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Radiative corrections to parity-nonconserving transitions in atoms
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The matrix element of a bound electron interacting with the nucleus through exchange of aZ boson is
studied for the gauge-invariant case of 2s1/2-2p1/2 transitions in hydrogenic ions. The QED radiative correction
to the matrix element, which is2a/2p in lowest order, is calculated to all orders inZa using exact propa-
gators. Previous calculations of the first-order binding correction are confirmed both analytically and by fitting
the exact function at lowZ. Consequences for the interpretation of parity nonconservation in cesium are
discussed.
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I. INTRODUCTION

The calculation of radiative corrections in atoms with lo
nuclear chargeZ is facilitated by the fact that binding cor
rections, which enter as powers and logarithms ofZa, are
relatively small, and can be treated in perturbation theo
For atoms with high nuclear charge the perturbation exp
sion converges more slowly, and for highly charged ions
expansion is generally avoided, which is possible when
merical methods are used to represent the electron prop
tor. This approach, first introduced by Wichmann and Kr
@1# for the vacuum polarization and by Brown and Maye
@2# for the self-energy, has been applied to the calculation
both energy levels, notably by Mohr and collaborators@3#,
and more recently to matrix elements, specifically hyperfi
splitting ~hfs! and the Zeeman effect@4,5#.

It is of interest to further extend this kind of radiativ
correction calculation to the parity-nonconserving~PNC!
process 6s1/2→7s1/2 in neutral cesium@6#. Corrections to
this transition are of importance for the question of whet
a breakdown of the standard model is present for ces
PNC. Specifically, if the radiative correction to the electro
Z vertex is taken to be its lowest-order value,2a/2p, then
based on the the present status of other corrections to
which have included a number of significant shifts only
cently considered that arise from the Breit interaction@7# and
vacuum polarization@8#, a discrepancy with experiment o
approximately 2s will result. Given the presence of othe
indications of possible problems with electroweak tests
the standard model, specifically the NuTeV result@9# and
hadronic asymmetries inZ→bb̄ @10#, a discrepancy in ce
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sium PNC could be an indication of new physics.
However, it is known that binding corrections to the sim

lar matrix element involved in hfs are very large for high
charged ions. That this is so is not surprising, given the fi
two terms of the one-loop vertex correction to hfs@5#,

dn5
a

p
EFF1

2
1S ln22

13

4 DpZaG , ~1!

whereEF is the lowest-order hfs energy. Already atZ59 the
leading binding correction leads to a change in sign of
hfs, and at Z555 the formula would predict
22.72(a/p)EF , as compared to the low-order, uncorrect
value of 10.5(a/p)EF . Of course, withZa 5 0.4, the
above equation, even with known higher-order terms
cluded, cannot replace an exact evaluation. As mentio
above, such evaluations have been carried out by a num
of groups, and the complete answer turns out to
23.02(a/p)EF @5#.

It is possible to carry out a parallel analysis for radiati
corrections to PNC. If we define the lowest-order PNC m
trix element asQ0 and the one-loop radiatively correcte
matrix element asQR , with

QR5
a

p
Q0R~Za!, ~2!

the first two terms ofR(Za) are

R~Za!52
1

2
2S 2 ln 21

7

12DpZa, ~3!

where the first term is part of the standard radiative corr
tion for atomic PNC@11# and the leading binding correctio
was first calculated in Ref.@12#. For the case of cesium thi
formula changes the coefficient ofa/p from 20.5 to
©2003 The American Physical Society10-1
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22.98, changing a negligible20.12% to a significant
20.69% shift. This largely removes the 2s discrepancy be-
tween theory and experiment.

