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Quantum dynamics as a physical resource
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How useful is a quantum dynamical operation for quantum information processing? Motivated by this
question, we investigate severalstrength measuresquantifying the resources intrinsic to a quantum operation.
We develop a general theory of such strength measures, based on axiomatic considerations independent of
state-based resources. The power of this theory is demonstrated with applications to quantum communication
complexity, quantum computational complexity, and entanglement generation by unitary operations.
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I. INTRODUCTION

The quantification and comparison of different types
physical resources lies at the heart of much of modern
ence. A good example is the physical resourceenergy, whose
quantification enabled the development of thermodynam
More recently, motivated by applications to quantum inf
mation processing, there have been attempts to devel
quantitative theory of quantum entanglement@1#. This
theory, still in its nascent stages, has been applied to
insight into questions about the capacity of a noisy chan
for information @2#, quantum teleportation with a noisy en
tangled resource@3#, and distributed quantum computatio
@4#.

Structurally, quantum mechanics has two parts, one
concerned withquantum states, the other withquantum dy-
namics. A general quantum dynamical process is describ
by a quantum operation~reviewed in @5#!; such processe
include unitary evolution, quantum measurement, diss
tion, and decoherence. We believe quantum operations a
useful physical resource on an equal and logically indep
dent footing to quantum states.

The first step in studying a physical resource is to quan
it. Therefore, the purpose of our paper is to develop a the
quantifying thestrengthof quantum dynamical operations
Our motivations are axiomatic and operational questi
concerning quantum dynamics. Our goal is to find stren
measures capturing some of the structure in the complic
space of quantum operations, to gain insight into quan
dynamics and complex quantum systems@6,7#. Although
some of the measures we propose for operations are bas
state entanglement measures, we expect the study of dy
ics to provide different, complementary insights to tho
gained from the study of states.

What questions will good strength measures allow us
analyze? We foresee applications to the analysis of quan
computational complexity, distributed quantum computati
quantum communication, and quantum cryptography. A
simple example, consider the question of how ma
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controlled-NOT ~CNOT! gates are required to implement
SWAP gate on two qubits, when assisted by arbitrary lo
unitaries. Suppose we have a measureK(U), quantifying the
strength of a unitaryU. Suppose further thatK(U) satisfies
~a! K(UV)<K(U)1K(V); and ~b! K(U)50 for local uni-
taries U. It is easy to see that the number ofCNOT gates
needed to do theSWAP gate is at leastK~SWAP!/K~CNOT!.

More generally, the central problem of quantum comp
tational complexity is to determine the minimum number
one- and two-qubit gates necessary to implement a des
n-qubit unitary operationU. For example,U might encode
the solution to a problem such as the traveling salesm
problem. Suppose we have a strength measure satisf
properties ~a! and ~b! above, as well as~c! K(U ^ I )
5K(U). The number of gates needed to computeU is again
bounded below byK(U)/K~CNOT!. Such a bound might help
in determining the relationships between various quant
and classical complexity classes. We will return to this a
plication several times.

Another motivation to study quantum dynamics as a
source is recent work onuniversality in quantum computa-
tion. The class of interactions capable of performing univ
sal quantum computation has been shown to be the clas
bipartite entangling dynamics; any Hamiltonian that can c
ate entanglement between any pair of qudits is univer
when assisted by arbitrary one-qudit unitaries~see @8–13#
and references therein; see also@14,15# for related work!. It
has also been shown that any entangling two-qudit unit
together with arbitrary one-qudit unitaries, is universal~@16#;
see@17# for a simple, constructive proof in the qubit case!.

These results show that there is a qualitative differe
between entangling and nonentangling dynamics. Furt
more, they show that all two-qudit entangling dynamics a
qualitatively equivalent, as any one can simulate any ot
provided local unitaries are available. By analogy with t
study of state entanglement, this suggests quantifying en
gling dynamics. We now review prior work on this ide
organizing our discussion around three motivating them
the communication cost to implement an operation; the
tangling ability of an operation; and the ability of an oper
tion to communicate bits.

The communication requirements for implementing
general bipartite unitaryU were studied in Chapter 6 of@4#,
©2003 The American Physical Society01-1
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where a general lower bound on the number of qubits
communication needed to implementU was proved, depend
ing only on the operator Schmidt decomposition ofU ~see
Sec. II for discussion of this decomposition!. Eisert et al.
@18# and Collins, Linden, and Popescu@19# studied the clas-
sical communication and entanglement required to imp
ment some specific few-qubit quantum gates. Chefles,
son, and Barnett@20# studied the amount of communicatio
and entanglement required to perform an arbitrary gate
network of qubits.

The capacity of a quantum operation to generate entan
ment seems to have first been studied by Makhlin@21#, who
found three invariants characterizing the nonlocal proper
of two-qubit unitaries. Makhlin used the invariants to obta
results about entanglement generation, with a view tow
applying them to the complexity of implementing gates. Z
nardi, Zalka, and Faoro@22#, Zanardi @23#, and Wang and
Zanardi@24#, all obtained results about theaverage entangle-
ment generated by a unitary. Ciracet al. @25# studied the
ability of an operation to produce entanglement by mapp
the operation onto a corresponding state, and studying
properties of that state. Kraus and Cirac@26# studied the
maximum entanglementthat can be created by a unitary o
erator acting on two initially unentangled qubits. They fou
an explicit formula for the maximum entanglement that c
be generated without ancillas, and showed that this amo
can be exceeded with the use of ancillas. Leifer, Hender
and Linden@27# used similar reasoning to obtain an explic
formula for the entanglement generated without ancillas,
allowing initial entanglement. They also obtained numeri
results demonstrating that the addition of ancillas can
crease the maximum entanglement generated. In a diffe
context, Scaraniet al. @28# related the entangling power of
unitary operation to the problem of thermalization of a qua
tum system.

A related approach is to quantify the entangling abilit
of Hamiltonians rather than unitaries. Du¨r et al. @10# consid-
ered therate at which a Hamiltonian creates entangleme
and found techniques to optimize this rate. More recen
Vidal, Hammerer, and Cirac@29# ~see also@30#! analytically
characterized the minimum time required to simulate o
Hamiltonian with another, and found the minimum time r
quired to simulate a desired unitary with a Hamiltonian. T
allowed them to define a partial order on unitaries, accord
to which one unitaryU is morenonlocalthan another unitary
V if and only if, for any Hamiltonian, the minimum time
required to simulateU is longer than the minimum time to
simulate V. They also obtained results on the optim
choices of nonlocal interactions for transmitting classical b
between two parties. Childset al. @31# found an explicit for-
mula for the maximum entanglement created by a class
two-qubit Hamiltonians, including the Ising interaction an
the anisotropic Heisenberg interaction, for which this ma
mum is achieved without ancillas.

The ability of a quantum operation to communicate cl
sical information was studied by Beckmanet al. @32#, who
obtained simple necessary and sufficient conditions for in
mation transmission to be possible. Bennettet al. @33# and
Berry and Sanders@34# studied thecapacity of a bipartite
05230
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operation to communicate information, and related this
pacity to the ability of the operation to generate entang
ment.

Our paper draws on all these perspectives, but differs
an important way. Rather than focusing on the ability o
quantum dynamical operation to generate some static
source, such as entanglement or shared classical bits, w
lieve it is possible to quantify quantum dynamical operatio
as a physical resource in their own right. That is, we do
need to make reference to the ability of the operation
generate some other resource.

How can one develop a theory of dynamic strength wi
out relying on familiar state-based resources? The appro
we take is to identify plausible axioms and properties a go
measure of strength should satisfy, and develop meas
satisfying those properties.

The paper is structured as follows. Section II opens
introducing two concrete examples of strength measures
unitary operations, theHartley and Schmidtstrengths. Sec-
tion III considers operational questions motivating stren
measures, and uses these questions to motivate some ab
axioms for such measures. Section IV briefly summarize
usefulcanonical decompositionfor two-qubit unitary opera-
tors. Sections V and VI explore a variety of specific defin
tions for dynamic strength measures. Our general philoso
is to explore a wide variety of measures and then to conc
trate on those that appear most likely to yield useful pract
answers to interesting operational questions. Section
concludes with a summary and a table of results.

II. INVITATION: THE HARTLEY AND SCHMIDT
STRENGTHS

In this section we introduce two strength measures,
Hartley strength and the Schmidt strength. These meas
are introduced both because of their intrinsic interest, a
also because the Hartley strength will be used as a sim
concrete example illustrating the more abstract, axiom
approach to dynamic strength. The Hartley and Schm
strengths are based on a generalization of the Schmidt
composition to operators, which we call the operat
Schmidt decomposition@4#. To explain the operator-Schmid
decomposition we introduce the Hilbert-Schmidt inner pro
uct on the space ofd3d operators, defined by (Q,P)
[tr(Q†P), for any operatorsQ andP. Using this inner prod-
uct, we define an orthonormal operator basis to be a set$Qj%
that satisfies the condition (Qj ,Qk)5tr(Qj

†Qk)5d jk , where
d jk51 if j 5k and 0 otherwise. For example, a comple
orthonormal basis for the space of one-qubit operat
is the set of normalized Pauli matrices$ Ĩ ,X̃,Ỹ,Z̃%
[$I /&,X/&,Y/&,Z/&%.

An operatorQ acting on systemsA andB may be written
in the operator-Schmidt decomposition@4#

Q5(
l

slAl ^ Bl , ~2.1!

wheresl>0 andAl and Bl are orthonormal operator base
for A and B, respectively. To prove the operator-Schm
1-2
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
decomposition, expandQ5( jkM jkCj ^ Dk , where Cj and
Dk are fixed orthonormal operator bases forA andB, respec-
tively, and M jk are coefficients. The singular value decom
position states that the matrixM, whose (j ,k)th entry is
M jk , may be writtenM5UsV, whereU andV are unitary,
ands is diagonal with non-negative entries. We thus obta

Q5(
jkl

U jl slVlkCj ^ Dk , ~2.2!

where sl is the l th diagonal entry ofs. Defining Al
[( jU jl Cj andBl[(kVlkDk , which are easily shown to b
orthonormal operator bases forA and B, we obtain the
operator-Schmidt decomposition Eq.~2.1!.

