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Remote state preparation without oblivious conditions
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In quantum teleportation, neither Alice nor Bob acquires any classical knowledge on teleported states. The
teleportation protocol is said to be oblivious to both parties. In remote state preparation~RSP!, it is assumed
that Alice is given complete classical knowledge on the state that is to be prepared by Bob. Recently, Leung
and Shor@e-print quant-ph/0201008# showed that the same amount of classical information as that in telepor-
tation needs to be transmitted in any exact and deterministic RSP protocol that is oblivious to Bob. Assuming
that the dimension of subsystems in the prior-entangled state is the same as the dimension of the input space,
we study similar RSP protocols, but not necessarily oblivious to Bob. We show that in this case Bob’s quantum
operation can be safely assumed to be a unitary transformation. We then derive an equation that is a necessary
and sufficient condition for such a protocol to exist. By studying this equation, we show that one-qubit RSP
requires two classical bits of communication, which is the same amount as in teleportation, even if the protocol
is not assumed oblivious to Bob. For higher dimensions, it is still an open question whether the amount of
classical communication can be reduced by abandoning oblivious conditions.

DOI: 10.1103/PhysRevA.67.052302 PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Interplay between classical information and a quant
state shows nontrivial and remarkable aspects where q
tum entanglement is involved. In quantum teleportation@1#,
one qubit in an unknown quantum state can be transmi
from a sender~Alice! to a receiver~Bob! by a maximally
entangled quantum channel and two classical bit~cbit! com-
munication. In order to teleport a quantum state in
d-dimensional space, log2d qubits, Alice needs to transm
2 log2d cbits of information to Bob. This is actually the min
mum amount of classical communication, which can
shown by combining a teleportation protocol with anoth
striking scheme utilizing quantum entanglement, superde
coding @2#.

In teleportation, neither Alice nor Bob acquires any cla
sical knowledge on teleported states. The teleportation
tocol is said to be oblivious to Alice and Bob. In remote sta
preparation~RSP!, however, it is assumed that Alice ha
complete classical knowledge on the state that is to be
pared by Bob@3–6#. The central concern has been wheth
quantum and classical resources can be reduced by Al
knowledge on the state. In this respect, Lo has conjectu
that RSP for a general state requires at least as muc
classical communication as teleportation@3#. An experimen-
tal implementation of RSP scheme has also been repo
@7#.

Recently, Leung and Shor@8# showed that the sam
amount of classical information as in teleportation needs
be transmitted from Alice to Bob in any deterministic a
exact RSP protocol that is oblivious to Bob. Here, the
sumption that a protocol is oblivious to Bob means spec
cally two things: First, the probability that Alice sends
particular classical message to Bob does not depend on
state to be transmitted. Second, no extra information ab
the transmitted state is contained in Bob’s quantum state

In this paper, we will study exact and deterministic R
protocols for a general state, in the case that the dimensio
subsystems in the prior-entangled state is the same as
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dimension of input space, but not necessarily oblivious
Bob. First, we will show that Bob’s quantum operation c
be assumed to be a unitary transformation. We then deriv
equation that is a necessary and sufficient condition for s
a protocol to exist. By studying this equation, we show th
in order to remotely prepare one qubit in a general sta
Alice needs to transmit two cbits of classical information
Bob, which is of the same amount as in teleportation, eve
the protocol is not assumed oblivious to Bob. For a gene
dimensional case, it is still an open question whether
amount of classical communication can be reduced by ab
doning oblivious conditions.

II. RSP PROTOCOL WITHOUT OBLIVIOUS CONDITIONS

In this paper, we only consider RSP protocols that
exact and deterministic. The diagram of protocol is depic
in Fig. 1.

We assume that the dimension of subsystems in the p
entangled state is the same as the dimension of the i
space. Following Ref.@8#, RSP protocols are formulated i
the following way. The prior-entangled state shared by Al

FIG. 1. Remote state preparation diagram.
©2003 The American Physical Society02-1
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and Bob is assumed to be a maximally entangled stat
spaceAB, defined by

uF0
AB&5

1

Ad
(
k51

d

ukA& ^ ukB&, ~1!

where systemsA and B are d-dimensional Hilbert spaces
with an orthonormal basisuk& (k51, . . . ,d). Writing r0

AB

5uF0
AB&^F0

ABu, we note thatr0
A[trBr0

AB51A/d and r0
B

[trAr0
AB51B/d. Given a pure stateuf& randomly chosen

from an input state space ofd dimension, Alice performs a
POVM ~positive operator-valued measure! measurement on
systemA with n possible outcomes:

(
m51

n

Em
A~f!51A. ~2!

