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How useful is a quantum dynamical operation for quantum information processing? Motivated by this
guestion, we investigate sevesitength measureguantifying the resources intrinsic to a quantum operation.
We develop a general theory of such strength measures, based on axiomatic considerations independent of
state-based resources. The power of this theory is demonstrated with applications to quantum communication
complexity, quantum computational complexity, and entanglement generation by unitary operations.
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[. INTRODUCTION controlledNOT (CNOT) gates are required to implement a
SWAP gate on two qubits, when assisted by arbitrary local
The quantification and comparison of different types ofunitaries. Suppose we have a meast(¥), quantifying the
physical resources lies at the heart of much of modern scistrength of a unitaryJ. Suppose further tha€(U) satisfies
ence. A good example is the physical resowgnergy whose  (a) K(UV)<K(U)+K(V); and(b) K(U)=0 for local uni-
guantification enabled the development of thermodynamicdaries U. It is easy to see that the number ofioT gates
More recently, motivated by applications to quantum infor-needed to do thewap gate is at leaskK(SWAP)/K(CNOT).
mation processing, there have been attempts to develop a More generally, the central problem of quantum compu-
quantitative theory of quantum entanglemelif]. This tational complexity is to determine the minimum number of
theory, still in its nascent stages, has been applied to gaione- and two-qubit gates necessary to implement a desired
insight into questions about the capacity of a noisy channeh-qubit unitary operatiorJ. For exampleU might encode
for information[2], quantum teleportation with a noisy en- the solution to a problem such as the traveling salesman
tangled resourcg3], and distributed quantum computation problem. Suppose we have a strength measure satisfying
[4]. properties (a) and (b) above, as well asic) K(Ugl)
Structurally, guantum mechanics has two parts, one partEK(U). The number of gates needed to computis again
concerned withguantum statesthe other withquantum dy-  bounded below b (U)/K(cNoT). Such a bound might help
namics A general quantum dynamical process is describedn determining the relationships between various quantum
by a quantum operatior(reviewed in[5]); such processes and classical complexity classes. We will return to this ap-
include unitary evolution, quantum measurement, dissipaplication several times.
tion, and decoherence. We believe quantum operations are a Another motivation to study quantum dynamics as a re-
useful physical resource on an equal and logically indepensource is recent work oaniversalityin quantum computa-
dent footing to quantum states. tion. The class of interactions capable of performing univer-
The first step in studying a physical resource is to quantifysal quantum computation has been shown to be the class of
it. Therefore, the purpose of our paper is to develop a theorpipartite entangling dynamics; any Hamiltonian that can cre-
quantifying thestrengthof quantum dynamical operations. ate entanglement between any pair of qudits is universal,
Our motivations are axiomatic and operational questionsvhen assisted by arbitrary one-qudit unitarissee[8-13|
concerning quantum dynamics. Our goal is to find strengttand references therein; see al4d,15 for related worl. It
measures capturing some of the structure in the complicateldas also been shown that any entangling two-qudit unitary,
space of quantum operations, to gain insight into quantuntogether with arbitrary one-qudit unitaries, is univer$ab];
dynamics and complex quantum systefiis7]. Although  see[17] for a simple, constructive proof in the qubit case
some of the measures we propose for operations are based onThese results show that there is a qualitative difference
state entanglement measures, we expect the study of dynaimetween entangling and nonentangling dynamics. Further-
ics to provide different, complementary insights to thosemore, they show that all two-qudit entangling dynamics are
gained from the study of states. qualitatively equivalent, as any one can simulate any other,
What questions will good strength measures allow us tgrovided local unitaries are available. By analogy with the
analyze? We foresee applications to the analysis of quantustudy of state entanglement, this suggests quantifying entan-
computational complexity, distributed quantum computationgling dynamics. We now review prior work on this idea,
guantum communication, and quantum cryptography. As @rganizing our discussion around three motivating themes:
simple example, consider the question of how manythe communication cost to implement an operation; the en-
tangling ability of an operation; and the ability of an opera-
tion to communicate bits.
*Electronic address: nielsen@physics.ug.edu.au The communication requirements for implementing a
"Electronic address: jdodd@physics.uqg.edu.au general bipartite unitaryy were studied in Chapter 6 ¢4],
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where a general lower bound on the number of qubits obperation to communicate information, and related this ca-
communication needed to implemdntwas proved, depend- pacity to the ability of the operation to generate entangle-
ing only on the operator Schmidt decompositionlbfisee  ment.

Sec. Il for discussion of this decompositjorEisert et al. Our paper draws on all these perspectives, but differs in
[18] and Collins, Linden, and Popesfl] studied the clas- an important way. Rather than focusing on the ability of a
sical communication and entanglement required to impleguantum dynamical operation to generate some static re-
ment some specific few-qubit quantum gates. Chefles, GilSOUrce, such as entanglement or shared classical bits, we be-
son, and Barnef20] studied the amount of communication 'l€Ve it is possible to quantify quantum dynamical operations
and entanglement required to perform an arbitrary gate in &5 & physical resource in their own right. That is, we do not

network of qubits. need to make reference to the ability of the operation to
The capacity of a quantum operation to generate entangl§l€nerate some other resource. _ _
ment seems to have first been studied by Makfgiti, who How can one develop a theory of dynamic strength with-

found three invariants characterizing the nonlocal propertie€Ut relying on familiar state-based resources? The approach
of two-qubit unitaries. Makhlin used the invariants to obtaine take is to identify plausible axioms and properties a good
results about entanglement generation, with a view toward€asure of strength should satisfy, and develop measures
applying them to the complexity of implementing gates. Za-Satisfying those properties. _

nardi, Zalka, and Faorf22], Zanardi[23], and Wang and The paper is structured as follows. Section 1l opens by
Zanardi[24], all obtained results about thwerage entangle- mtroducmg tw_o concrete examples of s_trength measures for
mentgenerated by a unitary. Ciraet al. [25] studied the unitary operations, thHa_rtIey and Sc.:hm|dtstr_eng'ths. Sec-
ability of an operation to produce entanglement by mappiné'on Il considers operational questions motivating strength
the operation onto a corresponding state, and studying th@€asures, and uses these guestions to motivate some_abstract
properties of that state. Kraus and Cir6] studied the @Xioms for s_uch measures. _Sectlon v br_|efly_ summarizes a
maximum entanglemettiat can be created by a unitary op- usefulcan_omcal decompositiofor two-qublt unltary_ opera- -
erator acting on two initially unentangled qubits. They found!©rs. Sections V and VI explore a variety of specific defini-
an explicit formula for the maximum entanglement that canfions for dynamic strength measures. Our general philosophy
be generated without ancillas, and showed that this amourt {0 explore a wide variety of measures and then to concen-
can be exceeded with the use of ancillas. Leifer, Hendersorfate on those that appear most likely to yield useful practical
and Linden[27] used similar reasoning to obtain an explicit answers to .|nterest|ng operational questions. Section VII
formula for the entanglement generated without ancillas, bugoncludes with a summary and a table of results.

allowing initial entanglement. They also obtained numerical

results demonstrating that the addition of ancillas can in- 1l. INVITATION: THE HARTLEY AND SCHMIDT

crease the maximum entanglement generated. In a different STRENGTHS

context, Scararet al. [28] related the entangling power of a
unitary operation to the problem of thermalization of a quan-
tum system.

A related approach is to quantify the entangling abilities
of Hamiltonians rather than unitaries. Det al.[10] consid-
ered therate at which a Hamiltonian creates entanglement
and found techniques to optimize this rate. More recently

Vidal, Hammerer, and Cira29) (see alsd30]) analytically composition to operators, which we call the operator-

characterized the minimum time required to simulate ONeg 1 mid decompositiof]. To explain the operator-Schmidt

Hamiltonian with another, and found the minimum time re_decomposition we introduce the Hilbert-Schmidt inner prod-
quired to simulate a desired unitary with a Hamiltonian. This ct on the space ofixd operators, defined byQ,P)

allowed them to define a partial order on unitaries, accordiné’_ . i
to which one unitaryJ is morenonlocalthan another unitary =t(Q'P), for any operator® andP. Using th|s inner prod-
V if and only if, for any Hamiltonian, the minimum time uct, we -de;fme an orthgpormal operatorTbaS|s o be &Gt
required to simulatdJ is longer than the minimum time to that satisfies the conditiorj, Qi) =tr(Q; Q) = dj, where
simulate V. They also obtained results on the optimal k=1 if j=k and O otherwise. For example, a complete
choices of nonlocal interactions for transmitting classical bitrthonormal basis for the space of one-qubit operators
between two parties. Childat al.[31] found an explicit for- is the set of normalized Pauli matrice$l,X,Y,Z}
mula for the maximum entanglement created by a class of{!/v2,X/V2,YIV2,ZIV2}.
two-qubit Hamiltonians, including the Ising interaction and ~ An operatorQ acting on systems! and 3 may be written
the anisotropic Heisenberg interaction, for which this maxi-in the operator-Schmidt decompositip4]
mum is achieved without ancillas.

