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Radiative corrections to parity-nonconserving transitions in atoms
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The matrix element of a bound electron interacting with the nucleus through exchangg bbson is
studied for the gauge-invariant case @f2-2p4,, transitions in hydrogenic ions. The QED radiative correction
to the matrix element, which is- a/27 in lowest order, is calculated to all ordersZmv using exact propa-
gators. Previous calculations of the first-order binding correction are confirmed both analytically and by fitting
the exact function at lowZ. Consequences for the interpretation of parity nonconservation in cesium are
discussed.
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[. INTRODUCTION sium PNC could be an indication of new physics.
However, it is known that binding corrections to the simi-
The calculation of radiative corrections in atoms with low lar matrix element involved in hfs are very large for highly
nuclear charg is facilitated by the fact that binding cor- charged ions. That this is so is not surprising, given the first
rections, which enter as powers and logarithm<Zef are  two terms of the one-loop vertex correction to b,
relatively small, and can be treated in perturbation theory.
For atoms with high nuclear charge the perturbation expan-
sion converges more slowly, and for highly charged ions the
expansion is generally avoided, which is possible when nu-

merica_l methods are usgd to represent the electron Propag@nereE, is the lowest-order hfs energy. Alreadyzat 9 the
tor. This approach, first introduced by Wichmann and Kroll|eading binding correction leads to a change in sign of the
[1] for the vacuum polarization and by Brown and Mayershfs, and at z=55 the formula would predict
[2] for the self-energy, has been applied to the calculation of-2 72(a/7)Er, as compared to the low-order, uncorrected
both energy levels, notably by Mohr and collaboratfi8%  value of +0.5(a/7)Eg. Of course, withZa = 0.4, the
and more recently to matrix elements, specifically hyperfineabove equation, even with known higher-order terms in-
splitting (hfs) and the Zeeman effe¢t,5]. cluded, cannot replace an exact evaluation. As mentioned
It is of interest to further extend this kind of radiative above, such evaluations have been carried out by a number
correction calculation to the parity-nonconservifigNC) of groups, and the complete answer turns out to be
process 6;,— 7Sy, in neutral cesium{6]. Corrections to  —3.02(c/ 7) Eg [5].
this transition are of importance for the question of whether It is possible to carry out a parallel analysis for radiative
a breakdown of the standard model is present for cesiurforrections to PNC. If we define the lowest-order PNC ma-
PNC. Specifically, if the radiative correction to the electron-trix element asQq and the one-loop radiatively corrected
Z vertex is taken to be its lowest-order valueq/27, then ~ Matrix element aQg, with
based on the the present status of other corrections to PNC
which have included a number of significant shifts only re- a
cently considered that arise from the Breit interacfidhand QR:;QOR(ZQ)’ @
vacuum polarizatiori8], a discrepancy with experiment of
approximately 2 will result. Given the presence of other
indications of possible problems with electroweak tests o
the standard model, specifically the NuTeV req@i and

. , M

1 13
-+ |n2—Z Tl

Pa—
V—; E

tthe first two terms oR(Z«) are

hadronic asymmetries id—bb [10], a discrepancy in ce- R(Za)=— 1_(2 In2+ 1 nZa 3
2 12 '
*Electronic address: jsapirst@nd.edu where the first term is part of the standard radiative correc-
TElectronic address: krp@fuw.edu.pl tion for atomic PN 11] and the leading binding correction
*Electronic address: aveitia@fuw.edu.pl was first calculated in Ref12]. For the case of cesium this
$Electronic address: kicheng@linl.gov formula changes the coefficient of/7= from —0.5 to
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—2.98, changing a negligible-0.12% to a significant
—0.69% shift. This largely removes theriscrepancy be-

PHYSICAL REVIEW A 67, 052110(2003

TABLE I. Nuclear parameters and R, and lowest-order PNC
matrix elemeniQq: units of fermis forc andR, and 1&8 for Qo.

