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Fast, efficient error reconciliation for quantum cryptography
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We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and
Hamming’s “syndrome” for N-bit subunits of a large dataset. The Winnow protocol was developed in the
context of quantum-key distribution and offers significant advantages and net higher efficiency compared to
other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of
the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in
particular, the information overhead required for secure implementation is one of the most important criteria in
the evaluation of a particular error-reconciliation protocol. The increase in efficiency for the Winnow protocol
is largely due to the reduction in authenticated public communication required for its implementation.
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[. INTRODUCTION error-reconciliation protocol—is also generally formulated in
Ref. [4] and is characterized by a binary search; here, we

Quantum cryptographyl] presents special problems in refer to the binary search, which is a major element of
regard to error correction of noisy quantum communicationsCASCADE, asBINARY. A fundamental difference between
Under the constraint that the public channel can be authefARY andCASCADE is that CASCADE neglects privacy main-
ticated, and the assumption that all public communicationéenance: all data are retained until the necessary privacy am-
can be eavesdropped, classical information on the exchang@ification is performed on the error-free data. We observe
qubits must be revealed through a series of public discughat the reconciliation process is more efficient if privacy
sions to test the quantum-key integrity and to remove thénaintenance is implemented during reconciliation as will be-
errors. Discrepancies within the qubits, observed as error§ome obvious in the following discussion.
must be treated as having been introduced by a hostile eaves- Finally, this work introduces an error-reconciliation pro-
dropper; the eavesdropper is generally referred to as Eve aff@col that uses a Hamming co¢ig,9] to remove errors. We
labeledE in this work. refer to this protocol as Winnow. Which is characterized by

In a classical environmengll errors canalwaysbe re-  the application of a parity test, a conditional Hamming hash,
moved with the condition that to remove all errors one mayand privacy maintenance.
have to reveal all information. However, within the secrecy
framework imposed by quantum-key distributi@@KD), re- || HAMMING ERROR DETECTION AND CORRECTION
vealed information, reduces privacy and the effective chan- o ] )
nel capacity. Because of this, great care must be taken to The application of the Hamming hash function for error
reveal a minimal amount of information to remove errors¢orrection[8,9] is illustrated as follows.
from quantum-key, while accounting for the leaked informa-  First, afterA andB exchange qubits on the quantum chan-
tion to ensure key integrity after errors are removed. nel, A and B then divide their random bI'FS into blocks of

Within this context of QKD, the two parties that exchange!engthNy=2"—1. (Due to the 1:1 correlation of these data,
qubits over a quantum channlice (A) and Bob(B) are ~ We henceforth refer to these blocks as a single data or bit
the notation typically used within the quantum cryptographyblock) The m-bit (m=3) syndromes Sand S; are then
community must have a fast and efficient method to mendcalculated, wheres, and S;, respectively, depend only on
the quantum-key; in addition, they must also redus A’S or B's bits in a particular block.
knowledge gained during public discussions to a vanishingly Next, B transmits his syndrome t& and errors are only
small amount. These constraints require that any errordiscovered if the syndrome differen& (exclusive orf S,
reconciliation protocol will also need supporting protocols toWith S) is nonzero:
provide a complete framework for quantum cryptographic
security. That is, a useable QKD system will comprise a Sy=S.® S # {0} (1)
guantum-key transmittefA) and receiver B), and a series
of protocols to remove errors and account for and mitigate Finally, mbits are deleted from each bit block to eliminate
the information leakage attributable b The series of pro- the potential loss of privacy t& due to the(classical com-
tocols includeg[2,3], but is not necessarily limited to the munication ofB’s syndromesm bits of information are re-
following: error reconciliation[4,5], privacy amplification vealed on each block for whic§, is revealed reducing the
[6], and signature authenticatid]. channel capacity per symbol tmg/N,, [10].

