, and 0.7 clockwise from top left.
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pect that in this regime, RMT will be able to model th
concurrence, we show below that this expectation is bo
out.

It is also clear from this figure that breaking TR symme
leads to significantly larger entanglement sharing. The ef
of time-reversal breaking is pronounced in the chaotic
gime since the delocalized states experience the chan
boundary conditions. In this figure we also show how sen
tive the TR breaking is by changing the phase only sligh
For b greater than the dimensionless Planck’s constant 1N,
we see a universal saturation effect. It is interesting that ab
decreases, the saturation seems to occur for largert which is
also a region of larger classical chaos. We may conclude
general principle that entanglement sharing is more effec
in eigenstates of TR breaking Hamiltonians, and that this
general principle in the context of one-particle states s
ported by an analysis using RMT below.

We state results for two universality classes of RMT r
evant here, namely, from the Gaussian unitary ensem
~GUE! for time-reversal breaking Hamiltonians, and th
Gaussian orthogonal ensemble~GOE! for TR preserving,
spinless systems@10,24#. We quantify the above observation
and note in advance, what we prove further on, that the
erage concurrence calculated from the RMT in the two ca
are

^Ca&5H 4/pN ~GOE!

p/2N ~GUE!.
~30!

The saturation values of Fig. 5 agree well with these e
mates from RMT, which are shown as horizontal lines. Ho
ever, RMT seems to predict a somewhat smaller value t
the observed average in the case when there is TR symm

FIG. 5. Spectral averaged concurrence as a function oft for the
kicked Harper Hamiltonian. Shown are both the TR symmetricb
50) and several non-TR symmetric cases (bÞ0) and N5101.
The horizontal lines correspond to the RMT averages 4/p andp/2,
respectively.
4-6
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ENTANGLEMENT SHARING IN ONE-PARTICLE STATES PHYSICAL REVIEW A67, 052304 ~2003!
Note that the RMT result used above is a finite-N exact
value. Phase-space localization effects on chaotic eigenf
tions due to classical periodic and homoclinic orbits do le
to significant deviations from RMT@26#, however here it is
interesting that the deviations seem to be more when the
TR symmetry. Concurrence could be a sensitive measur
study deviations of real eigenfunctions of quantized cha
systems from RMT predictions; further study on this asp
is required.

The average concurrence promises in the case of the
particle spectrum to be an interesting measure of local
tion. We also emphasize that these results are only depen
on the single-particle nature of the states and areindependent
of the dimensionality, although our models are on
dimensional. Calculations with differentN not presented here
also confirm further the RMT scalinĝC&;N21, which we
also observed in the metallic regime of the integrable Har
Hamiltonian, and as in that case we postpone a more ex
sive scaling analysis.

Time evolution intrinsically involves complex vectors an
therefore we expect that time-evolving states will share,
der a quantum chaotic evolution, entanglement that is id
tical with that of TR breaking Hamiltonian eigenstates. Th
is borne out in Fig. 6 where several cases ranging from n
integrable to chaotic are shown. The near-linear increas
the average concurrence in time for near-integrable syst
is replaced by a rapid increase to the TR breaking averag
p/2N around which there are small fluctuations. The init
state in all these cases is a site-localized one with null
tanglement. While the average pairwise concurrence of c
otic eigenstates is larger than that of regular states, it is
sonable to expect the opposite if one were to only inclu
near-neighbor pairs of sites. We expect that the nea
neighbors are treated preferentially in regular states, w
for random or chaotic states the connections from one sit
another is also random. This expectation comes from the

FIG. 6. Average concurrence for a nonstationary state~initially
u l 521&), as a function of time.N5101, and near integrable t
chaotic cases are shown.
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that regular states are smoother than the more fragme
structures one finds on a coarse scale for chaotic states.
is in turn related to tori quantization of regular states,
opposed to a situation more akin to superposition of rand
waves for chaotic states@9#.

Thus, we define ther th-neighbor average concurrence

Cr
(a)5

1

N (
i 51

N

Cii 1r
(a) . ~31!

In Fig. 7 this is shown, after averaging over the spectruma,
for variousr as a function oft for TR symmetric eigenstates
It is clear that the correlation between near-neighbor pair
indeed much stronger for regular states. There is a corr
tion length beyond which the entanglement falls below t
of the random or chaotic states average of 4/pN. This cor-
relation length is then an interesting quantum length scale
the problem; we call this a quantum scale as it refers to
intrinsically quantum property of entanglement. In Fig. 8 w
show howCr

(a) falls as a function ofr for varioust after
averaging over the complete spectrum$a%.

C. RMT and concurrence

In this section, we derive the averages stated and dem
strated above, as well as thedistributionsof the concurrence
between sites of one-particle states using random matrice
models. The eigenfunction component distributions are
rived within RMT by invoking a microcanonical distributio
with the constraint being normalization. Ifx1 ,x2 , . . . ,xd are
real numbers distributed uniformly over thed-dimensional
spherical surface of unit radius~normalization!, the reduced
density ofl variables is given by@10#

FIG. 7. Averager th-neighbor concurrence as function oft for
the kicked Harper Hamiltonian. From top to bottom,r 51 –15 in
steps of 2 andN5101 in all cases.
4-7
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P(d,l )~x1 ,x2 , . . . ,xl !

5p2 l /2
G~d/2!

G„~d2 l !/2… S 12 (
n51

l

xn
2D (d2 l 22)/2

.

~32!