The ability of a quantum operation to communicate clas- _
sical information was studied by Beckmaal. [32], who Q_Z SAGB, @D
obtained simple necessary and sufficient conditions for infor-
mation transmission to be possible. Benrgtal. [33] and  wheres; =0 andA, and B, are orthonormal operator bases
Berry and Sanderf34] studied thecapacity of a bipartite  for A and B, respectively. To prove the operator-Schmidt

In this section we introduce two strength measures, the
Hartley strength and the Schmidt strength. These measures
are introduced both because of their intrinsic interest, and
also because the Hartley strength will be used as a simple,
concrete example illustrating the more abstract, axiomatic
approach to dynamic strength. The Hartley and Schmidt
Strengths are based on a generalization of the Schmidt de-
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decomposition, expan@==x;M;,C;®Dy, whereC; and |Sli'"-SI>H|fS|>®|fs|,ls|>®'"lfsl~~-s|>v (2.9

D are fixed orthonormal operator bases.foandB, respec-

tively, and M, are coefficients. The singular value decom-where the one-qubit stafé,) is defined for an arbitrary bit

position states Fhat the matrid, whose {,k)th entry IS stringt=t,...t, by |f;)=[]|0)+exp(27i0.t)|1)]/v2, and Ot

Mji, may be writtenM =UsV, whereU andV are unitary, s the binary fractiort,/2+t,/4+---+t,/2.

ands is diagonal with non-negative entries. We thus obtain  Suppose now that syster consists ofm qubits and sys-
tem B consists ofn qubits, andU is the quantum Fourier

+ its. )
Q:% U;i81ViC; ® Dy, (2.2 transform onm+n qubits. From Eq(2.8),

U|x1,...,xm,y1,...,yn>=|fyn>®'-'®|fxl‘..yn). (2.9

where s, is the Ith diagonal entry ofs. Defining A,
=3,U;,C; andB =X,V D, which are easily shown to be Supposem=n. To determine the Schmidt decomposition of
orthonormal operator bases fot and B, we obtain the the quantum Fourier transform it is convenient to introduce
operator-Schmidt decomposition E@.1). the notationy’=y; 'y, m andy"=yn_mi1*"Yn, SO the

Nielsen[4] defines the Schmidt number of an operatorstringy can be formed by concatenating the stringsand
Sch@Q) to be the number of nonzero coefficients in they”. It follows from the previous equation that
operator-Schmidt decomposition far*

A simple example is theNOT gate which has operator- U= A ®Bown 21
Schmidt decomposition % e (2.10
CNOT:‘/Q|0><0|®T+‘/Q|1><1|®'X (2.3  Wwherexranges ovem-bit stringsx; - --Xy, and we define
and hence has Schmidt -coefficient§v2,v2}, and Ay =Ty My ) Iy ey (X

SchicNoT)=2. The swap gate for qubits has operator-
Schmidt decomposition

p BxyrrEZ ny/y//, (21:D
swar=TeT+XeX+YaY+Z287 2.9 ’

CX ’ HE|f >.|fX ><y|
and hence S¢BwaP)=4. A less familiar example is the gate L v
A calculation shows that tha,,, are orthonormal operators

Up=(V1-pl®l+iVpXeX)(V1-plal+iJpZeZ) and the B,y are an orthogonal set, withB(,B,y
(25  —2n~m Thus the Schmidt decomposition for the quantum

which has operator-Schmidt decomposition Fourier transform is

Up=2(1-p)T@T+2pYeY+2p(1-p) U=2 V2" MA@ (2.12
XyH

Byy
X[(e™X)@X+ (e ™Z)27] (2.6
Thus, whenm=n the quantum Fourier transform has
and thus has Schmidt number 1 whpr-0 or 1, and 4 Schmidt number 2", and all nonzero Schmidt coefficients
otherwise. are equal toy/2"~ ™. Note that the Schmidt decomposition of
A more complicated example is provided by the quantunthe quantum Fourier transform was already obtainef4in
Fourier transform, whose unitary action bgubits is defined whenm=n; we have not yet succeeded in determining the

by the action on computational basis stdig§] Schmidt decomposition of the quantum Fourier transform
whenm>n, but conjecture that it has Schmidt numbéFr.3
1271 | The Hartley strength of an operatoiK ,,,(Q) is defined
|S>—> = E estt/Z |'[>, (27) by
2' t=0
Khal Q)=l0g,[ SchQ)]. (2.13

where we number the basis states frifinthrough|2'—1).
A useful alternative formula for the quantum Fourier trans-(The logarithm is taken to base 2 throughout this paper.
form may be obtained by working in a binary representatiorReturning to our examples, theNoT gate has Hartley
s=s;- 'S, whencé

3Tyson[39] has recently calculated the Schmidt decomposition of
Terhal and Horodeck{35] defined an alternative notion of the quantum Fourier transform in the general case and has con-
Schmidt number for bipartite density matrices. firmed this conjecture.
2According to Chapter 12 of37], this decomposition was ob-  “The term Hartley strength comes from the Hartley entrp4y]
tained by Danielson and Lanczos in 1942. It was rediscovered in thef a probability distribution, defined to be the logarithm of the
guantum context in38]. number of nonzero elements in the probability distribution.
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strength log2=1, theswap gate has strength 2, and}, has The reader should note that the main point of this section
strength 0 forp=0 or 1, and strength lggl=2 otherwise. is not to prove results about the measures we define. Rather,

The quantum Fourier transform has Hartley strength, 2 it is to provide definitions of some strength measures, and a
providedm=n. discussion of their operational motivation. After we have
The Schmidt strength is motivated by a simple observaenumerated the properties we would like these measures to
tion about unitary operatotd acting on systemsl and3 of ~ satisfy, we will take up the problem of determining the prop-
respective dimensions, andd,;. For such an operator, the erties of these measures, and the relationships between them.
relation trU'U)=d ,d; implies that the Schmidt coeffi-
cients s, satisfy E,s,zszdB. Therefore, the numbers
s?/(d 4d) form a probability distribution. A natural measure  In this section, we consider two related questions on the
of the nonlocal content 0B is thus the Schmidt strength, ability of a quantum operation to create entanglement and to
defined to be the Shannon entrody-) of the distribution ~communicate information. We also review some of the recent

1. Entanglement generation and communication capacity

s?/(d 4dp),® work on these subjects.
How much entanglement can be generated by a quantum
SI2 operatior? How much entanglement a single application of a
Kse{U)=H {dA—dB] ) . (2.149 unitary U can generate depends crucially on the initial states

U may act on. We must also specify whether we are inter-
. L ested in the maximum, minimum, or average entanglement
More generally, for an arbitrary bipartite opera@we de-  generated. We focus primarily on maximizations.

fine theSchmidt strengtivy We define two measures for tlemtangling strengttof a
unitary U. (See Sec. V A 3 for some generalizations to quan-

o [ tum operations.

KSCF(Q):H([U(Q Q)})’ (219 The first strength measure quantifies the maximum en-
tanglement that a unitay can create between two systems

where {s,Z/tr(QTQ)} are the squared Schmidt coefficients A and B with the use of arbitrary ancillas, but without prior

of Q, normalized to form a probability distribution. Note entanglement:

that Kge{CNOT)=1, Kge{SWAP)=2, Kge{Up)=H[(1

—p)2,p%,p(1-p),p(1—p)], and Kg,=2m for the quan- Ke(U)= maxE(U|a)|B)), (3.2

tum Fourier transform, whem=n. |a).18)

where|a) ranges over al{possibly entangledstates of sys-
tem A plus an ancillaR 4, and|8) ranges over states of
In this section, we explore two approaches to the definisystemB plus an ancillaR 5z, andE is the usual measure of
tion of strength measures. In tloperational approachdis-  bipartite pure state entanglement, the von Neumann entropy
cussed in Sec. Il A, we define several measures of strengtbf the reduced density matrixNote that the ancillas may be
based on the ability of an operation to perform various taskschosen with dimensions equal to the dimensionsl@nd 3,
These measures thus quantify a dynamical resource requirégspectively, since the Schmidt number@f with respect to
by each task. The second approach,akiematic approach  the A:R 4 division is at mostd 4, and similarly for|B). It
is explored in Sec. 1l B, where we identify a list of three follows thatKg is truly a maximum and not a supremum.
axioms and nine useful properties for a strength measure. Kraus and Cira¢26] calculatedKg(U) for some special
These two approaches may appear to be independent, biwo-qubit unitaries, while Leifer, Henderson, and Linden
there is actually substantial interplay. In particular, many ofl 27] obtained numerical evidence that removing the ancillas
the properties in Sec. 11l B are motivated by consideration ofdecreases the maximum entanglement for certain unitaries.
the operational measures of strength of Sec. Il A. The second measure allows the possibility of prior en-
tanglement as well as ancillak,g(U) is the magnitude of
the maximalchangein entanglement caused

IIl. CONCEPTUAL FRAMEWORK

A. Operational approach

Quantqm dynamlcs are cle.arly an essential comp.one_nt. in Kae(U)=sudE(U] ) —E(|9))], (3.2

guantum information processing tasks. However, it is diffi- )

cult to identify which properties of quantum dynamics are

the most essential, because different properties are required———

fOI’ dlf'fel’ent taSkS ThIS Vanety |S I‘eﬂected |n th|S SeCt|On by GMaximizing over mixed states as well as pure states does not

the fact that different operational questions give rise to dif-change the value dfz because of the presence of arbitrary ancillas.

ferent notions of strength. In particular, supposel and 3 were in stateg 4 and p;;, respec-
tively. By introducing copies of their system& 4 and Rz, it is
possible to find pure statés) and|8) of AR 4 and BR; such that

*Note that Zanardi23] and Wang and Zanarfi24] have investi-  trg (|a){@|)=p4 and tr (I8)(B])=ps. Since entanglement de-
gated similar, though inequivalent, measures for unitaries. Thigreases when systems are discarded, we must E&uga)|3))
work is discussed in Sec. Il A 1. =E(Up,®pzU").
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where|y) ranges over all states ofR 4, and BR;.” t uses ofU is justt times the maximum entanglement gen-
Clearly, Kg(U)<K,g(U) for all U. Later, we will see erated with one use @f, and thatK ,¢ is an upper bound on
that there exist unitariet) for which Kg(U)#K,g(U), the average number of bits which can be reliably transmitted
demonstrating that these two measures capture different nbetweend and 5.
tions of a unitary’s ability to generate entanglement.
An alternative approach to quantifying entanglement gen- 2. Quantum computational complexity
eration has been explored by Zanaf@B] and Wang and
Zanardi[24]. Zanardi[23] defines a measure of entangle-
ment,L(U), for a unitary operatot on ad 4, X dz system by
the linear entropyL(U)=1—3,s{/d%d%, wheres, are the
Schmidt coefficients ofJ. Providedd ,=dz=d, it can be
shown thaf 23,24

In this section we consider a different motivation for the
study of quantum dynamics as a resource. Rather than con-
sidering an operation’s explicitly nonlocal propertieach as
its ability to create entanglementve ask what characterizes
the difficulty of performing a quantum computation.