Remember that since Alice is assumed to have a comp
knowledge of stateuf&, the dependence of POVM elemen
Em

A(f) on f is not limited. The probability for Alice to ob-
tain outcomem is given by

pm~f!5trAr0
AEm

A~f!. ~3!

In this paper, we do not assume that the probabilitypm(f) is
independent off, implying that the protocol may not b
oblivious to Bob. With outcomem, Bob’s systemB is given
by

rm
B~f!5

trAr0
ABEm

A~f!

pm~f!
. ~4!

Receiving a classical messagem (m51, . . . ,n) from Alice,
Bob performs a trace-preserving quantum operationRm on
his subsystemB to restore the stateuf&:

Rm„rm
B~f!…5ufB&^fBu. ~5!

III. IT SUFFICES FOR BOB TO PERFORM
A UNITARY OPERATION

In this section, we will show that Bob’s quantum oper
tion Rm is actually a unitary operationRm(r)5umrum

1 , if
the RSP protocol, considered in this paper, works for a
stateuf&. First we observe the following theorem.

Theorem. Let E be a trace-preserving quantum operati
with equal input and output space dimensions. If for a
state uf&, there exists a density operatorrf such that
E(rf)5uf&^fu, then the quantum operationE is a unitary
operationE(r)5uru1, whereu is a unitary operator.

Before proving the theorem, we note two general prop
ties of the density operator, which will be used in the pro
The first one is that if tr(rr8)51, thenr andr8 are identical
and pure, which can be shown by the Cauchy-Schwarz
equality. Next, letrQR be a density operator of a syste
consisting of subsystemsQ andR. Then, the second propert
used in the proof is that ifrQ[trRrQR is pure, thenrQR

5rQ
^ rR, whererR5trQrQR. This can be seen by observin

subadditivity and the triangle inequality of the von Neuma
entropyS, by which we find
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S~rR!5uS~rR!2S~rQ!u<S~rQR!, ~6!

S~rQR!<S~rR!1S~rQ!5S~rR!. ~7!

This means that the equality in subadditivity hol
since S(rQR)5S(rR)1S(rQ), which is true only if rQR

5rQ
^ rR.

Now we will prove the theorem given in the above.
Proof. In the unitary model of a quantum operation, t

assumption in the theorem is stated as follows: For anyuf&
there exists a density operatorrf such that

trEU~rf ^ u0E&^0Eu!U15uf&^fu, ~8!

whereu0E& is a standard pure state of the ancillary systemE,
andU is a unitary operator of the combined system. As
have noted, if a subsystem is pure after tracing out the an
system, it is already pure in the combined system and th
fore we have

U~rf ^ u0E&^0Eu!U15uf&^fu ^ rf
E . ~9!

We will show thatrf
E is actually pure and independent off.

Introducing an orthonormal basisuk& (k51, . . . ,d), we
write

U~rk^ u0E&^0Eu!U15uk&^ku ^ rk
E. ~10!

Multiplying Eq. ~10! of index k with the one of indexl and
taking trace of the product, we find

trrkr l5u^ku l &u2trErk
Er l

E5dk,l trErk
Erk

E,~k,l 51, . . . ,d!.
~11!

This equation implies that thed density operatorsrk’s
have orthogonal supports in thed-dimensional space. This
is possible only if rk5uck&^cku, where the set$uck&,k
51, . . . ,d% is an orthonormal basis of the space. We a
find thatrk

E is pure, since trrk
Erk

E51.
In the same way as we obtained Eq.~11!, we find

trrfrk5u^fuk&u2trErf
Erk

E,~k51, . . . ,d!. ~12!

Summing this equation overk and using (k51
d rk

5(k51
d uck&^cku51, we obtain

15 (
k51

d

u^fuk&u2trErf
Erk

E, ~13!

which implies thatrf
E is pure and given by

rf
E5 (

k51

d

u^fuk&u2rk
E. ~14!

From this we conclude thatrk
E is independent ofk and fur-

thermorerf
E for a generaluf& has no state dependence eith

Writing rf
E5u08E&^08Eu, we thus have

rf ^ u0E&^0Eu5U1~ uf&^fu ^ u08E&^08Eu!U. ~15!

Sandwiching this between̂0Eu and u0E& gives

rf5u1uf&^fuu, ~16!
2-2
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whereu5^08EuUu0E& andu15^0EuU1u08E&. It is clear that
the operatoru must be a unitary operator sinceu1uf&^fuu is
a density operator for any stateuf&. Since Eq.~16! holds for
any uf&, we conclude that the quantum operationR is a
unitary operation:

E~r!5uru1. ~17!

h

Now remember that Bob receives a classical messagm
P$1,2, . . . ,n% from Alice and performs a quantum operatio
Rm on the staterm

B(f) to restore stateuf& that Alice wants
him to prepare:

Rm„rm
B~f!…5ufB&^fBu. ~18!