tween theory and experiment. Square brackets indicate powers of 10.
There are a number of issues that must be addressed be=

fore accepting the-0.69% shift at face value. First, just as Z c Ro Qo
with hfs, an approach that does not rely on expansiafan 10 29889 3.859 1.316]
is required. Even though the first two terms in ED. for the 15 3.0752 4.127 7.036]
vertex correction to hfs give an answer within 12% of the 20 3.7188 4.487 2.388]
total answer, there is no reason we know of for this to be true o5 4.0706 4.783 6.366]
in general. Second, it is not clear that it is correct to dse 30 4'4454 5'106 1.462]
=55 in the above equation. When the cesiusL&mb shift, 40 4'9115 5.516 5'9@]
which is also governed by short distance effects, is studied ' ' '
with all-orders method$13,14], a much smaller effective 50 5.4595 6.010 2.018]
nuclear charge is seen, specifically about 14. Third, an im- 55 56748 6.206 3.589]
portant difference between PNC and hfs is the role of gauge 60 ©.8270 6.345 6.138]
invariance. In the latter case the initial and final states are /0 6.2771 6.761 1.788]
real physical states. However, teboson vertex does not 80 6.6069 7.068 5.184]
involve two physical states, instead involving either s,6 90 6.9264 7.368 1.543]
or 7s,, state and an intermediate state wijiky, quantum 100 7.1717 7.599 4.885]

numbers. While it can be shown that Eg) is still valid in
this case, higher-order binding corrections will be gauge de-
pendent.

To address the last issue, we choose here to work with a

gauge-invariant quantity, the matrix element of the weak
Hamiltonian where we shall from now on suppress the overall factor

QwGe/+/8 and usew to denote the @, state, andy the
Ge 2s,,, state. The nuclear distribution is chosen to be uniform,
ﬁ with a radiusR, fixed so that the root-mean-square radius
agrees with a Fermi distribution with a thickness parameter
between the &, and 2, states of a hydrogenic ion, where 2.3 fm and ac parameter given in Table I. Because of the
pN(F) describes the distribution of the weak nuclear charges'mpl'c'ty of the uniform distribution the matrix element can

which is close to the neutron distribution. While a finite dis- be evaluated analytically; the result is

Qo=Qu,= J d3r g (1) ysip, (1) (), (5)

Hw=Qw—= Yo¥spn(r) (4)

tribution will be used forpy(r), the atomic 3, and 2,/ 6iZ% [2ZRy\ 272 \1+2y
. - . . Y -
states will be chosen to be solutions of the Dirac equation QO:W—NE’ ﬁ m 2ZRo/NzaoaO 3

with a point nucleus, so the energies of these two states are 5
equal. This allows radiative corrections to PNC to be studied ©®)

nonperturbatively to all orders i« in a manner parallel to Here v= /1— _ -
. . . . . y=\1-(Za)?, N,=+2(1+vy), anda, is the Bohr
that used for hfg5,15], and in particular gives information radius. We note the singularity of this expression Ris

about theZa behavior of the functiorR(Z«) that will be .0, which at smallZ manifests itself as a logarithmic de-

u_seful whe_n the cesmm_problem is addressed, as wil b?)endence oRy, as can be seen from the Taylor expansion in
discussed in the Conclusion. 7 of the above

The plan of the paper is the following. The lowest-order
matrix elementQ is treated in Sec. Il. In Sec. lll we give a J3iz%a
derivation of the radiative correction formulas, and in Sec. Qy=———
IV evaluateR(Z «) to first order inZ«, confirming the result 32m
of Ref.[12]. In Sec. V we rearrange the formulas in a way
that allows for an exact numerical evaluation, and present the
details of such a calculation for the range- 10—100. In the

last section, it is shown that the numerical evaluation at low 7
Z agrees with the perturbative expansion, and the higher-

order binding corrections are inferred. Prospects for extenWhere x=ZRy/a, and ye=0.577 ... is Euler’s constant.
sion of the calculation to an actual experiment, where a laseresults forQ, are tabulated in Table I.

photon is present driving thes§,-7s,,, transition, are also
discussed.

xe X +0(Za)*

55 X
2( _ — —
1+(Za) ( In x yE+24 8

Ill. DERIVATION OF RADIATIVE CORRECTION

A principal advantage of treating the degenerate case,
where the states involved in the matrix elements have the
The matrix element of the weak charge operator in lowessame energy, is the simplicity of the formalism. In the more
order is general case, when the energies are different, the radiative

Il. LOWEST-ORDER CALCULATION
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o d .
Qv= —477Iaf Wm<W|elk'r‘yMSF(€—ko)

X ¥oyspnSe(€—Ko) v e~ "|v), (12
(@) (b) (©)