A reasonable measure of tkemplexityof implementing

, a unitaryU with a gate set/ is simply the minimum number

of gates fromU in a circuit which implementdJ. For ex-
f dadpL[U(a®p)]= W[L(UHL(USWAP) ample, suppose we only have the ability to implement the
CNOT gate on two qubits, with either acting as the control,
—L(swaP)], (3.3 and we wish to simulate th&wap gate. In this case we have

the gate set/={CNOT;,,CNOT,;} where the first subscript
whereda anddg are the uniform, normalized, Haar mea- refers to the control qubit and the second the target. Since
sures on the first and second qudits, respectively, the functioBWAP= CNOT,CNOT»;CNOTy, (and theswap gate cannot be
L on the left is the measure stateentanglement based on implemented with only twaNoOT gate$, the complexity of
the linear entropy of the squared Schmidt coefficients of théhe swAp gate relative toU is 3.
state, while the functioh. on the right is theoperator en- To generalize this idea, we defite.qp,:
tanglement defined by Zanardi. This equation nicely con-
nects the Schmidt coefficients and the average entanglement
generated byJ. Kcom(U|U)Emin[ s
In a similar vein, Wang and Zanarf24] define a notion J
of concurrenceor unitary operators with Schmidt number 2.
For a systemAs of dimensiond 4xXdj, they defineC(U)
=2s;S,/(d 4dg), wheres; ands, are the Schmidt coeffi-
cients ofU. This definition extends the notion of concurrence
for qubits introduced by Hill and Woottefgll]. Simple al- i o )
gebra and the fact tha‘E|s|2=dAdB implies that C2(U) The CIrCl._JIt complexity measure has the property that, for
=2L(U), whereL(U) is the measure of operator entangle- any two unitary operators) andV,
ment introduced by Zanard23].
How useful is a quantum operation for communicafion Keom( UV[U) <K on( U[U) + Keon VD), (3.9
An interesting question is to determine the relationship be-
tween the entanglement generated by a channel and its csince one circuit implementingV is the concatenation of
pacity to transmit classical information between two sys-the minimal circuits implementiny and U separately. We
tems. Recently, Bennett al. [33] and Berry and Sanders refer to this property as thehaining property
[34] examined the relationship between the entangling ca- In generalK,y,is prohibitively difficult to calculate since
pacity of a two-qubit unitary and its ability to transmit infor- it is very hard to prove that a given circuit far is minimal.
mation. In particular, Bennett al. considered the maximum However, it is possible to find lower bounds &, as
entanglement that can be generated from @uossibly en-  follows. Expanding upon the example given in the Introduc-
tangled and mixedstate witht uses of the unitary gatd.  tion, supposdJ is a two-qudit unitary, and one is given the
They argued that the maximum entanglement generated withbility to perform a set of two-qudit gatds={U,,...,U}
and local unitary operations. What is the minimum number
of two-qudit gates required to implemeht? SupposeU
We have definedk,¢ as a supremum over pure states. The =(A,®B,)U, [(A1®Bg) U (Ak®By), whereA;®B; de-
simple argument showing th&t: may be restricted to pure states qtag g |oca| unitary, antﬂ| cU. Let K be any measure

does not apply here, sind€,g is a difference of entanglement
measures. In general, i, ¢ is extended to mixed states, its value sat|sfy|n.gK(UV)<K(U)—|— K(V) andK(A®B)=0 for any
local unitaryA®B. Then

may depend on the entanglement measure used. Begiradt{33]
considered several cases of this problem, although they were inter-

U=II w; . wieU},
J
(3.4

where thecost functiony(W;) is any non-negative function
that quantifies the difficulty associated with implementing

ested in the maximunincreasein entanglement, rather than the K(U)=K[(A;®Bg)U; (A1®B1) U} (Ak®By)]
magnitude of the change in entanglement. The supremum must ap-

pear in the definition oK ,¢, rather than a maximization as in the S K(U|l)+ st K(U|k)

definition ofKg, since we do not know of any bound on the size of

the ancilla. <KkKmaxs (3.6)
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whereK ., is the maximum value oK(U|j). We have de- Axiom 1 (non-negativity K (£)=0 for all quantum opera-
duced a useful bound on the number of gates, tionsé&. . _ _ .
This is more a convention than an axiom, which we in-
K(U) troduce as a convenience to simplify many of the properties
k= (3.7 below. The Hartley strength satisfies this axiom.

max

Axiom 2 (locality) K(U)=0 with equality if and only if

This captures the intuitively appealing notion that the num-Y ¢an be written as a product of local unitary operations.
ber of gates required to implemetis at least equal to the e Hartley strength,,,(U) satisfies locality. _
total strength o, divided by the maximum strength of any ~ 1he axiom of locality captures the idea that dynamic
of the implementing gates. Indeed, if we take the cost of $trength measures the nonlocal content of a quantum gate.
local unitary to be 0 and the cost of a two-qudit gate to be 1FOr €xample, in the bipartite case, it is possible to generate
the argument implies thaK on(U|U)=K(U)/K .. Al-  €ntanglement with a unitary if and only if U cannot be
though this argument holds only for two-qudit unitarigs ~ Written as a product of local unitary operations. Similarly, it

we will extend it ton-qudit unitaries after the discussion of 1S Possible to communicate classical information with a uni-
stability properties in the next section. tary if and only if it cannot be written as a product of local

unitaries32]. Summarizing, for anK satisfying locality, we
have K(U)>0 if and only if U is capable of generating
entanglement or, alternatively, of transmitting classical infor-
One approach to quantifying entanglement is to considemation.
axioms that an entanglement measure “ought” to satisfy, and How should the axiom of locality be extended to nonuni-
to explore the consequences of those axidh@2-44. tary operations? For example, we might require tKaE)
While this approach has occasionally been criticizé8l, it >0 if and only if £ cannot be implemented by local opera-
has certainly proven fruitful. tions and classical communication. Or perhaps we might re-
Here we explore an analogous axiomatic approach to thquire thatk (£)>0 if and only if £ generates quantum states
study of strength measures for quantum dynamical operawith nonzero entanglemefdccording to some entanglement
tions. We propose a number of axioms that such measureaeasurg Many other possibilities can be imagined which
might be expected to satisfy and investigate some implicawe will not enumerate.
tions of these axiomS. Axiom 3 (local unitary invariance)SupposeA,..., A,
The structure we adopt is first to descrifbe Sec. IllIB1)  andB,,...,B, are local unitary operations on the respective
the fundamental axioms that we expaal strength measure systemsA,,...,4,. Then
should satisfy. We then describe some other useful properties
a strength measure may satisfy in Sec. IlI B 2. Finally, Sec.
11 B 3 illustrates the axiomatic framework by applying it to
the analysis of the communication cost of distributed quan-

B. Axiomatic approach

K[(A1®---®Ap)E(B1®---®@B,)]=K(E). (3.9

tum computation. The Hartley strength satisfies local unitary invariance.
The axiom of local unitary invariance requires that the
1. Fundamental properties strength of a quantum operation is not changed by local op-

erations. Thus, itis in accord with the notion that the strength

We denote our strength measure K(£), where€ is a . o
is a measure of an operation’s nonlocal content.

trace-preserving quantum operation acting on a set fs-
tems, A,,...,4,, of dimensionsd,,...,d,. We will fre-

quently be interested in the case whérés a unitary quan- 2. Other useful properties
tum operatior€(p)=UpUT for some_unitar}U. In this case, We have just introduced three axioms essential for any
we write K(U) to denote the dynamic strengthdf We will  strength measure describing the nonlocal content of an op-

also use the convention that the symbol for a unitary such agration. We now introduce several useful properties a
U may mean either the unitary operatdior the correspond-  strength measure may satisfy, beginning with two invariance
ing quantum operation, that isl(p)=UpU™. This abuse of properties.
notation will be employed only when its meaning is clear Property 1 (exchange symmetryet £ be a quantum op-
from context. eration acting on a multipartite system whose subsystems

As each axiom is introduced we illustrate it by examining have the same Hilbert space. Te&AP operation acting on
whether the Hartley strength satisfies the axiom. Note thaany two of these components has the effect of interchanging
Kpa(U) is defined for a unitary operatdd acting on two their states. TheiK has the exchange symmetry property if
systems labeledd and B of dimensiond 4 anddy, respec- for all suchswAP operations
tively.

K(swap & swaP) =K (E). (3.9
8We note that Zanardi, Zalka, and Fadr@2] pointed out the

desirability of Axioms 2 and 3, and of Property 1 below, and proved ~Property 2 (time-reversal invariance)ror all unitaries

that these properties are all satisfied by the average entanglemédt,K(UT)ZK(U).
generated by a unitary. The Hartley strength satisfies both properties.
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Property 3 (continuity) For some metri©(- , -) on the With Lemma 1 in hand it is straightforward to prove the
space of quantum operation (&) —K(F)|<f(D(&,F)), chaining property. Suppodé=Z;s;A;®B; andV=23,t,Cy
where f(-) is a continuous and monotonically increasing ® D, are Schmidt decompositions for unitary operatbrs
function such thaf(0)=0. andV. Then we have

The Hartley strength isiot continuous with respect to
standard metrics on the space of unitary operations: the pres-
ence of any nonlocality in a unitary operatibhis sufficient
to cause a discontinuous jump in the Hartley strength from O

to 1 or more. o o __The total number of terms in this sum-over-products decom-
A major use of the continuity property is in the analysis of position of UV is SchU)Sch(v), and so by the lemma we
quantum computational complexity problems; see the discusyyst have SchyV)<SchU)Sch(V). Taking logarithms of

uv=% Sitk(A;C) ® (B;Dy). (3.12

sion after the chaining property. both sides of this inequality yields the chaining property for
Property 4 (chaining) Suppose€ and F are two quantum e Hartley strength.
operations. Theik (& F) <K (&) +K(F). Until now we have been concerned only with strength

The main utility of chaining was anticipated in the Intro- measures defined fdixed quantum systems. Compare this
duction: it can give bounds on the number of gates requiregyith the situation for entanglement measures. It is often said
to perform a particular quantum operation. that there is aunique[44,46,41 entanglement measure for

