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Fast, efficient error reconciliation for quantum cryptography
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We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and
Hamming’s ‘‘syndrome’’ forN-bit subunits of a large dataset. The Winnow protocol was developed in the
context of quantum-key distribution and offers significant advantages and net higher efficiency compared to
other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of
the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in
particular, the information overhead required for secure implementation is one of the most important criteria in
the evaluation of a particular error-reconciliation protocol. The increase in efficiency for the Winnow protocol
is largely due to the reduction in authenticated public communication required for its implementation.
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I. INTRODUCTION

Quantum cryptography@1# presents special problems
regard to error correction of noisy quantum communicatio
Under the constraint that the public channel can be auth
ticated, and the assumption that all public communicati
can be eavesdropped, classical information on the excha
qubits must be revealed through a series of public disc
sions to test the quantum-key integrity and to remove
errors. Discrepancies within the qubits, observed as err
must be treated as having been introduced by a hostile ea
dropper; the eavesdropper is generally referred to as Eve
labeledE in this work.

In a classical environment,all errors canalways be re-
moved with the condition that to remove all errors one m
have to reveal all information. However, within the secre
framework imposed by quantum-key distribution~QKD!, re-
vealed information, reduces privacy and the effective ch
nel capacity. Because of this, great care must be take
reveal a minimal amount of information to remove erro
from quantum-key, while accounting for the leaked inform
tion to ensure key integrity after errors are removed.

Within this context of QKD, the two parties that exchan
qubits over a quantum channel@Alice ~A! and Bob~B! are
the notation typically used within the quantum cryptograp
community# must have a fast and efficient method to me
the quantum-key; in addition, they must also reduceE’s
knowledge gained during public discussions to a vanishin
small amount. These constraints require that any er
reconciliation protocol will also need supporting protocols
provide a complete framework for quantum cryptograp
security. That is, a useable QKD system will comprise
quantum-key transmitter~A! and receiver (B), and a series
of protocols to remove errors and account for and mitig
the information leakage attributable toE. The series of pro-
tocols includes@2,3#, but is not necessarily limited to th
following: error reconciliation@4,5#, privacy amplification
@6#, and signature authentication@7#.

In addition to these protocols, we acknowledge a proto
generally formulated in Ref.@4# that we refer to as privacy
maintenance. We also note that the predecessor toCASCADE

@5#—the best known and probably the most widely us
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error-reconciliation protocol—is also generally formulated
Ref. @4# and is characterized by a binary search; here,
refer to the binary search, which is a major element
CASCADE, asBINARY. A fundamental difference betweenBI-

NARY andCASCADE is thatCASCADE neglects privacy main-
tenance: all data are retained until the necessary privacy
plification is performed on the error-free data. We obse
that the reconciliation process is more efficient if priva
maintenance is implemented during reconciliation as will b
come obvious in the following discussion.

Finally, this work introduces an error-reconciliation pr
tocol that uses a Hamming code@8,9# to remove errors. We
refer to this protocol as Winnow. Which is characterized
the application of a parity test, a conditional Hamming ha
and privacy maintenance.

II. HAMMING ERROR DETECTION AND CORRECTION

The application of the Hamming hash function for err
correction@8,9# is illustrated as follows.

First, afterA andB exchange qubits on the quantum cha
nel, A and B then divide their random bits into blocks o
lengthNh52m21. ~Due to the 1:1 correlation of these dat
we henceforth refer to these blocks as a single data or
block.! The m-bit (m>3) syndromes Sa and Sb are then
calculated, whereSa and Sb , respectively, depend only o
A’s or B’s bits in a particular block.

Next, B transmits his syndrome toA and errors are only
discovered if the syndrome differenceSd ~exclusive orof Sa
with Sb) is nonzero:

Sd5Sa% SbÞ$0%m. ~1!

Finally, m bits are deleted from each bit block to elimina
the potential loss of privacy toE due to the~classical! com-
munication ofB’s syndromes:m bits of information are re-
vealed on each block for whichSb is revealed reducing the
channel capacity per symbol bym/Nh @10#.