In addition to these protocols, we acknowledge a protocol Specifically, data privacy is maintained by removalnof
generally formulated in Ref4] that we refer to as privacy bits from each block at the{2'} positions, wherej
maintenance. We also note that the predecessonseabE {0, ... m—1}. These bits are independent in the syn-
[5]—the best known and probably the most widely useddrome calculations as seen below in the malt®,
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1 01 0 1 0 1 tance ofd=3. This also means it can detect at least two
hd=l0 1 1 0 0 1 1 5 errors. In fact the Hamming distanckfor the Hamming
N ' 2) code isd=3.
0O 0 0 1 1 1 1

By definition, a code word with a single error will have
Sy#{0}™ (can obviously detect a single error if it can correct
where for this particular matrimi=3. We refer to the opera- a single error. In addition, if a code word has exactly two
tion of discarding bits in this manng4] asprivacy mainte-  errors then by definitiors;+{0}™ (can detect at least two
nance errors if it can correct a single erjorTherefore, if a code

As a final comment on Eq2), note that the transpose of word has exactly two errors, then after applying the Ham-
h®)=[h®)]" are the binary equivalent numbers 1 to 7, and isming algorithm, and after changing the bit value indicated by
generalized such thgh™]"={1,...,(2"=1)}, N, binary s, ‘the code word will finish with exactly three errors. The
numbers. _ . . proof is by contradiction; if a code word with two errors

The matrixh(™ is a special form of the hash functiébl]  finished with one errofan error was correctg¢cthen the new
and is represented by syndrome difference would be nonzero. Contradiction also
proves that one error is corrected if there is exactly one error:

) j If an error was introduced the syndrome difference would
hij’=| z=;|(mod 2), (3 again be nonzero. Thus, in examining Hamming codes, we

observe that a code word with one error will finish with zero

) _ ) o error, but a code word with exactly two errors finishes with
where ie{l,... m} and je{l,... Np}; arithmetic is  exactly three errors. In each case, the new syndrome differ-

mo{_j#lol_'z : lorithm al inal ence changes such thgf={0}™.
e Hamming algorithm always corrects any single error By symmetry, if anNy-bit code word contains exactly

within any N,.-bit block, but the effect of the Hamming al- Np—1 errors(all the bits except one are in erjpthen after

thl‘Ithm, V\.'h'ICh IS r:alate_d ttohthwndr?lgrr]]e?nd prl\{[ﬁcy main- - 4 plication of the Hamming algorithm all the bits in the code
enance, 1S less clear in the event that more than one €rrol, .y i pe in error. Further, a code word that contains

exists in a bit block. Such considerations are now discusse . —2 errors will finish withN, —3 errors, i.e., one of the
in detail in terms of the syndromes. .
Th q S and ; db tracti ¢ Errors is corrected.
e syndromess, and S, are formed by contraction o The above arguments imply that a Hamming code only

the Ni-bit blocks with the matrix(™: works well if the probability of two or more errors is low
relative to the likelihood of a single, or no, errors. In either
Nn - case, the Hamming code is inefficientrasits are revealed
S= '21 X;hi” | (mod 2) €{0,1™, (4 in the syndrométhis fact is discussed in detail lajer
= The difficult question to answer in analyzing the perfor-
mance of a Hamming code is how does the Hamming algo-

where subscript represents syndrome hitin the mebit bi-  rithm affect code words with more than two, but less than
nary syndromeX; represents bif € A’s or B's block, and  2(m-1) grrors?
S={S} is the binary syndrome value of eith&'s or A's It is not obvious, but the number of code words with three

block. Understanding the effect of the syndromes in locatingrors andS;={0}™ is related to the number of ways two-
and correcting errors is crucial to assessing the performancgror code words map to a code word with three erfarsl
of the Hamming algorithm, and thus the Winnow protocol. S4={0}™). In other words, there must be a way to arrange