When combined with the continuity property, the cha@ning bipartite pure states, namely, the von Neumann entropy of
property may also be used to prove bounds onapgroxi-  the reduced density matrix. Strictly speaking, this is not a
mation of unitary operations. This is important in applica- single entanglement measure, since it can be applied to many
tions to computational complexity since it is usually suffi- gifferent types of quantum systems—pairs of qubits, a qubit
cient to solve problems With a high'probability qf success.and a qutrit, and so on. Rather, it igamily of entanglement
Suppose, for example, thakis a desired two-qudit unitary measures, satisfying certain consistency properties that make
operation, and one is given the ability to perform a set ofit sensible to refer to it as a single measure.
two-qudit gates/={U,,...,Uy}, and local unitary opera- Motivated by this, we describe two consistency properties
tions. LetK be any measure satisfying continuity, for someye expect of a family of strength measures. There are two
choice off andD, as above, as well as chaining and locality. gifferent ways in which a family of strength measures arises
Let Aj@B; be local unitaries ant; e U. To obtain an ap- naturally. The first corresponds to appending additional sys-
proximationV=(Ao®Bg)U; (A1®B;) --U; (A@By) to U tems while keeping the state-space dimensions of the exist-

such thatD(U,V)<e we need, by the continuity property, iNg systems constant. The second corresponds to fixing the
K(V)=K(U)—f(€). But K(V)<kKqax WhereK o, is the —number of systems and varying the state-space dimensions of

maximum value oK (U,), so the number of gates satisfies the individual systems by adding local ancillas.
For the statement of each of the following properties we
K(U) f(e) imggin_e that there is &amily of strength measures, each of
k= — _ (3.10 which is den(_)ted by the same _Ietilér When necessary, we
max add superscripts to make precise which syst&ms acting
on. For exampleK45¢(£) indicates the strength with re-
The Hartley strength satisfies the chaining property, but t&Pect to a division into three components, labeleds, and
prove it we need a related lemma. ¢, andKAEC(&) indicates the strength with respect to a di-
Lemma 1 SupposeU has Operator_SChmidt decomposi_ vision into two componentsA and BC. For notational sim-
tion U=X;s;A;®B;. SupposeU can be written in some plicity, we state these p_rop_erties for the case of three sys-
other form as a sum over products,=3,A,®B,. The tems, Wlth the generalization to more systems following
number of terms in this decomposition is at least as great a milar lines. . .
the number of terms in the operator-Schmidt decomposition,, OPey 5 (stability under addition of systemSuppose

n . o
Thus, the operator-Schmidt decomposition imaimal de- ¢ acts on systems! and 5, andC is an additional system.

composition forlJ, in the sense that it has the fewest productThen the familyK is stable with respect to additional sys-

terms of any sum-over-products decomposition. tems if
Proof. A simple proof of the lemma is to note that

~

Kmax

KAB(&)=KABC(£RT), (3.13

whereZ denotes the identity operation ¢h

Note that it does not make sense to speak of the Hartley
strength as being stable or not stable in this sense, since it is

. . L defined only for two-component systems.

Ihus eachiy; can be written as a linear combination of the The intuii/ion motivatingthe ine(;/uality in the statement of
A But theA; are orthonormal, and thus linearly indepen- stability is that the “two-party” nonlocality present i@
dent. It follows that the number of operatohg must be at should not be less than the “three-party” nonlocality §n
least as great as the numberAgf, that is, at least as great as ®Z. A stronger statement of the stability property would
the Schmidt number af. | replace the inequality by an equality.

1 ) 1w o
Ajzgtrg[u@Bj)U]:;Zk Adr(B/By. (3.11
) ]
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The stability property is useful in the context of quantum KAz BiBo( e Fy<s KA Bu &) + K42 B2( F). (3.17)
computational complexity. We explained earlier how to de-
rive lower bounds such as E(.7) and Eq.(3.10 on the K is strongly additiveif the inequality can be replaced by an
number of gates needed to implement a two-qudit quanturequality in the above expression.
operation. In the context of quantum computational com- Note that strong subadditivity for a strength measure is
plexity, the most natural setting is that we wish to implementnot connected with the strong subadditivity property for
a family of n-qubit unitariesU (indexed byn) using a uni- quantum mechanical entrofps8].
versal set of one- and two-qubit quantum gates. In such a The Hartley strength is strongly additive for unitary op-
setting, we are looking for the most efficient decompositionerationsU andV and thus possesses all four of these prop-

of eachU into a product of two-qubit gates erties. To see this, supposk andV are unitary operators
with  Schmidt decompositionsU=2;s;A;®B; and V
U=Ujlk1Uj2k2---Ujlkl, (314) =Ektka® Dk! WhereA]-, BJ , Ck, and Dk act on systems

Ai, By, Ay, andB3,, respectively. Then the Schmidt decom-

where the subscripts denote the qubits on which épok-  position of U®V with respect tad; B, :.4,5; is

sibly differend unitary gate acts. A bound on the minimum

number of gate$ may be deduced from the chaining and uav=>, Sit(Aj® C) ® (B;@ D). (3.18
stability properties, using a similar analysis to that given in ik

connection with chaining aloné=K(U)/K 2, Where now .
K max iS the maximum value of the strength of any two-qubit 't follows that SchU®V)=SchU)Sch(v) and, taking

gate. Because of stabiliti ., is aconstant independent of ngarithms, we see that the Hartley strength is strongly addi-
n, so in order to prove interesting lower bounds lorone  UV€: » _ o N

needs to analyze only the asymptotic behavioK6t)) as a Proposition 1 If the family K satisfies the chaining prop-
function ofn. If, for example, we could find a strength mea- erty and is stab_l_e with respect to local ancillas, then it is
sure satisfying both chaining and stability, and such thaft"ongly subadditive. .
K(U)=6(2" for some family of unitaries, then itwould P00t Applying simple algebra, the chaining property,

follow that the family requires a number of gates exponentiaf"lnd stability with respect to local ancillas in turn, we have

in n. If, in addition, K has suitable continuity properties, then K(E —K[(& T

it may be possible to prove that the family requires exponen- (Eof)=Kl(feD(Ie )]

tial time even if some reasonable probability of error is al- <K(EQRL)+K(Z®F)

lowed. Needless to say, if this were true for a unitary encod-

ing of, say, the solution to a problem such as the traveling <K(&)+K(H), (3.19
;snzillzzrélan problem, this would be a very interesting resul\;vhich is the strong subadditivity property. -

The converse is not true—we will see later that the
Schmidt strength is strongly additive and stable with respect
%o local ancillas, but does not satisfy chaining.

The final property addresses what happens when a quan-
tum operation arises as a consequence of tracing out part of
the action of a quantum operation acting on a larger system.
For notational simplicity, we state this property for the spe-
cial case of two systems, with the generalization to more
systems following similar lines.

The Hartley strength is clearly stable with respect to local Propert_y 9 (reduct|on)Suppqse a quantum operatigion
a composite systemd5 is obtained from a quantum opera-

Our second notion of stability is that introducing local
ancillas which are then ignored should not change th
strength of an operation.

Property 6 (stability with respect to ancillaspupposef
acts on systemgl and3, andC is an additional system. Then
the family K is stable with respect to local ancillas if

KAB(E)=KABYERT). (3.19

ancillas. . .
We now move on to additivity properties. tion on ABC as follows:
Property 7 [weak (sub)additivity]SupposeA,, A,, B, Epap) =tr Flpas® o), (3.20

and B, are distinct systems such that, and .4, have the
same state space, as Bp andB,. Supposef is a quantum  for some fixed stater, of systemC. Then a familyK of
operation that can act on eithet;B; or A,5,. Then the strength measures has theduction propertyif K45(&)

family K is weakly subadditivéf <KAB(F).
. ' The intuition behind the reduction property is that, if it is
KAz Brbz( £ £) < 2KA1B1(€). (3.16  possible to daF, then it is also possible to df without any

extra dynamical resources being required.
K is weakly additiveif the inequality can be replaced by an  The reduction property is important both in the analysis of
equality in the above expression. distributed quantum computatideee belowand for the ap-
Property 8 [strong (sub)additivity]SupposeA, , A,, B, plications to quantum computational complexity suggested
and 3, are four distinct systems, artland F are quantum earlier in this paper. In the latter applications we implicitly
operations acting o, B; and.A,B,, respectively. Then the assumed that the implementation of some desired unitary
family K is strongly subadditiveéf could not be assisted by the introduction of ancilla qubits
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that are discarded at the end of the computation. Howeveguantum Fourier transform. The first problem may be stated
there is evidence to suggest that ancillas may help in pers follows. Suppose Alice and Bob are in possession of clas-
forming a unitary transformation quickly; for example, somesical data stringg andy, respectively. They wish to compute
of the constructions ifi49] were made more efficient by the some joint one-bit functiorf(x,y) of the data strings. To
use of ancillas. Suppose, however, tKkahas the reduction accomplish this task they are only able to do arbitrary local
property and that) can be implemented by performing an quantum operations and to communicate qubits. This is the
operationV on a larger system. That is, suppogpy)|s) key problem ofquantum communication complexi§0,51].
=(U[#))|s"), for all |y, and for some fixed ancilla statgss One of the major results in the fields of quantum
and|s’). Then we haveK(U)<K(V). If, in addition, itis and classical communication complexity is theg-rank
possible to us&(-) to prove bounds on computational com- lower bound This states that the minimum number of
plexity, as described earlier, then it follows from the inequal-bits (or qubit9 of communication required to compute
ity K(U)<K(V) that any bound on the computational com- f(x,y) is bounded below by lggrank (—1)"*¥7}, where
plexity of U must also apply t&/, and thus our techniques (—1)'®Y) is the (x,y)th entry of thecommunication matrix
can be applied even when working qubits are allowed. Mehlhorn and Schmidf52] proved this result for classical
The reduction property makes restricted sense for theommunication complexity. The log-rank conjecture of com-
Hartley strength, which is defined only for unitary operators.munication complexity[53] states that, up to a poly-
In particular, imagine, as above, that we have a uniddry nomial factor, the log-rank lower bound saturated that is,
acting onABC such thatv|y)|s)=(U|#))|s’), where|y)is  there is a protocol to computef(x,y) using
an arbitrary state ofA3, U is a unitary acting omdB3 alone,  polylog{rank (— 1) ®¥)]} bits of communication.
and|s) and|s’) are fixed states . To see thaK ,, satisfies Although quantum protocols are potentially more power-
the reduction property, let us introduce orthonormal bgses ful than classical, it was pointed out by Buhrman, Cleve, and
|ky, and|l) for the systemsA4, B, andC, respectively. Note Wigderson[54] that[50,51] contain an implicit proof of the
that the invariance oKy, with respect to unitaries on sys- log-rank lower bound in the quantum case. This result was
tem C implies that it suffices to considev such that extended to the model in which preshared entanglement is
V|#)|0y=U|#)|0), where|0) is the first element of the basis allowed by Buhrman and de WdI65].
for C. Suppose we expand as The framework introduced above and the results we have
proved about the Hartley strength allow us to give an almost
S ' trivial proof of the log-rank lower bound in the case when
V:‘m%'v Viner gl 1)@ KK (3.2 only qubit communication is allowed, with no preshared en-
e tanglement. The proof is as follows. Suppose we have a pro-
where the comma in the subscript Uf separates the row tocol in which Alice and Bob computi(x,y) usingk qubits
index from the column index. Sincg’)(j| and [k'l")(kI| of communication. Then it is not difficult to see that they can
are orthonormal operator bases, it follows that the Schmid@|so computd(x,y) using at mo§k swapgates and no qubit
coefficients ofV are just the singular values of the matkix pb(?mmunlcattl?n. Utsr,]lng B(tenneltts te%hmqt[gf_] of reverls-
defined byv” ’,kk’II’EVj’k’I’,jkl . Thus, the Schmidt number fole computation, the profocol may be modi IGISIng ony

