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Entanglement sharing in one-particle states
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Entanglement sharing among sites of one-particle states is considered using the measure of concurrence.
These are the simplest in a hierarchy of number-specific states of many qubits and correspond to “one-
magnon” states of spins. We study the effects of onsite potentials that are both integrable and nonintegrable. In
the integrable case, we point to a metal-insulator transition that reflects on the way entanglement is shared. In
the nonintegrable case, the average entanglement content increases and saturates along with a transition to
classical chaos. Such quantum chaotic states are shown to have universal concurrence distributions that are
modified Bessel functions derivable within random matrix theory. Time-reversal breaking and time-evolving
states are shown to possess significantly higher entanglement sharing capacity than eigenstates of time-reversal
symmetric systems. We use the ordinary Harper and the kicked Harper Hamiltonians as model systems.
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[. INTRODUCTION of well-known spin Hamiltonians such as the Heisenberg
model, Ising model in a transverse field, €8,5], and re-
Entanglement is a property of quantum systems, whicHated itinerant fermion systen§]. There has been a conjec-
sets it apart from those that are classical. Although it hagure that for complex quantum systems, entanglement will be
been recognized as such from the early days of quantuﬁ indicator of quantum phase transitigiiss]. While these
mechanics, a spurt of understanding entangled states, bogite" Works have explored complexity from the viewpoint of
mathematically and generating them experimentally, has oc; any-particle, thermodynamic systems, few-particle systems

. . . at are classically chaotic are also complex in their own way
purred_ in the past few years. Due toits potential asa re_sourc‘gith well-studied spectral transitions occurring in the quan-
in various tasks of quantum-information processing, it hast

i ; um systemg9,10]. For bipartite systems of this kind, a
moved from philosophical debates to the center stage of g o state entanglement has been shown to be sensitive to
large body of concrete work. For a recent review on the idea

: e presence of classical chaos, and the typical value of en-
involved, we refer to Refl1]. o tanglement has been calculated from random matrix theory
Entanglement within pure states of a bipartite system cairMT), including the distribution of the eigenvalues of the

be measured by the von Neumann entropy of the reducegbduced density matricdd1—13.

density matrices. For a mixed state, while the entanglement |n this paper, we study states in the simplest subspace of
can be measured as the average entanglement of its putge 2N-dimensional Hilbert space ofN qubits, the
state decomposition, the existence of an infinite number oN-dimensional subspace spanned by vectors with only one
such decompositions makes their minimization over this setjubit in a different state from the rest, in some fixed single-
a nontrivial task. Hill and Wootter§2] carried out such a qubit basis. These are the “single-particle states” within
procedure for the case of two two-stdtpibit) systems and  which we calculate entanglement sharing amongst\tugi-
showed that a new quantity they called concurrence was hits. Thus we think of a one-dimensional chain Nfsites
measure of entanglement. This facilitated the study of enwith a single-particle hopping among these. The entangle-
tanglement sharing among many qubits. One view of quanment among the qubits is then the entanglement among the
tum entanglement, as a correlation that is much stronger thagites themselves. We will use thgpinles$ fermion lan-

any other that is classical, is borne out here as two maxiguage, since the connection between the fermion operators
mally entangled qubits cannot be entangled with any otherand the spin-half algebra of Pauli matrices is established
they will necessarily have to give up some of their correla-through the Jordan-Wigner transformatigi¥]. Although,

tion in order to share it with a third. At this stage, the naturewe do not need to use these here due to our restriction to
of entanglement sharing among many-qubits is being studiegingle-particle states, the extension to higher number of par-
intensively. Results are known for specific subsets of stateticles then becomes straightforward.

in the many qubit Hilbert spacd8]. A recent work has ex- In the integrable case, we show how the onsite potential
plored entanglement sharing among higher-staigher than  can decrease the average entanglement present in a state and
qubity systemd4]. point to a sharp fall that can be identified in the Harper

Due to the possibility of using spins as qubits in quantumHamiltonian to a metal-insulator transition. In the noninte-
computers, there have been many studies on the eigenstaigsble case, we show that the average entanglement content
increases and saturates along with a classical transition to
complete chaos. Simultaneously, near-neighbor entanglement