Specifically, data privacy is maintained by removal ofm
bits from each block at the$2 j% positions, where j
P$0, . . . ,m21%. These bits are independent in the sy
drome calculations as seen below in the matrixh(m),
©2003 The American Physical Society03-1
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h(3)5F 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1
G , ~2!

where for this particular matrixm[3. We refer to the opera
tion of discarding bits in this manner@4# asprivacy mainte-
nance.

As a final comment on Eq.~2!, note that the transpose o
h(3)[@h(3)#T are the binary equivalent numbers 1 to 7, and
generalized such that@h(m)#T[$1, . . . ,(2m21)%, Nh binary
numbers.

The matrixh(m) is a special form of the hash function@11#
and is represented by

hi , j
(m)5F j

2i 21 G ~mod 2!, ~3!

where i P$1, . . . ,m% and j P$1, . . . ,Nh%; arithmetic is
modulo 2.

The Hamming algorithm always corrects any single er
within any Nh-bit block, but the effect of the Hamming a
gorithm, which is related to thesyndromesand privacy main-
tenance, is less clear in the event that more than one e
exists in a bit block. Such considerations are now discus
in detail in terms of the syndromes.

The syndromesSa and Sb are formed by contraction o
the Nh-bit blocks with the matrixh(m):

Si5S (
j 51

Nh

Xjhi , j
(m)D ~mod 2!P$0,1%m, ~4!

where subscripti represents syndrome biti in the m-bit bi-
nary syndrome,Xj represents bitj PA’s or B’s block, and
S5$Si% is the binary syndrome value of eitherB’s or A’s
block. Understanding the effect of the syndromes in locat
and correcting errors is crucial to assessing the performa
of the Hamming algorithm, and thus the Winnow protoco

The syndrome difference@Eq. ~1!# defines a binary num
ber that gives the location of a single bit inA’s or B’s code
word that when toggled from 0°1 or from 1°0 affects the
syndrome differenceSd , such that when the syndrome di
ference is recalculated it gives the binary numberSd8
[$0%m. The result is that the changing of the single bit i
dicated by the nonzero syndrome difference in the one c
word either corrects an error, or introduces another, in
code word. This is no great mystery but rather reflects
fact that Hamming codes aren-k codes. In this case,n52m

21 relates the number of bits in each code wordNh , and
k5n2m relates the channel capacity~the channel capacity
is k/n⇔k/Nh per bit! given the code~a Hamming code in
this discussion!.

In an n-k Hamming code, there are 2(2m21) unique code
words characterized by 2m unique syndromes; further, ther
are 2k code words with the same syndrome. Because
code can correct one error, it has a minimum Hamming d
05230
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tance ofd53. This also means it can detect at least tw
errors. In fact the Hamming distanced for the Hamming
code isd[3.

By definition, a code word with a single error will hav
SdÞ$0%m ~can obviously detect a single error if it can corre
a single error!. In addition, if a code word has exactly tw
errors then by definitionSdÞ$0%m ~can detect at least two
errors if it can correct a single error!. Therefore, if a code
word has exactly two errors, then after applying the Ha
ming algorithm, and after changing the bit value indicated
Sd , the code word will finish with exactly three errors. Th
proof is by contradiction; if a code word with two error
finished with one error~an error was corrected!, then the new
syndrome difference would be nonzero. Contradiction a
proves that one error is corrected if there is exactly one er
If an error was introduced the syndrome difference wo
again be nonzero. Thus, in examining Hamming codes,
observe that a code word with one error will finish with ze
error, but a code word with exactly two errors finishes w
exactly three errors. In each case, the new syndrome di
ence changes such thatSd85$0%m.

By symmetry, if anNh-bit code word contains exactly
Nh21 errors~all the bits except one are in error!, then after
application of the Hamming algorithm all the bits in the co
word will be in error. Further, a code word that contai
Nh22 errors will finish withNh23 errors, i.e., one of the
errors is corrected.

The above arguments imply that a Hamming code o
works well if the probability of two or more errors is low
relative to the likelihood of a single, or no, errors. In eith
case, the Hamming code is inefficient asm bits are revealed
in the syndrome~this fact is discussed in detail later!.

The difficult question to answer in analyzing the perfo
mance of a Hamming code is how does the Hamming al
rithm affect code words with more than two, but less th
2(m21), errors?