£V is ai by th ber of ol | local unitary operationgo give what Cleveet al.[57] called
of V1S given by the number o NONZero singular Values, ofy - ¢jegn protocol effecting the unitary transformation
the rank, of the matrix. Similarly, we can expand as

(W) )| y) W)= (= 1) P wa)[x)|y)|wg), where |w,)
and|wg) are local work qubits for Alice and Bob. The clean
U= 2 Ujreli Nil@ |k (K], (322  protocol uses only R swap gates. LetV be the unitary ef-
jkj K’ fected by the clean protocol, and let|x)|y)=
_ o (—1)"®Y)|x,y). Then by the reduction property followed by
and the Schmidt number df is given by the rank of the {phe chaining property we have

matI’IX DJJ/,kk’EUJ,k,,Jk BUt UJ’k’,Jk:V]/k/O,JkO’ SO Up tO

reordering of the column¥=[U|---]. It follows that the Kpa(U) <Kol V) <2KKpo(SWAP)=4k.  (3.23
rank of V is at least as great as the rank Bf and thus
Sch(V)=SchU). Taking logarithms of both sides we get

= —1)f(xy) ich i
Kual(V)=Ka(U), which is the reduction property. But U=2,,(~1) [X)¢x|®ly)(yl from which it follows

that Schy)=ranK (—1)'®¥7]. Combining this observation
with Eq. (3.23 gives the log-rank lower bound

3. Application to the log-rank lower bound

As an illustration of the power of the framework we have k= %Iogz{ranl{(— 1)fevy, (3.29
just developed, we now apply it to the analysis of a compu-
tational problem of considerable interest: the communication
cost of a distributed computation. The second problem we consider in distributed computa-
We consider two separate problems in distributed compution is the distributed computation of a unitary operation
tation, the first related to distributed computation of a classisuch as the quantum Fourier transfolbnon m+n qubits
cal function, the second to distributed computation of the(m=n), where Alice is in possession of the finst qubits,
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and Bob is in possession of the remainingjubits® How This is a surprising result because it reveals unexpected
many qubits of communication must Alice and Bob do tostructure in the space of two-qubit unitary operators. It is
computeU? Suppose it is possible to achieve it with jlkst tempting to speculate on the existence of similar structure for
qubits of communication. Then, as in the discussion of theénore general unitary operators. We conjecture that, th a
log-rank lower bound, it must also be possible to implement<d’ system, there exist unitary operators with Schmidt num-
the quantum Fourier transform in a model in which no qubitberk if and only if k dividesdd’. An alternative conjecture,
communication is allowed, but in which Alice and Bob can Which we believe is less likely, is that unitary operators with
apply k swap gates to their qubits. Applying the reduction Schmidt numbeik exist if and only ifk and dd" are not
and chaining properties we conclude thag,,(U)  COPNme.

<KKyy,(SWAP), and thus we obtain the lower boukgt m, Proof. It is straightforward to see that unitaries with
Whic;aagrees with then=n result obtained 4] ’ Schmidt numbers 1, 2, and 4 exist, so it only remains to

show that there exist none with Schmidt number 3. Suppose

U has Schmidt number 3. Then the canonical fornupfJ,

must have exactly one of the terms in E4.3) equal to zero.
Before we describe our results about measures of dynamid/ithout loss of generality, suppose the | term is zero(lf,

strength, we pause to explore a useful representation theorel@f €xample, thex® X term is zero, then we multiply bX

for two-qubit unitary operators, theanonical decomposition ®X to obtain a unitary with thé @1 term zero) Then we

of Khaneja, Brockett, and Glasé58] (see also Kraus and Must havec,c,c,=sys,s,=0, and thereforec,=0 for at

Cirac[26] for a simple, constructive propfThis decompo- €ast one value of, ands;=0 for at Ie;ast one value g8.

sition is an extremely valuable tool which characterizes thdVote thata cannot be equal t@ sinces, +c,=1. By sym-

nonlocal properties of any two-qubit unitary with only three Metry it suffices to assume thatis x and 8 is y, in which

parametersé, , 6, , and@,.'* For appropriate one-qubit uni- €ase we obtain a unitary of the fornis,c,c,X®X
tariesA;, A,, By, andB,, +5,C,S,Y®Y, which has Schmidt number at most 2.

Now suppose that) has Sch{)=<2. Then, up to local
U=(A;®@B,)e/(BXeXTOYRY 0,292 (A 0 B,), (4.1)  unitary operations, it has the form of E@.3), with exactly
two of the terms nonzero. As mentioned in the previous
where— 7/4< 0 ,< w/4. For convenience, define tisanoni- proof, we can always ensure that the| term is nonzero.
cal form of U to be U=(Al@Bl)U(AJ®BJ); up to local ~ Furthermore, conjugating by local unitaries, we can ensure
unitaries,U is equivalent toJ. that the other nonzero term ¥ X. Thus, up to local uni-
SinceX®X, Y®Y, andZ®Z all commute, we may ex- t@ry equivalencel has the formU=al®l+bX&X, for
~ some nonzera andb. Furthermore, we may assume thas
pandU as . ) ; .
real, since we can multipliy by the local unitary operation
(e'?1)®1. Unitarity of U then implies that

Iel=UTU=(a%+|b|d)I®l+a(b* +b)X®X, (4.4

IV. THE CANONICAL DECOMPOSITION

U=(cd®1+is,X@X) X (cyl ®1+is,Y®Y)

X (c @1 +is,Z207), (4.2

_ o _ from which we deduce thai®+ |b|?=1 anda(b* +b)=0.

wherec,=cos(,), s,=sin(6,). Multiplying the expression  gjnce a#0, b must be pure imaginary. Thus we hage
out yields =\1-p, b=i/p for some Gsp=<1. We have proved the

~ ) ) following proposition.
U=(cyCyCrti8,8y8,)l @1+ (CxSyS, 18,y C) XX Proposition 3 Let U be a two-qubit unitary operator with
+(8¢CyS,T1CyS,C,) Y®Y +(5,8,C,+1CyCyS,) ZR Z. Schmidt number 2. Then, up to local unitary equivalenge,
43 has the form

U=V1-plel+i/pXoX. (4.5
This expression is essentially in Schmidt form: up to a con-
stant the Schmidt coefficients are just the magnitudes of the; STRENGTH MEASURES BASED ON ENTANGLEMENT
coefficients appearing in front of the four terms. Equation GENERATION
(4.3) enables us to deduce the following resdlt.

Proposition 2 There exist two-qubit unitary operators  In this and the following section we explore some of the
with Schmidt numbers 1, 2, and 4, but not 3. strength measures defined by us and other authors, noting

relations between them, and connections to our earlier opera-
tional questions. We also prove several results about which

®The following discussion generalizes results[#}, which con- ~Measures obey which axioms and properties, summarized in

sidered the casm=n. Table | at the end of this paper.
10A simple modification of this proof gives the bouke:2m. We We start in this section with strength measures based on
acknowledge Jon Tyson for discussion on this point. entanglement generation. More is known about these mea-
Hsee Makhlin[21] for an earlier proof that the nonlocal proper- sures because they use the relatively well-developed field of
ties of U are characterized by, , 6,, andé,. state entanglement. It seems likely to us that, although these
2\ learnt recently that an equivalent result for states was indeare natural measures to consider first, in the long run they
pendently obtained by BuVidal, and Cirad59]. may not be the most useful. Since they are based on static
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resources, they may not provide much more insight when 2 . * L
applied to dynamics. We consider two classes of
entanglement-based strength measures: the entanglement
generating capacities of quantum operatiovihout initial
entanglement, and entanglement generating capadiiibs

the possibility of initial entanglement.

15 o L

A. Entanglement generation without prior entanglement

Recall the definition of Kg(U), Eqg. (3.1): Kg(U)
=max,, pE(Ula)|B). Kg(U) measures the maximum .
amount of entanglement generated by a single application of 0.5 ) B
the unitaryU without initial entanglement. We show thist
and K¢, are related to each other in interesting wagi:
Ksenis a lower bound foKg; and(2) Kg is equal toK ¢, for 0
a class of two-qubit unitaries. We also give some numerical 0 05 . L 2
evidence demonstrating thkg is not equal toK ¢, for cer- KsenlU+Kses(V)
tain unitaries; see Fig. 2 below. To make this discussion
easier, we begin by discussing the properties satisfied by FIG. 1. Numerical violation of the chaining property fiish.
andK s, including a demonstration of the striking property U andV are two-qubit unitaries chosen by first generating random
that K¢ is superadditive, that i4)®U can sometimes gen- u_nitaries and then using a Nelder-Mead_ simplex minimization algo-
erate strictly more than twice as much entanglementias 'ithm to prepend and append local unitaries to genethend V
alone. Finally, we extend the definition &fz and K., to ~ Maximizing the violation oK s UV) <K U) +Kse V). If Kson

general quantum operations and prove that K, Still satisfied chaining, then all the poinsorresponding to pairs of
holds Sch unitariesU andV) would lie on or below the line.