Since this should hold for any stateuf&, by the theorem we
have just proved,Rm turns out to be a unitary operation,

Rm~r!5umrum
1 , ~19!

whereum is unitary. We also note that we did not assume t
rE, the state of ancilla system E after Bob’s quantum ope
tion, is independent ofuf& ~oblivious condition!; but it was
shown thatrE should be independent ofuf& in the proof of
the theorem.

IV. NECESSARY AND SUFFICIENT CONDITION FOR RSP

Now that we have shown that Bob’s quantum operation
a unitary operation, we can derive an equation that is a n
essary and sufficient condition for RSP protocols conside
in this paper.

From Eqs.~3! and ~4!, we obtain

(
m51

n

pm~f!rm
B~f!5r0

B5
1B

d
, ~20!

which means that the density operator of systemB should
not change by Alice’s POVM measurement on systemA as
long as an outcome of the measurement is unspecified. U
the result from the preceding section,rm

B(f)
5um

1ufB&^fBuum , we get

(
m51

n

pm~f!um
1ufB&^fBuum5

1B

d
. ~21!

Here, um’s are unitary andpm(f) is the probability of an
outcome m of Alice’s POVM measurement; therefor
pm(f)>0 and (m51

n pm(f)51. We also note that this
should hold for any stateuf&. A similar equation has bee
discussed for a continuous variable teleportation in Ref.@9#
and implicitly stated for oblivious RSP in Ref.@8#.

It is important that Eq.~21! is also a sufficient condition
for RSP protocols. Let us assume that Eq.~21! holds in space
B for some unitary operatorsum’s and for some probability
distribution pm(f), then the same equation also holds
spaceA:
05230
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(
m51

n

pm~f!ufm
A&^fm

A u5
1A

d
, ~22!

since the dimension is the same for spacesA and B, where
we wrote ufm&5um

1uf& for convenience. Here for a stat

uf&5(k51
d uk&^kuf&, we introduce stateuf̄& defined asuf̄&

5(k51
d uk&^fuk&. Then it is clear that the following relation

also holds:

(
m51

n

pm~f!uf̄m
A&^f̄m

A u5
1A

d
. ~23!

From this relation, we can construct POVM elements as

Em
A~f!5dpm~f!uf̄m

A&^f̄m
A u ~m51, . . . ,n!. ~24!

Evidently, each Em
A(f) is a positive operator and

(m51
n Em

A(f)51A. Since Alice is assumed to be given com
plete classical knowledge on stateuf&, she can, in principle,
implement this POVM measurement. The probability of
outcome m is calculated as trAr0

AEm
A(f)5(1/d)trAEm

A(f)
5pm(f), and with an outcome being given bym, the result-
ant state ofB is given by

rm
B~f!5d trAuF0

AB&^F0
ABuuf̄m

A&^f̄m
A u

5d^f̄m
A uF0

AB&^F0
ABuf̄m

A&5ufm
B&^fm

B u

5um
1ufB&^fBuum . ~25!

Receiving a classical messagem from Alice, Bob can restore
state uf& by a single unitary operation sinceumrm

B(f)um
1

5ufB&^fBu.
Thus, Eq.~21! is a necessary and sufficient condition f

the class of RSP protocols considered in this paper and
be called RSP equation hereafter.

V. RSP EQUATION

We will study the RSP equation~21!, which is a necessary
and sufficient condition for the class of RSP protocols co
sidered in this paper:

(
m51

n

pm~f!um
1uf&^fuum5

1

d
. ~26!

Here, superscriptsA or B are omitted, since the equatio
should hold in either of thed-dimensional space.

Note that the theorem in Sec. III implies that Bob’s sta
does not carry extra information on the transmitted state
the case where the probabilitiespm(f) are independent o
the transmitted stateuf&, we obtain the oblivious condition
in Ref. @8# and therefore all the results in Ref.@8# ~see also
Ref. @10#!. In particular, 2 log2d cbits are necessary, and th
a teleportationlike protocol that is oblivious to Alice can b
obtained without increasing the classical communicat
cost.

That remains to study is the case where the probab
pm(f) may depend on the stateuf& that is to be remotely
2-3



n
I

io

t

n

ta

s

f
or

a-
ly
t

SP
not
to

rior-
nput
o be
ral

ich
l to
his
one
of

or-
b.

ed
are
se

ot
he
an-
e-

me

e of
a

hold
med
ua-

ons

HAYASHI, HASHIMOTO, AND HORIBE PHYSICAL REVIEW A 67, 052302 ~2003!
prepared. The question is whether this dependence ca
duce the minimum amount of classical communication.
the case of one-qubit RSP (d52), we will show that this is
not the case: the minimum amount of classical informat
turns out to be 252 log2d cbits as in teleportation.