The syndrome differenciEq. (1)] defines a binary num-  three errors in a code word and still maintag={0}™.
ber that gives the location of a single bitAis or B's code | a¢king this would mean that the code could always detect
word that when toggled from+-6-1 or from 1—0 affects the  more than two errors with a Hamming distancedef 3.
syndrome differenc&y, such that when the syndrome dif- 1o complete the Hamming efficiency analysis, how code
ference is recalculated it gives the binary numigy  words with three or more errors are affected after application
={0}™. The result is that the changing of the single bit in- of the Hamming algorithm must be analyzed. For three er-
dicated by the nonzero syndrome difference in the one codgyrs, it is now obvious that there must be at led8t2 ways
word either corrects an error, or introduces another, in thafg start with three errors in aNy-bit code word and still
code word. This is no great mystery but rather reflects theinish with three errors. In the case that there exist three
fact that Hamming codes arek codeslIn this casen=2"  errors in a code word, an8;#{0}™, then an error will be
—1 relates the number of bits in each code wdlid, and  introduced into theN-bit code word because if the code
k=n—m relates the channel capacitthe channel capacity word finished with two errors theB,#{0}™—a contradic-
is k/n<k/Ny, per biy given the codga Hamming code in  tjon.
this discussioh As a special caséexample, considerm=3. There are

In an n-k Hamming code, there ardZ-1) unique code (;)=35 ways to arrange three errors in seven bits. Because
words characterized by™2unique syndromes; further, there there are exactly seven nonzero syndrome differences for
are X code words with the same syndrome. Because thisn=3 and exactly two errors, there must beleastseven
code can correct one error, it has a minimum Hamming disways to arrange three errors in seven bits and h8ye

052303-2



FAST, EFFICIENT ERROR RECONCILIATION FOR.. .. PHYSICAL REVIEW 87, 052303 (2003

={0}"™ In fact, for this special case this is the result. Whatdifficulty with the special case oh=3 andn;=3 is that the
this means is that, statistically, seven in 35 code words witmext case ofn;=4 is symmetric and complementary with
three errors will finish with three errors, and 28 in 35 wordsn; =3, as mentioned previously. Further, as was noted, there
with three errors will finish with four errors. Thus, code is no path to map three errors to two errorsQs:{0}™,
words that start with three errors will finish with 19/5 errors when there are exactly two errors. However, ). is the
per seven-hit block, in the limit of an infinite number of general technique to calculate the quantities specified, i.e.,
seven-bit blocks with exactly three errors. By symmetry, it isthe number of ways to map; errors toSy=4{0}" or not,
obvious that given an infinite number of seven-bit blocksgiven N,,=2™—1 bits in a block.
with exactly four errors, the final error rate per block would  Given these facts, how the errors change fox4 and
be 16/5—a lower final error rate. 4<n;<2(M 1 js the general result of interest.

Thus, what is needed is a way to calculate, for any num- Letn{*) be the number of ways to increase the number of
berm of parity checks, in the Hamming algorithm, a way to errors fromn; to n;+1, in a bit block, anch{ ™ the number
calculate the number of ways to arrange the initial number obf ways to decrease the number of errors fronto n; —1;

errors per block and finish witt;={0}" or with Sy of course, the considerations relatentie=4. The results are
#{0}™. Equation(5) permits that calculation for any initial zs follows:

number of errors per block;, given any initial block size

Nhp: n{*)=Ng,—o(Np|n) +(n;+1)Ng,—o(Np|n; +1)
_[Na Ni,
Ns,#0F Ns,=0= n ~Ns;20+ NpNg,—0 ni(—):( ni)_ni(+)’ @)
Np—1 where Nsd:O(Nh|ni+1) is the number of ways to arrange
=(—1)N,| 2 ni+ 1 errors inN;, bits and obtairS;={0}™ (the reader will
p recall that earlier it was stated that the number of ways to get
Sy={0}™ for n;+ 1 errors is directly related to the number of
- Ns,#o _ N, 1]7* ways to mapn;—n;+1 errors; of course,Ns - o(Ny[n;) is
Ns,-o -1 1 the number of ways to arrangg errors inNy, bits and get
Sy={0}™. Thus, the generalized probability for the number
(Nh) of errorsn; to increase or decrease is
n; L)
X No—1\ |, (5) mH=——— (83
n{*)+n{")
(-1 2 N
p and
whereq=[n;/2], p=[n;/2], n; is the initial number of errors IO =1-11(9), (8b)

per Hamming block ofN,=2"—1 bits per block; in this
situation,NSd:O gives the number of syndrome differences

with S4={0}™ and Ns,o0 gives the number of syndrome

differences withSy#{0}™. Equation(5) is generalized by As a general rule, the ideal error correcting protocol

dividing both sides by the total number of ways to arrange would correct all bit errors in each bit block, introduce no
errors in theN,, bits. In this situation, we find a more useful additional bit errors, and reveal a minimal amount of infor-

mation on the key bits to an eavesdropper through public

IIl. WINNOW PROTOCOL

quantlty communication. The outlined Hamming protocol has a num-
Ns _o ber of shortcomings regarding this ideal. First, the difference