FIG. 1. Feynman diagrams for the self-energy corrections to d"k 1
parity nonconservation. The dashed line terminated with a cross Qg =—4mwia O K218
indicates an interaction with the nucleus through the exchange of a (27) Tt

Z boson. , e D

X (W] yoyspnSk(€)€e "v,Sr(e—ko)y*e *Tv)
correction to the weak interaction matrix element has to in- _ d"k o
volve the laser field photon that drives the transition, other- +2maQg @mn m<W|e Y. Se(€—ko)
wise one would not be dealing with a gauge-invariant ampli- o
tude. In the degenerate case we can restrict our attention to X yoSe(e— ko) y e K T w), (13

the gauge-invariant subset of diagrams shown in Fig. 1,

which involve the vertexFig. 1(b)] and wave functiofiFigs.

1(a) and Xc)] corrections. While the treatment of these dia- d"k 1 .

grams is straightforward for scattering processes, more care Qsg= —4i CYJ 2mn m<w|e'k"7M5F(f—ko)
is required when bound states are involved. As mentioned in

the Introduction, the similar problem of radiative correction X y*e kTS (€) yoyspnlv)
to hyperfine splitting has already been treated in the literature
[4,5], but in the present case the initial and final states are d"k

+2mi aQ, (v]€* Ty, S(e—ko)

different, and the formalism requires some modifications.
The bound state wave functions, and ¢,, are solutions o

of the Dirac equation in the field of a point nucleus. There- X ¥oSe(e— ko) y*e K |v). (14)

fore they can be interpreted as residues at poles of Dirac-

Coulomb propagators as a function of enefs p°,

(2m)"K*+iéo

There is still an ambiguity in the above formulas, related to
o the fact that at least one of the states is unstable with respect
() to radiative decay. This means that, for example, derivative
~—fg—g - ® terms, which have the interpretation of bound state wave

v function renormalization, acquire a small imaginary part. We

think that this imaginary term may have a small effect on the

When radiative corrections are inVO'Ved, the DiraC-COU'Otheak matrix element. Neverthe|essy in our treatment we

propagator is corrected by the electron self-interacion  completely ignore this imaginary part for simplicity. To in-
clude it properly would require a more detailed treatment of
:

Q> the excitation and decay processes. Before the numerical in-
The new positions of the pole and corresponding residues are

1
;
p—m—°V

SF(F',F,E):<F'

1
p—m— V-3 (E)|

9 tegration, we present in the next section the analytical calcu-
lation of the first two terms in th&« expansion.

IV. Za EXPANSION

EQ=E,+(4[Z(E)|¥), (10 In the Za expansion one performs a simplification, simi-
lar to that used for the Lamb shift, which leads to an exact
|y D=y + SLE S (E)|¢) expression for the expansion terms. Specifically, the first two

terms are given by the on-mass-shell scattering amplitude,
|y a — which, because it involves the weak charge of the nucleus, is
2 JE WI=B)y), 11 dominated by the large momentum region, with characteris-
E=E, tic momenta of the order of the electron mass, and to smaller
extent of the order of the inverse of the nuclear size. The
where bySt one denotes a reduced Coulomb-Dirac propa-small momentum region contributes at ord@(Z«)? and
gator, namely, the propagator with thiestate excluded. With  will be included in the numerical treatment. We aim here to
the help of the above equations, we now present the one-loagonfirm the previously obtained res{it2] shown in Eq.(3),
radiative corrections t@,. They consist of the vertex cor- which will be used later to test the numerical accuracy of the
rection Qy, the left and right wave function corrections nonperturbative treatment. In this section we do not pull out
Qs+ Qgsgr, Which include as well the derivative terms, as- a factora/ from R(Z ).
sociated with the last term in E(LL). In the Feynman gauge The relative correction to order is determined by con-
they are e=E,=E,), sidering the radiative correction to the'y® vertex,
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a [ diq N*(p2.,p1)
F#(p21p1)24_f Y PN P 22 l L (15
m) imt [(q—K)*—m+ie][q°—m +ie][(g—py) — N t+ie]
|
where R(Za) u(p,o)u(p,0) 20
a)=— — 3
N“(p2,p) =y (d—K+m) ¥y (d+m)y,, (16) u(p,a)y°y°u(p,o)
andk=p,—p;. The most general form df* in momentum  which can be transformed into
space is
T TO(2/4m)(p+m)(1 +&y®
ke R(Za)= [T°(1/4m) (p+m)( Y] (21)