*Email address: arul@prl.ernet.in; URL: gets destroyed and distant qubits start to get significantly
http://www.prl.res.in/~arul entangled. The effect of time-reversal symmetry breaking is
"Email address: vmani@iitk.ac.in significant and leads to a larger entanglement content in the
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state. Random matrix theory is then used to explain thesehere \; are the eigenvalues of the non-Hermitian matrix

features and is shown to be successful in predicting the dis;;; wootters[2] showed that the entanglement of formation

tribution of concurrence in an ensemble of chaotic states. of ,AB js 3 monotonic function of its concurrence, and that as
the concurrence varies over its possible raf@d], the en-

Il. PRELIMINARIES tanglement of formation also varies from O to 1; thus con-

In thi . I its th he f i currence is itself a good measure of entanglement.
n this section, we collect results that set the formallsm g4 gigenstates of the number operator, as we will con-

and notation. For completeness we first recall the definitio
of concurrence. Consider a bipartite composite system
subsystem#\ andB. A pure statd ¢) of the composite sys-
tem is separable if it can be written as an outer product o
states fromA andB. In general, this is possible only if the . - A .
reduced density matrix,gafter tracing outpeitWemr Bis ?/tself commutes with the number operatyr=3 1L ,&;'C;. The site
a pure-state density matrix. Thus, the von Neumann entrop§ccupation basis is

of the reduced density matrices is a measure of how en-
tangled the pure statie)) is, and this is also the Shannon
entropy of the state in the Schmidt decomposed foi5i.
The entanglemenE(|#)) in this case is defined to be the
von Neumann entropy of the subsytems describeg bypr
ps, Which are obtained by tracing out the states correspon
ing to subsystemB andA, respectively,

E(|4))=—tr(palogz(pa))= —tr(pslogy(pg)). (1)

ider in this paper, the reduced density matrix of two sites
as a special form that has already been studied and ex-
loited in the literature. We recall for convenience the struc-
ure of these. Consider thé fermion density operatqgs that

Ing.n,, ... ,nN>=cI”1c£”2- . ~CL”N|O>, (6)

wheren;=0,1 and|0) is the vacuum. Note that there is an
isomorphism between these states and the statdjobits.
G@onsider the reduced density matrj% of two sitesi andj,
where without loss of generality we can assurdg. Due to
the restriction thaE!\ ;n;=m, this operator has the form:

Ujj 0 0 0

For bipartite density matrices, the measures of entangle- 0 wy z O
ment are not so easily calculable. The entanglement of for- pﬁ= ) . W)
mation for a general statg”® is defined in the following 0 z; wy O
way. For a given decomposition of the mixed state in terms 0 0 0
of ensembles of pure statég;) specified with probabilities
Pi, Here
vii={((1-n)(1—n))), ®)
PAB:Z pil i) (wil, 2 ! ' :
Uij:<ninj>; (9)
one may find the average entanglement present in all the o
pure states involved. The entanglement of formation is then wiij =((1—np)n;), (10
defined as the minimum of this average over all such pos-
sible pure-state decompositions: Wai; :<ﬁi(1_ﬁj)>’ (11
j—1
E(p*B)=min>, p.E(|¢)). (3) g .
P - Pi i) z;= CiTCH:Hu (1-2n) ), (12)

This is one of the measures of entanglement, and is called R _

the entanglement of formation, since it refers to the optimafnd (A)=tr(Ap). The entanglement between the sites
ability to form such mixed states from maximally entangleddubits i andj is measured here by the concurrence between
pure states using only local operations on subsysterasd ~ them, which is given by

B and classical communication between thgh6é]. For a R

general bipartite mixed state, no explicit equation is known Cij=C(pij)=2 max(|z;| — Vujjvi;,0). (13

for this quantity. For a pair of qubits, Woottefg] found ) ,

such an expression that enables one to calculate the entangle-For the casem=1, the single-particle subspaeg;=0
ment of formation from a knowledge pf*8, which we recall and the string of operators in the definitionzyfis not there.

for completeness. If we write |1)=10,...,%,...,0, a general one-particle
Defining a spin-flip operator, which takgd®=p to state is the superposition
5 N
p=(oy®ay)p*(o,®0y), 4 |a>=|§l d)fa)“), (14

the concurrence o is defined to be
where ¢(“=(I|a). This then implies that the pairwise con-