It is not obvious, but the number of code words with thr
errors andSd[$0%m is related to the number of ways two
error code words map to a code word with three errors~and
Sd5$0%m). In other words, there must be a way to arran
three errors in a code word and still maintainSd5$0%m.
Lacking this would mean that the code could always det
more than two errors with a Hamming distance ofd53.

To complete the Hamming efficiency analysis, how co
words with three or more errors are affected after applicat
of the Hamming algorithm must be analyzed. For three
rors, it is now obvious that there must be at least 2m21 ways
to start with three errors in anNh-bit code word and still
finish with three errors. In the case that there exist th
errors in a code word, andSdÞ$0%m, then an error will be
introduced into theNh-bit code word because if the cod
word finished with two errors thenSdÞ$0%m—a contradic-
tion.

As a special case~example!, considerm53. There are
(3

7)535 ways to arrange three errors in seven bits. Beca
there are exactly seven nonzero syndrome differences
m53 and exactly two errors, there must beat leastseven
ways to arrange three errors in seven bits and haveSd
3-2
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[$0%m. In fact, for this special case this is the result. Wh
this means is that, statistically, seven in 35 code words w
three errors will finish with three errors, and 28 in 35 wor
with three errors will finish with four errors. Thus, cod
words that start with three errors will finish with 19/5 erro
per seven-bit block, in the limit of an infinite number o
seven-bit blocks with exactly three errors. By symmetry, i
obvious that given an infinite number of seven-bit bloc
with exactly four errors, the final error rate per block wou
be 16/5—a lower final error rate.

Thus, what is needed is a way to calculate, for any nu
ber m of parity checks, in the Hamming algorithm, a way
calculate the number of ways to arrange the initial numbe
errors per block and finish withSd5$0%m or with Sd
Þ$0%m. Equation~5! permits that calculation for any initia
number of errors per blockni , given any initial block size
Nh :

NSdÞ01NSd505S Nh

ni
D 2NSdÞ01NhNSd50

5~21!qNhS Nh21

2

p
D

⇔FNSdÞ0

NSd50
G5F Nh 1

21 1G21

3F S Nh

ni
D

~21!qS Nh21

2

p
D G , ~5!

whereq5 dni /2e, p5 bni /2c, ni is the initial number of errors
per Hamming block ofNh52m21 bits per block; in this
situation,NSd50 gives the number of syndrome differenc

with Sd5$0%m and NSdÞ0 gives the number of syndrom

differences withSdÞ$0%m. Equation~5! is generalized by
dividing both sides by the total number of ways to arrangeni
errors in theNh bits. In this situation, we find a more usef
quantity

PSd505
NSd50

S Nh

ni
D , ~6a!

and

PSdÞ05
NSdÞ0

S Nh

ni
D . ~6b!

This result is required later.
These arguments are not obviously general for the cas

m.3, but they give insight into the general problem. T
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difficulty with the special case ofm53 andni53 is that the
next case ofni54 is symmetric and complementary wit
ni53, as mentioned previously. Further, as was noted, th
is no path to map three errors to two errors asSdÞ$0%m,
when there are exactly two errors. However, Eq.~6! is the
general technique to calculate the quantities specified,
the number of ways to mapni errors toSd5$0%m or not,
given Nh52m21 bits in a block.

Given these facts, how the errors change form>4 and
4<ni,2(m21) is the general result of interest.

Let ni
(1) be the number of ways to increase the number

errors fromni to ni11, in a bit block, andni
(2) the number

of ways to decrease the number of errors fromni to ni21;
of course, the considerations relate tom>4. The results are
as follows:

ni
(1)5NSd50~Nhuni !1~ni11!NSd50~Nhuni11!

ni
(2)5S Nh

ni
D2ni

(1) , ~7!

where NSd50(Nhuni11) is the number of ways to arrang

ni11 errors inNh bits and obtainSd5$0%m ~the reader will
recall that earlier it was stated that the number of ways to
Sd5$0%m for ni11 errors is directly related to the number
ways to mapni°ni11 errors!; of course,NSd50(Nhuni) is

the number of ways to arrangeni errors inNh bits and get
Sd5$0%m. Thus, the generalized probability for the numb
of errorsni to increase or decrease is

P (1)5
ni

(1)

ni
(1)1ni

(2)
~8a!

and

P (2)512P (1). ~8b!