In the case of TR symmetric systems, there exist tim
reversal adapted bases wherein the components of the e
functions are real and these may then be taken to be thxi
above withd5N. In the case of TR breaking Hamiltonian
there are no such bases and the eigenfunctions are ge
cally complex, in which case we identify the real and ima
nary parts of the state components with thexi and d52N
@10#. Thus, the average concurrence for the GOE case,
evant for TR symmetric Hamiltonians, may be calculated
the integral,

^C&5E
R2

dx1 dx2 P(N,2)~x1 ,x2!2Ax1
2x2

254/pN. ~33!

The regionR2 is the interior of the circlex1
21x2

2<1. For the
GUE case, where the wave functions have complex com
nents andd52N, the average concurrence is

^C&5E
R4

dx1 dx2 dx3 dx4 P(2N,4)~x1 ,x2 ,x3 ,x4!

32Ax1
21x2

2Ax3
21x4

25p/2N. ~34!

The regionR4 is now the four-sphere volume:x1
21x2

21x3
2

1x4
2<1. These are the formulas stated in Eq.~30!.
In order to calculate the distributions themselves,

choose to use the largeN forms of the distributions when th
components tend to become independent. Letr(x) be a
single-component distribution ofx5uf j

(a)u2. The distribution

FIG. 8. Averager th-neighbor concurrence as function ofr for
the kicked Harper Hamiltonian. Shown are cases ranging from
near integrable to the chaotic.N5101 andb50.
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functionr(x) is known to be different for the two universa
ity classes used here. The GOE distribution, the Por
Thomas distribution, was first used in the study of nucle
resonance widths@25#:

r~x!5HAN/2px exp~2Nx/2! ~GOE!

N exp~2Nx! ~GUE!.
~35!

Thus, the concurrence distributionp(C) is then straight-
forward to calculate for one-particle states. We state the
tributions for the scaled concurrencec5NC,

p~c!5E
0

`E
0

`

d~c22 NAxy!r~x!r~y!dx dy. ~36!

The result is

p~c!5H ~1/p!K0~c/2! ~GOE!

cK0~c! ~GUE!,
~37!

whereK0 is the modified Bessel function that has a logari
mic divergence at the origin. The average concurrence, st
in Eq. ~30! and derived above, also follow from the singl
component distributions, i.e., at least in the averages th
are no corrections coming from correlations between
components.

We recall that one-particle states that maximally sh
entanglement are those whose reduced density matrice
all the pairs are identical, such as the noninteracting c
eigenstates statesf j

(k)5exp(2pijk/N)/AN. If we take the
pairwise concurrence, 2/N in this case to be a marker, th
fraction of pairs with concurrence larger than this is

E
2

`

p~c!dc50.21,0.28 ~38!

for GOE, and GUE, respectively. Thus, a significant prop
tion of the pairwise concurrence in a one-particle rand
state is higher than 2/N. For largec ~practically greater than
2), the asymptotic distributions are

p~c!;e2c/2/Apc, Apc/2e2c ~39!

for the two cases of GOE and GUE, respectively.
In Fig. 9 we compare the distributions from RMT wit

numerical calculations. To do this we combine the pairw
concurrence of all the eigenstates into a concurrence
semble. We see that there is an excellent agreement betw
the theory and numerical calculations, although there are
cernible deviations for small concurrence. It must be no
that these distributions areuniversal; they are independent o
system, except for the requirement of a classically cha
limit. Thus, it is clear that TR symmetry could play a cruci
role in the way entanglement is shared in a quantum st
Also the case of the Gaussian symplectic ensemble has
been considered here due to the additional complexity o
Kramer’s degeneracy.

e

4-8
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IV. CONCLUSIONS

We have studied entanglement sharing in one-part
states using the measure of concurrence. We have studie
average of the concurrence, spectral averaged concurre
as well as the distribution of concurrence in a given sta
Our attempt has been to begin studying the effect of non
tegrability and chaos in this interesting quantum meas
that has possible applications in quantum-information the
We have found that chaos in the corresponding quantum
tem implies that concurrence in individual one-particle sta
are distributed in a universal manner, which depends only
the presence or absence of TR symmetry. The absence o
symmetry has been shown to lead to more entanglem

FIG. 9. The concurrence distributions for the kicked Harp
Hamiltonian witht50.8 andN5101. Shown using points are th
cases of time-reversal preserving (b50) and time-reversal break
ing (b50.2) Hamiltonians. The smooth curves are the RMT p
dicted distributions.
ev
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sharing, and we have quantified these statements with
help of RMT.

Also a transition to chaos has been shown to accomp
an increase in the spectral averaged concurrence. We ex
that spectral averaging will have a small effect in the case
chaotic systems, while there will be much larger state to s
fluctuations in the case of regular states. We have also m
connections between the averaged concurrence and the
sures of state localization such as the Renyi entropy, so
thing that enables us to qualitatively understand the beha
of entanglement sharing in these states. For instance we
demonstrated that for regular states, near-neighbor con
rence is preferred, while for chaotic states there is no s
metric preference. Due to the essential simplicity of the c
currence in one-particle states, we have been able to ana
details such as concurrence distributions. It is of much in
est to see how many of the conclusions, for instance
concerning the role of TR symmetry, carry over to gene
states.

The effect of onsite integrable potentials has also b
studied and it is noted that transitions such as metal-insul
transitions are reflected in the way entanglement is share
is shown that in the metallic regime, entanglement is sha
better, while in the insulating regime, it is not. This is re
sonable due to the connections between wave-function lo
ization and concurrence noted above. Also the finite-s
scaling of the concurrence in the metallic and insulat
cases have been noted. A more detailed scaling analysis
cases, including the critical point is warranted. The hypo
esis that quantum-information theory will be an approach
study ‘‘complex’’ quantum systems@27# is borne out here in
the context of entanglement and single-particle chaos.
way in which many-particle states differ are significant a
ongoing work on this will soon be reported.
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