C(p)=max N ;— VA= V3= VA4, 0, (5)  currence in this state are
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ci=2| A ¢,(“)|- (15)  spectral structure and a metal-insulator transition that contin-
ues to be studied from various viewpoints.
States that have a large minimum pairwise concurrence

can be said to share entanglement better. As a gross but use- Ill. EFFECT OF ONSITE POTENTIALS

ful measure of entanglement sharing, we propose and study

the average pairwise concurrence in a given state. For single- A. Integrable case

particle states, then In this section, we study the effect of onsite potentials

with a view of also comparing an integrable situation to a

N 2
1 1 : ;
o = E a_= 2 (@] _ nonintegrable one, a more complex one to follow in the fol-
(€% d S Ci d ( ( = |41 |> 1)’ (16) lowing section. We consider the Hamiltonian

whered=N(N—1)/2. From the structure of the average, we
see that it has connections to measures of localization. In
particular, the generalized entropies such as the Renyi en-
tropy are related to the averaged concurrence. For a given Norq - o agn
discrete probability distributiofip; ,i=1, ... N}, the Renyi IZ 5(cj¢j+1tH.c)+geod2mj/Nicic;|. (19)
entropy of orderg is defined as ik

N N
1N gX

Here,

N
1
Silpl= =42, pi" (17 LN
dy=—= 2, exp(2mikj/N)c; (20)
This reduces to the usual information entropygas 1. W=

Thus, is the Fourier transform of the site annihilation operator and

1 k is a momentum index. We will assume periodic boundary
(Ca>:a[exﬂs§/z)—1], (18 conditions first: cyy1=Cy, dyiy=0d;. H is a one-
dimensional Harper Hamiltonian with the onsite potential be-
whereSf, is the Renyi entropy of order one-half. Therefore N9 cos(2q). We can think of the largét limit as approach-
we expect that delocalized states share entanglement betti}d @ flow on the unit torus, with the classical Hamiltonian
as an extreme case the site localized sfigtdas zero aver-
age concurrence, as indeed it is a completely separable state.

For a study connecting the Renyi entropy to localization weyng that we are considering its finite quantum mechanics
refer to[17]. It must be noted that we make this connectionyiih N states.

between localization and entanglement in the case of one- \ye priefly indicate the reasoning involved. Note that the
particle states; it remains to be seen if there is such a COM&perators
spondence in the case of many-particle states.

We also note tha¢C*)<2/N. This implies that for one- R L ~ o
particle states of qubits there cannot be states whose mini- sz cJ-THc,- , 0=> dldkﬂ (22
mum pairwise concurrence exceedbl 2This is the concur- 1=
rence of isotropic states, which are defined by identical pair- . .
wise density matrices. It is not yet known if the above is truear?Tun'tafy translation operators on the stdﬂe)san.d k)
for states with larger number of particle4].We go beyond =kl0): V|I)=|I+1) and(k+1|=(k|U. Thus, the site and
the average and also study tHistribution of concurrence, the momentum states span a lattice on the conventional unit
p(C), in a given ensemble of states, which will be represeniorus phase space with the translation operairand U
tative of single states. In principle then we can study variou$P€ying a finite Weyl commutation relation; they are discrete
other averages of concurrence such as its square, etc., aersions of exptipa/f) and exptixb/f) (wherea,b are
though we do not pursue this here. phase space shiftsrespectively{20]. The torus quantization

We show that for eigenstates of quantized classically chaimplies the conditiorh =h/(27)=A/(27wN), whereA=1 is
otic systems, the presence or absence of time-reversal syrihe area of the unit torus phase space. Also vathb
metry, possibly a generalized time reversal, leads to very=1/N, a lattice translation unit in phase space, and with the
different distributions. Near-zero concurrence are improbableigenvalues of position and momentum belfy andk/N,
for eigenstates of time-reversal violating Hamiltonians, whileleads to the larg& or classical Hamiltonian as specified
they are most probable otherwise. Time-evolving states oabove.
the other hand, in either case, behave as the eigenstates of Thus, we see that the original Hamiltonian is an integrable
time-reversal violating Hamiltonians. We use, as a tesbne in the classical limit, since it has only a single degree of
model, the Harper Hamiltoniari 8] (for a recent review and freedom. From a Bethe-Ansatz perspective the integrability
references, we point to Ref19]), which is an approximate of this Hamiltonian is discussed in RgR1]. We can also
model for electrons in a two-dimensional crystal subjected t;mow easily visualize the eigenstates of the Hamiltonian as
a perpendicular magnetic field. This is a model with a richbeing localized on the constant energy curves of the classical