There are a number of issues that must be addresse
fore accepting the20.69% shift at face value. First, just a
with hfs, an approach that does not rely on expansion inZa
is required. Even though the first two terms in Eq.~1! for the
vertex correction to hfs give an answer within 12% of t
total answer, there is no reason we know of for this to be t
in general. Second, it is not clear that it is correct to useZ
555 in the above equation. When the cesium 6s Lamb shift,
which is also governed by short distance effects, is stud
with all-orders methods@13,14#, a much smaller effective
nuclear charge is seen, specifically about 14. Third, an
portant difference between PNC and hfs is the role of ga
invariance. In the latter case the initial and final states
real physical states. However, theZ boson vertex does no
involve two physical states, instead involving either a 6s1/2
or 7s1/2 state and an intermediate state withp1/2 quantum
numbers. While it can be shown that Eq.~3! is still valid in
this case, higher-order binding corrections will be gauge
pendent.

To address the last issue, we choose here to work wi
gauge-invariant quantity, the matrix element of the we
Hamiltonian

HW5QW

GF

A8
g0g5rN~rW ! ~4!

between the 2s1/2 and 2p1/2 states of a hydrogenic ion, wher
rN(rW) describes the distribution of the weak nuclear char
which is close to the neutron distribution. While a finite d
tribution will be used forrN(rW), the atomic 2s1/2 and 2p1/2
states will be chosen to be solutions of the Dirac equa
with a point nucleus, so the energies of these two states
equal. This allows radiative corrections to PNC to be stud
nonperturbatively to all orders inZa in a manner parallel to
that used for hfs@5,15#, and in particular gives information
about theZa behavior of the functionR(Za) that will be
useful when the cesium problem is addressed, as will
discussed in the Conclusion.

The plan of the paper is the following. The lowest-ord
matrix elementQ0 is treated in Sec. II. In Sec. III we give
derivation of the radiative correction formulas, and in S
IV evaluateR(Za) to first order inZa, confirming the result
of Ref. @12#. In Sec. V we rearrange the formulas in a w
that allows for an exact numerical evaluation, and present
details of such a calculation for the rangeZ510–100. In the
last section, it is shown that the numerical evaluation at l
Z agrees with the perturbative expansion, and the hig
order binding corrections are inferred. Prospects for ext
sion of the calculation to an actual experiment, where a la
photon is present driving the 6s1/2-7s1/2 transition, are also
discussed.

II. LOWEST-ORDER CALCULATION

The matrix element of the weak charge operator in low
order is
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Q0[Qwv5E d3rcw
† ~rW !g5cv~rW !rN~rW !, ~5!

where we shall from now on suppress the overall fac
QWGF /A8 and usew to denote the 2p1/2 state, andv the
2s1/2 state. The nuclear distribution is chosen to be unifor
with a radiusR0 fixed so that the root-mean-square radi
agrees with a Fermi distribution with a thickness parame
2.3 fm and ac parameter given in Table I. Because of th
simplicity of the uniform distribution the matrix element ca
be evaluated analytically; the result is

Q05
6iZ4a

pN2
5 S 2ZR0

N2a0
D 2g22 A112g

G~2g12!
e22ZR0 /N2a0a0

23 .

~6!

Here g5A12(Za)2, N25A2(11g), and a0 is the Bohr
radius. We note the singularity of this expression asR0
→0, which at smallZ manifests itself as a logarithmic de
pendence onR0, as can be seen from the Taylor expansion
Za of the above,

Q05
A3iZ4a

32p

3e2xF11~Za!2S 2 ln x2gE1
55

24
2

x

8D1O~Za!4G ,
~7!

where x5ZR0 /a0 and gE50.577 . . . is Euler’s constant.
Results forQ0 are tabulated in Table I.

III. DERIVATION OF RADIATIVE CORRECTION

A principal advantage of treating the degenerate ca
where the states involved in the matrix elements have
same energy, is the simplicity of the formalism. In the mo
general case, when the energies are different, the radia

TABLE I. Nuclear parametersc andR0 and lowest-order PNC
matrix elementQ0: units of fermis forc andR0 and 1/a0

3 for Q0.
Square brackets indicate powers of 10.