Nielsen @4# defines the Schmidt number of an opera
Sch(Q) to be the number of nonzero coefficients in t
operator-Schmidt decomposition forQ.1

A simple example is theCNOT gate which has operator
Schmidt decomposition

CNOT5&u0&^0u ^ Ĩ 1&u1&^1u ^ X̃ ~2.3!

and hence has Schmidt coefficients$&,&%, and
Sch~CNOT!52. The SWAP gate for qubits has operato
Schmidt decomposition

SWAP5 Ĩ ^ Ĩ 1X̃^ X̃1Ỹ^ Ỹ1Z̃^ Z̃ ~2.4!

and hence Sch~SWAP!54. A less familiar example is the gat

Up5~A12pI ^ I 1 iApX^ X!~A12pI ^ I 1 iApZ^ Z!
~2.5!

which has operator-Schmidt decomposition

Up52~12p! Ĩ ^ Ĩ 12pỸ^ Ỹ12Ap~12p!

3@~eip/4X̃! ^ X̃1~eip/4Z̃! ^ Z̃# ~2.6!

and thus has Schmidt number 1 whenp50 or 1, and 4
otherwise.

A more complicated example is provided by the quant
Fourier transform, whose unitary action onl qubits is defined
by the action on computational basis states@36#

us&→
1

A2l (
t50

2l21

e2p ist/2l
ut&, ~2.7!

where we number the basis states fromu0& throughu2l21&.
A useful alternative formula for the quantum Fourier tran
form may be obtained by working in a binary representat
s5s1¯sl , whence2

1Terhal and Horodecki@35# defined an alternative notion o
Schmidt number for bipartite density matrices.

2According to Chapter 12 of@37#, this decomposition was ob
tained by Danielson and Lanczos in 1942. It was rediscovered in
quantum context in@38#.
05230
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us1 ,...,sl&→u f sl
& ^ u f sl 21sl

& ^¯u f s1¯sl
&, ~2.8!

where the one-qubit stateu f t& is defined for an arbitrary bit
string t5t1 ...tk by u f t&[@ u0&1exp(2pi0.t)u1&]/&, and 0.t
is the binary fractiont1/21t2/41¯1tk/2

k.
Suppose now that systemA consists ofm qubits and sys-

tem B consists ofn qubits, andU is the quantum Fourier
transform onm1n qubits. From Eq.~2.8!,

Uux1 ,...,xm ,y1 ,...,yn&5u f yn
& ^¯^ u f x1¯yn

&. ~2.9!

Supposem<n. To determine the Schmidt decomposition
the quantum Fourier transform it is convenient to introdu
the notationy85y1¯yn2m and y95yn2m11¯yn , so the
string y can be formed by concatenating the stringsy8 and
y9. It follows from the previous equation that

U5(
xy9

Axy9^ Bxy9 , ~2.10!

wherex ranges overm-bit stringsx1¯xm , and we define

Axy9[u f yn
&u f yn21yn

&¯u f yn2m11¯yn
&^xu,

Bxy9[(
y8

Cxy8y9 , ~2.11!

Cxy8y9[u f yn2m¯yn
&¯u f x1¯yn

&^yu.

A calculation shows that theAxy9 are orthonormal operator
and the Bxy9 are an orthogonal set, with (Bxy9 ,Bxy9)
52n2m. Thus the Schmidt decomposition for the quantu
Fourier transform is

U5(
xy9

A2n2mAxy9^
Bxy9

A2n2m
. ~2.12!

Thus, when m<n the quantum Fourier transform ha
Schmidt number 22m, and all nonzero Schmidt coefficient
are equal toA2n2m. Note that the Schmidt decomposition o
the quantum Fourier transform was already obtained in@4#
when m5n; we have not yet succeeded in determining t
Schmidt decomposition of the quantum Fourier transfo
whenm.n, but conjecture that it has Schmidt number 22n.3

The Hartley strength4 of an operatorKHar(Q) is defined
by

KHar~Q![ log2@Sch~Q!#. ~2.13!

~The logarithm is taken to base 2 throughout this pap!
Returning to our examples, theCNOT gate has Hartley

e

3Tyson@39# has recently calculated the Schmidt decomposition
the quantum Fourier transform in the general case and has
firmed this conjecture.

4The term Hartley strength comes from the Hartley entropy@40#
of a probability distribution, defined to be the logarithm of th
number of nonzero elements in the probability distribution.
1-3
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strength log2 251, theSWAP gate has strength 2, andUp has
strength 0 forp50 or 1, and strength log2 452 otherwise.
The quantum Fourier transform has Hartley strength 2m,
providedm<n.

The Schmidt strength is motivated by a simple obser
tion about unitary operatorsU acting on systemsA andB of
respective dimensionsdA anddB . For such an operator, th
relation tr(U†U)5dAdB implies that the Schmidt coeffi
cients sl satisfy ( lsl

25dAdB . Therefore, the number
sl

2/(dAdB) form a probability distribution. A natural measur
of the nonlocal content ofU is thus the Schmidt strength
defined to be the Shannon entropyH(•) of the distribution
sl

2/(dAdB),5

KSch~U ![HS H sl
2

dAdB
J D . ~2.14!

More generally, for an arbitrary bipartite operatorQ we de-
fine theSchmidt strengthby

KSch~Q![HS H sl
2

tr~Q†Q!J D , ~2.15!

where $sl
2/tr(Q†Q)% are the squared Schmidt coefficien

of Q, normalized to form a probability distribution. Not
that KSch~CNOT!51, KSch~SWAP!52, KSch(Up)5H@(1
2p)2,p2,p(12p),p(12p)#, and KSch52m for the quan-
tum Fourier transform, whenm<n.

III. CONCEPTUAL FRAMEWORK

In this section, we explore two approaches to the defi
tion of strength measures. In theoperational approach, dis-
cussed in Sec. III A, we define several measures of stre
based on the ability of an operation to perform various tas
These measures thus quantify a dynamical resource req
by each task. The second approach, theaxiomatic approach,
is explored in Sec. III B, where we identify a list of thre
axioms and nine useful properties for a strength meas
These two approaches may appear to be independent
there is actually substantial interplay. In particular, many
the properties in Sec. III B are motivated by consideration
the operational measures of strength of Sec. III A.

A. Operational approach

Quantum dynamics are clearly an essential componen
quantum information processing tasks. However, it is di
cult to identify which properties of quantum dynamics a
the most essential, because different properties are requ
for different tasks. This variety is reflected in this section
the fact that different operational questions give rise to d
ferent notions of strength.

5Note that Zanardi@23# and Wang and Zanardi@24# have investi-
gated similar, though inequivalent, measures for unitaries. T
work is discussed in Sec. III A 1.
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The reader should note that the main point of this sect
is not to prove results about the measures we define. Ra
it is to provide definitions of some strength measures, an
discussion of their operational motivation. After we ha
enumerated the properties we would like these measure
satisfy, we will take up the problem of determining the pro
erties of these measures, and the relationships between t

1. Entanglement generation and communication capacity

In this section, we consider two related questions on
ability of a quantum operation to create entanglement an
communicate information. We also review some of the rec
work on these subjects.

How much entanglement can be generated by a quan
operation? How much entanglement a single application o
unitaryU can generate depends crucially on the initial sta
U may act on. We must also specify whether we are in
ested in the maximum, minimum, or average entanglem
generated. We focus primarily on maximizations.

We define two measures for theentangling strengthof a
unitaryU. ~See Sec. V A 3 for some generalizations to qua
tum operations.!

The first strength measure quantifies the maximum
tanglement that a unitaryU can create between two system
A andB with the use of arbitrary ancillas, but without prio
entanglement:

KE~U ![ max
ua&,ub&

E~Uua&ub&), ~3.1!

whereua& ranges over all~possibly entangled! states of sys-
tem A plus an ancillaRA , and ub& ranges over states o
systemB plus an ancillaRB , andE is the usual measure o
bipartite pure state entanglement, the von Neumann entr
of the reduced density matrix.6 Note that the ancillas may b
chosen with dimensions equal to the dimensions ofA andB,
respectively, since the Schmidt number ofua& with respect to
the A:RA division is at mostdA , and similarly for ub&. It
follows thatKE is truly a maximum and not a supremum.

Kraus and Cirac@26# calculatedKE(U) for some special
two-qubit unitaries, while Leifer, Henderson, and Linde
@27# obtained numerical evidence that removing the anci
decreases the maximum entanglement for certain unitari

The second measure allows the possibility of prior e
tanglement as well as ancillas.KDE(U) is the magnitude of
the maximalchangein entanglement caused byU:

KDE~U ![sup
uc&

zE~Uuc&)2E~ uc&) z, ~3.2!

is

6Maximizing over mixed states as well as pure states does
change the value ofKE because of the presence of arbitrary ancilla
In particular, supposeA andB were in statesrA and rB , respec-
tively. By introducing copies of their systems,RA and RB , it is
possible to find pure statesua& and ub& of ARA andBRB such that
trRA(ua&^au)5rA and trRB(ub&^bu)5rB . Since entanglement de
creases when systems are discarded, we must haveE(Uua&ub&)
>E(UrA^ rBU†).
1-4
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
whereuc& ranges over all states ofARA andBRB .7

Clearly, KE(U)<KDE(U) for all U. Later, we will see
that there exist unitariesU for which KE(U)ÞKDE(U),
demonstrating that these two measures capture differen
tions of a unitary’s ability to generate entanglement.

An alternative approach to quantifying entanglement g
eration has been explored by Zanardi@23# and Wang and
Zanardi @24#. Zanardi @23# defines a measure of entangl
ment,L(U), for a unitary operatorU on adA3dB system by
the linear entropyL(U)[12( lsl

4/dA
2 dB

2, wheresl are the
Schmidt coefficients ofU. ProvideddA5dB5d, it can be
shown that@23,24#

E da db L@U~a ^ b!#5
d2

~d11!2 @L~U !1L~USWAP!

2L~SWAP!#, ~3.3!

whereda and db are the uniform, normalized, Haar me
sures on the first and second qudits, respectively, the func
L on the left is the measure ofstateentanglement based o
the linear entropy of the squared Schmidt coefficients of
state, while the functionL on the right is theoperator en-
tanglement defined by Zanardi. This equation nicely c
nects the Schmidt coefficients and the average entangle
generated byU.

In a similar vein, Wang and Zanardi@24# define a notion
of concurrencefor unitary operators with Schmidt number
For a systemAB of dimensiondA3dB , they defineC(U)
[2s1s2 /(dAdB), wheres1 and s2 are the Schmidt coeffi-
cients ofU. This definition extends the notion of concurren
for qubits introduced by Hill and Wootters@41#. Simple al-
gebra and the fact that( lsl

25dAdB implies that C2(U)
52L(U), whereL(U) is the measure of operator entang
ment introduced by Zanardi@23#.