III. WINNOW PROTOCOL

As a general rule, the ideal error correcting protoc
would correct all bit errors in each bit block, introduce n
additional bit errors, and reveal a minimal amount of info
mation on the key bits to an eavesdropper through pu
communication. The outlined Hamming protocol has a nu
ber of shortcomings regarding this ideal. First, the differen
syndrome Sd does not distinguish between single- a
multiple-bit errors. Therefore, additional errors may be int
duced if instances ofSdÞ$0%m are treated as due to sing
errors. Second, up tom bits of information are exchanged fo
each data block reducing channel capacity per symbol w
each exchange: information which can be compromised
eavesdropping.

One solution is to eliminate all bits within data blocks f
which SdÞ$0%m. This certainly removes the possibility o
introducing additional bit errors into the key, but, unfort
nately, the efficiency of such a method is low aseveryblock
loses eitherm bits to privacy maintenance, or all bits becau
SdÞ$0%m. The efficiency of this approach is not optimal a
3-3
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most of the discarded bits or blocks for whichSdÞ$0%m are
probably not in error.

Another, more powerful solution is to introduce a prelim
nary parity comparison on a block ofN52m bits and to
make a comparison of the syndromesSa andSb , conditional
upon the result of the parity comparison.1

If the block parities do not agree, an odd number of err
exists in theN-bit block. Moreover, if the bit errors are dis
tributed randomly throughout the data, and if the number
errors is sufficiently small, then an odd number of errors i
block probably indicates a single error that can be correc
by the additional application of the Hamming algorithm. F
example, in the situation that a block contains 1-bit error
Sd5$0%m then the first bit is in error.~By symmetry it is
clear that if there are exactlyN21 errors in the block the
first bit would not be in error.! Thus, this approach alway
allows the correction of a single error in theN bits, i.e., if the
bits are to be retained. However, in the protocol outlined h
the one bit is regularly discarded for privacy maintenan
~for the exchanged parity bit! and the Hamming algorithm is
applied to the remainingNh bits, as previously discussed
and thend log2(Nh)e additional bits are discarded to comple
the privacy maintenance giving a channel capacity of (m

2m21)/N per symbol on blocks that contain an initial pa
ity error. This appears to be an additional loss of chan
capacity, but because the syndromes are not exchanged
compared, when the block parities agree, the channel ca
ity actually increases over the basic Hamming algorithm
bit is still discarded from the blocks that do not exhibit
parity error for privacy maintenance. We refer to this err
reconciliation protocol as Winnow.

The Winnow protocol reveals log2(N)11 bits in two clas-
sical communications when the parities on theN bits do not
agree:m bits for the syndrome and 1 bit for parity; con
versely, the Winnow protocol reveals 1 bit of information
one classical communication when the parities agree.2

Therefore, the amount of key data discarded is

Ndis.
odd5 log2~N!115m11 ~9!

1R. W. Hamming discusses the addition of a parity check on
Nh52m21 bit block @9# ~pp. 47–48; pp. 213–214!. His conclusion
is thatA andB are more likely to introduce additional errors tha
correct errors by changing a bit ifSdÞ$0%m and the block-parities
agree. In this situation,A andB could either remove them11 bits
required to ensure privacy on the remaining bits~which may re-
move errors!, or they could eliminate all of the bits in question,
niP$2,4, . . . ,2m22%.1. The expanded protocol described in th
effort allows the detection of an even or odd number of errors
prevents a correction attempt on those data blocks with even n
bers of errors. This is important since the Hamming algorithm w
increase the number of errors in blocks that have 2<ni<Nh/2.

2Exchanging the parity onN52m bits instead ofNh52m21 bits
results in slightly higher channel capacity. That is, more informat
is revealed when the syndrome information is combined with
parity information on aNh-bit block than is revealed when th
parity and syndrome are revealed onN bits in the Winnow protocol.
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bits for blocks with odd numbers of errors such that t
fraction of the bits remaining after privacy maintenance i

mpm
odd512

Ndis.
odd

N
. ~10!