cog2mp)+g cog27Qq), (21
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Hamiltonian. Thus, although we cannot solve the eigenvalue
problem analytically, we can understand the features of all 15 00=1
the states involved. 20=Ny/20
Another modification of the Hamiltonian is the class - oo =Ny/10
where the onsite potential is incommensurate with the lattice, r 00 =Ny/5
and herein the Harper Hamiltonian shows a rich structure - 20=Ny
which has been studied extensively. In particular, we will 1+
modify the Hamiltonian to read A L
&)
1 ~tn . ~tn g -
H=J§=:l 5(¢fcjsa+He)+gcod2maj/N)e]cy|, i
(23 0.5
where o is a real incommensurability parameter. FafN
that is a fixed irrational numbe¢in the original Harper I
model, this is the ratio of the flux through a lattice cell to one i
flux quantum asN tends to infinity a metal-insulator transi- i
tion occurs ag=1 where the spectrum is a Cantor set. O l T, 4 5
First, the caseg=0, o=1 corresponds to an itinerant g

particle on the lattice and the eigenfunctions are simply the

momentum statefk). These clearly have pairwise concur-  FIG. 1. Spectral averaged concurrence as a function of onsite
rence 2N for all pairs and represent optimally delocalized potential strength for the Harper Hamiltoniahl=101 and y
states in the site basis as far as the concurrence go. Due to(y5—1)/2.

double degeneracy, however, there also exist eigenstates that

have smaller entanglement. Fge>0, o=1, the classical In the same figure, we also show the effecbofWheno
Hamiltonian above provides us the well-known phase spacg an irrational number larger than unity, the transitiorgat

of the Harper flow with two elliptic fixed points and two =1 becomes sharply visible. We note that the average con-
hyperbolic fixed points per cell. From the Hamiltonian we currence decreases dramatically gasrosses unity, corre-
know that the energy eigenvalues are bounded-dy-g  sponding to a metal-insulator transition in the infinite incom-
<E=<1+g. The classical phase space will consist of twomensurate chain. This is again a reflection of the fact that
separatrices corresponding to energies of the equilibriunvave functions change from a ballistic regime to an expo-
points (0,1/2) and (1/2,0). Thus, we know that fox nentially localized one. For rational values of close to
<1, the quantum states with energies in the rargetg  these irrational values, a transition is still seen due to fiNite
<E<1-g are dominantly Kolmogorov-Arnold-Moser effects. Thus, apart from quantum phase transitions, it is pos-
(KAM) rotational states that are spread along the sites witkible that the signature of entanglement will also be present
the edge states being separatrix states. in metal-insulator transitions.

There are states that will be localized in the site basis Scaling behavior with the size of the lattibés illustrated
corresponding to torus-quantized states around the elliptim Fig. 2, where a transition is seen from the scaling law
fixed points, while the hyperbolic orbits will provide the (C)~N~! for the metallic regimg<1 to(C)~N~?2 for the
separatrix states. Whag<1, there are smooth phase-spaceinsulating regimey>1. The scaling in the localized or insu-
curves along the momentum direction and the separatricdating regime is intuitively reasonable, since there will be
localize states in momentum, while @& 1 the two separa- only a small number of significant components, and hence
trices form a single diamond square, and §ot 1 the sepa- only number of pairs of order unity can be expected to have
ratrices tend to localize states along the position. It is evidengignificant concurrence; hence, the average will go approxi-
that asg— <, there are states that are completely site localmately as the inverse of the number of pairs. In the metallic
ized. Thus, the classical picture also singles gatl as a  regime there is a more democratic spread of concurrence and
special point. results in the M scaling which we will later see to be the