Z c R0 Q0

10 2.9889 3.859 1.318@0#

15 3.2752 4.127 7.038@0#

20 3.7188 4.487 2.388@1#

25 4.0706 4.783 6.366@1#

30 4.4454 5.106 1.465@2#

40 4.9115 5.516 5.988@2#

50 5.4595 6.010 2.010@3#

55 5.6748 6.206 3.539@3#

60 5.8270 6.345 6.136@3#

70 6.2771 6.761 1.786@4#

80 6.6069 7.068 5.184@4#

90 6.9264 7.368 1.542@5#

100 7.1717 7.599 4.886@5#
0-2
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correction to the weak interaction matrix element has to
volve the laser field photon that drives the transition, oth
wise one would not be dealing with a gauge-invariant am
tude. In the degenerate case we can restrict our attentio
the gauge-invariant subset of diagrams shown in Fig.
which involve the vertex@Fig. 1~b!# and wave function@Figs.
1~a! and 1~c!# corrections. While the treatment of these d
grams is straightforward for scattering processes, more
is required when bound states are involved. As mentione
the Introduction, the similar problem of radiative correcti
to hyperfine splitting has already been treated in the litera
@4,5#, but in the present case the initial and final states
different, and the formalism requires some modifications

The bound state wave functionscv andcw are solutions
of the Dirac equation in the field of a point nucleus. The
fore they can be interpreted as residues at poles of Di
Coulomb propagators as a function of energyE[p0,

SF~rW8,rW,E!5K rW8U 1

p”2m2g0V
UrWL '

c~rW8!c̄~rW !

E2Ec
. ~8!

When radiative corrections are involved, the Dirac-Coulo
propagator is corrected by the electron self-interactionS,

K rW8U 1

p”2m2g0V2S~E!
UrWL . ~9!

The new positions of the pole and corresponding residues

Ec
(1)5Ec1^c̄uS~Ec!uc&, ~10!

uc& (1)5uc&1SF8 ~Ec!S~Ec!uc&

1
uc&
2

]

]EU
E5Ec

^c̄uS~E!uc&, ~11!

where bySF8 one denotes a reduced Coulomb-Dirac pro
gator, namely, the propagator with thec state excluded. With
the help of the above equations, we now present the one-
radiative corrections toQ0. They consist of the vertex cor
rection QV , the left and right wave function correction
QSL1QSR, which include as well the derivative terms, a
sociated with the last term in Eq.~11!. In the Feynman gauge
they are (e[Ev5Ew),

FIG. 1. Feynman diagrams for the self-energy corrections
parity nonconservation. The dashed line terminated with a c
indicates an interaction with the nucleus through the exchange
Z boson.
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QV524p iaE dnk

~2p!n

1

k21 id
^wueikW•rWgmSF~e2k0!

3g0g5rNSF~e2k0!gme2 ikW•rWuv&, ~12!

QSL524p iaE dnk

~2p!n

1

k21 id

3^wug0g5rNSF8 ~e!eikW•rWgmSF~e2k0!gme2 ikW•rWuv&

12p iaQ0E dnk

~2p!n

1

k21 id
^wueikW•rWgmSF~e2k0!

3g0SF~e2k0!gme2 ikW•rWuw&, ~13!

QSR524p iaE dnk

~2p!n

1

k21 id
^wueikW•rWgmSF~e2k0!

3gme2 ikW•rWSF8 ~e!g0g5rNuv&

12p iaQ0E dnk

~2p!n

1

k21 id
^vueikW•rWgmSF~e2k0!

3g0SF~e2k0!gme2 ikW•rWuv&. ~14!

There is still an ambiguity in the above formulas, related
the fact that at least one of the states is unstable with res
to radiative decay. This means that, for example, deriva
terms, which have the interpretation of bound state wa
function renormalization, acquire a small imaginary part. W
think that this imaginary term may have a small effect on
weak matrix element. Nevertheless, in our treatment
completely ignore this imaginary part for simplicity. To in
clude it properly would require a more detailed treatment
the excitation and decay processes. Before the numerica
tegration, we present in the next section the analytical ca
lation of the first two terms in theZa expansion.