How useful is a quantum operation for communicatio?
An interesting question is to determine the relationship
tween the entanglement generated by a channel and its
pacity to transmit classical information between two s
tems. Recently, Bennettet al. @33# and Berry and Sander
@34# examined the relationship between the entangling
pacity of a two-qubit unitary and its ability to transmit info
mation. In particular, Bennettet al.considered the maximum
entanglement that can be generated from any~possibly en-
tangled and mixed! state witht uses of the unitary gateU.
They argued that the maximum entanglement generated

7We have definedKDE as a supremum over pure states. T
simple argument showing thatKE may be restricted to pure state
does not apply here, sinceKDE is a difference of entanglemen
measures. In general, ifKDE is extended to mixed states, its valu
may depend on the entanglement measure used. Bennettet al. @33#
considered several cases of this problem, although they were i
ested in the maximumincrease in entanglement, rather than th
magnitude of the change in entanglement. The supremum mus
pear in the definition ofKDE , rather than a maximization as in th
definition ofKE , since we do not know of any bound on the size
the ancilla.
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t uses ofU is just t times the maximum entanglement ge
erated with one use ofU, and thatKDE is an upper bound on
the average number of bits which can be reliably transmit
betweenA andB.

2. Quantum computational complexity

In this section we consider a different motivation for th
study of quantum dynamics as a resource. Rather than
sidering an operation’s explicitly nonlocal properties~such as
its ability to create entanglement!, we ask what characterize
the difficulty of performing a quantum computation.

A reasonable measure of thecomplexityof implementing
a unitaryU with a gate setU is simply the minimum number
of gates fromU in a circuit which implementsU. For ex-
ample, suppose we only have the ability to implement
CNOT gate on two qubits, with either acting as the contr
and we wish to simulate theSWAP gate. In this case we hav
the gate setU5$CNOT12,CNOT21% where the first subscrip
refers to the control qubit and the second the target. Si
SWAP5CNOT12CNOT21CNOT12 ~and theSWAP gate cannot be
implemented with only twoCNOT gates!, the complexity of
the SWAP gate relative toU is 3.

To generalize this idea, we defineKcom:

Kcom~UuU![minH(
j

x~Wj !UU5)
j

Wj ,WjPUJ ,

~3.4!

where thecost functionx(Wj ) is any non-negative function
that quantifies the difficulty associated with implementi
Wj .

The circuit complexity measure has the property that,
any two unitary operatorsU andV,

Kcom~UVuU!<Kcom~UuU!1Kcom~VuU!, ~3.5!

since one circuit implementingUV is the concatenation o
the minimal circuits implementingV and U separately. We
refer to this property as thechaining property.

In general,Kcom is prohibitively difficult to calculate since
it is very hard to prove that a given circuit forU is minimal.
However, it is possible to find lower bounds onKcom as
follows. Expanding upon the example given in the Introdu
tion, supposeU is a two-qudit unitary, and one is given th
ability to perform a set of two-qudit gatesU5$U1 ,...,Um%
and local unitary operations. What is the minimum numb
of two-qudit gates required to implementU? SupposeU
5(A0^ B0)Ul 1

(A1^ B1)¯Ul k
(Ak^ Bk), whereAj ^ Bj de-

notes a local unitary, andUl j
PU. Let K be any measure

satisfyingK(UV)<K(U)1K(V) andK(A^ B)50 for any
local unitaryA^ B. Then

K~U !5K@~A0^ B0!Ul 1
~A1^ B1!¯Ul k

~Ak^ Bk!#

<K~Ul 1
!1¯1K~Ul k

!

<kKmax, ~3.6!
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whereKmax is the maximum value ofK(Ul j
). We have de-

duced a useful bound on the number of gates,

k>
K~U !

Kmax
. ~3.7!

This captures the intuitively appealing notion that the nu
ber of gates required to implementU is at least equal to the
total strength ofU, divided by the maximum strength of an
of the implementing gates. Indeed, if we take the cost o
local unitary to be 0 and the cost of a two-qudit gate to be
the argument implies thatKcom(UuU)>K(U)/Kmax . Al-
though this argument holds only for two-qudit unitariesU,
we will extend it ton-qudit unitaries after the discussion o
stability properties in the next section.

B. Axiomatic approach

One approach to quantifying entanglement is to cons
axioms that an entanglement measure ‘‘ought’’ to satisfy, a
to explore the consequences of those axioms@1,42–44#.
While this approach has occasionally been criticized@45#, it
has certainly proven fruitful.

Here we explore an analogous axiomatic approach to
study of strength measures for quantum dynamical op
tions. We propose a number of axioms that such meas
might be expected to satisfy and investigate some impl
tions of these axioms.8

The structure we adopt is first to describe~in Sec. III B 1!
the fundamental axioms that we expectanystrength measure
should satisfy. We then describe some other useful prope
a strength measure may satisfy in Sec. III B 2. Finally, S
III B 3 illustrates the axiomatic framework by applying it t
the analysis of the communication cost of distributed qu
tum computation.

1. Fundamental properties

We denote our strength measure byK(E), whereE is a
trace-preserving quantum operation acting on a set ofn sys-
tems, A1 ,...,An , of dimensionsd1 ,...,dn . We will fre-
quently be interested in the case whereE is a unitary quan-
tum operationE(r)5UrU† for some unitaryU. In this case,
we writeK(U) to denote the dynamic strength ofU. We will
also use the convention that the symbol for a unitary suc
U may mean either the unitary operatorU or the correspond-
ing quantum operation, that is,U(r)[UrU†. This abuse of
notation will be employed only when its meaning is cle
from context.

As each axiom is introduced we illustrate it by examini
whether the Hartley strength satisfies the axiom. Note
KHar(U) is defined for a unitary operatorU acting on two
systems labeledA andB of dimensiondA and dB , respec-
tively.

8We note that Zanardi, Zalka, and Faoro@22# pointed out the
desirability of Axioms 2 and 3, and of Property 1 below, and prov
that these properties are all satisfied by the average entangle
generated by a unitary.
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Axiom 1 (non-negativity). K(E)>0 for all quantum opera-
tions E.

This is more a convention than an axiom, which we
troduce as a convenience to simplify many of the proper
below. The Hartley strength satisfies this axiom.

Axiom 2 (locality). K(U)>0 with equality if and only if
U can be written as a product of local unitary operations

The Hartley strengthKHar(U) satisfies locality.
The axiom of locality captures the idea that dynam

strength measures the nonlocal content of a quantum g
For example, in the bipartite case, it is possible to gene
entanglement with a unitaryU if and only if U cannot be
written as a product of local unitary operations. Similarly,
is possible to communicate classical information with a u
tary if and only if it cannot be written as a product of loc
unitaries@32#. Summarizing, for anyK satisfying locality, we
have K(U).0 if and only if U is capable of generating
entanglement or, alternatively, of transmitting classical inf
mation.

How should the axiom of locality be extended to nonu
tary operations? For example, we might require thatK(E)
.0 if and only if E cannot be implemented by local oper
tions and classical communication. Or perhaps we might
quire thatK(E).0 if and only if E generates quantum state
with nonzero entanglement~according to some entangleme
measure!. Many other possibilities can be imagined whic
we will not enumerate.

Axiom 3 (local unitary invariance). SupposeA1 ,...,An
andB1 ,...,Bn are local unitary operations on the respecti
systemsA1 ,...,An . Then

K@~A1^¯^ An!+E+~B1^¯^ Bn!#5K~E!. ~3.8!

The Hartley strength satisfies local unitary invariance.
The axiom of local unitary invariance requires that t

strength of a quantum operation is not changed by local
erations. Thus, it is in accord with the notion that the stren
is a measure of an operation’s nonlocal content.

2. Other useful properties

We have just introduced three axioms essential for a
strength measure describing the nonlocal content of an
eration. We now introduce several useful properties
strength measure may satisfy, beginning with two invarian
properties.

Property 1 (exchange symmetry). Let E be a quantum op-
eration acting on a multipartite system whose subsyste
have the same Hilbert space. TheSWAP operation acting on
any two of these components has the effect of interchang
their states. ThenK has the exchange symmetry property
for all suchSWAP operations

K~SWAP+E+SWAP!5K~E!. ~3.9!

Property 2 (time-reversal invariance). For all unitaries
U,K(U†)5K(U).

The Hartley strength satisfies both properties.

d
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Property 3 (continuity). For some metricD(• , •) on the
space of quantum operations,uK(E)2K(F )u< f „D(E,F )…,
where f (•) is a continuous and monotonically increasi
function such thatf (0)50.

The Hartley strength isnot continuous with respect to
standard metrics on the space of unitary operations: the p
ence of any nonlocality in a unitary operationU is sufficient
to cause a discontinuous jump in the Hartley strength from
to 1 or more.

A major use of the continuity property is in the analysis
quantum computational complexity problems; see the disc
sion after the chaining property.

Property 4 (chaining). SupposeE andF are two quantum
operations. ThenK(E+F)<K(E)1K(F).

The main utility of chaining was anticipated in the Intr
duction: it can give bounds on the number of gates requ
to perform a particular quantum operation.

When combined with the continuity property, the chaini
property may also be used to prove bounds on theapproxi-
mation of unitary operations. This is important in applic
tions to computational complexity since it is usually suf
cient to solve problems with a high probability of succe
Suppose, for example, thatU is a desired two-qudit unitary
operation, and one is given the ability to perform a set
two-qudit gatesU5$U1 ,...,Um%, and local unitary opera
tions. LetK be any measure satisfying continuity, for som
choice off andD, as above, as well as chaining and locali
Let Aj ^ Bj be local unitaries andUl j

PU. To obtain an ap-

proximationV5(A0^ B0)Ul 1
(A1^ B1)¯Ul k

(Ak^ Bk) to U

such thatD(U,V)<e we need, by the continuity property
K(V)>K(U)2 f (e). But K(V)<kKmax, whereKmax is the
maximum value ofK(Ul), so the number of gates satisfie

k>
K~U !

Kmax
2

f ~e!

Kmax
. ~3.10!

The Hartley strength satisfies the chaining property, bu
prove it we need a related lemma.

Lemma 1. SupposeU has operator-Schmidt decompos
tion U5( j sjAj ^ Bj . SupposeU can be written in some
other form as a sum over products,U5(kÃk^ B̃k . The
number of terms in this decomposition is at least as grea
the number of terms in the operator-Schmidt decomposit
Thus, the operator-Schmidt decomposition is aminimal de-
composition forU, in the sense that it has the fewest produ
terms of any sum-over-products decomposition.

Proof. A simple proof of the lemma is to note that

Aj5
1

sj
trB@~ I ^ Bj

†!U#5
1

sj
(

k
Ãktr~Bj

†B̃k!. ~3.11!