Thus, this elementary picture then indicates that as- rule for chaotic and random states. At the critical paint
creases, the average concurrence will tend to decrease. As=al, there does not seem to be a simple good power-law fit
further gross measure we also average over all the staites  for the range ofN (101-808 values used here, and while
the spectrum, and show in Fig. 1 the decrease in the averaglis warrants further study, we do not pursue this in this
concurrence(C)) as a function ofy. Thus, onsite potentials paper.
decrease concurrence as they tend to localize states. Theln Fig. 3 is shown the average concurrence in individual
point g=0 has an exact double degeneracy, while the mostates of a given spectrum as a function of the energy of the
mentum states are eigenstates with the maximum concustate, appropriately scaled. Fgr 1, we see that there is a
rence of 2N, and as soon ag>0 this degeneracy is broken plateau of large concurrence corresponding to states on the
and the states are continuation of combinations of the degemetational KAM invariant curves extending over all of the
erate states with smaller entanglement. As an effect, the appace, while the edges are the separatrix states. The tails on
parentg— 0 limit is smaller than 2 in Fig. 1. either side correspond to states that are localized around the
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-4 B. Nonintegrable Hamiltonians

Nonintegrable Hamiltonians are the rule for systems with

r more than one degree of freedom, or for many-particle sys-
L tems. While there are many important interacting models in
g \ condensed-matter physics such as the Heisenberg model for
| which entanglement sharing has been studied, the case of
nonintegrability with the possibility of chaos has yet to be

explored. We begin again with the simplest case of a single-
particle spectrum. Building upon the Harper Hamiltonian
that we have just discussed, the kicked Harper Hamiltonian
then provides us with a suitable model. The fact that we wish
to remain on a one-dimensional lattice means that we have to
introduce a time-dependent onsite potential to introduce non-
integrability. The kick type of time dependence leads to
simple models that have been extensively studied in the con-
r text of quantum chaos. It has been pointed out that similar

N T S R models are of relevance in cyclotron resonance experiments

5 5.5 6 6.5 in antidot arrayg22].
In(N) Thus, the Hamiltonian we will consider is

-10 ~ osg=l1

FIG. 2. Scaling of the spectral averaged concurrence MWitbr N 1 -
o=Ny, y=(/5—1)/2. Shown are three cases corresponding to H=E E(Cj Cj+1TH.c)
metallic, critical, and insulating regimes, the short lines correspond =1
to lines with slope 1 §=0.9) and slope 2d=1.1). o
+gcog2mj/N)Ee; X s(2mtit—n)|. (24
elliptic fixed points and represent low-entanglement states on e

the average, having a tendency to form coteries.gAS- A train of impulses is provided at intervals of timé(2).
creases, the plateau gets squeezed out of existence and oply — 0, we recover the integrable Harper equations. Note
the separatrix states remaingat 1. For largerg, the invari-  that we have set for the nonintegrable casel. The cor-
ant curves between the separatrices extend over the momemsponding larg®N, classical Hamiltonian is

tum space rather than the position and tend to start localizing
in the site basis. The very low concurrence states correspond
to those that are spread in momentum maximally and there-
fore highly site localized.

©

H=cog2mp)+gcog2mq) Z s(2mtlT—n), (25

from which we get the canonicdhrea-preservingmap of
the unit torus to itself connecting phase-space variables im-
mediately after two consecutive impulses

On+1=0n— 7 SIN27P,),

Pnr1=Pnt 70 SIN(27Q,41). (26)

This map has been studied extensively and develops full
fledged chaos for large [23]. For completeness, we illus-
trate this transition to classical chaos in Fig. 4, fixgwg 1 as
in the subsequent calculations, too.

As is standard, the Floquet operatguantum mapcon-
necting states just after impulses is the quantum propagator

N<Cle)>

O(r)=exd —irg cog2mq)/h]exd —ircog2mp)/h].
(27)

With h=1/N, we get the quantum version in the basis
spanned by the site-localized statBs The spectrum of the
E./(1+g) Floguet operator is then of interest. We study the average
concurrence and the distribution of concurrence in the eigen-
FIG. 3. Average concurrence in the individual states of thestates of the above quantum map. The spectra of quantized
Harper Hamiltonian as a function of energy, with=101, c=1 at  chaotic systems are very sensitive to whether time-reversal
various values of the onsite potential. (TR) symmetry is present or not. However, it was seen in
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02
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0 FIG. 5. Spectral averaged concurrence as a functionfof the
kicked Harper Hamiltonian. Shown are both the TR symmetéic (
FIG. 4. The phase spacg,p) of the classical map fag=1 and ~ =0) and several non-TR symmetric casgg#0) and N=101.

r=0.1, 0.3, 0.5, and 0.7 clockwise from top left. The horizontal lines correspond to the RMT averages &id /2,

respectively.

