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Remote state preparation without oblivious conditions
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In quantum teleportation, neither Alice nor Bob acquires any classical knowledge on teleported states. The
teleportation protocol is said to be oblivious to both parties. In remote state prepdf@86) it is assumed
that Alice is given complete classical knowledge on the state that is to be prepared by Bob. Recently, Leung
and Shofe-print quant-ph/020100&howed that the same amount of classical information as that in telepor-
tation needs to be transmitted in any exact and deterministic RSP protocol that is oblivious to Bob. Assuming
that the dimension of subsystems in the prior-entangled state is the same as the dimension of the input space,
we study similar RSP protocols, but not necessarily oblivious to Bob. We show that in this case Bob’s quantum
operation can be safely assumed to be a unitary transformation. We then derive an equation that is a necessary
and sufficient condition for such a protocol to exist. By studying this equation, we show that one-qubit RSP
requires two classical bits of communication, which is the same amount as in teleportation, even if the protocol
is not assumed oblivious to Bob. For higher dimensions, it is still an open question whether the amount of
classical communication can be reduced by abandoning oblivious conditions.
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[. INTRODUCTION dimension of input space, but not necessarily oblivious to
Bob. First, we will show that Bob’s quantum operation can
Interplay between classical information and a quantunbe assumed to be a unitary transformation. We then derive an
state shows nontrivial and remarkable aspects where quagduation that is a necessary and sufficient condition for such
tum entanglement is involved. In quantum teleportafibh @ protocol to exist. By studying this equation, we show that
one qubit in an unknown quantum state can be transmittetd order to remotely prepare one qubit in a general state,
from a sender(Alice) to a receiver(Bob) by a maximally Alice needs to transmit two cbits of classical information to

entangled quantum channel and two classicaldiitt) com- Bob, which is of the same amount as in teleportation, even if
munication. In order to teleport a quantum state in athe protocol is not assumed oblivious to Bob. For a general

d-dimensional space, lgd qubits, Alice needs to transmit dimensional case, it is still an open question whether the
2 log,d chits of information to Bob. This is actually the mini- amount of _cI_aSS|caI communication can be reduced by aban-
mum amount of classical communication, which can bedonlng oblivious conditions.

shown by combining a teleportation protocol with another

striking scheme utilizing quantum entanglement, superdense
coding[2]. Il. RSP PROTOCOL WITHOUT OBLIVIOUS CONDITIONS

n teleportation, neither Alice nor Bob acquires any clas-  |n this paper, we only consider RSP protocols that are
sical knowledge on teleported states. The teleportation prosyact and deterministic. The diagram of protocol is depicted
tocol is said to be oblivious to Alice and Bob. In remote state;, Fig. 1.
preparation(RSP, however, it is assumed that Alice has  \yg assume that the dimension of subsystems in the prior-
complete classical knowledge on the state that is to be P'&ntangled state is the same as the dimension of the input
pared by Bol3—6]. The central concern has been whetherghace Following Ref[8], RSP protocols are formulated in

quantum and classical resources can be reduced by Alicefgg following way. The prior-entangled state shared by Alice
knowledge on the state. In this respect, Lo has conjectured

that RSP for a general state requires at least as much as

classical communication as teleportati@}. An experimen- ] Bob
tal implementation of RSP scheme has also been reporte: Alice
[7].

Recently, Leung and Shdi] showed that the same
amount of classical information as in teleportation needs to
be transmitted from Alice to Bob in any deterministic and
exact RSP protocol that is oblivious to Bob. Here, the as-
sumption that a protocol is oblivious to Bob means specifi-
cally two things: First, the probability that Alice sends a
particular classical message to Bob does not depend on th
state to be transmitted. Second, no extra information abou
the transmitted state is contained in Bob’s quantum state.

In this paper, we will study exact and deterministic RSP |q)1;B>
protocols for a general state, in the case that the dimension ot
subsystems in the prior-entangled state is the same as the FIG. 1. Remote state preparation diagram.
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and Bob is assumed to be a maximally entangled state in S(pR)=|S(pR) —S(p)|=<S(pN),
spaceAB, defined by

] S(p?R=S(pR)+S(p? =S(p").