IV. Za EXPANSION

In the Za expansion one performs a simplification, sim
lar to that used for the Lamb shift, which leads to an ex
expression for the expansion terms. Specifically, the first
terms are given by the on-mass-shell scattering amplitu
which, because it involves the weak charge of the nucleu
dominated by the large momentum region, with characte
tic momenta of the order of the electron mass, and to sma
extent of the order of the inverse of the nuclear size. T
small momentum region contributes at orderO(Za)2 and
will be included in the numerical treatment. We aim here
confirm the previously obtained result@12# shown in Eq.~3!,
which will be used later to test the numerical accuracy of
nonperturbative treatment. In this section we do not pull
a factora/p from R(Za).

The relative correction to ordera is determined by con-
sidering the radiative correction to thegmg5 vertex,

o
ss
a

0-3
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Gm~p2 ,p1!5
a

4pE d4q

ip2

Nm~p2 ,p1!

@~q2k!22m21 i e#@q22m21 i e#@~q2p2!22l21 i e#
, ~15!
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Nm~p2 ,p1!5ga~q”2k”1m!gmg5~q”1m!ga , ~16!

andk5p22p1. The most general form ofGm in momentum
space is

Gm~p2 ,p1!5F1~k2!gmg51F2~k2!
km

m
g5. ~17!

The form factorsF1(k2) andF2(k2) are calculated following
the same steps as in the case of the electromagnetic ve
Introducing Feynman parameters and taking into account
mass-shell condition, one obtains in the limit of zero m
mentum transfer

F1~0!52
a

2p
, ~18!

F2~0!5
7a

12p
. ~19!

For a static nucleus, onlyF1(0) contributes to the relative
correction to first order ina. The relative correction to the
PNC amplitude is
05211
ex.
e

-

R~Za!5
ū~p,s!G0u~p,s!

ū~p,s!g0g5u~p,s!
, ~20!

which can be transformed into

R~Za!5
Tr@G0~1/4m!~p”1m!~1 1a”g5!#

Tr@g0g5~1/4m!~p”1m!~11a”g5!#
, ~21!

where am5(a0 ,aW ) with a•p50 is the polarization four-
vector of the electron. We then recover the well-known@11#
lowest-order correction

R~Za!52
a

2p
. ~22!

The leading binding correction can be derived from t
forward scattering amplitude, which involves an addition
Coulomb exchange. It consists of the four diagrams p
sented in Figs. 2~a!–2~d!, which we evaluate using the Yen
nie gauge. This gauge has the useful property that each
gram is infrared finite as the photon massl is taken to 0. The
contribution from Fig. 2~a! to the ratioR(Za) can be written
as
R152
Za2

a0
E d3k

~2p!3

1

k2E d4q

p2i

N1~q,k!

@q21 i e#2@~p1q!22m21 i e#2@~p1k1q!22m21 i e#
, ~23!

where

N1~q,k!5~gmnq212qmqn!TrFgm~p”1q”1m!g0~p”1q”1k”1m!g0g5~p”1q”1m!gn
1

4m
~p”1m!~11a”g5!G . ~24!

For Figs. 2~b! and 2~c!, we have

Ri52
Za2

a0
E d3k

~2p!3

1

k2E d4q

p2i

1

@q21 i e#2

Ni~q,k!

@~p1q!22m21 i e#@~p1k1q!22m21 i e#@~p1k!22m21 i e#
, ~25!
where

N2~q,k!5~gmnq212qmqn!TrFg0~p”1k”1m!gm~p”1k”1q”

1m!g0g5~p”1q”1m!gn
1

4m
~p”1m!~11a”g5!G ,

~26!
N3~q,k!5~gmnq212qmqn!TrFgm~p”1q”1m!g0~p”1k”1q”

1m!gn~p”1k”1m!g0g5
1

4m
~p”1m!~11a”g5!G .

~27!

Finally, for Fig. 2~d!, one has
0-4
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R452
Za2

a0
E d3k

~2p!3

1

k2E d4q

p2i

N4~q,k!