[#(p2,p1) =F1(k?) ¥y +Fa(k?)=v"  (17) TH y2y5(1/4m) (p+ m)(1+&y%)]
The form factors,(k?) andF,(k?) are calculated following Where a#=(ay,a) with a-p=0 is the polarization four-
the same steps as in the case of the electromagnetic vertesector of the electron. We then recover the well-knavizi]
Introducing Feynman parameters and taking into account thiewest-order correction

mass-shell condition, one obtains in the limit of zero mo-

a
mentum transfer R(Za)=——. (22)
2m
a
F1(0)=- 27 (18 The leading binding correction can be derived from the

forward scattering amplitude, which involves an additional
Coulomb exchange. It consists of the four diagrams pre-
F2(0)= 127 (19) sented in Figs. @—2(d), which we evaluate using the Yen-
nie gauge. This gauge has the useful property that each dia-
For a static nucleus, onliF,(0) contributes to the relative gram is infrared finite as the photon masss taken to 0. The
correction to first order inv. The relative correction to the contribution from Fig. 2a) to the ratioR(Z«) can be written

PNC amplitude is as
S ~f d'q Na(9 ) (23
Yoa (2m)3 K2 7% [P+iel(p+q)2—mP+iel (p+k+q)2—m2+ie]’
where
1

N1(9,K)=(9,,9°+20,d,)Tr 7"(¢J+¢i+m)7°(b+¢i+k+m)yoys(lf)HHm)y”m(¥5+m)(1+évs) : (24)
For Figs. Zb) and Zc), we have

__Za[ d% if dg 1 Ni(.k) (25)

" ag 2m)? k2 7 [P+iel? [(p+q)2—mi+ie][(p+k+q)2—m?+ie][(p+k)Z—mi+ie]’

where
N3(a,k)=(9,,9°+20,9,) Tr| y“(p+4+m)y°(p+Kk+¢

1
N2(0,K) = (9,,0°+20,0,) Tr| y°(p+k+m) y*(p+ K+ M)y (B Kt m) yy° o (B m)(1+4y°) |

0.5 v 1 5 (27)
+m)y y (p+4+m)y m(¥5+m)(1+37) ,

(26) Finally, for Fig. 2d), one has
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Zo? [ dk 1 [ dg N4(9,k)
Re=— %y (zw)eﬁfE[q2+ie]z[(p+k)z—m2+ie]z[(p+k+q)2—m2+i€]' “
[
where . - -
Im[Fi(M?)]=2apm| 7 — —+
21 m{Fi(M?)] aow‘s 3M2  3(1+M?)?2
1 16 1 M
N4(a,K)=(9,,0°+20,0,)Tr| y°(p+Kk+m) y*(p+4¢ Tremz 'l 3M3_M_€)
)y (B K )70y e (Bt ) (14 A7) :
= x| arctariM) —arccog | 6(M —2)

(29

4
\/1—W6(M—2)

where 6 is the step function withg(x)=0 for x<0 and
#(x)=1 for x>0. The above expression can be analytically
integrated. Hence we have

10
A ( 3Mm?2
andk=(0Kk). Each contribution from Figs.(d), 2(b), 2(c),

33
and Zd) is written as 33

Za? [ d%k Fi(k?

30
a ) (2m)3 K2 (30 RZay=— = +é .
a)=— — .
2o <&
The calculations are considerably simplified if one deter- @ Za? (= 4
mines only the imaginary part of the functioRgk?). These - on 222 Jo szl Im[Fi]
are analytic functions with a branch cut fet>0. The real 0
part of F;(k?) is then obtained by means of Cauchy’s theo- @ 7 )
=———|-%+2In2|Za", (34
rem, 27 \12

in agreement with Ref.12]. We now turn to the numerical
calculation.
F(M2+i0)—F(M2-i0)
M?2— k2 V. NUMERICAL APPROACH

1
F(kz): ﬁf dM2

1 IM[F(M2)] In order to make contact with the notation used in Ref.
= _f aM2—— =, (31  [5], we note that the two tern@s, andQggin Egs.(13) and
™ M2—k?2 (14) are associated with what are called “side-lef8L) and
“side-right” (SR) diagrams in that work, which notation we
will follow in this section. In addition, the SL and SR dia-
wherek?<0. Substituting this expression into EQ0) and  grams have contributions called “derivative terms.” We will
integrating ovelk yields