Thus eachAj can be written as a linear combination of th
Ãk . But theAj are orthonormal, and thus linearly indepe
dent. It follows that the number of operatorsÃk must be at
least as great as the number ofAj , that is, at least as great a
the Schmidt number ofU. j
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With Lemma 1 in hand it is straightforward to prove th
chaining property. SupposeU5( j sjAj ^ Bj andV5(ktkCk
^ Dk are Schmidt decompositions for unitary operatorsU
andV. Then we have

UV5(
jk

sj tk~AjCk! ^ ~BjDk!. ~3.12!

The total number of terms in this sum-over-products deco
position ofUV is Sch(U)Sch(V), and so by the lemma we
must have Sch(UV)<Sch(U)Sch(V). Taking logarithms of
both sides of this inequality yields the chaining property
the Hartley strength.

Until now we have been concerned only with streng
measures defined forfixed quantum systems. Compare th
with the situation for entanglement measures. It is often s
that there is aunique @44,46,47# entanglement measure fo
bipartite pure states, namely, the von Neumann entropy
the reduced density matrix. Strictly speaking, this is no
single entanglement measure, since it can be applied to m
different types of quantum systems—pairs of qubits, a qu
and a qutrit, and so on. Rather, it is afamily of entanglement
measures, satisfying certain consistency properties that m
it sensible to refer to it as a single measure.

Motivated by this, we describe two consistency propert
we expect of a family of strength measures. There are
different ways in which a family of strength measures aris
naturally. The first corresponds to appending additional s
tems while keeping the state-space dimensions of the e
ing systems constant. The second corresponds to fixing
number of systems and varying the state-space dimension
the individual systems by adding local ancillas.

For the statement of each of the following properties
imagine that there is afamily of strength measures, each
which is denoted by the same letterK. When necessary, we
add superscripts to make precise which systemsK is acting
on. For example,KA:B:C(E) indicates the strength with re
spect to a division into three components, labeledA, B, and
C, andKA:BC(E) indicates the strength with respect to a d
vision into two componentsA and BC. For notational sim-
plicity, we state these properties for the case of three s
tems, with the generalization to more systems followi
similar lines.

Property 5 (stability under addition of systems). Suppose
E acts on systemsA and B, andC is an additional system
Then the familyK is stable with respect to additional sy
tems if

KA:B~E!>KA:B:C~E^ I!, ~3.13!

whereI denotes the identity operation onC.
Note that it does not make sense to speak of the Har

strength as being stable or not stable in this sense, since
defined only for two-component systems.

The intuition motivating the inequality in the statement
stability is that the ‘‘two-party’’ nonlocality present inE
should not be less than the ‘‘three-party’’ nonlocality inE
^ I. A stronger statement of the stability property wou
replace the inequality by an equality.
1-7
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The stability property is useful in the context of quantu
computational complexity. We explained earlier how to d
rive lower bounds such as Eq.~3.7! and Eq.~3.10! on the
number of gates needed to implement a two-qudit quan
operation. In the context of quantum computational co
plexity, the most natural setting is that we wish to impleme
a family of n-qubit unitariesU ~indexed byn! using a uni-
versal set of one- and two-qubit quantum gates. In suc
setting, we are looking for the most efficient decomposit
of eachU into a product of two-qubit gates

U5U j 1k1
U j 2k2

¯U j lkl
, ~3.14!

where the subscripts denote the qubits on which each~pos-
sibly different! unitary gate acts. A bound on the minimu
number of gatesl may be deduced from the chaining an
stability properties, using a similar analysis to that given
connection with chaining alone,l>K(U)/Kmax, where now
Kmax is the maximum value of the strength of any two-qu
gate. Because of stability,Kmax is aconstant, independent of
n, so in order to prove interesting lower bounds onl, one
needs to analyze only the asymptotic behavior ofK(U) as a
function ofn. If, for example, we could find a strength me
sure satisfying both chaining and stability, and such t
K(U)5Q(2n) for some family of unitariesU, then it would
follow that the family requires a number of gates exponen
in n. If, in addition,K has suitable continuity properties, the
it may be possible to prove that the family requires expon
tial time even if some reasonable probability of error is
lowed. Needless to say, if this were true for a unitary enc
ing of, say, the solution to a problem such as the trave
salesman problem, this would be a very interesting re
indeed.

Our second notion of stability is that introducing loc
ancillas which are then ignored should not change
strength of an operation.

Property 6 (stability with respect to ancillas). SupposeE
acts on systemsA andB, andC is an additional system. The
the family K is stable with respect to local ancillas if

KA:B~E!5KA:BC~E^ I!. ~3.15!

The Hartley strength is clearly stable with respect to lo
ancillas.

We now move on to additivity properties.
Property 7 [weak (sub)additivity]. SupposeA1 , A2 , B1 ,

and B2 are distinct systems such thatA1 and A2 have the
same state space, as doB1 andB2 . SupposeE is a quantum
operation that can act on eitherA1B1 or A2B2 . Then the
family K is weakly subadditiveif

KA1A2 :B1B2~E^ E!<2KA1 :B1~E!. ~3.16!

K is weakly additiveif the inequality can be replaced by a
equality in the above expression.

Property 8 [strong (sub)additivity]. SupposeA1 , A2 , B1 ,
andB2 are four distinct systems, andE andF are quantum
operations acting onA1B1 andA2B2 , respectively. Then the
family K is strongly subadditiveif
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KA1A2 :B1B2~E^ F!<KA1 :B1~E!1KA2 :B2~F!. ~3.17!

K is strongly additiveif the inequality can be replaced by a
equality in the above expression.

Note that strong subadditivity for a strength measure
not connected with the strong subadditivity property f
quantum mechanical entropy@48#.

The Hartley strength is strongly additive for unitary o
erationsU andV and thus possesses all four of these pro
erties. To see this, supposeU and V are unitary operators
with Schmidt decompositionsU5( j sjAj ^ Bj and V
5(ktkCk^ Dk , whereAj , Bj , Ck , andDk act on systems
A1 , B1 , A2 , andB2 , respectively. Then the Schmidt decom
position ofU ^ V with respect toA1B1 :A2B2 is

U ^ V5(
jk

sj tk~Aj ^ Ck! ^ ~Bj ^ Dk!. ~3.18!

It follows that Sch(U ^ V)5Sch(U)Sch(V) and, taking
logarithms, we see that the Hartley strength is strongly ad
tive.

Proposition 1. If the family K satisfies the chaining prop
erty and is stable with respect to local ancillas, then it
strongly subadditive.

Proof. Applying simple algebra, the chaining propert
and stability with respect to local ancillas in turn, we hav

K~E^ F!5K@~E^ I!~I^ F!#

<K~E^ I!1K~I^ F!

<K~E!1K~F!, ~3.19!

which is the strong subadditivity property. j
The converse is not true—we will see later that t

Schmidt strength is strongly additive and stable with resp
to local ancillas, but does not satisfy chaining.

The final property addresses what happens when a q
tum operation arises as a consequence of tracing out pa
the action of a quantum operation acting on a larger syst
For notational simplicity, we state this property for the sp
cial case of two systems, with the generalization to m
systems following similar lines.

Property 9 (reduction). Suppose a quantum operationE on
a composite systemAB is obtained from a quantum opera
tion on ABC as follows:

E~rAB!5trC@F~rAB^ sC!#, ~3.20!

for some fixed statesC of systemC. Then a familyK of
strength measures has thereduction propertyif KA:B(E)
<KA:BC(F).

The intuition behind the reduction property is that, if it
possible to doF, then it is also possible to doE, without any
extra dynamical resources being required.

The reduction property is important both in the analysis
distributed quantum computation~see below! and for the ap-
plications to quantum computational complexity sugges
earlier in this paper. In the latter applications we implicit
assumed that the implementation of some desired uni
could not be assisted by the introduction of ancilla qub
1-8
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
that are discarded at the end of the computation. Howe
there is evidence to suggest that ancillas may help in
forming a unitary transformation quickly; for example, som
of the constructions in@49# were made more efficient by th
use of ancillas. Suppose, however, thatK has the reduction
property and thatU can be implemented by performing a
operationV on a larger system. That is, supposeVuc&us&
5(Uuc&)us8&, for all uc&, and for some fixed ancilla statesus&
and us8&. Then we haveK(U)<K(V). If, in addition, it is
possible to useK(•) to prove bounds on computational com
plexity, as described earlier, then it follows from the inequ
ity K(U)<K(V) that any bound on the computational com
plexity of U must also apply toV, and thus our technique
can be applied even when working qubits are allowed.

The reduction property makes restricted sense for
Hartley strength, which is defined only for unitary operato
In particular, imagine, as above, that we have a unitaryV
acting onABC such thatVuc&us&5(Uuc&)us8&, whereuc& is
an arbitrary state ofAB, U is a unitary acting onAB alone,
andus& andus8& are fixed states ofC. To see thatKHar satisfies
the reduction property, let us introduce orthonormal basesuj&,
uk&, and ul& for the systemsA, B, andC, respectively. Note
that the invariance ofKHar with respect to unitaries on sys
tem C implies that it suffices to considerV such that
Vuc&u0&5Uuc&u0&, whereu0& is the first element of the basi
for C. Suppose we expandV as

V5 (
jkl j 8k8 l 8

Vj 8k8 l 8, jkl u j 8&^ j u ^ uk8l 8&^klu, ~3.21!

where the comma in the subscript ofV separates the row
index from the column index. Sinceu j 8&^ j u and uk8l 8&^klu
are orthonormal operator bases, it follows that the Schm
coefficients ofV are just the singular values of the matrixṼ

defined byṼj j 8,kk8 l l 8[Vj 8k8 l 8, jkl . Thus, the Schmidt numbe
of V is given by the number of nonzero singular values,
the rank, of the matrix. Similarly, we can expandU as

U5 (
jk j 8k8

U j 8k8, jku j 8&^ j u ^ uk8&^ku, ~3.22!

and the Schmidt number ofU is given by the rank of the
matrix Ũ j j 8,kk8[U j 8k8, jk . But U j 8k8, jk5Vj 8k80,jk0 , so up to
reordering of the columnsṼ5@Ũu¯#. It follows that the
rank of Ṽ is at least as great as the rank ofŨ, and thus
Sch(V)>Sch(U). Taking logarithms of both sides we ge
KHar(V)>KHar(U), which is the reduction property.

3. Application to the log-rank lower bound

As an illustration of the power of the framework we ha
just developed, we now apply it to the analysis of a com
tational problem of considerable interest: the communica
cost of a distributed computation.