@q21 i e#2@~p1k!22m21 i e#2@~p1k1q!22m21 i e#
, ~28!
er

o

q

e

lly

l

ef.

e
-
ill

to
rmi-
with
where

N4~q,k!5~gmnq212qmqn!TrFg0~p”1k”1m!gm~p”1q”

1m!gn~p”1k”1m!g0g5
1

4m
~p”1m!~11a”g5!G

~29!

andk5(0,kW ). Each contribution from Figs. 2~a!, 2~b!, 2~c!,
and 2~d! is written as

2
Za2

a0
E d3k

~2p!3

Fi~k2!

k2
. ~30!

The calculations are considerably simplified if one det
mines only the imaginary part of the functionsFi(k

2). These
are analytic functions with a branch cut fork2.0. The real
part of Fi(k

2) is then obtained by means of Cauchy’s the
rem,

F~k2!5
1

2p i E dM2
F~M21 i0!2F~M22 i0!

M22k2

5
1

pE dM2
Im@F~M2!#

M22k2
, ~31!

wherek2,0. Substituting this expression into Eq.~30! and
integrating overk yields

Ri5
Za2

2p2a0
E

0

`

dM Im@Fi~M2!#. ~32!

In order to calculate Im@Fi #, a procedure inMATHEMATICA is
written which facilitates the evaluation of the trace in E
~24! and the integrals in Eq.~32!. Each contribution is
doubled due to the permutation of photon and boson lin
Settingm51 and picking the terms linear inpW , we obtain
05211
-

-

.

s.

(
i 51

4

Im@Fi~M2!#52a0pH 7

3
2

32

3M2
1

2

3~11M2!2

2
1

11M2
12 S 16

3M3
2

1

M
2

M

6 D
3Farctan~M !2arccosS 2

M D u~M22!G
22S 12

10

3M2DA12
4

M2
u~M22!J ,

~33!

where u is the step function withu(x)50 for x,0 and
u(x)51 for x.0. The above expression can be analytica
integrated. Hence we have

R~Za!52
a

2p
1(

i 51

4

Ri

52
a

2p
1

Za2

2p2a0
E

0

`

dM(
i 51

4

Im@Fi #

52
a

2p
2S 7

12
12 ln 2DZa2, ~34!

in agreement with Ref.@12#. We now turn to the numerica
calculation.

V. NUMERICAL APPROACH

In order to make contact with the notation used in R
@5#, we note that the two termsQSL andQSR in Eqs.~13! and
~14! are associated with what are called ‘‘side-left’’~SL! and
‘‘side-right’’ ~SR! diagrams in that work, which notation w
will follow in this section. In addition, the SL and SR dia
grams have contributions called ‘‘derivative terms.’’ We w

FIG. 2. Feynman diagrams for the leading binding corrections
the forward scattering amplitude. The dashed and wavy lines te
nated with a cross represent PNC and Coulomb interactions
the nucleus, respectively.
0-5
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TABLE II. Breakdown of contributions toR(Za).

Z QV1 QV2 QV3 QSL1 QSL2 QSL3 QSL4 QSR1 QSR2 QSR3 QSR4 R(Za)

10 22.500 4.260 211.768 20.272 2.369 2.293 0.002 20.045 2.269 2.388 0.006 20.998
15 22.009 20.253 27.853 20.415 1.972 2.689 0.003 20.068 1.873 2.782 0.009 21.270
20 21.729 22.600 25.898 20.555 1.694 2.967 0.004 20.097 1.595 3.058 0.012 21.549
25 21.559 24.064 24.727 20.696 1.482 3.180 0.005 20.128 1.384 3.269 0.014 21.840
30 21.458 25.067 23.948 20.839 1.311 3.350 0.006 20.164 1.214 3.439 0.017 22.139
40 21.377 26.398 22.980 21.139 1.048 3.620 0.008 20.279 0.952 3.703 0.022 22.820
50 21.386 27.267 22.406 21.461 0.851 3.824 0.011 20.434 0.755 3.904 0.026 23.583
55 21.411 27.609 22.201 21.637 0.768 3.911 0.012 20.530 0.673 3.989 0.028 24.007
60 21.446 27.912 22.033 21.821 0.694 3.990 0.013 20.644 0.600 4.067 0.030 24.462
70 21.525 28.466 21.778 22.229 0.566 4.132 0.016 20.922 0.472 4.207 0.033 25.494
80 21.617 28.922 21.602 22.707 0.458 4.253 0.019 21.300 0.365 4.331 0.035 26.687
90 21.708 29.376 21.489 23.288 0.364 4.366 0.023 21.822 0.273 4.448 0.035 28.174