Hsd=o— d , (63 syndrome S; does not distinguish between single- and

( Nh) multiple-bit errors. Therefore, additional errors may be intro-

n; duced if instances 08;#{0}™ are treated as due to single

errors. Second, up tm bits of information are exchanged for
and each data block reducing channel capacity per symbol with
N each exchange: information which can be compromised by

Mo . — S470 (6b) eavesdropping.
SaF0T Ny, One solution is to eliminate all bits within data blocks for
( ni) which S;#{0}™. This certainly removes the possibility of

introducing additional bit errors into the key, but, unfortu-

This result is required later. nately, the efficiency of such a method is loweagryblock
These arguments are not obviously general for the case dbses eithem bits to privacy maintenance, or all bits because
m>3, but they give insight into the general problem. TheS;#{0}™. The efficiency of this approach is not optimal as
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most of the discarded bits or blocks for whi€h+{0}™ are  bits for blocks with odd numbers of errors such that the

probably not in error. fraction of the bits remaining after privacy maintenance is
Another, more powerful solution is to introduce a prelimi- odd

nary parity comparison on a block ®§=2" bits and to Moddzl_% (10)

make a comparison of the syndron®sandS, , conditional pm N °

upon the result of the parity comparisbn. odd

For Ne{8,16,32,64,128 u33<{0.5,0.69,0.88,0.89,0.94

If the block parities do not agree, an odd number of error i
respectively. Also,

exists in theN-bit block. Moreover, if the bit errors are dis-
tributed randomly throughout the data, and if the number of
errors is sufficiently small, then an odd number of errors in a Mpm =1— N (11
block probably indicates a single error that can be corrected

by the additional application of the Hamming algorithm. Forand,ue’;ﬁ”e{0.88,0.94,0.97,0.98,0.}990r the same values of
example, in the situation that a block contains 1-bit error, ify | aither case, the appropriate overhead for the classical
S¢={0}" then the first bit is in error(By symmetry it is  communications is also removed immediately from the data,
clear that if there are exactly—1 errors in the block the g4 that the privacy of the bits is at least maintained if not
first bit would not be in erroy.Thus, this approach always mproved.
allows the correction of a single error in thibits, i.e., if the All single-bit errors in anN block are guaranteed to be
bits are to be retained. However, in the protocol outlined hergjther eliminated or corrected after a single pass of the Win-
the one bit is regularly discarded for privacy maintenance,ow protocol(SPW. What remains to be considered is how
(for the exchanged parity biand the Hamming algorithm is  yjocks with multiple errors affect the overall efficiency of the
applied to the remainind\;, bits, as previously discussed, \winnow protocol.
and therflog,(N,)] additional bits are discarded to complete
the privacy maintenance giving a channel capacity df (2 IV. WINNOW EFFICIENCY
—m—1)/N per symbol on blocks that contain an initial par-
ity error. This appears to be an additional loss of channel Define the change in number of errors in a given block
capacity, but because the syndromes are not exchanged aadd for a given initial number of erroras An=n;—n;,
compared, when the block parities agree, the channel capaeteren; andn;=n;(n;|N) are the initial and final numbers
ity actually increases over the basic Hamming algorithm; 1of bit errors in a block prior to and after a SPW, respectively.
bit is still discarded from the blocks that do not exhibit a The average change in the number of errors, for a given
parity error for privacy maintenance. We refer to this error-number of initial errors, after a SPWthis step includes
reconciliation protocol as Winnow. elimination of the parity bit but not the finah bits required
The Winnow protocol reveals lgfN)+1 bits in two clas-  for completion of the privacy maintenance stean be ex-
sical communications when the parities on Mbits do not  pressed as
agree:m bits for the syndrome and 1 bit for parity; con-
versely, the Winnow protocol reveals 1 bit of information in —_
one classical communication when the parities agree. AnE<An(”i)>=AnZ_2 Anp(An]n), (129
Therefore, the amount of key data discarded is