We consider two separate problems in distributed com
tation, the first related to distributed computation of a clas
cal function, the second to distributed computation of
05230
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quantum Fourier transform. The first problem may be sta
as follows. Suppose Alice and Bob are in possession of c
sical data stringsx andy, respectively. They wish to comput
some joint one-bit functionf (x,y) of the data strings. To
accomplish this task they are only able to do arbitrary lo
quantum operations and to communicate qubits. This is
key problem ofquantum communication complexity@50,51#.

One of the major results in the fields of quantu
and classical communication complexity is thelog-rank
lower bound. This states that the minimum number
bits ~or qubits! of communication required to comput
f (x,y) is bounded below by log2$rank@(21) f (x,y)#%, where
(21) f (x,y) is the (x,y)th entry of thecommunication matrix.
Mehlhorn and Schmidt@52# proved this result for classica
communication complexity. The log-rank conjecture of co
munication complexity @53# states that, up to a poly
nomial factor, the log-rank lower bound issaturated, that is,
there is a protocol to compute f (x,y) using
polylog$rank@(21) f (x,y)#% bits of communication.

Although quantum protocols are potentially more pow
ful than classical, it was pointed out by Buhrman, Cleve, a
Wigderson@54# that @50,51# contain an implicit proof of the
log-rank lower bound in the quantum case. This result w
extended to the model in which preshared entanglemen
allowed by Buhrman and de Wolf@55#.

The framework introduced above and the results we h
proved about the Hartley strength allow us to give an alm
trivial proof of the log-rank lower bound in the case whe
only qubit communication is allowed, with no preshared e
tanglement. The proof is as follows. Suppose we have a
tocol in which Alice and Bob computef (x,y) usingk qubits
of communication. Then it is not difficult to see that they c
also computef (x,y) using at mostk SWAP gates and no qubi
communication. Using Bennett’s techniques@56# of revers-
ible computation, the protocol may be modified~using only
local unitary operations! to give what Cleveet al. @57# called
a clean protocol effecting the unitary transformation
uwA&ux&uy&uwB&→(21) f (x,y)uwA&ux&uy&uwB&, where uwA&
anduwB& are local work qubits for Alice and Bob. The clea
protocol uses only 2k SWAP gates. LetV be the unitary ef-
fected by the clean protocol, and letUux&uy&[
(21) f (x,y)ux,y&. Then by the reduction property followed b
the chaining property we have

KHar~U !<KHar~V!<2kKHar~SWAP!54k. ~3.23!

But U5(xy(21) f (x,y)ux&^xu ^ uy&^yu from which it follows
that Sch(U)5rank@(21) f (x,y)#. Combining this observation
with Eq. ~3.23! gives the log-rank lower bound

k>
1

4
log2$rank@~21! f ~x,y!#%. ~3.24!

The second problem we consider in distributed compu
tion is the distributed computation of a unitary operati
such as the quantum Fourier transformU on m1n qubits
(m<n), where Alice is in possession of the firstm qubits,
1-9
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and Bob is in possession of the remainingn qubits.9 How
many qubits of communication must Alice and Bob do
computeU? Suppose it is possible to achieve it with justk
qubits of communication. Then, as in the discussion of
log-rank lower bound, it must also be possible to implem
the quantum Fourier transform in a model in which no qu
communication is allowed, but in which Alice and Bob ca
apply k SWAP gates to their qubits. Applying the reductio
and chaining properties we conclude thatKHar(U)
<kKHar(SWAP), and thus we obtain the lower boundk>m,10

which agrees with them5n result obtained in@4#.

IV. THE CANONICAL DECOMPOSITION

Before we describe our results about measures of dyna
strength, we pause to explore a useful representation theo
for two-qubit unitary operators, thecanonical decomposition
of Khaneja, Brockett, and Glaser@58# ~see also Kraus and
Cirac @26# for a simple, constructive proof!. This decompo-
sition is an extremely valuable tool which characterizes
nonlocal properties of any two-qubit unitary with only thre
parameters,ux , uy , anduz .11 For appropriate one-qubit uni
tariesA1 , A2 , B1 , andB2 ,

U5~A1^ B1!ei ~uxX^ X1uyY^ Y1uzZ^ Z!~A2^ B2!, ~4.1!

where2p/4,ua<p/4. For convenience, define thecanoni-

cal form of U to be Ũ[(A1
†

^ B1
†)U(A2

†
^ B2

†); up to local

unitaries,Ũ is equivalent toU.
SinceX^ X, Y^ Y, andZ^ Z all commute, we may ex-

pandŨ as

Ũ5~cxI ^ I 1 isxX^ X!3~cyI ^ I 1 isyY^ Y!

3~czI ^ I 1 iszZ^ Z!, ~4.2!

whereca[cos(ua), sa[sin(ua). Multiplying the expression
out yields

Ũ5~cxcycz1 isxsysz!I ^ I 1~cxsysz1 isxcycz!X^ X

1~sxcysz1 icxsycz!Y^ Y1~sxsycz1 icxcysz!Z^ Z.

~4.3!

This expression is essentially in Schmidt form: up to a c
stant the Schmidt coefficients are just the magnitudes of
coefficients appearing in front of the four terms. Equati
~4.3! enables us to deduce the following result.12

Proposition 2. There exist two-qubit unitary operator
with Schmidt numbers 1, 2, and 4, but not 3.

9The following discussion generalizes results in@4#, which con-
sidered the casem5n.

10A simple modification of this proof gives the boundk>2m. We
acknowledge Jon Tyson for discussion on this point.

11See Makhlin@21# for an earlier proof that the nonlocal prope
ties of U are characterized byux , uy , anduz .

12We learnt recently that an equivalent result for states was in
pendently obtained by Du¨r, Vidal, and Cirac@59#.
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This is a surprising result because it reveals unexpec
structure in the space of two-qubit unitary operators. It
tempting to speculate on the existence of similar structure
more general unitary operators. We conjecture that, ind
3d8 system, there exist unitary operators with Schmidt nu
ber k if and only if k dividesdd8. An alternative conjecture
which we believe is less likely, is that unitary operators w
Schmidt numberk exist if and only if k and dd8 are not
coprime.

Proof. It is straightforward to see that unitaries wit
Schmidt numbers 1, 2, and 4 exist, so it only remains
show that there exist none with Schmidt number 3. Supp
U has Schmidt number 3. Then the canonical form ofU, Ũ,
must have exactly one of the terms in Eq.~4.3! equal to zero.
Without loss of generality, suppose theI ^ I term is zero.~If,
for example, theX^ X term is zero, then we multiply byX
^ X to obtain a unitary with theI ^ I term zero.! Then we
must havecxcycz5sxsysz50, and thereforeca50 for at
least one value ofa, andsb50 for at least one value ofb.
Note thata cannot be equal tob sincesa

21ca
251. By sym-

metry it suffices to assume thata is x andb is y, in which
case we obtain a unitary of the formisxcyczX^ X
1sxcyszY^ Y, which has Schmidt number at most 2. j

Now suppose thatU has Sch(U)<2. Then, up to local
unitary operations, it has the form of Eq.~4.3!, with exactly
two of the terms nonzero. As mentioned in the previo
proof, we can always ensure that theI ^ I term is nonzero.
Furthermore, conjugating by local unitaries, we can ens
that the other nonzero term isX^ X. Thus, up to local uni-
tary equivalence,U has the formU5aI ^ I 1bX^ X, for
some nonzeroa andb. Furthermore, we may assume thata is
real, since we can multiplyU by the local unitary operation
(eifI ) ^ I . Unitarity of U then implies that

I ^ I 5U†U5~a21ubu2!I ^ I 1a~b* 1b!X^ X, ~4.4!

from which we deduce thata21ubu251 anda(b* 1b)50.
Since aÞ0, b must be pure imaginary. Thus we havea
5A12p, b5 iAp for some 0<p<1. We have proved the
following proposition.

Proposition 3. Let U be a two-qubit unitary operator with
Schmidt number 2. Then, up to local unitary equivalenceU
has the form

U5A12pI ^ I 1 iApX^ X. ~4.5!

V. STRENGTH MEASURES BASED ON ENTANGLEMENT
GENERATION

In this and the following section we explore some of t
strength measures defined by us and other authors, no
relations between them, and connections to our earlier op
tional questions. We also prove several results about wh
measures obey which axioms and properties, summarize
Table I at the end of this paper.

We start in this section with strength measures based
entanglement generation. More is known about these m
sures because they use the relatively well-developed fiel
state entanglement. It seems likely to us that, although th
are natural measures to consider first, in the long run t
may not be the most useful. Since they are based on s

e-
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
resources, they may not provide much more insight wh
applied to dynamics. We consider two classes
entanglement-based strength measures: the entangle
generating capacities of quantum operationswithout initial
entanglement, and entanglement generating capacitieswith
the possibility of initial entanglement.

A. Entanglement generation without prior entanglement

Recall the definition of KE(U), Eq. ~3.1!: KE(U)
5maxua&,ub&E(Uua&ub&). KE(U) measures the maximum
amount of entanglement generated by a single applicatio
the unitaryU without initial entanglement. We show thatKE
and KSch are related to each other in interesting ways:~1!
KSch is a lower bound forKE ; and~2! KE is equal toKSchfor
a class of two-qubit unitaries. We also give some numer
evidence demonstrating thatKE is not equal toKSch for cer-
tain unitaries; see Fig. 2 below. To make this discuss
easier, we begin by discussing the properties satisfied byKE
andKSch, including a demonstration of the striking proper
that KE is superadditive, that is,U ^ U can sometimes gen
erate strictly more than twice as much entanglement aU
alone. Finally, we extend the definition ofKE and KSch to
general quantum operations and prove thatKE>KSch still
holds.

1. Properties of KE and KSch

Beginning with the three axioms, it is easy to see that b
KE andKSchsatisfy non-negativity, locality, and local unitar
invariance.~As we have definedKE and KSch only for uni-
taries, the axioms and properties we discuss here are
stricted to this case.!

We now turn to the properties ofKSch, which are very
similar to those ofKHar. KSch clearly satisfies the propertie
of exchange symmetry, time-reversal invariance, and sta
ity with respect to local ancillas, since none of these ope
tions change the Schmidt coefficients. The argument
KSch is continuous is slightly complicated, and will be d
scribed in the next paragraph.KSch is strongly additive, i.e.,
KSch(U ^ V)5KSch(U)1KSch(V). To see this, recall that i
U andV have Schmidt decompositionsU5( j sjAj ^ Bj and
V5(ktkCk^ Dk , with Aj , Bj , Ck , and Dk acting on sys-
temsA1 , A2 , B1 , and B2 , respectively, then the Schmid
decomposition ofU ^ V with respect toA1B1 :A2B2 is given
by Eq. ~3.18!:

U ^ V5(
jk

sj tk~Aj ^ Ck! ^ ~Bj ^ Dk!.