100 21.798 29.831 21.433 24.020 0.282 4.457 0.028 22.570 0.192 4.545 0.033 210.115
ed

-
on
ia

be
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m

he

e

refer in this section to the Gell-Mann–Low formalism us
in Ref. @5# in a rederivation of Eqs.~13! and ~14!: the adia-
batic damping factore used in that formalism can be distin
guished from the factor used in dimensional regularizati
n542e, by context. In the numerical evaluation, each d
gram breaks into several pieces, which we define as

Q5(
i 51

3

QVi1(
i 51

4

QSLi1(
i 51

4

QSRi. ~35!

We now treat the vertex and side diagrams in turn.

A. Vertex diagram

The vertex diagramQV , shown in Fig. 1~b!, was given in
Eq. ~12!. The ultraviolet divergent part of the diagram can
isolated by replacingSF with S0, whereS0 is a free propa-
gator. If this replacement is made, we get the contribut
QV1, which is most conveniently evaluated in momentu
space

QV1524p iaE d3p2

~2p!3E d3p1

~2p!3E dnk

~2p!n

1

k21 id
c̄w~pW 2!

3gm

1

p” 22k”2m
V~q!

1

p” 12k”2m
gmcv~pW 1!. ~36!

After Feynman parametrization thednk integration can be
carried out with the result
05211
,
-

n

QV15
a

2p S C

e
21DQ02

a

2pE0

1

rdrE
0

1

dxE d3p2

~2p!3

3E d3p1

~2p!3
c̄w~pW 2!V~q!cv~pW 1! ln

DV

m2

2
a

4pE0

1

rdrE
0

1

dxE d3p2

~2p!3E d3p1

~2p!3

3@c̄w~pW 2!gm~p” 22Q” 1m!V~q!

3~p” 12Q” 1m!gmcv~pW 1!#
1

DV
. ~37!

Here

C5~4p!e/2G~11e/2!,

Qm5rxp1m1r~12x!p2m ,

DV5rx~m22p1
2!1r~12x!~m22p2

2!1Q2,

q5upW 22pW 1u,

and the Fourier transform of the weak Hamiltonian in t
case of a uniform charge distribution is

V~q!5
3

8p3~qR0!3 @sin~qR0!2qR0 cos~qR0!#g0g5 .

~38!

The first two terms in the right-hand side of Eq.~37! are
divergent and will be held for later cancellation with th
0-6
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‘‘derivative terms’’ from the SL and SR calculation. The r
maining finite parts ofQV1 are tabulated in the second co
umn of Table II.

The difference ofQV andQV1 is ultraviolet finite, and is
evaluated in coordinate space. Thek0 integral is treated by
carrying out a Wick rotation,k0→ iv, which leads to

QV2528pa ReE d3xE d3yE d3zE
0

`dv

2pE d3k

~2p!3

3
eikW•(xW2zW)

v21kW2
@c̄w~xW !gmSF~xW ,yW ,ew2 iv!

3g0g5rN~yW !SF~yW ,zW;ev2 iv!gmcv~zW !

2c̄w~xW !gmS0~xW ,yW ,ew2 iv!g0g5rN~yW !

3S0~yW ,zW;ev2 iv!gmcv~zW !#. ~39!

A singularity associated with the parts of the bou
propagators that includew or v is regularized by evaluating
the expression withew,v→ew,v(12D) in the electron propa-
th

m
th
in

ra
lc

t
be

05211
gators. The result behaves as lnD. While it is possible to
explicitly cancel this dependence with similar terms from t
side diagrams, we choose here to simply work with a s
cific, small value ofD51025. We note that different choice
of D will lead to slightly different results forQV2, but when
combined with the side diagrams discussed below, the s
are essentially the same as long as the values ofD are rea-
sonably small. Results forQV2 with D51025 are given in
the third column of Table II.