KsenUV)
1
T

1. Properties of i and Keg, To see thaK g, is continuous, expand

Beginning with the three axioms, it is easy to see that both
K andK g, satisfy non-negativity, locality, and local unitary u= > Ujj i (k@] ) (K], (5.2
invariance.(As we have definedg and K¢, only for uni- ji"kK!

taries, the axioms and properties we discuss here are re- . .
stricted to this casp where the comma separates row and column indices. Since

We now tumn to the properties d€s., which are very |i (k| and|j ’)(_k’| are orthonormal operator bases, it follows
similar to those oK y,,. Kgep, Clearly satisfies the properties that the Sch”l'dt co.eff|C|en£s tf are just the smgulgr values
of exchange symmetry, time-reversal invariance, and stabilof the matrixU defined byUjy /- =Ujj: i . Consider the
ity with respect to local ancillas, since none of these operamatrix norm(|Al=max,[Ay)l|, where the maximization is
tions change the Schmidt coefficients. The argument tha@ver unit vectorsy). Ksq is a continuous function of the
Ksen is continuous is slightly complicated, and will be de- Schmidt coefficients, and the Schmidt coefficients are con-
scribed in the next paragrapKe., is strongly additive, i.e., tinuous functions of the matrixJ, with respect to matrix
Kse{U®V)=Kgs{U)+Kse{V). To see this, recall that if norm. This follows from the fact that the singular values of a
U andV have Schmidt decomposition$= = ;s;A;®B; and matrix are conqnuous in the matrlé§ee, e.g., Chap. 3 of
V=34,Cy®Dy, with A;, B;, Cy, andDy acting on sys- [60]). ThgsKSchls a continuous function dff with respect to
tems Ay, A,, By, and,, respectively, then the Schmidt the matrix norm.

decomposition ofJ ®V with respect tad, B, : 4,5, is given ~ We have demonstrated numerically tiaj:, does not sat-
by Eq.(3.18: isfy chaining; see Fig. 1Kg, also violates the reduction

property. To see this, suppose a Toffoli gatas applied to
three qubitsABC, with A acting as the target qubit. Suppose
UV=2 sit(A;®@C)®(B;@D)). C is initially prepared in the|l) state, so V|#)|1)
Ik =(U|#))|1), whereU is thecNoOT gate, and) is an arbi-
trary state ofAB. It is not difficult to verify thatKg.{U)
Using properties of the Shannon entropy, we find that =H(1/2,1/2), while Ks{V)=H(1/4,3/4), s0 Kgu{V)
<Kge{U), in violation of the reduction property.

sit2 The properties oK ¢ are somewhat more difficult to elicit.
Kse{U®V)=H 4242 K is easily seen to satisfy the exchange symmetry property.
ATB Numerical studies of the time-reversal invariance property
s? t2 have been inconclusive, although we speculate that for two-
=H [m +H m]) qutrit unitaries time-reversal invariance wilbt be obeyed.
The discussion of continuity is somewhat complicated and is
=Kgef{U) +Kge V). (5.2 described in the following paragrapK; is stable with re-
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spect to ancillas, since it already allows for the possibility of Proof. Let .A and 5 label Alice’s and Bob’s systems, re-
arbitrary ancillas. It is also easy to see from the definitionspectively. Alice introduces an ancilld 4 that is a copy of
that Kg satisfies the reduction property, in the same sens@er system. She prepare$ and R 4 in a maximally en-
that the Hartley strength satisfies the reduction property.  tangled stat¢a>:(1/\/ﬁ)2j|j)|j>, whered , is the dimen-
s, we neod 10 imiroduce & meti on the space of anitarg o0 YSiemA (and hence also of syster . Bob does
matrices. We use the matrix nornd(U,V)=|U—-V| i?riﬁg@etﬁrgnd%}ngﬁfgwgé_(l/@)ijmm’ wheredis

=max [(U—V)[#)|, where the maximum is over all unit ="', U=3,5A ®B, be the Schmidt decomposition &f
vectors|y). Choosela),|B) such thatke(V)=E(V|a)|B)). Eq. (2.1)]. Alice and Bob applyU to A3, obtaining
Our earlier discussion shows that, without loss of generalltyg T '

we may assumgy) exists in adi—dimensional space ang)

S
exists in ad3-dimensional space. It follows from the defini- Ula)|B)=2, sA|a)B||B)=, —||a b)),
tion that v ! T \ddg e
(5.8
Ke(U)=E(U|a)|B)). (5.3
The results 0f47] (see alsd61]) imply that, for stategy) ~ where we definda))=\d A ||a) and|b))=/dsB|B). |a)
and |¢) of a bipartite systemCD, provided [|¢)—|¢)|  and|b;) are orthonormal bases. For example,
<1/6,
_ + —teata —
[E() ~E(|#))|=<2][4)~| $)llogx(dcdp) (ada)=dialAAla)=tAA =3 (59
+ 02l = 1)), (5.4 Therefore, U|a)|B) has entanglementH ({s?/(d dg)})
and using monotonicity ofy(-) on [0,1/6], where 5(x)=  Which is equal tdse(U). _ L
—xlog(x). Thus, provided|U — V| <1/6 and using monoto- From this lemma, it follows thag(U) is bounded below
nicity of 7(-) on[0,16], by Ksc{U). We also show that they are equal for certain
) two-qubit unitaries.
[E(U|a)|8)) —E(V]a)| 8))|<2|U—V]logx(d5d5) Theorem 1Kg(U)=Kc(U) for all unitariesu.

_ Theorem 2Kg(U)=Kg{U) for all two-qubit unitaries
F2U-VI). 59y saisfying Schy)=2.
Combining this result with Eq.(5.3 and the fact that Proof. When Schy)=1, U is a local unitary and hence

Ke(V)=E(V|a)|B)), we obtain Ke(U)=Kse{U)=0.
Suppose Schf) =2, in which case Proposition 3 implies
Ke(U)=Kg(V)=2[U-V]llogy(d%d) — n(2|U - V). thatU may be expanded as
(5.6
By symmetry the same inequality holds withandV inter- U=(A;®B)(V1—plIl+i \/EX® X)(A,®B5).
changed, and thus (5.10

Ke(U)—=Kg(V)|<4||U—V|log,(d 4dg) + 5(2||U—-V ~
[Ke(U)=Ke(V)|=<4] lloga(d.id)+ 7(2] (”5) Let U=\J1-pl®l+iJ/pX@X. We have seen in the previ-

o _ ~~ous section thakKg andKsg, are both invariant under local

\évgjarl\t(ia(;/r(]ar||u—v||s1/6, which is the desired continuity \nitaries, so we haveKg(U)=Kg(0) and Key(U)
What about the additivity properties &g? Intuitively, =KsefU). ~ -~ ~ .

we expect the amount of entanglement generated by two VW can calculatés{U) andKg(U) directly. Ks{U) is
copies ofU to be no greater than twice the maximum gen-€gual toH(1—p,p)=H(p), the binary Shannon entropy. To
erated by one use df. However, this intuition fails when calculateKg(U), we substituteU into the expression Eqg.
ancillas are allowed. We show below that, unlkkg,, Kgis  (3.1) for Kg, giving
superadditive. The proof requires some facts about the rela-

tionship betweelkK g andKg¢,, SO we prove this result at the KE(U)= maxS[(1—p)|a)(a|+pX|a)(a|X+iVp(1—p)

end of Sec. VA 2. Sinc&g is stable with respect to local o).l 8)
ancillas, superadditivity oKg and Proposition 1 imply that
Kg does not satisfy chaining. X(BIXIB)(X|a)(a| —[a){a|X)], (5.1

2. Relations between Kand Ksen whereSis the von Neumann entropy, and its argument is a

In this subsection, we explore some relations betweestate of AR 4. Now we use the fact that a projective mea-
KgepandKe. surement ondR 4 cannot decrease its entrofsee Chapter
Lemma 2 For all unitariesU, Ks{U)=E(U|a)|B)) 11 of [5]). We measure in an orthonormal basis containing
where|a) is a maximally entangled state of systetiwith an  the element$a) and|«, ), where|a, ) is chosen so that, up
ancillaR 4, and|g) is a maximally entangled state of system to an unimportant global phas¥]a)=cos¢|a)+sin¢|a, )
B with an ancillaR 3. for someg. We obtain
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FIG. 2. Plots ofKg(Up) (doty andKs{U,) (solid) as func-
tions ofp, and of the differenc&g(U ) —Ksc{U,) (dasheg, dem-
onstrating thakg(Up) # Ksc{U,) for some values op.

KE(D)ST?XS[(]-_ p)le)(al+p{alX|a)?|a)(a|

+pl{a,|Xla)?|a, )a,|]

<maxH(1—p+pcog ¢,psirt ¢). (5.12
¢

If p<1/2, the maximum occurs foep= /2 and Kg(U)
<H(p)=Kg{U). (If p>1/2, applyX® X to U to swap the
role of p and 1-p.) Since, by Theorem K(U) is greater
than or equal t&s.{U), we must have equality. |
We show below thaKg is superadditive whileKgg, is

PHYSICAL REVIEW A67, 052301 (2003

A

B, v
2
QW

B v

FIG. 3. Diagram ofu®U applied to systemsl;3; and.A,5,.
Note thatA;.A, starts out in the maximally entangled stéi, and
B, 13, starts out in the maximally entangled sti#g so.4;.4, is not
initially entangled with3,5,.

ted the ancillas as they turn out not to be necessary for our

construction ofla) and |B). Let |a)=(]00)+|11))/v2 be a
state of Alice’s systerd; A, and|B)=(]|00)+|11))/v2 be a
state of Bob's systens$,55,.