1
[©6%)= = 2, k")elk®), @

Jd

where system#\ and B are d-dimensional Hilbert spaces,
with an orthonormal basitk) (k=1, ... d). Writing p5®
=| DBV (DEB|, we note thatphy=trgpp®=14/d and pg
=traph®=1°%/d. Given a pure statés) randomly chosen
from an input state space dfdimension, Alice performs a
POVM (positive operator-valued measumeasurement on
systemA with n possible outcomes:

(6)
)

This means that the equality in subadditivity holds
since S(p?R) =S(pR) +S(p?), which is true only if pOR
=p@p".
Now we will prove the theorem given in the above.
Proof. In the unitary model of a quantum operation, the
assumption in the theorem is stated as follows: For |ak)y
there exists a density operatpy, such that

treU(py®|05)(0F)U " =[4)(¢l, )

where|0F) is a standard pure state of the ancillary sys&gm
andU is a unitary operator of the combined system. As we
have noted, if a subsystem is pure after tracing out the ancilla
system, it is already pure in the combined system and there-

Remember that since Alice is assumed to have a complefére we have
knowledge of statég), the dependence of POVM elements U(p¢®|OE><OE|)U+:|¢><¢|®pqE§. 9)

E’,;(d)) on ¢ is not limited. The probability for Alice to ob-
tain outcomem is given by We will show thatpg is actually pure and independent f
Introducing an orthonormal basi k=1,...d), we
P ) =tiaPSEA( ). (3  Iniroducing %) )
In this paper, we do not assume that the probabljty) is
independent ofé, implying that the protocol may not be

m; Eh(¢)=1". 2

U(pi®| 050U =[k) (K| @ pi. (10)

oblivious to Bob. With outcomen, Bob’s systenB is given
by

ABEA
()= 200l d) @
Pm( )
Receiving a classical message(m=1, ... n) from Alice,

Bob performs a trace-preserving quantum operafignon
his subsystenB to restore the statgp):

Multiplying Eqg. (10) of index k with the one of index and
taking trace of the product, we find

trppr=|(K|1)[Ptrepipi = S itrepicpic (K1 =1, . .. 7d)-( )
11

This equation implies that thel density operatorsp,’s
have orthogonal supports in tliedimensional space. This
is possible only if p,=|¢ (|, where the set{|i),k

=1,...d} is an orthonormal basis of the space. We also
find thatpf is pure, since pEpE=1.
In the same way as we obtained E#1), we find

trp o= (Bl K)trepG i (k=1, ... d).

; ; ; ; d
In this section, we will show that Bob’s quantum opera- ?L%n;mlrg ><th||s_ quztlggtaisverk and using Xi-px

tion R, is actually a unitary operatioR(p) =Uppu,, if ~ “k=1 Polihd =1,

the RSP protocol, considered in this paper, works for any

Rin(pi(#))=| %) (5| (5)

IIl. IT SUFFICES FOR BOB TO PERFORM
A UNITARY OPERATION

(12

d
1= 2, Kolk)l ey,

state| ¢). First we observe the following theorem. 13
Theorem Let £ be a trace-preserving quantum operation

with equal input and output space dimensions. If for any,vhich imolies thatot is pure and given b

state |¢), there exists a density operatgr, such that P g lsp g y

E(py)=|¢)(¢|, then the quantum operaticdhis a unitary . d ) E

operation&(p) =upu™, whereu is a unitary operator. P¢:k§=:1 Bk %Py - (14

Before proving the theorem, we note two general proper-
ties of the density operator, which will be used in the proof.g5m this we conclude thfﬁE is independent ok and fur-

The first one is that if tigp') = 1, thenp andp’ are identical E .
and pure, which can be shown by the Cauchy-Schwarz i t_he.r.more;é(ﬁ for’zé getllzeralqb) has no state dependence either.
riting p,=|0"%)(0"", we thus have

equality. Next, letp®R be a density operator of a system

consisting of subsysteng@ andR. Then, the second property ®|0EY(0El=U" 210"Ey(0'E[)U 15
used in the proof is that ipC=trgp®R is pure, thenp®R P4®|0°)(07 (J6)(le]00hu. (19
=p°®pR, wherep®=trop®. This can be seen by observing Sandwiching this betwee0F| and|0E) gives
subadditivity and the triangle inequality of the von Neumann

entropyS, by which we find ps=u’| o) ¢lu, (16)
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whereu=(0'F|U|0F) andu™ =(05|U*|0’F). Itis clear that n 1A

the operatou must be a unitary operator sinaé|¢){ ¢|u is > Pl P)| AN R = rE (22
a density operator for any stat¢). Since Eq(16) holds for m=1

any |¢), we conclude that the quantum operatinis a

) ; since the dimension is the same for spagesnd B, where
unitary operation:

we wrote | ¢y =u,|#) for convenience. Here for a state
S(p)=upu®. (17) |py==9_,|k)(k| ), we introduce statép) defined ag )
=39_.|k)(¢|k). Then it is clear that the following relation
O also holds:

Now remember that Bob receives a classical message N
e{1,2, ... n} from Alice and performs a quantum operation 2
R, on the statepﬁ(gﬁ) to restore statgep) that Alice wants M1 P
him to prepare:

A

AN A 1
m( ¢)| ¢m>< ¢m| = E (23)
From this relation, we can construct POVM elements as

En(d)=dpm(d)|dp)(dnl (m=1,...n). (24

Evidently, each E%(¢) is a positive operator and
=0 En(#)=1". Since Alice is assumed to be given com-
Ren(p) =UmpUp , (19 plete classical knowledge on stat), she can, in principle,
implement this POVM measurement. The probability of an
whereu,, is unitary. We also note that we did not assume thaputcome m is calculated as kpgEm(¢) = (LA)traER ()
pE, the state of ancilla system E after Bob’s quantum opera=pm(¢), and with an outcome being given by, the result-
tion, is independent of) (oblivious condition; but it was — ant state oB is given by

shown thatp® should be independent ¢#) in the proof of 5 U
the theorem. Pm( ) =d tra| @GEN PG| ) bl

= d(bin| @) P6°| dim) = | ) (1

Rinlpp( )= $B)( 95| (18)

Since this should hold for any staté), by the theorem we
have just provedR,, turns out to be a unitary operation,

IV. NECESSARY AND SUFFICIENT CONDITION FOR RSP

—t B B
Now that we have shown that Bob’s quantum operation is = Un | $7)(¢" U (25

a unitary operation, we can derive an equation that is a NeGecejving a classical messagerom Alice, Bob can restore
essary and sufficient condition for RSP protocols con5|deregtate|¢> by a single unitary operation sinag,p&(#)u."
m m

in this paper. _ = |B)( 5.
From Eqs.(3) and(4), we obtain Thus, Eq.(21) is a necessary and sufficient condition for
n 8 the class of RSP protocols considered in this paper and will
mZ:l pm(¢)p§(¢)=pg=g, (20) be called RSP equation hereafter.
V. RSP EQUATION
which means that the density operator of syst@mshould ) ) o
not change by Alice’s POVM measurement on sysi&ras We W|_Il_study the_RSP equatio2l), which is a necessary
long as an outcome of the measurement is unspecified. Usirﬁf'd suff_|C|en.t condition for the class of RSP protocols con-
the result from the preceding sectionpB(¢)  Sidered in this paper:

= Up|#°)(¢%|um, we get

: 1
2 Pr(P)unl &) blun= - (26

n
Y Pl h)unl 65 (5 = (2D
M= " mod Here, superscript®\ or B are omitted, since the equation
should hold in either of the-dimensional space.
Here, uy,’'s are unitary ando,(¢) is the probability of an Note that the theorem in Sec. Il implies that Bob’s state
outcome m of Alice's POVM measurement; therefore does not carry extra information on the transmitted state. In
Pm(¢)=0 and =] _,pm(¢)=1. We also note that this the case where the probabilitigs,(4) are independent of
should hold for any statép). A similar equation has been the transmitted statgp), we obtain the oblivious condition
discussed for a continuous variable teleportation in R&f. in Ref.[8] and therefore all the results in R¢8] (see also
and implicitly stated for oblivious RSP in R€i8]. Ref.[10]). In particular, 2 logd cbits are necessary, and that
It is important that Eq(21) is also a sufficient condition a teleportationlike protocol that is oblivious to Alice can be
for RSP protocols. Let us assume that E2i) holds in space obtained without increasing the classical communication
B for some unitary operatons,,'s and for some probability cost.
distribution p,(¢), then the same equation also holds in That remains to study is the case where the probability
spaceA: pm(¢#) may depend on the stajep) that is to be remotely
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prepared. The question is whether this dependence can re- Xx Xx  — Xx p1(x) 0

duce the minimum amount of classical communication. In

the case of one-qubit RSRI€ 2), we will show that this is Xy TXy o xy||P2X)[={0]. (3D
not the case: the minimum amount of classical information Xz —Xz Xz ps(x) 0

turns out to be 2 2 log,d chits as in teleportation.