P P P P

o L K 1'%
702 (= al; al ql al
Ri= f dM Im[F;(M?)]. (32 L «-x L -x

2m?ayJ o k k k k
Lo - X -=-x

3 P I3 P

In order to calculate IfiF;], a procedure iIMATHEMATICA is (2) (b) (c) (d)

written which facilitates the evaluation of the trace in Eq. g5 5 Feynman diagrams for the leading binding corrections to

(24) and the integrals in 59(32)- Each contribution i_S the forward scattering amplitude. The dashed and wavy lines termi-
doubled due to the permutation of photon and boson lines,ated with a cross represent PNC and Coulomb interactions with

Settingm=1 and picking the terms linear iﬁ, we obtain the nucleus, respectively.
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TABLE Il. Breakdown of contributions t&R(Z«).

z QVl QVZ QV3 QSLl QSLZ QSLB QSL4 QSR]. QSRZ QSR3 QSR4 R(Za)

10 —2.500 4.260 —11.768 —0.272 2.369 2.293 0.002 —0.045 2.269 2.388 0.006 —0.998
15 —2.009 —-0.253 —7.853 —0.415 1.972 2.689 0.003 -—-0.068 1.873 2.782 0.009 -1.270
20 -1.729 —2.600 —5.898 —0.555 1.694 2.967 0.004 -0.097 1.595 3.058 0.012 -1.549
25 —1.559 —4.064 —4.727 —0.696 1.482 3.180 0.005 -0.128 1.384 3.269 0.014 -1.840
30 —1.458 —5.067 —3.948 —0.839 1.311 3.350 0.006 —0.164 1.214 3.439 0.017 —2.139
40 —-1.377 —6.398 —2.980 —1.139 1.048 3.620 0.008 —-0.279 0.952 3.703 0.022 —2.820
50 —-1.386 —7.267 —2.406 —1.461 0.851 3.824 0.011 -0.434 0.755 3.904 0.026 —3.583
55 —1.411 —7.609 —2.201 —1.637 0.768 3.911 0.012 -0.530 0.673 3.989 0.028 —4.007
60 —1.446 —7.912 —2.033 —1.821 0.694 3.990 0.013 -0.644 0.600 4.067 0.030 —4.462
70 —1.525 —8.466 —-1.778 —2.229 0.566 4.132 0.016 —-0.922 0.472 4.207 0.033 —5.494
80 —-1.617 —8.922 —1.602 —2.707 0.458 4.253 0.019 -1.300 0.365 4.331 0.035 -6.687
90 —-1.708 —9.376 —1.489 —3.288 0.364 4.366 0.023 —-1.822 0.273 4.448 0.035 -8.174
100 —-1.798 —9.831 —1.433 —4.020 0.282 4.457 0.028 —-2.570 0.192 4.545 0.033 —-10.115

refer in this section to the Gell-Mann—Low formalism used a [C a (1 1 d3p,
in Ref.[5] in a rederivation of Eqs(13) and (14): the adia- QVl:ﬁ(?_ )QO— o pdpfo de (2m)?

batic damping factoe used in that formalism can be distin-

guished from the factor used in dimensional regularization, P A
=4— i i ia- P1— - ~ v

n=4-— ¢, by context. In the numerical evaluation, each dia Xf Fal PIV(Q) thy(Py) InW

gram breaks into several pieces, which we define as (2m)3

a (i fldf d3pzf d*p,
- X
4o PP ) 2md) (2m)?

X[ u(P2) Yu(P2— @+ M)V(Qq)

3 4 4
Q:igl QVi+§1 Qsiit igl Qsri- (39

.1
X (1= Q-+ m) ¥y, ()5 (37
We now treat the vertex and side diagrams in turn. v
Here

A. Vertex diagram
C=(4mT (1+€/2),
The vertex diagran®y,, shown in Fig. 1b), was given in
Eq. (12). The ultraviolet divergent part of the diagram can be
isolated by replacing: with Sy, whereS; is a free propa-
gator. If this replacement is made, we get the contribution

QM:polp+p(1_X)p2M1

Qy1, which is most conveniently evaluated in momentum Ay=px(m?—p2) + p(1—x)(m?— p2) + Q?,
space
q:|52_ 51|:

_ d®p, [ d®p; ( dk 1 — .