For NP$8,16,32,64,128%, mpm
oddP$0.5,0.69,0.88,0.89,0.94%,

respectively. Also,

mpm
even512

1

N
~11!

andmpm
evenP$0.88,0.94,0.97,0.98,0.99% for the same values o

N. In either case, the appropriate overhead for the class
communications is also removed immediately from the da
so that the privacy of the bits is at least maintained if n
improved.

All single-bit errors in anN block are guaranteed to b
either eliminated or corrected after a single pass of the W
now protocol~SPW!. What remains to be considered is ho
blocks with multiple errors affect the overall efficiency of th
Winnow protocol.

IV. WINNOW EFFICIENCY

Define the change in number of errors in a given blo
and for a given initial number of errorsas Dn5nf2ni ,
whereni andnf[nf(ni uN) are the initial and final number
of bit errors in a block prior to and after a SPW, respective
The average change in the number of errors, for a gi
number of initial errors, after a SPW~this step includes
elimination of the parity bit but not the finalm bits required
for completion of the privacy maintenance step! can be ex-
pressed as

Dn̄[^Dn~ni !&5 (
Dn522

1

Dnp~Dnuni !, ~12a!

where

(
Dn522

1

p~Dnuni !51 ~12b!

andp(Dnuni) is the probability that the number of errors wi
change byDnP$22,21,0,1% given an initial condition ofni
errors in anN-bit data block. Thep(Dnuni) of interest can be
written more instructively as

p~11uni !5p (n)PSdÞ0~ni !P
(1)~ni !,

p~60uni !5p (n)PSd50~ni !1p (y)PSdÞ0~dni !P
(1)~dni !,

p~21uni !5p (n)PSdÞ0~ni !P
(2)~ni !1p (y)PSd50~dni !,

p~22uni !5p (y)PSdÞ0~dni !P
(2)~dni !, ~13!

where,ni is as previously defined,dni[ni21, p (y~n) de-
pends only on the initial number of errorsni in the N-bit
block and is the probability the bit discarded for priva

e

d
m-
l

n
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maintenance following the parity check was (y), or (~) was
not ~n! in error; PSd50(ni

~dni) and PSdÞ0(ni
~dni) are the

probabilities thatSa5Sb or SaÞSb for ni or dni errors inNh

bits and are concretely defined in Eq.~6!, andP (6)(ni
~dni)

is defined in Eq.~8!.
Equation~12! can be expressed in terms ofp (y~n), PSd

,

andP (6) as

Dn̄[^Dn(n)~ni !&1^Dn(y)~ni !&,5Dn̄(n)1Dn̄(y), ~14!

where the arguments which depend onni have been sup
pressed, and

Dn̄(n)5p (n)PSdÞ0~ni !@122P (2)~ni !#,

Dn̄(y)5p (y)PSdÞ0~dni !@122P (2)~dni !#2p (y). ~15!

The final quantity needed to calculate the efficiency of
Winnow protocol isp (y~n):

p (y)5
ni

N
, ~16a!

where

p (y)1p (n)51. ~16b!

Table I and Table II provide a concrete example for t
special case ofm53 of the effects of the Winnow protoco
on blocks with exactlyniP$0, . . . ,8% errors. Table I intro-
duces a new quantity

n̄f[^nf&5ni1Dn̄, ~17!

and in Table II a new parameter

pf5
n̄f

Nf
~18!

TABLE I. n̄f for N58 for various stages in the Winnow proto
col ~note that the Hamming algorithm is not applied to blocks t
contain an even number of errors!.

ni 0 1 2 3 4 5 6 7 8

n̄f
p 0 0.88 1.75 2.63 3.5 4.38 5.25 6.13 7

n̄f
ph 0 0 1.75 3.5 3.5 3.5 5.25 7 7

n̄f
0 0 1.75 2.0 3.5 2.0 5.25 4 7

TABLE II. n̄f /Nf for N58 for various stages in the Winnow
protocol~note that the Hamming component of the Winnow pro
col is not applied to blocks that contain an even number of erro!.

pi 0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1

pf
p 0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1

pf
ph 0 0 0.25 0.5 0.5 0.5 0.75 1 1

pf 0 0 0.25 0.5 0.5 0.5 0.75 1 1
05230
e

is defined.
The parameterpf defines the probability for each bit in

given block to be in error. The numberNfP$N21,N2m
21% and its value depends on the action required by
Winnow protocol for a given number of initial errors. Fo
example,Nf5N21 or N2m21 for pf andni even or odd,
respectively.