Ref. [12] that the entanglement in pure states of bipartite . ) ] )

chaotic systems, consisting of Hilbert spaces of large dimenR€ct that in this regime, RMT will be able to model the
sions, is not sensitive to TR symmetry. This is because onlgoncurrence, we show below that this expectation is borne
the density of eigenvalues of the reduced density matrix deQut. o )

termines the entanglement in the case studied there. We will tiS also clear from this figure that breaking TR symmetry
see below that concurrence sharing among many qubits {§ads to significantly larger entanglement sharing. The effect
affected crucially by this symmetry. To show this, we changedf time-reversal breaking is pronounced in the chaotic re-
the boundary condition on the statd$ and introduce a 9ime since thg_delocallze_d states experience the chang_ed
phase, or equivalently change the boundary conditions on theoundary conditions. In this figure we also show how sensi-

0 02 04 06 08 1 0 02 04 06 08 1

site creation operators tive the TR breaking is by changing the phase only slightly.
For B greater than the dimensionless Planck’s consta¥j 1/
1+N)y=exp(— 2@ B)|1);  cf, y=exp—2miB)c] we see a universal saturation effect. It is interesting tha as
3 + ]

(28) decreases, the saturation seems to occur for largérich is

also a region of larger classical chaos. We may conclude as a
0general principle that entanglement sharing is more effective
in eigenstates of TR breaking Hamiltonians, and that this is a
general principle in the context of one-particle states sup-
ported by an analysis using RMT below.

We state results for two universality classes of RMT rel-
evant here, namely, from the Gaussian unitary ensemble
N (GUE) for time-reversal breaking Hamiltonians, and the

. CINTA Gaussian orthogonal ensemhl&@OE) for TR preserving,
121 exp 2 (k+B)j/N]c; (29 spinless systen{4.0,24]. We quantify the above observations
and note in advance, what we prove further on, that the av-
erage concurrence calculated from the RMT in the two cases

where 0<B8<1/2. This shifts the momentum eigenvalues t
(k+B)/N. We retain periodic boundary conditions on the
momentum stategk), and note that in this kinematic frame-

work the momentum-site transformation is the Fourier trans
form

ak:

Elle

The phases is like a magnetic flux line threading the peri-

odic chain, which is a standard way to break the TR symme&'®
try.

In Fig. 5 the average concurrence is shown as a function (Coy= 47N (GOB (30)
of 7 for various values of the TR breaking phg8eFor any 72N (GUE).

value of this phase, it is clear that along with a transition to

classical chaos there is an increase in the average pairwidéde saturation values of Fig. 5 agree well with these esti-
concurrence, and this corresponds to an increasing delocahates from RMT, which are shown as horizontal lines. How-
ization of the states. The concurrence sharing saturates aftever, RMT seems to predict a somewhat smaller value than
a transition to classical chaos, at around0.6, and we ex- the observed average in the case when there is TR symmetry.
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time T
FIG. 6. Average concurrence for a nonstationary stiiially FIG. 7. Averagerth-neighbor concurrence as function ofor
I=21)), as a function of timeN=101, and near integrable t0 the kicked Harper Hamiltonian. From top to bottoms1—15 in
chaotic cases are shown. steps of 2 andi=101 in all cases.

Note that the RMT result used above is a firliteexact

value. Phase-space localization effects on chaotic eigenfunédat regular states are smoother than the more fragmented
tions due to classical periodic and homoclinic orbits do leadstructures one finds on a coarse scale for chaotic states. This
to significant deviations from RMT26], however here it is is in turn related to tori quantization of regular states, as
interesting that the deviations seem to be more when there RPposed to a situation more akin to superposition of random
TR symmetry. Concurrence could be a sensitive measure t¢aves for chaotic statd§].