The Wick rotation mentioned above passes bound s
poles which must be accounted for. They are treated by
writing QV by treating the propagators as a spectral rep
sentation, carrying out thed3k integration analytically, and
defining

gi jkl ~E![aE d3xE d3y
eiAE21 iduxW2yW u

uxW2yW u

3c̄ i~xW !gmck~xW !c̄ j~yW !gmc l~yW !, ~40!

which allows us to write
QV5 i E dk0

2p (
mn

gwnmv~k0!Qmn

@ew~12D!2k02em~12 id!#@ev~12D!2k02en~12 id!#
. ~41!
the

pa-

r-
in

at
The choice we have made in regularizing leads to only
ground state 1s1/2, denoted asa, being encircled whenk0
→ iv, so

QV35(
an

gwnav~ew2ea!Qan

ea2en
1(

ma

gwamv~ev2ea!Qma

ea2em
.

~42!

The sum overa ranges only over the two magnetic quantu
numbers of the state. This contribution is tabulated in
fourth column of Table II. The part of the summation
which the denominator would vanish corresponds to
double pole, but does not contribute becauseQaa vanishes.
However, it should be noted that double poles will in gene
contribute, and in fact would be present in the present ca
lation were we to use a negative value ofD, which would
introduce additional pole terms from the 2s1/2 and 2p1/2
states.

B. Side diagrams

It is convenient for the discussion of the side diagrams
introduce the matrix element of the self-energy operator
tween two arbitrary statesm andn,

Smn~E!52 ie2E d3xE d3yE dnk

~2p!n

eikW•(xW2yW )

k21 id

3c̄m~xW !gmSF~xW ,yW ;E2k0!gmcn~yW !. ~43!
e

e

a

l
u-

o
-

A self-mass counterterm is understood to be included in
above. The self-energy of a valence state is thenSvv(ev),
and can be evaluated as described in Ref.@16#.

Using a spectral decomposition of the intermediate pro
gator, theS matrix for SL is

QSL52 il3(
m

E dE1

2p E dE2

2p

QwmSmv~E2!

E12em~12 id!

3D~E12ew!D~E12E22k0!D~E21k02ev!,

~44!

and for SR

QSR52 il3(
m

E dE1

2p E dE2

2p

Swm~E1!Qmv

E22em~12 id!

3D~E22ev!D~E12E21k0!D~E11k02ew!,

~45!

with

D~E!5
2e

E21e2 . ~46!

Herel is a factor associated with the Gell-Mann–Low fo
malism @17# that is to be differentiated and set to unity:
addition, a factori e/2 must be multiplied into theSmatrix to
obtain the off-diagonal energy. If the restriction is made th
0-7
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mÞw,v, it is straightforward to show that two ‘‘perturbe
orbital’’ ~PO! contributions to the matrix element resu
which are given by

QSL15 (
mÞv

QwmSmv~ev!

ew2em
[S ṽv~ev! ~47!

and

QSR15 (
mÞw

Swm~ew!Qmv

ev2em
[Sww̃~ew!. ~48!

This is equivalent to the forms given forQSL and QSR in
Eqs.~13! and~14!. We note that it is not necessary to expli
itly make the restrictionsmÞw in QSL1 andmÞv in QSR1
becauseQww5Qvv50. The PO terminology arises from th
fact that them summation can be carried out before evalu
ing the self-energy, and one then need only do a self-en
calculation with one of the external wave functions replac
with a perturbed orbital. The PO terms are tabulated in
fifth and ninth columns of Table II.

The casesm5v andm5w are more subtle, as they con
tribute terms of order 1/e to the off-diagonal energy. This
divergence cancels, but a finite contribution coming fro
Taylor expanding S(E) remains, and contribute
1
2 Q0Svv8 (ev)1 1

2 Q0Sww8 (ew), or more explicitly

QSL
der52ipaQ0E d3xE d3yE d3zE dnk

~2p!n

eikW•(xW2zW)

k21 id

3c̄v~xW !gmSF~xW ,yW ;ev2k0!g0SF~yW ,zW;ev2k0!gmcv~zW !