Using properties of the Shannon entropy, we find that

KSch~U ^ V!5HS H sl
2tk

2

dA
2 dB

2J D
5HS H sl

2

dAdB
J D 1HS H tk

2

dAdB
J D

5KSch~U !1KSch~V!. ~5.1!
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To see thatKSch is continuous, expand

U5 (
j j 8kk8

U j j 8,kk8u j &^ku ^ u j 8&^k8u, ~5.2!

where the comma separates row and column indices. S
u j &^ku andu j 8&^k8u are orthonormal operator bases, it follow
that the Schmidt coefficients ofU are just the singular value
of the matrixŨ defined byŨ jk, j 8k8[U j j 8,kk8 . Consider the
matrix norm iAi[maxuc&iAuc&i, where the maximization is
over unit vectorsuc&. KSch is a continuous function of the
Schmidt coefficients, and the Schmidt coefficients are c
tinuous functions of the matrixU, with respect to matrix
norm. This follows from the fact that the singular values o
matrix are continuous in the matrix~see, e.g., Chap. 3 o
@60#!. ThusKSch is a continuous function ofU with respect to
the matrix norm.

We have demonstrated numerically thatKSchdoes not sat-
isfy chaining; see Fig. 1.KSch also violates the reduction
property. To see this, suppose a Toffoli gateV is applied to
three qubitsABC, with A acting as the target qubit. Suppos
C is initially prepared in the u1& state, so Vuc&u1&
5(Uuc&)u1&, whereU is theCNOT gate, anduc& is an arbi-
trary state ofAB. It is not difficult to verify thatKSch(U)
5H(1/2,1/2), while KSch(V)5H(1/4,3/4), so KSch(V)
,KSch(U), in violation of the reduction property.

The properties ofKE are somewhat more difficult to elicit
KE is easily seen to satisfy the exchange symmetry prope
Numerical studies of the time-reversal invariance prope
have been inconclusive, although we speculate that for t
qutrit unitaries time-reversal invariance willnot be obeyed.
The discussion of continuity is somewhat complicated an
described in the following paragraph.KE is stable with re-

FIG. 1. Numerical violation of the chaining property forKSch.
U andV are two-qubit unitaries chosen by first generating rand
unitaries and then using a Nelder-Mead simplex minimization al
rithm to prepend and append local unitaries to generateU and V
maximizing the violation ofKSch(UV)<KSch(U)1KSch(V). If KSch

satisfied chaining, then all the points~corresponding to pairs o
unitariesU andV) would lie on or below the line.
1-11
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NIELSEN et al. PHYSICAL REVIEW A 67, 052301 ~2003!
spect to ancillas, since it already allows for the possibility
arbitrary ancillas. It is also easy to see from the definit
that KE satisfies the reduction property, in the same se
that the Hartley strength satisfies the reduction property.

We now outline a proof thatKE is continuous. To prove
this, we need to introduce a metric on the space of unit
matrices. We use the matrix normD(U,V)[iU2Vi
5maxuc& i(U2V)uc&i, where the maximum is over all un
vectorsuc&. Chooseua&,ub& such thatKE(V)5E(Vua&ub&).
Our earlier discussion shows that, without loss of genera
we may assumeua& exists in adA

2 -dimensional space andub&
exists in adB

2-dimensional space. It follows from the defin
tion that

KE~U !>E~Uua&ub&). ~5.3!

The results of@47# ~see also@61#! imply that, for statesuc&
and uf& of a bipartite systemCD, provided iuc&2uf&i
<1/6,

uE~ uc&)2E~ uf&)u<2iuc&2uf&i log2~dCdD!

1h~2iuc&2uf&i), ~5.4!

and using monotonicity ofh(•) on @0,1/6#, whereh(x)5
2x log(x). Thus, providediU2Vi<1/6 and using monoto
nicity of h(•) on @0,16#,

uE~Uua&ub&)2E~Vua&ub&)u<2iU2Vi log2~dA
2 dB

2!

1h~2iU2Vi !. ~5.5!

Combining this result with Eq.~5.3! and the fact that
KE(V)5E(Vua&ub&), we obtain

KE~U !>KE~V!22iU2Vi log2~dA
2 dB

2!2h~2iU2Vi !.
~5.6!

By symmetry the same inequality holds withU andV inter-
changed, and thus

uKE~U !2KE~V!u<4iU2Vi log2~dAdB!1h~2iU2Vi !
~5.7!

whenever iU2Vi<1/6, which is the desired continuit
equation.

What about the additivity properties ofKE? Intuitively,
we expect the amount of entanglement generated by
copies ofU to be no greater than twice the maximum ge
erated by one use ofU. However, this intuition fails when
ancillas are allowed. We show below that, unlikeKSch, KE is
superadditive. The proof requires some facts about the r
tionship betweenKE andKSch, so we prove this result at th
end of Sec. V A 2. SinceKE is stable with respect to loca
ancillas, superadditivity ofKE and Proposition 1 imply tha
KE does not satisfy chaining.

2. Relations between KE and KSch

In this subsection, we explore some relations betw
KSch andKE .

Lemma 2. For all unitariesU, KSch(U)5E(Uua&ub&)
whereua& is a maximally entangled state of systemA with an
ancillaRA , andub& is a maximally entangled state of syste
B with an ancillaRB .
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Proof. Let A andB label Alice’s and Bob’s systems, re
spectively. Alice introduces an ancillaRA that is a copy of
her system. She preparesA and RA in a maximally en-
tangled stateua&5(1/AdA)( j u j &u j &, wheredA is the dimen-
sion of systemA ~and hence also of systemRA). Bob does
the same thing, preparingub&5(1/AdB)( j u j &u j &, wheredB is
similarly the dimension ofB.

Let U5( lslAl ^ Bl be the Schmidt decomposition ofU
@Eq. ~2.1!#. Alice and Bob applyU to AB, obtaining

Uua&ub&5(
l

slAl ua&Bl ub&5(
l

sl

AdAdB
ual&ubl&,

~5.8!

where we defineual&[AdAAl ua& and ubl&[AdBBl ub&. ual&
and ubl& are orthonormal bases. For example,

^akual&5dA^auAk
†Al ua&5trAk

†Al5dkl . ~5.9!

Therefore, Uua&ub& has entanglementH„$sl
2/(dAdB)%…

which is equal toKSch(U). j

From this lemma, it follows thatKE(U) is bounded below
by KSch(U). We also show that they are equal for certa
two-qubit unitaries.

Theorem 1. KE(U)>KSch(U) for all unitariesU.
Theorem 2. KE(U)5KSch(U) for all two-qubit unitaries

U satisfying Sch(U)<2.
Proof. When Sch(U)51, U is a local unitary and hence

KE(U)5KSch(U)50.
Suppose Sch(U)52, in which case Proposition 3 implie

that U may be expanded as

U5~A1^ B1!~A12pI ^ I 1 iApX^ X!~A2^ B2!.
~5.10!

Let Ũ5A12pI ^ I 1 iApX^ X. We have seen in the previ
ous section thatKE andKSch are both invariant under loca
unitaries, so we haveKE(U)5KE(Ũ) and KSch(U)
5KSch(Ũ).

We can calculateKSch(Ũ) andKE(Ũ) directly.KSch(Ũ) is
equal toH(12p,p)[H(p), the binary Shannon entropy. T
calculateKE(Ũ), we substituteŨ into the expression Eq
~3.1! for KE , giving

KE~Ũ !5 max
ua&,ub&

S@~12p!ua&^au1pXua&^auX1 iAp~12p!

3^buXub&~Xua&^au2ua&^auX!#, ~5.11!

whereS is the von Neumann entropy, and its argument i
state ofARA . Now we use the fact that a projective me
surement onARA cannot decrease its entropy~see Chapter
11 of @5#!. We measure in an orthonormal basis contain
the elementsua& and ua'&, whereua'& is chosen so that, up
to an unimportant global phase,Xua&5cosfua&1sinfua'&
for somef. We obtain
1-12
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
KE~Ũ !<max
ua&

S@~12p!ua&^au1p^auXua&2ua&^au

1pu^a'uXua&2ua'&^a'u#

<max
f

H~12p1p cos2 f,p sin2 f!. ~5.12!

If p<1/2, the maximum occurs forf5p/2 and KE(U)
<H(p)5KSch(U). ~If p.1/2, applyX^ X to U to swap the
role of p and 12p.) Since, by Theorem 1,KE(U) is greater
than or equal toKSch(U), we must have equality. j

We show below thatKE is superadditive whileKSch is
additive, which implies that they are not equal for certa
unitaries. We have also shown this numerically by calcu
ing both functions for a particular class of unitaries, t
Schmidt number 4 family parametrized byp, denotedUp in
Eq. ~2.5!. Figure 2 plots bothKE(Up) and KSch(Up) as a
function of p, and also their difference.

We now have the tools required to prove thatKE is super-
additive, as promised at the end of the last section.

Theorem 3. KE is superadditive, i.e., there exist unitari
U such that

KE
A1A2 :B1B2~UA1B1

^ UA2B2
!.2KE

A1B1~UA1B1
!. ~5.13!

where the subscripts onU indicate the subsystems to whic
it is applied.

Proof. Let U5A12pI ^ I 1 iApX^ X. We show that ad-
ditivity is violated for certain values ofp. ~We will add sub-
scripts only where necessary.!

SinceU has two Schmidt coefficients, Theorem 2 impli
that KE(U)5KSch(U). Therefore, the right-hand side of Eq
~5.13! is 2KE(U)52KSch(U)52H(p).

To obtain the violation of additivity Eq.~5.13! we now
construct specific statesua& and ub& of A and B for which
E(Uua&ub&).2H(p). To do this, we applyU ^ U to two
pairs of systems, as depicted in Fig. 3, where we have o

FIG. 2. Plots ofKE(Up) ~dots! and KSch(Up) ~solid! as func-
tions ofp, and of the differenceKE(Up)2KSch(Up) ~dashed!, dem-
onstrating thatKE(Up)ÞKSch(Up) for some values ofp.
05230
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ted the ancillas as they turn out not to be necessary for
construction ofua& and ub&. Let ua&5(u00&1u11&)/& be a
state of Alice’s systemA1A2 andub&5(u00&1u11&)/& be a
state of Bob’s systemB1B2 .

We make use of a handy identity to calcula
E(Uua&ub&). Since ua& and ub& are maximally entangled, a
calculation shows that for any two-qubit unitaryU,

~UA1B1
^ I A2B2

!ua&ub&5~ I A1B1
^ UA2B2

T !ua&ub&,
~5.14!

where the transpose is taken in the basis$u00&, u01&, u10&,
u11&%. This is illustrated in Fig. 4.