We make use of a handy identity to calculate
E(U|a)|B)). Since|a) and|B) are maximally entangled, a
calculation shows that for any two-qubit unitaldy

(U, ®1a,8)| @) BY=(1 450U s)| )| B),
(5.19
where the transpose is taken in the ba$is), |01), |10),

|12)}. This is illustrated in Fig. 4.
For the unitary we are considering,"=U, so that Eq.

additive, which implies that they are not equal for certain(5.14 implies
unitaries. We have also shown this numerically by calculat-

ing both functions for a particular class of unitaries, the

Schmidt number 4 family parametrized pydenotedJ,, in
Eqg. (2.95. Figure 2 plots bottKg(U,) and Ks.{U,) as a
function of p, and also their difference.

We now have the tools required to prove tKatis super-
additive, as promised at the end of the last section.

E(U.4,5,0U 45, @) B)) =E(l 4 5,®8U% 5. |a)[B)).
(5.15

We may now apply Lemma 2, consideriogy B, as the an-
ciIIa to AB,. We see thatE(UAlBl®UA232|a>|/3))
se{U?). Observing thatU? is a unitary with two

Theorem 3Kg is superadditive, i.e., there exist umtarles Schm|dt coefficients,

U such that

A1 Ay BB AqB
KE 2 B152(U 4 g ©U 4 5)>2KE U ). (.13

where the subscripts dd indicate the subsystems to which
it is applied.

Proof. Let U= \1—pl®I|+i/pX®X. We show that ad-
ditivity is violated for certain values gb. (We will add sub-
scripts only where necessary.

SinceU has two Schmidt coefficients, Theorem 2 implies

thatKg(U)=Kg{U). Therefore, the right-hand side of Eq.
(5.13 is 2Kg(U)=2Kg{U)=2H(p).

To obtain the violation of additivity Eq(5.13 we now
construct specific statda) and |g) of .4 and B for which
E(U|a)|B))>2H(p). To do this, we appilU®U to two

—(1-2p)I®l+2iVp(l-p)X&X, (5.16

U

UT

FIG. 4. lllustration of the identity 4 g ®1 4,5l @)| B)=1 4,5,

pairs of systems, as depicted in Fig. 3, where we have omit®UI\232|a>|ﬁ).
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2.5 Ke(&)=maxF[&(p4p)]- (5.19
PA:B
2 Note thatF<£ is a convex function maximized on the convex
set of separable state§p 4.5}, and thereforeF[E(p 4.5)]
achieves its maximum for extreme points of the set of sepa-
1.5 rable states, i.e. pure product states.
To generalizeKgg, let £ be a quantum operation with
H operation element$G,}: &£(p)=3GpG|. £ can be de-
1 composed differently a§(p)=2ijijT if and only if [66]
the two sets of operation elements are related by a right
unitary matrixF; =2, U;, Gy . By analogy with the entangle-
0.5 ment of formation, a natural definition &fg.{&) is
( FIF)
0 1 Ll : Ksaf )=min > —5- = Ksa ), (5:20
0 0.2 04 0.6 0.8 1 j
P whereKgq(F;) is given by Eq.(2.19, and the minimization
FIG. 5. Aplot of 2H(p), H[ (1 2p)?], and their difference. is over all possible decompositions éfinto operation ele-
ments. The coefficients IFQTFJ»)/(dAdB) form a probability
we obtain distribution. A physical interpretation is as follows: if

KscF;) is the strength of the operatidf}, thenK (&) is
Ke(UoU)=E(U®U|a)|B))=H[(1-2p)?], (5.17  the expected strength &} minimized over all possible de-
compositions of.

First, we prove two lemmas generalizing Lemma 2. For
so we have reduced the problem to showing that there exishe remainder of this section, lé&) be a maximally en-
values ofp such thatH[ (1—2p)?]>2H(p). The existence tangled state of systetd with an ancillaR ,, and|B) be a
of such values is shown in Fig.-8. | maximally entangled state @& with an ancillaR .

Lemma 3 For all operators),

3. Extension to general quantum operations

. . L [ d,d
Our results to_thls point h_ave pr|ma_r|ly concer_ned strength Ks{ Q)= E( io QI a>|[3>) (5.21)

measures for unitary operations. In this subsection, we obtain
some results for general quantum operations, proving gener-
alizations of Lemma 2 and Theorem 1 to quantum opera- Proof. Recall thatKg{Q)= H({SF/U(Q Q)}), so we
tions. We will not do a detailed investigation of the axioms need only calculate the right-hand side of E%21). Expand
and properties satisfied by these measures for general opethe stateQ|a)|3) as
tions, although arguments similar to the unitary case mostly
go through.

The first step is to generalize our definitions k0§ and Qla)|B)= E siAI|)B)|B) = 2 m|al>|bl>
Ksen- In order to generaliz& ¢ [Eq. (3.1)] to quantum op- AVB (5.22
erations, we must choose an entanglement measure that ap- '

plies to mixed states as well as pure states. We userthe whereS,s,A B, is the Schmidt decomposition f&, and

tanglement of formatiofi62]: la))=d A | a), |b)=\/dzB,|B) are orthonormal bases for
their respective systems. The result follows. |
F(p)EminEj: pE(¥)), (5.18 Lemma 4 For any quantum operatiort, let o

=&(la)(a|®|B){B]). ThenKg{E)=F (o), whereF is the
entanglement of formation.
where the minimization is over all pure state decompositions Proof Let F; be the set of operation elements f6r
{p;.l#;)} of p, andE is the entanglement of pure states. Noteachieving the minimum in the definition ®€s.,. Then, ap-
that any two decompositions pfare related by a right uni- plying the definition and Lemma 3, we have
tary matrix Ujc: p=2;pj|4)(¢j|=Z«aul o) (il if and

only if [63-65 Vp;|¢;)==;Uj\a &). We take as our tr(F/F))
generalizedK (&) the maximum entanglement generated by KSCr{é’):Z d—dBKSch(Fj)

£ over all separable input states,.5: .

tr(F F; ) dAdB
_E “d.d. t T J|a>|:8>
1 o . o . i A0z r(FiF;)
3The similarity between Fig. 2 and Fig. 5 is currently the subject

of further investigation. (5.23
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Noting that Second, we show th#t, g satisfies Properties 1, 2, 4, and
. 6—9. Properties 1 and 2, exchange symmetry and time-
tr(FjFj) ddp reversal invariance, are easily seen to be true. We do not
dds tr(FJTFJ-) Fj|“>|f3> (5.24 know whether Property 3, continuity, is satisfied. The argu-

ment used to establish thidt is continuous does not work in
is an ensemble forr, we deduce thaKg{§)=F(o). To this instance, because we do not have any bound on the size
prove the reverse inequality, suppose= =, py| ¢ ){di is of the _ancnla thatd an_dl? may use. _If such a bound could be
the minimizing decomposition for the entanglement of for-€stablished then a similar continuity bound to that used for

mation of o. Note thato can also be decomposed as Ke could be proved. Next, we show thite obeys chain-
ing, Property 4. For any two unitarié$ andV,
a=; Fi(la)(al®|B)(BIF]. (5.29 KAE(UV)=7udE<UV|w>)—E<|¢>)|
)

The minimizing decomposition is related to the decomposi- =sudE(UV|¢)) —E(V| ) +E(V|¥)) —E(|4))|
tion from Eq.(5.25 by a right unitary matrixU: vpy| ¢ )
=3,UyF;la)|B). This unitary freedom is identical to the B
freedom in the operator-sum decomposition, so the set of $|¢>iuvﬁ)¢>|E(U|¢>) E( Nl
elementsG,=X;Uy;F; is also an operator-sum decomposi-
tion for &, as well as giving the minimizing decomposition of +sudE(V|¢) —E(| )|
o, that is, \p ) =Gyl a)|B). This gives us the desired 1)
inequality, =Kye(U) +K,e(V). (5.29

tr(G,Gy) d,dg Property 6, stability with respect to ancillas, holds siicg
Flo)=2 d djs E (G Gy) Gyla)|B) already allows the possibility of arbitrary ancillas. Therefore,
by Proposition 1,K,g also satisfies strong subadditivity,

tr(Gle) Property 8. Finally, we note that the definitions immediately
:; TKScrﬁGk) imply thatK g satisfies the reduction property, Property 9.
Alp
=Ko E). m VI. STRENGTH MEASURES BASED ON METRICS
(5.26 In this section we consider a class of strength measures
' motivated by the axiomatic approach. This is in contrast to
The desired bound oKg now follows. Sec. V, where we studied strength measures based on en-

Theorem 4K (&) =Ks{€) for all quantum operations. tanglement generation. The strength measures we study here

Proof. The result follows immediately from the previous are based ometrics We explore the axioms and properties
lemma and the fact that obeyed by these measures when different constraints are

placed on the underlying metrics. We derive an exact, ana-
Ke(&)=maxF[E(p 4.p)]1=F[E(la)a|®|B){(B)]. M Iytic formula for one particular measure. Finally, we examine
the potential of these measures for analyzing quantum com-
putational complexity, as described in Sec. Il B.

Recall the definition of a metric. Let be a set. A metric
] ) ] ) is a real functiorD: XX X— R satisfying the following prop-

In this section we consider the largest change in entanglesrties for any three elementsy,zof X: (1) D(x,y)=0 with
ment which can be caused by a unitatyusing both ancillas  equality if and only ifx=y; (2) D(x,y)=D(y,x) (symme-
and prior entanglement, as defined in E82) and repeated try); and(3) D(x,z)<D(x,y) +D(y,2) (triangle inequality.
here for convenienceK ,g(U)=sup,|E(U|4)) —E(|)I, Given a metricD, the corresponding strength measure
where U acts on the combined system3, and [¢) is an  Kp(U) is the minimum distance betweei and the set of
arbitrary state ofAB plus their ancillaskR 4, and Rz. We  local unitariesLU:
show that, althoughK ,g involves a more difficult maximi-
zation tharKg, and may therefore be more difficult to work
with, it satisfies more of the axioms and properties described
in Sec. Il B than doeKg. Incidentally, sinceK, g andKg  The setl.U varies depending on context. The most common
have different properties they cannot, in general, be equal.case is wherdJ is a two-qudit unitary acting on the space

We first show thatk g obeys the three axiom&,g is  AB and LU is the set of products of one-qudit unitaries,
clearly non-negative and satisfies local unitary invariance. T&(U) =min, g D(U, A®B). Analogs of the definition oK
show thatK,g satisfies locality is only slightly more in- were introduced to quantify state entanglement by Vedral
volved. If U=A®B, thenK,e(A®B)=sup,|E(A®B|y))  etal. [42], and have been studied in considerable detail,
—E(|#))|=0. On the other hand, sindé,g(U)=Kg(U) proving to be a fruitful approach to quantifying state en-
and we know thaKg(U) satisfies localityK,g(U)=0 only  tanglement.
if Kg(U), which implies thatU is a local unitary, as re- More generally, ifU acts on a composite of systeré,,
quired. A,,..., Ay, there are several notions of “local,” which we

B. Entanglement generation with prior entanglement

Kp(U)= min D(U,L). (6.1)
LelU
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differentiate with superscripts. For example, suppdsacts by the unitarily invariant Hilbert-Schmidt norm on operators,
on ABC. One notion of “local unitary” corresponds to uni- ||Q|ys=Vtr(Q'Q). More explicitly, for a bipartite unitary
taries of the form A®B®C, so that KA%C(U)  operationU we define

=minygcD(U, A®B®C). A different division into sub-
systems leads to a different measureky (V)
=minyg D(U, A®B), whereA acts on system but nowB is

any unitary ons3C. whereA andB are local unitary operators on the respective
subsystems. We now exhibit an explicit formula for the
Hilbert-Schmidt strength in the two-qubit case.