1

where

N9%=|og,(N)+1=m+1 9 -
Se=logy(N) ©) > p(Anjn)=1 (12b)
An=-2

IR. W. Hamming discusses the addition of a parity check on theandp(An|n;) is the probability that the number of errors will
Np=2"—1 bit block[9] (pp. 47—48; pp. 213—214His conclusion ~ change byAne {—2,—1,0,1} given an initial condition of;
is that A and B are more likely to introduce additional errors than errors in arlN-bit data block. Theo(An|n;) of interest can be
correct errors by changing a bit $;#{0}™ and the block-parities  written more instructively as
agree. In this situatiori andB could either remove thm+ 1 bits
required to ensure privacy on the remaining Hitghich may re- p(+1|ni)=W(n)Hqu&O(ni)H(Jr)(ni):
move errorg or they could eliminate all of the bits in question, as
nie{24,...,2"-2}> 1_. The expanded protocol described in this  p(+0|n;) = W(H)Hsd:o(ni)‘i“ W(V)Hsdio( 5ni)H(+)(5ni),
effort allows the detection of an even or odd number of errors and
prevents a correction attempt on those data blocks with even num- _ (n _
bers of errors. This is important since the Hamming algorithm will p(~1In) = )Hsd;tO(ni)H( () + Tr(y)HSd:O(gni)’
increase the number of errors in blocks that hawen2<N, /2. B

2Exchanging the parity ohl=2" bits instead ofN,,=2™—1 bits p(—2[n)= 77'()/)1_15(,;%(5ni)n( (o), (13
results in slightly higher channel capacity. That is, more information
is revealed when the syndrome information is combined with thevhere,n; is as previously definedsn;=n;—1, #V™ de-
parity information on aN,-bit block than is revealed when the pends only on the initial number of errors in the N-bit
parity and syndrome are revealed Mbits in the Winnow protocol.  block and is the probability the bit discarded for privacy
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TABLE |I. F, for N=8 for various stages in the Winnow proto-

col (note that the Hamming algorithm is not applied to blocks that

contain an even number of errrs

n; 0 1 2 3 4 5 6 7 8

H? 0O 088 175 263 35 438 525 6.13 7
F?h 0 0 175 35 35 35 525 7 7
N, 0 0 175 20 35 20 525 4 7

maintenance following the parity check wag ( or (V) was
not (n) in error; TIs —o(n’ 6n;) andIls .o(ny n;) are the
probabilities thaS,= S, or S,;# S, for n; or én; errors inNj,
bits and are concretely defined in B@), andI1(*)(nY &n;)
is defined in Eq(8).

Equation(12) can be expressed in terms ofYV", Is,,
andII*) as

An=(AnM(n))+(An®(n)),=AnM+AnD, (14)

where the arguments which depend wnhave been sup-
pressed, and

An®=7Tlg ,o(n)[1-211)(np)],

An® = 7 20(Sn)[1- 21T (0] — 7). (15)

PHYSICAL REVIEW 87, 052303 (2003

is defined.

The parametep; defines the probability for each bit in a
given block to be in error. The numbét; e {N—1,N—m
—1} and its value depends on the action required by the
Winnow protocol for a given number of initial errors. For
exampleN;=N—1 or N—m-—1 for p; andn; even or odd,
respectively.

These two tables illustrate the effect of the Winnow pro-
tocol on data that are divided into 8-bit blocks. The values
marked with superscripp reflect the effect of discarding 1
bit following the parity comparison. The values marked with
superscripph refer to the data after the Hamming algorithm
is also applied, but before the requisite J0dg)=3 bits of
data are discarded for privacy maintenance. The final values
denoted by subscrigdtreveal the effect of the Winnow pro-
tocol (including the effect of all discarded data required for
privacy maintenange

The parametep; clearly shows a reduction in errors for
n;=1 and an increase in errors foy=3. It also shows that
discarding data to maintain privacy of the remaining key has
no effect on the error probability.