These two tables illustrate the effect of the Winnow pr
tocol on data that are divided into 8-bit blocks. The valu
marked with superscriptp reflect the effect of discarding 1
bit following the parity comparison. The values marked w
superscriptph refer to the data after the Hamming algorith
is also applied, but before the requisite log2(N)53 bits of
data are discarded for privacy maintenance. The final va
denoted by subscriptf reveal the effect of the Winnow pro
tocol ~including the effect of all discarded data required f
privacy maintenance!.

The parameterpf clearly shows a reduction in errors fo
ni51 and an increase in errors forni53. It also shows that
discarding data to maintain privacy of the remaining key h
no effect on the error probability.

The fraction of key remaining after a SPW is given by

mN[
^Nf&

N
5

(
ni50

N

Nf P~ni uN!

N
, ~19!

and the probability for any key bit to be in error following
SPW is

pN5
^n̄f&

^Nf&
5

(
ni50

N

n̄f~ni !P~ni uN!

NmN
, ~20!

whereP(ni uN) is the probability for anN-bit block to con-
tain ni errors before a SPW.

Obviously, the efficiency with which the Winnow proto
col removes errors depends upon the distribution of err
within the data. Without intimate knowledge of a speci
QKD apparatus, a reasonable assumption is that the e
are random and normally distributed throughout the da
Given this assumption,P(ni uN) in Eq. ~20! is given by the
binomial distribution

P~ni uN,p0!5S N
ni

D p0
ni~12p0!N2ni, ~21!

wherep0 is the probability that any given bit is in~relative!
error.

With this assumption, Eqs.~19! and~20! can be expressed
as

mN5

N212m(
ni

odd
S N
ni

D p0
ni~12p0!N2ni

N
, ~22!

wherem5 log2(N) and

t

-

3-5



s
th

w

in

er
m
-
ur
a-
de

r
s

ia
e

th

en

a
e

in-
rs

le to
t is
of
way
An
ss
ob-
er
here
f

r a

s
tial
at
or-
unt

by

ed

ing

tum

of

ect-

rs
ta
ing

ore
eak

s. If

ised

ose
ct
e

s
ro
ed

w
n

BUTTLER et al. PHYSICAL REVIEW A 67, 052303 ~2003!
pN5

(
ni50

N

n̄f~ni !S N
ni

D p0
ni~12p0!N2ni

NmN
. ~23!

The efficiency with which the Winnow protocol reduce
errors in the key is of great interest. Two related issues
concern the efficiency are~1! the number of iterations of the
Winnow protocol necessary to achieve a sufficiently lo
probability of error in the remaining key data and~2! the
amount of key data that is discarded through privacy ma
tenance.

The number of iterations is of concern because each it
tion reveals information and consumes time with each co
munication betweenA and B. Moreover, each communica
tion requires the use of some private key for signat
authentication@7#. Most important, though, is that each iter
tion requires a significant amount of data to be discar
through privacy maintenance.

SmallerN require more data to be discarded than largeN
as can be seen from Eq.~22!. However, an effect that tend
to mollify this undesirable condition is that smallerN are
more efficient at removing errors for larger values of init
error probability. This effect is illustrated in Fig. 1, where w
have plottedpN /p0 for several values ofN. For all values of
N andp0 sufficiently small,pN /p0,1 and the protocol can
remove errors from the key data. However, asp0 increases
from p050, each of the curves passes throughpN /p051
indicating that additional errors are being introduced into
key. Moreover, the value ofp0 for which pN /p051 is
smaller for largerN and the curves do not intersect betwe
p050 andpN /p051.