) The statement of the result is simplified by first making
One reason for studying strength measures based on Me&fsme definitions and observations. ILebe a two-qubit uni-

rics is that the properties of the strength measure may b?ary operation with canonical decomposition
controlled by varying the properties of the underlying metric.

We consider strength measures based DYnarbitrary met- U=(A;®B,)e!(0XeXT0YEY 0202 (A 0 B,). (6.4)
rics; (2) metrics invariant under local unitaries; af® met-
rics invariant under any unitary. Each extra requiremenBecause of local unitary invariance the Hilbert-Schmidt
causes the strength measure to obey extra axioms and pragirength depends only on the parame#rsthat is, we can
erties from Sec. Il B. Since we know of no general way toignore the local unitary operation’; , and B, ,. Without
characterize families of metrics, in this section we do notloss of generality, we assuntgis in canonical form that is,
consider any of the properties applying to famili@oper- A;=B;=A,=B,=1.
ties 5—-9. Therefore, throughout this section we assufe We define [¢pg)=(|00)+[11))/v2 and [¢p))=(l
=KAB, ® ;)| poy for j=1, 2, 3, where we writer, oy, 0,, 03 t0
The metric properties are easily seen to guarantee that tienotel,X,Y,Z Note that the sefig;) for j=0, 1, 2, 3 is the
axioms of non-negativity and locality hold for alp. An  Bell basis, up to phases. A simple but tedious calculation
elegant fact is that the metric properties alone also imply thaverifies the useful formulge;|o® 07| $;)= 8Hjk, where
Kp satisfies the continuity property. the 4X4 matrixH is
Lemma 5 For any two unitaried) andV and any metric

KHs(U)Em|n||U_A®BHHs, (63)
AB

A. Properties of strength measures based on metrics

D, |[Kp(U)—Kp(V)|<D(U,V). 11 -1 1

Proof. ChooseA and B such thatKp(V)=D(V,A®B). 1 1 1 -1
By definition Kp(U)=<D(U,A®B), and by the triangle in- H= 1 -1 -1 -1
equalty D(U,A®B)<D(U,V)+D(V,A®B)=D(U,V) X L1 L

+Kp(V). ThusKp(U)<D(U,V)+Kp(V), which may be

rearranged to giv&Kp(U)—Kp(V)<D(U,V). By symme- . .
try, KD(E\J/)—KD%U)SD[()(ZJ,V)I.D( ) ( )- By sy - TheH matrix can also be used to evaluate the eigenvalues

If D is locally unitarily invariant, i.e.D(U,V)=D[(A of U. Beqause)(@X, YeYy, .and Z_®Z aré diagonal in the
©B)U,(A®B)V]=D[U(A®B),V(A®B)], thenKp satis- |¢;) basis, U may be written in diagonal form ag)
fies local unitary invariance. =3\ ;)(jl, where); are the eigenvalues df. These

Finally, suppose the metric satisfies full unitary invari- €9envalues are evaluated as follows:
ance, so thab(U,V)=D(WU,WV)=D((UW,VW) for any = (| U] b))
unitary W. ThenK, satisfies two additional properties. The ! J !
first is exchange symmetry, which is easily proved. The sec- :<¢j|ei<01><®x+ 02YBY+632027)| b;)
ond is chaining,Kp(UV)=<Kp(U)+Kp(V). To see this,

3
supposeA®B andC®D minimize Kp(U) andKp(V), re- )
spectively. Then ° ° =ex |k21 o dilo®@ ol ) |, (6.5

Kp(UV)<D[UV.(A®B)(C&D)] where in the last line we used the fact that all thoge o
<D[UV,U(C®D)] are diagonal in th¢¢j> basis. Substituting¢;| oy ® o[ ¢;)
= §k|ij we obtain
+D[U(C®D),(A®B)(C®D)]

3
=D(V,C®D)+D(U,A®B) y\jzexp(ikz ijak). (6.6)
=1

=Kp(U)+Kp(V). (6.2
Theorem 5For a two-qubit unitaryJ with canonical de-
composition Eq(6.4), the Hilbert-Schmidt strength is given
B. An explicit formula for the Hilbert-Schmidt strength by the formula
of a two-qubit unitary

PRSLINE

J

(6.7)

In this section we consider an example of a metric-based Kus(U) = \/8—2 max
strength measure, theilbert-Schmidt strength s induced 0=<ks<3
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TABLE |I. Summary of axioms and properties of strength measures. “Yes”/“No” indicates whether the strength measure obeys the
axiom or property. “—" means the property is not applicable, and “?” means we do not know whether the strength measure obeys the axiom
or property.Kp[LU] refers to strength measures induced by locally unitarily invariant metricsKgith] refers to strength measures
induced by unitarily invariant metrics.

Measure Khar Ksch Ke Kae Kp Kp[LU] KplU]
Al Non-negativity yes yes yes yes yes yes yes
A2 Locality yes yes yes yes yes yes yes
A3 LU invariance yes yes yes yes ? yes yes
P1 Exchange yes yes yes yes ? ? yes
P2 Time reversal yes yes ? yes ? ? ?
P3 Continuity no yes yes ? yes yes yes
P4 Chaining yes no no yes ? ? yes
P5 System stability — — — — ? ? ?
P6 Ancilla stability yes yes yes yes ? ? ?
P7 Weak additivity yes yes no yes ? ? ?
P8 Strong additivity yes yes no yes ? ? ?
P9 Reduction yes no yes yes ? ? ?
The minimizing local unitary isA® B=e'’o,® o, wherek =|EJ-)\J-ij|. This corresponds th®@B=¢'’o® oy, andd as
achieves the maximum in the expression above, @isdthe  described in the statement of the theorem. |
argument of;\jHjy . o _ _

Proof. Simple algebra shows that C. Applications to computational complexity

” . We have seen that strength measures based on unitarily
Kps(U)*=min[8—-2 RetfU'(A®B)])],  (6.8)  jnvariant metrics satisfy many desirable axioms and proper-
AB ties. It is natural to ask whether these measures might be
. useful in answering questions about computational complex-
where Re() denotes the real part. We expaAdand B in it . .
. o3 y, as described in Sec. Il B.
t_errr;s of the Pauli operators a#\=Zi_oa0y, B In order for a family of measurep} to be useful in this
=2i—ghioy. (Note that the unitarity oh andB implies that  context, we requirgKp} to be stable under addition of sys-
Sla*=2|b|*=1.) Substituting these expressions #r tems (for the remainder of this section, we simply write
andB andU =EJ-)\J-|¢J-><¢>J-|, gives “stable” for this property. This is to ensure that the strength
of acNOT gate is independent of the number of qubits in the
_ * system being studied. It is tempting to consider a family of
8-2 Re( % Aj abi(jlov@ ol ¢j>> } measure$Kp} whose underlying family of metrics is stable,
in the sense thad(U,V)=D(U®I,V®]I) for any unitaries
(6.9 U andV. However, we show here that such metrics give rise
where the minimization is over afl,,b, such that the corre- 0 trivial bounds on computational complexity. Denotely
sponding A and B are unitary. But <¢>j|0k® U||¢>j> a unitary acting om qubits, and let 0 andl be the zero and

= 5aHj¢, as noted earlier, so this expression simplifies to identity operator, respectively, anqubits. For any such uni-
tary,

KHs(U)ZZ m|n
ak,b|

Kus(U)?=8-2 maxRe(% x,*akkajk). (6.10 Kp(U)= min D(U,A;® - ®A,)
ak,bk

The Cauchy-Schwarz inequality impli&s|a,b,|<1, so

A, A,
=2D(1,0), (6.12
RE(E )\fakkajk)$2 lagbil| > A Hj ) _ _ o
Ik k ] where to obtain the last line we used the unitary invariance

of D. Butl=1,®1,®---®1,, wherel, is the identity on the
sma%z )\J*ij jth qubit, so by the metric stability propertgp(U) is al-

k1) ways bounded by R(1,0)=2D(l4,0), which is a constant.
Therefore, the lower bound on the number of two-qubit gates
:m@{E NHjkl- (6.1)  required to implement an-qubit gate k=K (U)/K . [EQ.

k| (3.7)], is a constant.

. This shows that any family of metrics that is both uni-

Equality occurs whem, = &, andb,= 5,,e'?, wherek maxi-  tarily invariant and stable cannot give interesting lower
mizes the right-hand side of the inequality, aeiﬂzjxj*ij bounds on computational complexity. As noted above, uni-
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tary invariance is a useful property. On the other hand, staquantum computational complexity: how many one- and
bility of the family of metrics may not be necessary for sta-two-qubit quantum operations are required to do some de-
bility of the induced family of measures. So it may be sired quantum operatiof? This will, in turn, allow us to
possible to find a family of unitarily invariant metrics which answer questions about the relationship of quantum and clas-
is not stable, but which induces a stable family of measuressical complexity classes, and may enable the resolution of
and could therefore give useful lower bounds on computasome long-standing questions in complexity theory.

tional complexity.
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