The fraction of key remaining after a SPW is given by

N
Ny EO N¢P(n;|N)

N

MN N ’ (19)

and the probability for any key bit to be in error following a

The final quantity needed to calculate the efficiency of thegpyy is

Winnow protocol is7(V™:

(16a

n4
) =_
T Pd,

where

a7+ 7(M=1, (16b)

N

Eoﬁf(niw(nilN)

nj=

:<Ff> _
P (N¢)

whereP(n;|N) is the probability for arN-bit block to con-
tain n; errors before a SPW.

Nun ’ (29

Table | and Table Il provide a concrete example for the ~Obviously, the efficiency with which the Winnow proto-

special case ofm=3 of the effects of the Winnow protocol
on blocks with exactlyn; {0, ... ,8 errors. Table | intro-
duces a new quantity

ny=(n;)=n;+An, 17

and in Table Il a new parameter
—Ff 18
pf—N—f (18

TABLE |I. E/Nf for N=8 for various stages in the Winnow
protocol (note that the Hamming component of the Winnow proto-
col is not applied to blocks that contain an even number of errors

pi 0 013 025 038 05 063 075 088 1
pP 0 013 025 038 05 063 075 088 1
p" 0 0 025 05 05 05 075 1 1
Ps 0O 0O 025 05 05 05 075 1 1

col removes errors depends upon the distribution of errors
within the data. Without intimate knowledge of a specific
QKD apparatus, a reasonable assumption is that the errors
are random and normally distributed throughout the data.
Given this assumptiorR(n;|N) in Eq. (20) is given by the
binomial distribution

N n; N—n;

P(ni|N,po) = n Poi(1—=po)" M, (21
wherepy is the probability that any given bit is itrelative
error.

With this assumption, Eq$19) and(20) can be expressed
as

N—1-m>,

n?dd

N
(ni) PeM(1—po)N "

N 1

MNT (22

wherem=1log,(N) and
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R e v — iterations is essential to randomly redistribute missed or in-
7 troduced errors. Without this random shuffle, multiple errors
1 e e remain clumped together and, in essence, are impossible to
i p, completely remove from the data. Under this constraint, it is
091 obvious that the final error probability, and the amount of
data remaining after a number of SPWs, depends on the way
< in which N is varied throughout the successive SPWSs. An
= 94 intuitive result that we have verified empirically is that less
data are discarded for the same initial and final error prob-
071 abilities if N is chosen well for the first iteration and is either
held constant or increased for all subsequent iterations; there
069 i is no advantage in decreasihyin subsequent iterations if
' the Winnow protocol is applied as outlined here.
05 i . i i . i . . i Define
0 01 02 03 04 05 06 07 08 09 1
p, (Initial Error Rate) p(po ,{] N}) (24)