As a primary requirement of a SPW on real data in
iterative application, a random shuffling of the data betwe

FIG. 1. The ratiopN /p0 for N58, 16, and 32. These curve
illustrate the change in the probability that a given bit is in er
after a single application of the Winnow protocol for the indicat
block sizeN. Note that (p8,p16) ;(p0&0.38); in addition, (p16

,p32) ;(p0&0.20). This indicates that applications of the Winno
protocol with smallerN are more efficient at removing errors tha
are applications with largerN within the region, wherep0 satisfies
these conditions.
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iterations is essential to randomly redistribute missed or
troduced errors. Without this random shuffle, multiple erro
remain clumped together and, in essence, are impossib
completely remove from the data. Under this constraint, i
obvious that the final error probability, and the amount
data remaining after a number of SPWs, depends on the
in which N is varied throughout the successive SPWs.
intuitive result that we have verified empirically is that le
data are discarded for the same initial and final error pr
abilities if N is chosen well for the first iteration and is eith
held constant or increased for all subsequent iterations; t
is no advantage in decreasingN in subsequent iterations i
the Winnow protocol is applied as outlined here.

Define

p~p0 ;$ j N%! ~24!

and

m~p0 ;$ j N%! ~25!

as the final error rate and fraction of data remaining afte
sequence$ j N%5$ j 8 , j 16, j 32, j 64, j 128%, wherej N iterations of
the Winnow protocol are applied with a block sizeN
P$8,16,32,64,128% beginning with N58 and increasing
monotonically inN by factors of 2.3

Because (p8,p0) ;(p0&0.3), it may appear that error
can be corrected in the data for this entire range of ini
error probability. However, there is another criterion th
must be met, which significantly reduces the maximum c
rectable error probability: There must remain a finite amo
of error-free data after the potential information possessed
E is reduced through privacy amplification.

The maximum amount of potential information possess
by E can be determined by the initial error probabilityp0 and
depends on the QKD protocol and the type of attacks be
employed. For example, if the BB84 protocol is used andE
employs a complete intercept-resend attack on the quan
channel in the same bases used byB, she will introduce an
error probability ofp051/4. She will also potentially know
1/2 of the data before error-reconciliation and up to 2/3
the data that remains after error-reconciliation.

If E uses a more clever intercept-resend strategy of det
ing and resending in the Breidbart basis~second paper in
Ref. @4#!, she would introduce the same number of erro
(p051/4) and could know up to a fraction of 0.59 of the da
before error-reconciliation and 0.78 of the data remain
after error-reconciliation.

It should also be noted that certain states of light are m
susceptible to attack than others. For example, consider w
coherent states that are commonly used in QKD system
E also employs a beam splitter attack@3,4,12# against one of
these systems, an additional amount of data is comprom

3In this work N is constrained such that 8<N<128 only for the
sake of brevity. We have found that this constraint does not imp
a serious limit on the ability of the Winnow protocol to corre
errors. The ideas discussed below can be extended to includN
54 andN.128 in a straightforward manner.

r
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which is not greater than the mean number of photons in
state. However, this value can be made arbitrarily small, s
is neglected in the following calculations. Moreover, oth
states of light can be used in QKD schemes, which are
vulnerable to this type of attack@13#.

Thus, the fraction of data remaining after erro
reconciliation and privacy amplifications can be

nBB845m2~0.59!4 p0 , ~26!

for the BB84 protocol, wheren describes the remaining frac
tion of key.

From the above considerations,p and n can be investi-
gated as a function ofp0. Of particular interest is the maxi
mum p0 for which some secure data remains, while achi
ing a sufficiently low final error probability to make the da
useful. We have chosen, somewhat arbitrarily,p<1026 as a
reasonable target for the final error probability.

With this target and the remaining fraction of private da
described by Eq.~26!, we find the largest initial error prob
ability for which some private data remains is

p050.1322, ~27!

after multiple passes of the Winnow protocol and priva
amplification.

To achievep&1026 from this large initial error probabil-
ity, the Winnow protocol must be applied in the sequen
$ j N%5$3,1,0,1,3%. That is, three SPWs withN58 must be
followed by one SPW withN516, etc. If this prescription is
followed,

nBB8450.0017 ~28!

of the original data remain and are secure following priva
amplification.

Some QKD schemes require a larger estimate ofE’s
knowledge. If Eq.~26! is replaced with@4#

n5m22A2p0 , ~29!

we find

p050.1222, ~30!

for $ j N%5$3,0,1,0,4%. This leaves a fractionn50.0017 of
the original data as secure data with a single-bit error pr
ability <1026.

Finally, if we estimate thatE knows every bit of data by
causingp051/4, then

n5m24 p0 . ~31!