Qui= —47Tlaf 3 5] @m)n 2 57w(P2) and the Fourier transform of the weak Hamiltonian in the
(2m)>) (2m) case of a uniform charge distribution is
1 1 -
XY V(q) Yib,(P1)- (36) 3 _
po—k—m pr—k—m V(Q)=W[SWQRO)—QROCOS{QRO)]YO%-

(39

After Feynman parametrization th#'k integration can be The first two terms in the right-hand side of E@7) are
carried out with the result divergent and will be held for later cancellation with the
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“derivative terms” from the SL and SR calculation. The re- gators. The result behaves ag\InWhile it is possible to
maining finite parts ofQy, are tabulated in the second col- explicitly cancel this dependence with similar terms from the
umn of Table II. side diagrams, we choose here to simply work with a spe-
The difference ofQ, andQy is ultraviolet finite, and is  cific, small value ofA=10"°. We note that different choices
evaluated in coordinate space. Tkgintegral is treated by of A will lead to slightly different results fo®.,,, but when

carrying out a Wick rotationko—iw, which leads to combined with the side diagrams discussed below, the sums
3 are essentially the same as long as the values afe rea-
Qv=—87a Ref d3x st fds j”d“’ d°k sonably small. Results faD,, with A=10"° are given in
V2 2m)?3 the third column of Table II.

The Wick rotation mentioned above passes bound state

gik (-2 poles which must be accounted for. They are treated by re-
[’ﬁw(X)MSF(X Y,ew—iw) writing Qy by treating the propagators as a spectral repre-
sentation, carrying out theé®k integration analytically, and
XyovspN&)sF(y,Z; €= 10) Y, (2) defining
~ (X 7,S0(X.Y €w—10) Yo¥spn(Y) o [ EVETIY
DSt RV o P i
X Soly.Z; €, ~ 1) y*4h,(2)]. (39) x=yl
A singularity associated with the parts of the bound XY (X)W ) (V) Y (Y), (40

propagators that include or v is regularized by evaluating
the expression witle,, ,— €, ,(1—A) in the electron propa- which allows us to write

[ dko Gwnmo(Ko) Qmn
Q= f 27 ; [en(1—A)—Ko— em(1—10)][€,(1—A)—Ko— en(1—i10)]"

(41)

The choice we have made in regularizing leads to only théA self-mass counterterm is understood to be included in the
ground state &;,, denoted as, being encircled whetk,  above. The self-energy of a valence state is thgp(e,),

—iw, SO and can be evaluated as described in RES].
Using a spectral decomposition of the intermediate propa-
Gwna(€w— €a)Qan Jwam (€, ~ €a)Qma gator, theS matrix for SL is
Qvs= 2 — + 2 — .
an €a™ €n ma €3~ €np

(42 __ 32 dEl dEZ meEmv Ez)
QsL=—iA — _
) 27 E, em(l i6)
The sum overl ranges only over the two magnetic quantum
numbers of the state. This contribution is tabulated in the XA(E;—€y,)A(E1—E,—kg)A(Estko—€,),

fourth column of Table Il. The part of the summation in

which the denominator would vanish corresponds to a (44)
double pole, but does not contribute beca@sg vanishes. and for SR
However, it should be noted that double poles will in general
contribute, and in fact would be present in the present calcu- 32 J’ dE; [ dE; Zym(E1)Qmy
lation were we to use a negative value &of which would Qsr=—iA 27 Ey—en(1—i0)
introduce additional pole terms from thes;2 and 24,
states. XA(Ez—€,)A(E;—Ex+ ko) A(Er+Ko—€y),
B. Side diagrams ) 49
It is convenient for the discussion of the side diagrams toWIth
introduce the matrix element of the self-energy operator be-
tween two arbitrary states andn, AB) =gz = (46)
S o(E)=—ie f d3x j dsz d'k e Here is a factor associatgd With' the GeII-Mann—Loyv fqr-
(277)“ k2+|5 malism[17] that is to be differentiated and set to unity: in

. . _ addition, a factor /2 must be multiplied into th& matrix to
X Pm(X) ¥ Se(X, Y E—Ko) ¥ in(y). (43 obtain the off-diagonal energy. If the restriction is made that
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m#w,v, it is straightforward to show that two “perturbed and
orbital” (PO contributions to the matrix element result,
which are given by . d®p d"k 1_
QSW=27TI a’Qof f (2 )n k2 l/fw(p)'yM