For the unitary we are considering,UT5U, so that Eq.
~5.14! implies

E~UA1B1
^ UA2B2

ua&ub&)5E~ I A1B1
^ UA2B2

2 ua&ub&).
~5.15!

We may now apply Lemma 2, consideringA1B1 as the an-
cilla to A2B2 . We see that E(UA1B1

^ UA2B2
ua&ub&)

5KSch(U
2). Observing thatU2 is a unitary with two

Schmidt coefficients,

U25~122p!I ^ I 12iAp~12p!X^ X, ~5.16!

FIG. 3. Diagram ofU ^ U applied to systemsA1B1 andA2B2 .
Note thatA1A2 starts out in the maximally entangled stateua&, and
B1B2 starts out in the maximally entangled stateub&, soA1A2 is not
initially entangled withB1B2 .

FIG. 4. Illustration of the identityUA1B1
^ I A2B2

ua&ub&5I A1B1

^ UA2B2

T ua&ub&.
1-13
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we obtain

KE~U ^ U !>E~U ^ Uua&ub&)5H@~122p!2#, ~5.17!

so we have reduced the problem to showing that there e
values ofp such thatH@(122p)2#.2H(p). The existence
of such values is shown in Fig. 5.13 j

3. Extension to general quantum operations

Our results to this point have primarily concerned stren
measures for unitary operations. In this subsection, we ob
some results for general quantum operations, proving ge
alizations of Lemma 2 and Theorem 1 to quantum ope
tions. We will not do a detailed investigation of the axiom
and properties satisfied by these measures for general o
tions, although arguments similar to the unitary case mo
go through.

The first step is to generalize our definitions ofKE and
KSch. In order to generalizeKE @Eq. ~3.1!# to quantum op-
erations, we must choose an entanglement measure tha
plies to mixed states as well as pure states. We use theen-
tanglement of formation@62#:

F~r![min(
j

pjE~ uc j&), ~5.18!

where the minimization is over all pure state decompositi
$pj ,uc j&% of r, andE is the entanglement of pure states. No
that any two decompositions ofr are related by a right uni
tary matrix U jk : r5( j pj uc j&^c j u5(kqkufk&^fku if and
only if @63–65# Apj uc j&5( jU jkAqkufk&. We take as our
generalizedKE(E) the maximum entanglement generated
E over all separable input statesrA:B :

13The similarity between Fig. 2 and Fig. 5 is currently the subj
of further investigation.

FIG. 5. A plot of 2H(p), H@(122p)2#, and their difference.
05230
ist

h
in
r-
-

ra-
ly

ap-

s

KE~E!5max
rA:B

F@E~rA:B!#. ~5.19!

Note thatF+E is a convex function maximized on the conve
set of separable states,$rA:B%, and thereforeF@E(rA:B)#
achieves its maximum for extreme points of the set of se
rable states, i.e. pure product states.

To generalizeKSch, let E be a quantum operation with
operation elements$Gk%: E(r)5(kGkrGk

† . E can be de-
composed differently asE(r)5( jF jrF j

† if and only if @66#
the two sets of operation elements are related by a r
unitary matrixF j5(kU jkGk . By analogy with the entangle
ment of formation, a natural definition ofKSch(E) is

KSch~E![min(
j

tr~F j
†F j !

dAdB
KSch~F j !, ~5.20!

whereKSch(F j ) is given by Eq.~2.15!, and the minimization
is over all possible decompositions ofE into operation ele-
ments. The coefficients tr(F j

†F j )/(dAdB) form a probability
distribution. A physical interpretation is as follows:
KSch(F j ) is the strength of the operationF j , thenKSch(E) is
the expected strength ofE, minimized over all possible de
compositions ofE.

First, we prove two lemmas generalizing Lemma 2. F
the remainder of this section, letua& be a maximally en-
tangled state of systemA with an ancillaRA , and ub& be a
maximally entangled state ofB with an ancillaRB .

Lemma 3. For all operatorsQ,

KSch~Q!5ESA dAdB
tr~Q†Q!

Qua&ub& D . ~5.21!

Proof. Recall that KSch(Q)5H„$sl
2/tr(Q†Q)%…, so we

need only calculate the right-hand side of Eq.~5.21!. Expand
the stateQua&ub& as

Qua&ub&5(
l

slAl ua&Bl ub&5(
l

sl

AdAdB
ua l&ubl&,

~5.22!

where( lslAl ^ Bl is the Schmidt decomposition forQ, and
ual&[AdAAl ua&, ubl&[AdBBl ub& are orthonormal bases fo
their respective systems. The result follows. j

Lemma 4. For any quantum operationE, let s
[E(ua&^au ^ ub&^bu). ThenKSch(E)5F(s), whereF is the
entanglement of formation.

Proof. Let F j be the set of operation elements forE
achieving the minimum in the definition ofKSch. Then, ap-
plying the definition and Lemma 3, we have

KSch~E!5(
j

tr~F j
†F j !

dAdB
KSch~F j !

5(
j

tr~F j
†F j !

dAdB
ESA dAdB

tr~F j
†F j !

F j ua&ub& D .

~5.23!
t

1-14
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QUANTUM DYNAMICS AS A PHYSICAL RESOURCE PHYSICAL REVIEW A67, 052301 ~2003!
Noting that

H tr~F j
†F j !

dAdB
,A dAdB

tr~F j
†F j !

F j ua&ub&J ~5.24!

is an ensemble fors, we deduce thatKSch(E)>F(s). To
prove the reverse inequality, supposes5(kpkufk&^fku is
the minimizing decomposition for the entanglement of fo
mation ofs. Note thats can also be decomposed as

s5(
j

F j~ ua&^au ^ ub&^bu!F j
† . ~5.25!

The minimizing decomposition is related to the decompo
tion from Eq. ~5.25! by a right unitary matrixU: Apkufk&
5( jUk jF j ua&ub&. This unitary freedom is identical to th
freedom in the operator-sum decomposition, so the se
elementsGk5( jUk jF j is also an operator-sum decompo
tion for E, as well as giving the minimizing decomposition
s, that is, Apkufk&5Gkua&ub&. This gives us the desire
inequality,

F~s!5(
k

tr~Gk
†Gk!

dAdB
ESA dAdB

tr~Gk
†Gk!

Gkua&ub& D
5(

k

tr~Gk
†Gk!

dAdB
KSch~Gk!

>KSch~E!. j

~5.26!

The desired bound onKE now follows.
Theorem 4. KE(E)>KSch(E) for all quantum operationsE.
Proof. The result follows immediately from the previou

lemma and the fact that

KE~E!5maxF@E~rA:B!#>F@E~ ua&^au ^ ub&^bu!#. j
~5.27!

B. Entanglement generation with prior entanglement

In this section we consider the largest change in entan
ment which can be caused by a unitaryU, using both ancillas
and prior entanglement, as defined in Eq.~3.2! and repeated
here for convenience:KDE(U)5supuc&zE(Uuc&)2E(uc&) z,
where U acts on the combined systemAB, and uc& is an
arbitrary state ofAB plus their ancillasRA and RB . We
show that, althoughKDE involves a more difficult maximi-
zation thanKE , and may therefore be more difficult to wor
with, it satisfies more of the axioms and properties descri
in Sec. III B than doesKE . Incidentally, sinceKDE andKE
have different properties they cannot, in general, be equ

We first show thatKDE obeys the three axioms.KDE is
clearly non-negative and satisfies local unitary invariance
show thatKDE satisfies locality is only slightly more in
volved. If U5A^ B, thenKDE(A^ B)5supuc&uE(A^ Buc&)
2E(uc&)u50. On the other hand, sinceKDE(U)>KE(U)
and we know thatKE(U) satisfies locality,KDE(U)50 only
if KE(U), which implies thatU is a local unitary, as re-
quired.
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Second, we show thatKDE satisfies Properties 1, 2, 4, an
6–9. Properties 1 and 2, exchange symmetry and ti
reversal invariance, are easily seen to be true. We do
know whether Property 3, continuity, is satisfied. The arg
ment used to establish thatKE is continuous does not work in
this instance, because we do not have any bound on the
of the ancilla thatA andB may use. If such a bound could b
established then a similar continuity bound to that used
KE could be proved. Next, we show thatKDE obeys chain-
ing, Property 4. For any two unitariesU andV,

KDE~UV!5sup
uc&

zE~UVuc&)2E~ uc&) z

5sup
uc&

zE~UVuc&)2E~Vuc&)1E~Vuc&)2E~ uc&) z

< sup
uf&5Vuc&

zE~Uuf&)2E~ uf&) z

1sup
uc&

zE~Vuc&)2E~ uc&) z

5KDE~U !1KDE~V!. ~5.28!

Property 6, stability with respect to ancillas, holds sinceKDE
already allows the possibility of arbitrary ancillas. Therefo
by Proposition 1,KDE also satisfies strong subadditivity
Property 8. Finally, we note that the definitions immediate
imply that KDE satisfies the reduction property, Property 9

VI. STRENGTH MEASURES BASED ON METRICS

In this section we consider a class of strength measu
motivated by the axiomatic approach. This is in contrast
Sec. V, where we studied strength measures based on
tanglement generation. The strength measures we study
are based onmetrics. We explore the axioms and propertie
obeyed by these measures when different constraints
placed on the underlying metrics. We derive an exact, a
lytic formula for one particular measure. Finally, we exami
the potential of these measures for analyzing quantum c
putational complexity, as described in Sec. III B.

Recall the definition of a metric. LetX be a set. A metric
is a real functionD:X3X→R satisfying the following prop-
erties for any three elementsx,y,zof X: ~1! D(x,y)>0 with
equality if and only ifx5y; ~2! D(x,y)5D(y,x) ~symme-
try!; and~3! D(x,z)<D(x,y)1D(y,z) ~triangle inequality!.

Given a metricD, the corresponding strength measu
KD(U) is the minimum distance betweenU and the set of
local unitariesLU:

KD~U !5 min
LPLU

D~U,L !. ~6.1!

The setLU varies depending on context. The most comm
case is whereU is a two-qudit unitary acting on the spac
AB and LU is the set of products of one-qudit unitarie
KD(U)5minA,B D(U, A^B). Analogs of the definition ofKD
were introduced to quantify state entanglement by Ved
et al. @42#, and have been studied in considerable det
proving to be a fruitful approach to quantifying state e
tanglement.