FIG. 1. The ratiopy/p, for N=8, 16, and 32. These curves and
illustrate the change in the probability that a given bit is in error .
after a single application of the Winnow protocol for the indicated “(Posiing) (25
block sizeN. Note that pg<pis) Y (pp=0.38); in addition, P4 . . .
<paa) ¥(po=0.20). This indicates that applications of the Winnow @S the final error rate and fraction of data remaining after a
protocol with smalleiN are more efficient at removing errors than S€QUENCEjn}={jg.j16.]32.]64.] 128/, Wherejy iterations of
are applications with largeX within the region, where, satisfies the Winnow protocol are applied with a block size
these conditions. €{8,16,32,64,128 beginning with N=8 and increasing
monotonically inN by factors of 23
N N Because [s<pg) V(po=0.3), it may appear that errors
> nf(ni)( )po”i(l—po)N”i can be corrected in the data for this entire range of initial
n=0 N 23) error probability. However, there is another criterion that
must be met, which significantly reduces the maximum cor-
rectable error probability: There must remain a finite amount
The efficiency with which the Winnow protocol reduces of error-free data after the potential information possessed by
errors in the key is of great interest. Two related issues that is reduced through privacy amplification.
concern the efficiency ard) the number of iterations of the ~ The maximum amount of potential information possessed
Winnow protocol necessary to achieve a sufficiently lowpy E can be determined by the initial error probability and
probability of error in the remaining key data a® the depends on the QKD protocol and the type of attacks being
amount of key data that is discarded through privacy mainemployed. For example, if the BB84 protocol is used &nd
tenance. employs a complete intercept-resend attack on the quantum
The number of iterations is of concern because each itera&hannel in the same bases usedByshe will introduce an
tion reveals information and consumes time with each comerror probability ofp,=1/4. She will also potentially know
munication betweerh and B. Moreover, each communica- 1/2 of the data before error-reconciliation and up to 2/3 of
tion requires the use of some private key for signaturghe data that remains after error-reconciliation.
authenticatiori7]. Most important, though, is that each itera-  |f E uses a more clever intercept-resend strategy of detect-
tion requires a Significant amount of data to be discardeqhg and resending in the Breidbart basgecond paper in
through privacy maintenance. Ref. [4]), she would introduce the same number of errors
SmallerN require more data to be discarded than lafder (p,=1/4) and could know up to a fraction of 0.59 of the data
as can be seen from E(2). However, an effect that tends pefore error-reconciliation and 0.78 of the data remaining
to mollify this undesirable condition is that smalldr are  after error-reconciliation.
more efficient at removing errors for larger values of initial |t should also be noted that certain states of light are more
error probability. This effect is illustrated in Fig. 1, where we sysceptible to attack than others. For example, consider weak
have plottedpy/p, for several values dfl. For all values of  coherent states that are commonly used in QKD systems. If
N andp, sufficiently small,py/po<<1 and the protocol can E also employs a beam splitter attg&4,19 against one of
remove errors from the key data. However,mgsincreases these systems, an additional amount of data is compromised
from py=0, each of the curves passes throygl/py,=1

indicating that additional errors are being introduced into the———

pN_ NMN

key. Moreover, the value op, for which py/po=1 is 3In this work N is constrained such that<8N<128 only for the
smaller for largeN and the curves do not intersect betweensake of brevity. We have found that this constraint does not impose
Po=0 andpy/pe=1. a serious limit on the ability of the Winnow protocol to correct

As a primary requirement of a SPW on real data in anerrors. The ideas discussed below can be extended to in&ude
iterative application, a random shuffling of the data between=4 andN>128 in a straightforward manner.
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which is not greater than the mean number of photons in thevith odd and ever(even includes zejoerrors, Mgdd and
state. However, this value can be made arbitrarily small, so if/ ven respectively, are known, the fraction
is neglected in the following calculations. Moreover, other

states of light can be used in QKD schemes, which are not Ny N
vulnerable to this type of attadk 3]. oad 2, | n,|Po i(1=po)~ ™
Thus, the fraction of data remaining after error- Me _ M (33)
reconciliation and privacy amplifications can be Mgdd+ MEven N
BB84__
v=o=p—(0.594 po, (26)  can be used to estimapg. Knowledge ofp, is sufficient to

determine thdjy} which maximizesy.
For smallp,, the most efficient{jy} may start withN
>8. However, working systems that have been reported in

tFrc(j)m thef ab(;ve consg;a ratlgr]s[anq ;’ car; .betk:nvesu-' the literaturg4,14] have large enough error probabilities, so
gated as a function gfo. Of particular interest is the maxi- -y, e most key is left IN=8 for at least the first iteration.

mum p, for which some secure data remains, while achiev- A detailed analysis of the advantages of Winnow over

ing a sufficiently low final error probability to make the data other protocols is beyond the scope of this work. However, it

. . _6
useful. Vt\)lf‘ t}[ave f[:rf]osfr?' ?_omlewhat arbt;tri.‘ll.lf 10 asa is instructive to note the advantages over at least the best-
reasonable target for the final error probability. KNown protocolCASCADE.