Unfortunately, for general dimensiond, however, we have
only limited results: The RSP equation~26! immediately tells
us thatn>d, which is known as Holevo’s bound@11#, since
the equation requires that$um

1uf& (m51, . . . ,n)% is com-
plete in thed-dimensional space. We can also show than
>d11. Assume that the RSP equation~26! holds for n
5d. Generally, in a d-dimensional space, the relatio
(m51

d uxm&^xmu51 is satisfied if and only if the statesuxm&
are orthonormal. Therefore, whenmÞm8, the inner product
^fuumum8

1 uf& should vanish for anyuf&, implying umum8
1

50. This, however, contradicts unitarity ofum’s.
Now we return to the qubit case (d52). The Bloch

sphere representation is convenient for a pure qubit s
uf&^fu,

uf&^fu5
11x•s

2
, ~27!

wherex is a three-dimensional unit vector, andsx , sy , and
sz are the Pauli matrices. We also introduce a 333 rotation
matrix Rm for each unitary operatorum through

um
1s ium5(

j 51

3

~Rm! j i s j . ~28!

The RSP equation is then reduced to

(
m51

n

pm~x!Rmx50, ~29!

which should hold for any unit vectorx and we emphasize
again that the probabilitypm may depend onx.

It can be readily seen that if Eq.~29! holds for a set of
rotation matricesRm and some probabilitypm(x), it is also
satisfied by a set of transformed rotationsSRmT, with S and
T being any rotation matrices, and probabilitypm(Tx). With
this freedom, we can safely assume thatR1 is a unit matrix,
R2 is a rotation about thex axis, andR3 is a rotation about an
axis in thexy plane.

Now assume that Eq.~29! holds for n53 and takex
5ex ~the unit vector along thex axis!, then we find

@p1~ex!1p2~ex!#ex1p3~ex!R3ex50. ~30!

Since pm(ex) is a probability distribution, this equation i
satisfied only whenR3ex52ex , namely,R3 is a rotation of
180° about they axis. By a similar argument withx5ey ~the
unit vector along they axis!, R2 turns out to be a rotation o
180° about thex axis. Therefore, for a general unit vect
x5(xx ,xy ,xz), Eq. ~29! with n53 takes the following ma-
trix form:
05230
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S xx xx 2xx

xy 2xy xy

xz 2xz 2xz

D S p1~x!

p2~x!

p3~x!
D 5S 0

0

0
D . ~31!

This equation has only a trivial solutionpm(x)50 for x with
xxxyxzÞ0, since the determinant of the matrix in the equ
tion is 4xxxyxz . Thus, we conclude that in order to remote
prepare a general qubit state (d52), Alice needs to transmi
25 log22

2 cbits of information to Bob.

VI. SUMMARY AND DISCUSSION

In this paper, we studied exact and deterministic R
schemes for a general state. Though the schemes were
assumed to be oblivious to Bob, we restricted ourselves
the case where the dimension of subsystems in the p
entangled state is the same as the dimension of the i
space. In this case Bob’s quantum operation was shown t
just a unitary operation, if the protocol works for a gene
state.

Using this fact we have derived the RSP equation, wh
is a necessary and sufficient condition for an RSP protoco
exist in the class considered in this paper. By studying t
equation, it was shown that in order to remotely prepare
qubit in a general state, Alice needs to transmit two cbits
information to Bob, which is the same amount as in telep
tation, even if the protocol is not assumed oblivious to Bo
So, for one-qubit RSP, Lo’s conjecture@3# has been proved
without oblivious conditions. Leung and Shor investigat
oblivious RSP without assuming that the two dimensions
the same@8#. Study on nonoblivious RSP in this general ca
is now in progress.

Unfortunately, generalization to higher dimensions is n
straightforward. Though it is not yet clear as whether t
amount of classical communication can be reduced by ab
doning oblivious conditions in higher dimensions. We b
lieve that the RSP equation will be a key to obtain so
insights for further study in this direction.

In this paper, the input ensemble, from which stateuf& is
randomly chosen, is assumed to be the entire Hilbert spac
d dimensions. We remark that if the state is chosen from
subensemble of the space, the RSP equation should still
in the subensemble, as long as Bob’s action can be assu
to be a unitary operation. In the case of qubits on the eq
torial circle of the Bloch sphere@4,5#, the RSP equation~29!
with n52 is satisfied as

1
2 ~R1x1R2x!50, ~32!

wherex is a unit vector on the equator,R1 is a unit matrix,
andR2 is a rotation of 180° about thez axis. Generalizations
of the equator and the polar great circle to higher dimensi
have been discussed by Zeng and Zhang@6#. We can also
verify that corresponding RSP equations withn5d are sat-
isfied for those ensembles.
2-4
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