3
QumEms (&) (2m)
Qsu= %Ezlu(fu) (47)
m+#v €y €m 1 R
X yH . 52
. p—k—myop—k—m Yial(P) (52
S wm( €w) Qmp Feynman parametrizing and carrying out thkéx integration
Qsrm= > ————=3i(e€w). 48 gives
m#w 61; €m
This is equivalent to the forms given f@s, and Qgg in Qso= i(E_l)Q
Eqgs.(13) and(14). We note that it is not necessary to explic- stz 4w

itly make the restrictionsn#w in Qg1 andm#v in Qggy
becaus®,,,=Q,,=0. The PO terminology arises from the
fact that them summation can be carried out before evaluat-
ing the self-energy, and one then need only do a self-energy
calculation with one of the external wave functions replaced a 0 fl

o| pUp

o 1 d3p —_— > AS
+ EQOL Pdpf m%(m%%(p)mﬁ

P, (P) ¥, [B(1—p)

with a perturbed orbital. The PO terms are tabulated in the
fifth and ninth columns of Table II.

The casesn=v andm=w are more subtle, as they con- .1
tribute terms of order ¥ to the off-diagonal energy. This +m]yo[p(1—p)+m] 7“¢U(P)}A— (53
divergence cancels, but a finite contribution coming from s

(2m)?®

Taylor expanding X(E) remains, and contributes

1 ! 1 ! e and
7Qo2,,(€,) +2Qo2 yu(€w), or more explicitly
d"k iK- (x z) Q @ (C 1)Q
e SR T |\ -~
der 3 3 3 A
Z'WQOJd fd yfd f 2m)" Ktis
. . . N o 1 d3p _— s > AS
Xy (X) 7, e (X,Y: €~ Ko) YoSr (Y. Z: €~ ko) 741, (2) 47 Q0] oo | (23 (P YoUul PG
i dkO gvmn’v(ko) 1 d3
- 5Q0> f—— (49 i P _
2°0F ] 27 (e,—ky—ep)? +5-Qo| pdp (277)3{¢w(p)m[¢(1 p)
and o1
+m]yelp(1—p)+mlyv*du(P)i5 (54)
d"k e|k (x—2) S
Qo= 2|77aQOJ d3x Jd3yJ d®z J .
2m" K2+is where Ag=p?p?+ p(m?—p?). The first two terms in the
- . .. right-hand side of the above equations @4, andQgg, are
X th(X) ¥, Sr(X,Y; €w—Ko) Yo divergent but cancel with the corresponding term&gf in
> o e Eqg. (37). The remaining, finite terms are presented in the
X Se(Y,z; €= Ko) ¥ hu(2) sixth and tenth columns of Table II.
d K The difference of the side diagrams evaluated with bound
02 J ko gwmm"‘( o) (50) propagators and free propagators is again ultraviolet finite,
27 (g, —ko— em)2 and after Wick rotation one has
These correspond to the derivative terms mentioned in the s s s dw
preceding section. The analysis of these terms parallels Qsz=27Qoa Ref d fd YJ d j—
closely the treatment of the vertex. First the bound propaga-
tors are replaced with free propagators, which gives f d3k elk (x-2)
X m(x)yﬂsF(x y.e,—iw)
Q 2'Qfd3pfnkli(> o
s=emlalo w(P)Y - - . - — -
(2m3) (2m)" K g X YoSe(Y.Zi €~ 10) Y, (2) = Y, (X) ¥,
1 X So(X.Y, € 1) yoSo(y. Zi €, 1) ¥4, (2)]
x Yo Y1, (P) (51) °
p—k—m p—k— (55
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and

d
QSR3=27TQ0aRef d3xJ d3yf d%j%

A3k ek x-2 .
*J aay S L0 nS (XY i)

X YoSe(Y,Z; €w— 1) Y*Pha(Z) = hu(X) ¥,

X So(X,Y, €w—10)voSo(Y,Z; €y =i @) Y*ihn(2)]. 0 . 20 ' 40 . 60 ‘ 80 ‘ 100
(56) z
The same regularization of the valence energy-€,(1 FIG. 3. Comparison of exact calculatigsolid line) with first