q Wit.g tZiitalrEgetzgnd thef. riwﬁin:ng fratc'Fiqtr_] cl)f private dbata The most notable difference between WinnowBowARY
escribed by Eq(26), we find the largest initial error prob- and CASCADE is that CASCADE does not employ privacy

ability for which some private data remains is maintenance. The disadvantage of such a protocol is that
Po=0.1322 27) super-redundant information must be exchanged with each
’ successive iteration. This is to be compared BithaRY and

after multiple passes of the Winnow protocol and pri\,aCyWinr_low_which_reduce the size of the dataset with each com-
amplification. munication. With the reasonab_le requirement that a bit re-
To achievep=10~© from this large initial error probabil- vealed through these communications requires at least a bit
ity, the Winnow protocol must be applied in the sequence® be eliminated through some channel, either before or dur-

{in}={3,1,0,1,3. That is, three SPWs withi=8 must be N privacy amplification, then the inefficiency of keeping all
followed by one SPW wittN=16, etc. If this prescription is bits until all errors are removed becomes obvious: Retaining
followed, and repetitively exchanging information on the same bits are

an additional expense to the protocol.
yBB84=0.0017 (29) For the purpose of comparison, we have computed the
maximum p, through BINARY (less privacy maintenante
of the original data remain and are secure following privacythat can successfully reconcile errors and preserve a small
amplification. amount of secure data after privacy amplification and the
Some QKD schemes require a larger estimateE&f  removal of the super-redundant information. We find
knowledge. If Eq.(26) is replaced witH4]

v=p—242po, (29)

for the BB84 protocol, where describes the remaining frac-
tion of key.

po=0.114, (34)

_ for {jn}=1{2,1,0,2,34 and »®88=0.01 when Eq.(26) de-
we find scribes the additional amount of key that must be discarded
through privacy amplification. This is to be compared with
Po=0.1222, (30 po=0.1322 for the same considerations with the Winnow
protocol. This application cBINARY is a reasonable approxi-
mation to CASCADE which may include a higher-order cor-
rection giving a slightly higher overall error reduction than
BINARY without privacy maintenance.
This comparisor{or any of the previous discussipdoes
not take into account bits used to authenticate messages sent

for {jn}=13,0,1,0,4. This leaves a fractionn=0.0017 of
the original data as secure data with a single-bit error prob
ability <10°6.

Finally, if we estimate thaE knows every bit of data by
causingpy=1/4, then

- betweenA and B. Both CASCADE and BINARY requires sig-
v=p—4pg. (31 = R .
nificantly more two-way communication than the Winnow
We then find that the largest reconcilalplg is protocol, and each packet nfbits sent may requirgog,(n)]
for authentication7]. We calculate that the most efficient
po=0.1037, (32  application ofCASCADE requires a minimum of % log,(N)
communications for any block siz& that exhibits a parity
for {jn}={2,1,1,0,3 and »=0.0020. error, while the Winnow protocol requires only two commu-

The most efficient iteration sequendg(}) for any QKD  nicationsfor any block size Nhat exhibits a parity error; the
scheme can be determined by first applying the Winnow proadditional communications required imposes a tight limita-
tocol with N=8 to estimatepy. Once the number of blocks tion on practical efficiency. In addition, becausascADE
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does not maintain privacy, subsequent iterations require moneconcile private, quantum-key material. We refer to this pro-
bits to be exchanged in the initial parity phase with eachtocol as Winnow.
iteration. The additional bit exchanges may require addi- The Winnow protocol incorporates a preliminary parity
tional signature authentication bits. comparison on blocks whose size M=2", where m
We acknowledge that becausascADE and BINARY al- €{3,4,5,6...}. Subsequently, one bit is discarded from
ways removes a single error and never introduces additionghese blocks to maintain the privacy of the remaining bits. A
errors to multiple error blocks, botBINARY and CASCADE ~ Hamming hash function, which can be used to correct single
perform infinitesimally better than the Winnow protocol in errors, is applied to the remainifg— 1 bits on the blocks
an environment where signature authentication is not rewhose parities did not agree. Finally) bits are discarded
quired and privacy maintenance is removed from the Winfrom the blocks on which the Hamming algorithm was ap-
now andBINARY protocols. However, the two communica- plied to maintain the privacy of those bits.
tions of the Winnow protocol is a great advantage, where We find this protocol capable of correcting an initial error
time is of the essence with regard to production of secure keprobability of up to 13.22% in privacy amplified BB84-like
bits over inefficient noisy quantum channels. quantum-key distribution schemes.
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