Unfortunately, for general dimensiah however, we have This equation has only a trivial solutign,(x) =0 for x with
only limited results: The RSP equati¢26) immediately tells  x,xyx,# 0, since the determinant of the matrix in the equa-
us thatn=d, which is known as Holevo’s bour{d1], since  tionis 4x,xx,. Thus, we conclude that in order to remotely
the equation requires thdti;|¢) (m=1,... n)} is com- prepare a general qubit sta@=2), Alice needs to transmit
plete in thed-dimensional space. We can also show that 2=10g,2? cbits of information to Bob.
=d+1. Assume that the RSP equatié®6) holds for n

=dd. Generally, in ad-dimensional space, the relation VI. SUMMARY AND DISCUSSION
Sm—1lxm{xml =1 is satisfied if and only if the statdg,) . _ o
are orthonormal. Therefore, whemm', the inner product !N this paper, we studied exact and deterministic RSP

schemes for a general state. Though the schemes were not
—0. This, however, contradicts unitarity of,’s. assumed to be oblivious to Bob, we restricted ourselves to
Now we return to the qubit cased€2). The Bloch the case where _the dimension of sub_syster_ns in the prior-

' ntangled state is the same as the dimension of the input

o : . e
sphere representation is convenient for a pure qubit Stats?pace. In this case Bob’s quantum operation was shown to be

(plumu,,|4) should vanish for anye), implying umu,,

| #)(¢l just a unitary operation, if the protocol works for a general
1+xy o state.
| ) | = > (27 Using this fact we have derived the RSP equation, which

is a necessary and sufficient condition for an RSP protocol to
exist in the class considered in this paper. By studying this
equation, it was shown that in order to remotely prepare one
qubit in a general state, Alice needs to transmit two cbits of
information to Bob, which is the same amount as in telepor-
3 tation, even if the protocol is not assumed oblivious to Bob.
uf{]crium=z (Rm)jioj- (28)  So, for one-qubit RSP, Lo’s conjectuf8] has been proved
=1 without oblivious conditions. Leung and Shor investigated
oblivious RSP without assuming that the two dimensions are
the sam¢8]. Study on nonoblivious RSP in this general case
n is now in progress.
> Pm(XYRmx=0, (29 Unfortunately, generalization to higher dimensions is not
m=1 straightforward. Though it is not yet clear as whether the
amount of classical communication can be reduced by aban-
doning oblivious conditions in higher dimensions. We be-
lieve that the RSP equation will be a key to obtain some
insights for further study in this direction.

In this paper, the input ensemble, from which sta is
randomly chosen, is assumed to be the entire Hilbert space of
d dimensions. We remark that if the state is chosen from a
. . . . ) subensemble of the space, the RSP equation should still hold
RZ.'S.a rotation about the axis, antR; is a rotation about an in the subensemble, as long as Bob’s action can be assumed
axis in thexy plane. to be a unitary operation. In the case of qubits on the equa-

Now assume that Eq29) ho"?'s forn=3 ?”d takeyx torial circle of the Bloch sphergt,5], the RSP equatio(29)
=g, (the unit vector along th& axis), then we find with n=2 is satisfied as

wherey is a three-dimensional unit vector, ang, o, and
o, are the Pauli matrices. We also introduce>a3 rotation
matrix R, for each unitary operatar,, through

The RSP equation is then reduced to

which should hold for any unit vectgy and we emphasize
again that the probabilitp,, may depend ory.

It can be readily seen that if E€R9) holds for a set of
rotation matriceR,, and some probabilitp,,(x), it is also
satisfied by a set of transformed rotatidR,, T, with Sand
T being any rotation matrices, and probability,(T x). With
this freedom, we can safely assume tRatis a unit matrix,

[P1(&) + pa(e) ]et ps(e)Rse=0. (30)

Since py(e) is a probability distribution, this equation is

satisfied only wherR;e,= —¢,, namely,R5 is a rotation of wherey is a unit vector on the equatdR; is a unit matrix,
180° about they axis. By a similar argument witlg=e, (the  andR, is a rotation of 180° about theaxis. Generalizations
unit vector along they axis), R, turns out to be a rotation of of the equator and the polar great circle to higher dimensions
180° about thex axis. Therefore, for a general unit vector have been discussed by Zeng and Zhflg We can also
X=(Xx.Xy:X2), EQ.(29) with n=3 takes the following ma- verify that corresponding RSP equations witkd are sat-

trix form: isfied for those ensembles.

2(Rix+Rox) =0, (32
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