We then find that the largest reconcilablep0 is

p050.1037, ~32!

for $ j N%5$2,1,1,0,3% andn50.0020.
The most efficient iteration sequence ($ j N%) for any QKD

scheme can be determined by first applying the Winnow p
tocol with N58 to estimatep0. Once the number of block
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with odd and even~even includes zero! errors, Me
odd and

Me
even , respectively, are known, the fraction

Me
odd

Me
odd1Me

even5

(
ni

odd
S N
ni

D p0
ni~12p0!N2ni

N
~33!

can be used to estimatep0. Knowledge ofp0 is sufficient to
determine the$ j N% which maximizesn.

For small p0, the most efficient$ j N% may start withN
.8. However, working systems that have been reported
the literature@4,14# have large enough error probabilities, s
that the most key is left ifN58 for at least the first iteration

A detailed analysis of the advantages of Winnow ov
other protocols is beyond the scope of this work. Howeve
is instructive to note the advantages over at least the b
known protocolCASCADE.

The most notable difference between Winnow orBINARY

and CASCADE is that CASCADE does not employ privacy
maintenance. The disadvantage of such a protocol is
super-redundant information must be exchanged with e
successive iteration. This is to be compared withBINARY and
Winnow which reduce the size of the dataset with each co
munication. With the reasonable requirement that a bit
vealed through these communications requires at least a
to be eliminated through some channel, either before or d
ing privacy amplification, then the inefficiency of keeping a
bits until all errors are removed becomes obvious: Retain
and repetitively exchanging information on the same bits
an additional expense to the protocol.

For the purpose of comparison, we have computed
maximum p0 through BINARY ~less privacy maintenance!
that can successfully reconcile errors and preserve a s
amount of secure data after privacy amplification and
removal of the super-redundant information. We find

p050.114, ~34!

for $ j N%5$2,1,0,2,1% and nBB8450.01 when Eq.~26! de-
scribes the additional amount of key that must be discar
through privacy amplification. This is to be compared w
p050.1322 for the same considerations with the Winno
protocol. This application ofBINARY is a reasonable approxi
mation toCASCADE which may include a higher-order cor
rection giving a slightly higher overall error reduction tha
BINARY without privacy maintenance.

This comparison~or any of the previous discussion! does
not take into account bits used to authenticate messages
betweenA and B. Both CASCADE and BINARY requires sig-
nificantly more two-way communication than the Winno
protocol, and each packet ofn bits sent may required log2(n)e
for authentication@7#. We calculate that the most efficien
application ofCASCADE requires a minimum of 11 log2(N)
communications for any block sizeN that exhibits a parity
error, while the Winnow protocol requires only two comm
nicationsfor any block size Nthat exhibits a parity error; the
additional communications required imposes a tight limi
tion on practical efficiency. In addition, becauseCASCADE
3-7
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does not maintain privacy, subsequent iterations require m
bits to be exchanged in the initial parity phase with ea
iteration. The additional bit exchanges may require ad
tional signature authentication bits.

We acknowledge that becauseCASCADE and BINARY al-
ways removes a single error and never introduces additi
errors to multiple error blocks, bothBINARY and CASCADE

perform infinitesimally better than the Winnow protocol
an environment where signature authentication is not
quired and privacy maintenance is removed from the W
now andBINARY protocols. However, the two communica
tions of the Winnow protocol is a great advantage, wh
time is of the essence with regard to production of secure
bits over inefficient noisy quantum channels.

V. CONCLUSION

We have identified a fast, efficient, error-reconciliati
protocol for quantum-key distribution which requires on
two communications between the two parties attempting
di
.

l

d

e
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reconcile private, quantum-key material. We refer to this p
tocol as Winnow.

The Winnow protocol incorporates a preliminary pari
comparison on blocks whose size isN52m, where m
P$3,4,5,6, . . . %. Subsequently, one bit is discarded fro
these blocks to maintain the privacy of the remaining bits
Hamming hash function, which can be used to correct sin
errors, is applied to the remainingN21 bits on the blocks
whose parities did not agree. Finally,m bits are discarded
from the blocks on which the Hamming algorithm was a
plied to maintain the privacy of those bits.

We find this protocol capable of correcting an initial err
probability of up to 13.22% in privacy amplified BB84-lik
quantum-key distribution schemes.
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