—A), used in the vertex is required, and again we simply uséwvo terms of perturbative expansion fR(Z«) (dashed ling
A=10"° and present the results in the seventh and eleventh
columns of Table II. proach is, of course, the fact that it does not assdmé¢o be
Finally, the Wick rotation passes a double pole winen & small parameter, and thus can be used for Eign the
=a, with a being the &,,, ground state, leading to the de- Particularly interesting case &= 55, we see that the pertur-
rivative terms bative formula happens to give 2.983, as compared with
the exact result-4.007.
1 . However, at this point we make no claims about the ap-
QSL4=§Qo§a: Gyaar( €~ €a) (57) plicability of the present calculation to the case of PNC tran-
sitions in neutral cesium. The actual process studied in the
and experiment that measures PNI§] involves a double pertur-
bation, where not only the weak Hamiltonian but also an
1 external laser photon field act either to first transform the
QstEQog Jwaawl €w ™ €a) » (58)  6s,, electron into a state with the opposite parity, followed
2 by an allowed dipole transition to asy), electron, or vice

which are tabulated in the eighth and twelfth columns of/€rsa. To extend our calculation to the actual experiment
Table 1. This completes the calculation, and the sums of€duires the following steps. ,
vertex and side diagram contributions give the values of the 1Ne first step is replacing the Coulomb wave functions
exact evaluation of the functioR(Za) that are tabulated in used here with realistic wave functions for neutral cesium.
the last column of Table II.

VI. DISCUSSION ; ;
A number of numerical issues arise in the calculation that X X

we note here. In some parts the use of a uniform distribution,
with its step function behavior, caused loss of accuracy. In (a) (b)
those cases a Fermi distribution was used: while this leads to
small changes iMg, the effect onR(Z«) is negligible.
More serious is the difficulty of controlling numerical insta-
bilities at lowZ, which led to our choosing the loweatto be

10. A graph of the numerical value &(Z«), along with
results from the two leading terms given in E8), is shown

in Fig. 3. The accuracy of the calculation at I&ns suffi-
cient to allow a fit that determines

R(Za)j=— %—0.0432)2, (59)

which is in agreement with the numerical value of E8),

©) )

R(Za)=— E —0.04515Z. (60) FIG. 4 _Feynman diagrams for_ th_e radiative correctio_n to eleg-
2 tron excitation by a laser photon, indicated by the wavy line termi-
nated with a triangle, in the presence of interaction with the nucleus
This agreement provides a check on the rather complethrough exchange of Z boson, indicated by the dashed line termi-
numerical calculation. The advantage of the numerical apnated with a cross.
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The technology to carry out radiative corrections in neutralof R(Z«) to all orders inZ« for the case of gauge-invariant
many-electron atoms has only recently been put into place. Rs,,-2p,,, transitions in hydrogenlike ions can be applied.

is now possible, using a local potential that incorporatesThe behavior of the function shows that large binding cor-
screening, to carry out accurate self-enef§$,14 and ra-  rections are present. If these corrections behave the same in
diative corrections to hf§15] calculations. The second step the realistic cesium case, and the extra corrections of order
is to incorporate the laser photon. This is a more complicate@lza)z mentioned above are small, the apparestdiscrep-
task, since the set of diagrams shown in Fig. 4 must b&ncy noted in Ref[8] is reduced, but until a complete cal-

evaluated. We note that, while Fig(a4 corresponds to the ¢yjation is done the theoretical status of PNC in cesium
vertex correction considered here, Figc)icorresponds to @  should be regarded as unresolved.

radiative correction to the electromagnetic vertex, and Fig.
4(e) to a different radiative correction specific to the experi-
ment. We expect that these contributions will aff{Z «)
at the order Za)?, but until they are explicitly evaluated
their importance for cesium PNC is unknown. The work of J.S. was supported in part by NSF Grant No.
The principal results of this paper are then as follows.PHY-0097641. The work of K.P and A.V was supported by
First, an independent scattering calculation of the leadingeU Grant No. HPRI-CT-2001-50034. The work of K.T.C.
binding correction in the functioR(Z«) has been presented, was performed under the auspices of the U.S. Department of
which confirms the calculation of Ref12]. Second, it has Energy by Lawrence Livermore National Laboratory under
been shown that numerical methods that allow the evaluatio@ontract No. W-7405-Eng-48.
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