study deviations of real eigenfunctions of quantized chaotic Thus, we define theth-neighbor average concurrence
systems from RMT predictions; further study on this aspect

is required. N
The average concurrence promises in the case of the one- C(a)zi z cle) (31)
particle spectrum to be an interesting measure of localiza- rONE T

tion. We also emphasize that these results are only dependent
on the single-particle nature of the states andratependent . o )
of the dimensionality, although our models are one-In Fig. 7 this is shown_, after averaging over_the_spectwm
dimensional. Calculations with differeNtnot presented here for variousr as a function ofr for TR symmetric eigenstates.
also confirm further the RMT scalingC)~N~1, which we Itis clear that the correlation between near—ne|gr_1bor pairs is
also observed in the metallic regime of the integrable Harpetndeed much stronger for regular states. There is a correla-
Hamiltonian, and as in that case we postpone a more exteHon length beyond which the entanglement falls below that
sive scaling analysis. of the random or chaotic states average afM/ This cor-
Time evolution intrinsically involves complex vectors and felation length is then an interesting quantum length scale of
therefore we expect that time-evolving states will share, unthe problem; we call this a quantum scale as it refers to the
der a quantum chaotic evolution, entanglement that is idenntrinsically quantum property of entanglement. In Fig. 8 we
tical with that of TR breaking Hamiltonian eigenstates. Thisshow howC{® falls as a function of for various r after
is borne out in Fig. 6 where several cases ranging from nea@veraging over the complete spectriieg.
integrable to chaotic are shown. The near-linear increase of
the average concurrence in time for near-integrable systems
is replaced by a rapid increase to the TR breaking average of
/2N around which there are small fluctuations. The initial  In this section, we derive the averages stated and demon-
state in all these cases is a site-localized one with null enstrated above, as well as tHestributionsof the concurrence
tanglement. While the average pairwise concurrence of chasetween sites of one-particle states using random matrices as
otic eigenstates is larger than that of regular states, it is reanodels. The eigenfunction component distributions are de-
sonable to expect the opposite if one were to only includeived within RMT by invoking a microcanonical distribution
near-neighbor pairs of sites. We expect that the nearestith the constraint being normalization.®f ,x,, ... x4 are
neighbors are treated preferentially in regular states, whileéeal numbers distributed uniformly over tliedimensional
for random or chaotic states the connections from one site tepherical surface of unit radiysormalization, the reduced
another is also random. This expectation comes from the factensity ofl variables is given by10]

C. RMT and concurrence
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i function p(x) is known to be different for the two universal-
ity classes used here. The GOE distribution, the Porter-
Thomas distribution, was first used in the study of nuclear
resonance widthg25]:

{\/N/27rx exp(—Nx/2) (GOE)
p(X)=

N exp(—NX) (GUE). 39

Thus, the concurrence distributige{C) is then straight-
forward to calculate for one-particle states. We state the dis-
tributions for the scaled concurrencesNC,

p(c)= J: f: S(c—2N{xY)p(x)p(y)dxdy. (36

The result is

(1/m)Ko(cl2) (GOB

c)= 3
| | P {CKO(C) (GuB, 37
FIG. 8. Averagerth-neighbor concurrence as function rofor

the kicked Harper Hamiltonian. Shown are cases ranging from the . o . .
near integrable to the chaotiti=101 andg=0. whereK is the modified Bessel function that has a logarith-

mic divergence at the origin. The average concurrence, stated
in Eq. (30) and derived above, also follow from the single-

(d.h)
P (X1 %z, - X)) component distributions, i.e., at least in the averages there
I (d=1-2)/2 are no corrections coming from correlations between the
~112 I'(d72) 2
=m P 7 1- > X3 components.
(« ) n=1 We recall that one-particle states that maximally share

(32) entanglement are those whose reduced density matrices for
all the pairs are identical, such as the noninteracting case
In the case of TR symmetric systems, there exist timegjgenstates State¢1(k):exp(2ﬂijk/|\j)/\/ﬁ_ If we take the
reversal adapted bases wherein the components of the eiggslirwise concurrence, [9/in this case to be a marker, the
functions are real and these may then be taken to bejthe fraction of pairs with concurrence larger than this is
above withd=N. In the case of TR breaking Hamiltonians,
there are no such bases and the eigenfunctions are generi- %
cally complex, in which case we identify the real and imagi- f p(c)dc=0.21,0.28 (38
nary parts of the state components with theand d=2N 2