More generally, ifU acts on a composite of systems,A1 ,
A2 ,...,Am , there are several notions of ‘‘local,’’ which w
1-15



-

m
b

ic

en
pr
to
o

t t

th

ri-

e
e

se

s,

ve
e

ng

idt

ion

ues

n

NIELSEN et al. PHYSICAL REVIEW A 67, 052301 ~2003!
differentiate with superscripts. For example, supposeU acts
on ABC. One notion of ‘‘local unitary’’ corresponds to uni
taries of the form A^ B^ C, so that KD

A:B:C(U)
5minA,B,C D(U, A^B^C). A different division into sub-
systems leads to a different measure:KD

A:BC(U)
5minA,B D(U, A^B), whereA acts on systemA but nowB is
any unitary onBC.

A. Properties of strength measures based on metrics

One reason for studying strength measures based on
rics is that the properties of the strength measure may
controlled by varying the properties of the underlying metr
We consider strength measures based on~1! arbitrary met-
rics; ~2! metrics invariant under local unitaries; and~3! met-
rics invariant under any unitary. Each extra requirem
causes the strength measure to obey extra axioms and
erties from Sec. III B. Since we know of no general way
characterize families of metrics, in this section we do n
consider any of the properties applying to families~Proper-
ties 5–9!. Therefore, throughout this section we assumeKD

5KD
A:B .

The metric properties are easily seen to guarantee tha
axioms of non-negativity and locality hold for allKD . An
elegant fact is that the metric properties alone also imply
KD satisfies the continuity property.

Lemma 5. For any two unitariesU andV and any metric
D, uKD(U)2KD(V)u<D(U,V).

Proof. ChooseA and B such thatKD(V)5D(V,A^ B).
By definition KD(U)<D(U,A^ B), and by the triangle in-
equality D(U,A^ B)<D(U,V)1D(V,A^ B)5D(U,V)
1KD(V). Thus KD(U)<D(U,V)1KD(V), which may be
rearranged to giveKD(U)2KD(V)<D(U,V). By symme-
try, KD(V)2KD(U)<D(U,V). j

If D is locally unitarily invariant, i.e.,D(U,V)5D@(A
^ B)U,(A^ B)V#5D@U(A^ B),V(A^ B)#, then KD satis-
fies local unitary invariance.

Finally, suppose the metric satisfies full unitary inva
ance, so thatD(U,V)5D(WU,WV)5D(UW,VW) for any
unitary W. ThenKD satisfies two additional properties. Th
first is exchange symmetry, which is easily proved. The s
ond is chaining,KD(UV)<KD(U)1KD(V). To see this,
supposeA^ B andC^ D minimize KD(U) andKD(V), re-
spectively. Then

KD~UV!<D@UV,~A^ B!~C^ D !#

<D@UV,U~C^ D !#

1D@U~C^ D !,~A^ B!~C^ D !#

5D~V,C^ D !1D~U,A^ B!

5KD~U !1KD~V!. ~6.2!

B. An explicit formula for the Hilbert-Schmidt strength
of a two-qubit unitary

In this section we consider an example of a metric-ba
strength measure, theHilbert-Schmidt strength KHS induced
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by the unitarily invariant Hilbert-Schmidt norm on operator
iQiHS[Atr(Q†Q). More explicitly, for a bipartite unitary
operationU we define

KHS~U ![min
A,B

iU2A^ BiHS, ~6.3!

whereA andB are local unitary operators on the respecti
subsystems. We now exhibit an explicit formula for th
Hilbert-Schmidt strength in the two-qubit case.

The statement of the result is simplified by first maki
some definitions and observations. LetU be a two-qubit uni-
tary operation with canonical decomposition

U5~A1^ B1!ei ~u1X^ X1u2Y^ Y1u3Z^ Z!~A2^ B2!. ~6.4!

Because of local unitary invariance the Hilbert-Schm
strength depends only on the parametersu j , that is, we can
ignore the local unitary operationsA1,2 and B1,2. Without
loss of generality, we assumeU is in canonical form, that is,
A15B15A25B25I .

We define uf0&5(u00&1u11&)/& and uf j&[(I
^ s j )uf0& for j 51, 2, 3, where we writes0 , s1 , s2 , s3 to
denoteI,X,Y,Z. Note that the setuf j& for j 50, 1, 2, 3 is the
Bell basis, up to phases. A simple but tedious calculat
verifies the useful formulâf j usk^ s l uf j&5dklH jk , where
the 434 matrix H is

H5F 1 1 21 1

1 1 1 21

1 21 21 21

1 21 1 1

G .

TheH matrix can also be used to evaluate the eigenval
of U. BecauseX^ X, Y^ Y, and Z^ Z are diagonal in the
uf j& basis, U may be written in diagonal form asU
5( jl j uf j&^f j u, wherel j are the eigenvalues ofU. These
eigenvalues are evaluated as follows:

l j5^f j uUuf j&

5^f j uei ~u1X^ X1u2Y^ Y1u3Z^ Z!uf j&

5expS i (
k51

3

uk^f j usk^ skuf j& D , ~6.5!

where in the last line we used the fact that all threesk^ sk
are diagonal in theuf j& basis. Substitutinĝf j usk^ s l uf j&
5dklH jk we obtain

l j5expS i (
k51

3

H jkukD . ~6.6!

Theorem 5. For a two-qubit unitaryU with canonical de-
composition Eq.~6.4!, the Hilbert-Schmidt strength is give
by the formula

KHS~U !5A822 max
0<k<3

U(
j

l jH jkU. ~6.7!
1-16
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TABLE I. Summary of axioms and properties of strength measures. ‘‘Yes’’/ ‘‘No’’ indicates whether the strength measure ob
axiom or property. ‘‘—’’ means the property is not applicable, and ‘‘?’’ means we do not know whether the strength measure obeys th
or property.KD@LU# refers to strength measures induced by locally unitarily invariant metrics, andKD@U# refers to strength measure
induced by unitarily invariant metrics.

Measure KHar KSch KE KDE KD KD@LU# KD@U#

A1 Non-negativity yes yes yes yes yes yes yes
A2 Locality yes yes yes yes yes yes yes
A3 LU invariance yes yes yes yes ? yes yes
P1 Exchange yes yes yes yes ? ? yes
P2 Time reversal yes yes ? yes ? ? ?
P3 Continuity no yes yes ? yes yes yes
P4 Chaining yes no no yes ? ? yes
P5 System stability — — — — ? ? ?
P6 Ancilla stability yes yes yes yes ? ? ?
P7 Weak additivity yes yes no yes ? ? ?
P8 Strong additivity yes yes no yes ? ? ?
P9 Reduction yes no yes yes ? ? ?
-

o

arily
er-

t be
lex-

-
e
th
he
of
,

ise

ce

.
tes

i-
er
ni-
The minimizing local unitary isA^ B5eiusk^ sk wherek
achieves the maximum in the expression above, andu is the
argument of( jl jH jk .

Proof. Simple algebra shows that

KHS~U !25min
A,B

†822 Re„tr@U†~A^ B!#…‡, ~6.8!

where Re(•) denotes the real part. We expandA and B in
terms of the Pauli operators asA5(k50

3 aksk , B
5( l 50

3 bls l . ~Note that the unitarity ofA andB implies that
(kuaku25( l ubl u251.) Substituting these expressions forA
andB andU5( jl j uf j&^f j u, gives

KHS~U !25 min
ak ,bl

F822 ReS (
jkl

l j* akbl^f j usk^ s l uf j& D G ,
~6.9!

where the minimization is over allak ,bl such that the corre
sponding A and B are unitary. But ^f j usk^ s l uf j&
5dklH jk , as noted earlier, so this expression simplifies t

KHS~U !25822 max
ak ,bk

ReS (
jk

l j* akbkH jkD . ~6.10!

The Cauchy-Schwarz inequality implies(kuakbku<1, so

ReS (
jk

l j* akbkH jkD<(
k

S uakbkuU(
j

l j* H jkU D
<max

k
U(

j
l j* H jkU

5max
k
U(

j
l jH jkU. ~6.11!

Equality occurs whenal5dkl andbl5dkle
iu, wherek maxi-

mizes the right-hand side of the inequality, andeiu( jl j* H jk
05230
5u(jljHjku. This corresponds toA^ B5eiusk^ sk , andu as
described in the statement of the theorem. j

C. Applications to computational complexity

We have seen that strength measures based on unit
invariant metrics satisfy many desirable axioms and prop
ties. It is natural to ask whether these measures migh
useful in answering questions about computational comp
ity, as described in Sec. III B.

In order for a family of measures$KD% to be useful in this
context, we require$KD% to be stable under addition of sys
tems ~for the remainder of this section, we simply writ
‘‘stable’’ for this property!. This is to ensure that the streng
of a CNOT gate is independent of the number of qubits in t
system being studied. It is tempting to consider a family
measures$KD% whose underlying family of metrics is stable
in the sense thatD(U,V)5D(U ^ I ,V^ I ) for any unitaries
U andV. However, we show here that such metrics give r
to trivial bounds on computational complexity. Denote byU
a unitary acting onn qubits, and let 0 andI be the zero and
identity operator, respectively, onn qubits. For any such uni-
tary,

KD~U !5 min
A1 ,...,An

D~U,A1^¯^ An!

< min
A1 ,...,An

@D~U,0!1D~0,A1^¯^ An!#

52D~ I ,0!, ~6.12!

where to obtain the last line we used the unitary invarian
of D. But I 5I 1^ I 2^¯^ I n , whereI j is the identity on the
j th qubit, so by the metric stability propertyKD(U) is al-
ways bounded by 2D(I ,0)52D(I 1,0), which is a constant
Therefore, the lower bound on the number of two-qubit ga
required to implement ann-qubit gate,k>K(U)/Kmax @Eq.
~3.7!#, is a constant.

This shows that any family of metrics that is both un
tarily invariant and stable cannot give interesting low
bounds on computational complexity. As noted above, u
1-17
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tary invariance is a useful property. On the other hand,
bility of the family of metrics may not be necessary for s
bility of the induced family of measures. So it may b
possible to find a family of unitarily invariant metrics whic
is not stable, but which induces a stable family of measu
and could therefore give useful lower bounds on compu
tional complexity.

VII. SUMMARY AND FUTURE DIRECTIONS

We have developed the beginnings of a quantitat
theory of quantum dynamical operations as a physical
source. While promising preliminary results have been
tained, an enormous amount of work remains to be do
~Table I summarizes the properties of the strength meas
we investigated.! We believe the development of this theo
offers a concrete path to address the fundamental questio
.
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quantum computational complexity: how many one- a
two-qubit quantum operations are required to do some
sired quantum operationE? This will, in turn, allow us to
answer questions about the relationship of quantum and c
sical complexity classes, and may enable the resolution
some long-standing questions in complexity theory.
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