[10]. Thus, the average concurrence for the GOE case, rel-

evant for TR symmetric Hamiltonians, may be calculated ad0r GOE, and GUE, respectively. Thus, a significant propor-
the integral, tion of the pairwise concurrence in a one-particle random

state is higher than Rl For largec (practically greater than
2), the asymptotic distributions are

p(c)~e %2/ \mc, \Jmcl2e ¢ (39)
The regionR, is the interior of the circlef+x3=<1. For the
GUE case, where the wave functions have complex compdeor the two cases of GOE and GUE, respectively.
nents andd= 2N, the average concurrence is In Fig. 9 we compare the distributions from RMT with
numerical calculations. To do this we combine the pairwise
concurrence of all the eigenstates into a concurrence en-
semble. We see that there is an excellent agreement between
the theory and numerical calculations, although there are dis-
X 2\XE+X5/x5+ X5 = m/2N. (34 cernible deviations for small concurrence. It must be noted
that these distributions ateniversaj they are independent of
The regionR, is now the four-sphere volumed+x5+x5  system, except for the requirement of a classically chaotic
+x5=<1. These are the formulas stated in E2p). limit. Thus, it is clear that TR symmetry could play a crucial
In order to calculate the distributions themselves, werole in the way entanglement is shared in a quantum state.
choose to use the largéforms of the distributions when the Also the case of the Gaussian symplectic ensemble has not
components tend to become independent. het) be a  been considered here due to the additional complexity of a
single-component distribution oxf:|¢>1(“)|2. The distribution ~ Kramer’s degeneracy.

(Cy= jR dx, dx, P(MN2(xy,%,)2 \/XiX§:4/7TN' 33
2

(C)= fR dxy dx, dxg dx, PCND(x;,%5,X5,X,)
4
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sharing, and we have quantified these statements with the
help of RMT.

Also a transition to chaos has been shown to accompany
an increase in the spectral averaged concurrence. We expect
that spectral averaging will have a small effect in the case of
chaotic systems, while there will be much larger state to state
fluctuations in the case of regular states. We have also made
connections between the averaged concurrence and the mea-
sures of state localization such as the Renyi entropy, some-
thing that enables us to qualitatively understand the behavior
of entanglement sharing in these states. For instance we have
demonstrated that for regular states, near-neighbor concur-
rence is preferred, while for chaotic states there is no such
metric preference. Due to the essential simplicity of the con-
currence in one-particle states, we have been able to analyze
details such as concurrence distributions. It is of much inter-
est to see how many of the conclusions, for instance that
concerning the role of TR symmetry, carry over to general
states.

The effect of onsite integrable potentials has also been

FIG. 9. The concurrence distributions for the kicked Harperstudied and it is noted that transitions such as metal-insulator

Hamiltonian with7=0.8 andN=101. Shown using points are the
cases of time-reversal preserving=€0) and time-reversal break-

transitions are reflected in the way entanglement is shared. It
is shown that in the metallic regime, entanglement is shared

ing (8=0.2) Hamiltonians. The smooth curves are the RMT pre-better, while in the insulating regime, it is not. This is rea-

dicted distributions.

IV. CONCLUSIONS

sonable due to the connections between wave-function local-
ization and concurrence noted above. Also the finite-size
scaling of the concurrence in the metallic and insulating

cases have been noted. A more detailed scaling analysis in all

We have studied entanglement sharing in one-particleases, including the critical point is warranted. The hypoth-

states using the measure of concurrence. We have studied thsis that quantum-information theory will be an approach to
average of the concurrence, spectral averaged concurren&ydy “complex” quantum systemg7] is borne out here in

as well as the distribution of concurrence in a given statethe context of entanglement and single-particle chaos. The
Our attempt has been to begin studying the effect of noninway in which many-particle states differ are significant and

tegrability and chaos in this interesting quantum measur@ngoing work on this will soon be reported.

that has possible applications in quantum-information theory.

We have found that chaos in the corresponding quantum sys-
tem implies that concurrence in individual one-particle states A.L. thanks Professor M. K. Verma and other members of
are distributed in a universal manner, which depends only othe Department of Physics, IT Kanpur, for their invitation

the presence or absence of TR symmetry. The absence of Tdd wonderful hospitality during his sabbatical at which this
symmetry has been shown to lead to more entanglementork was done.
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