52
i

2
Q0(

m
E dk0

2p

gvmmv~k0!

~ev2k02em!2
~49!

and

QSR
der52ipaQ0E d3xE d3yE d3zE dnk

~2p!n

eikW•(xW2zW)

k21 id

3c̄w~xW !gmSF~xW ,yW ;ew2k0!g0

3SF~yW ,zW;ew2k0!gmcw~zW !

52
i

2
Q0(

m
E dk0

2p

gwmmw~k0!

~ew2k02em!2
. ~50!

These correspond to the derivative terms mentioned in
preceding section. The analysis of these terms para
closely the treatment of the vertex. First the bound propa
tors are replaced with free propagators, which gives

QSL252p iaQ0E d3p

~2p!3E dnk

~2p!n

1

k2 c̄v~pW !gm

3
1

p”2k”2m
g0

1

p”2k”2m
gmcv~pW ! ~51!
05211
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and

QSR252p iaQ0E d3p

~2p!3E dnk

~2p!n

1

k2 c̄w~pW !gm

3
1

p”2k”2m
g0

1

p”2k”2m
gmcw~pW !. ~52!

Feynman parametrizing and carrying out thednk integration
gives

QSL252
a

4p S C

e
21DQ0

1
a

4p
Q0E

0

1

rdrE d3p

~2p!3
c̄v~pW !g0cv~pW !ln

DS

m2

1
a

8p
Q0E

0

1

rdrE d3p

~2 p!3
$c̄v~pW !gm@p” ~12r!

1m#g0@p” ~12r!1m#gmcv~pW !%
1

DS
~53!

and

QSR252
a

4p S C

e
21DQ0

1
a

4p
Q0E

0

1

rdrE d3p

~2p!3
c̄w~pW !g0cw~pW !ln

DS

m2

1
a

8p
Q0E

0

1

rdrE d3p

~2 p!3
$c̄w~pW !gm@p” ~12r!

1m#g0@p” ~12r!1m#gmcw~pW !%
1

DS
, ~54!

where DS5r2p21r(m22p2). The first two terms in the
right-hand side of the above equations forQSL2 andQSR2 are
divergent but cancel with the corresponding terms ofQV1 in
Eq. ~37!. The remaining, finite terms are presented in t
sixth and tenth columns of Table II.

The difference of the side diagrams evaluated with bou
propagators and free propagators is again ultraviolet fin
and after Wick rotation one has

QSL352pQ0a ReE d3xE d3yE d3zE dv

2p

3E d3k

~2p!3

eikW•(xW2zW)

v21kW2
@c̄v~xW !gmSF~xW ,yW ,ev2 iv!

3g0SF~yW ,zW;ev2 iv!gmcv~zW !2c̄v~xW !gm

3S0~xW ,yW ,ev2 iv!g0S0~yW ,zW;ev2 iv!gmcv~zW !#

~55!
0-8
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and

QSR352pQ0a ReE d3xE d3yE d3zE dv

2p

3E d3k

~2p!3

eikW•(xW2zW)

v21kW2
@c̄w~xW !gmSF~xW ,yW ,ew2 iv!

3g0SF~yW ,zW;ew2 iv!gmcw~zW !2c̄w~xW !gm

3S0~xW ,yW ,ew2 iv!g0S0~yW ,zW;ew2 iv!gmcw~zW !#.

~56!

The same regularization of the valence energy,ev→ev(1
2D), used in the vertex is required, and again we simply
D51025 and present the results in the seventh and eleve
columns of Table II.

Finally, the Wick rotation passes a double pole whenm
5a, with a being the 1s1/2 ground state, leading to the de
rivative terms

QSL45
1

2
Q0(

a
gvaav8 ~ev2ea! ~57!

and

QSR45
1

2
Q0(

a
gwaaw8 ~ew2ea! , ~58!

which are tabulated in the eighth and twelfth columns
Table II. This completes the calculation, and the sums
vertex and side diagram contributions give the values of
exact evaluation of the functionR(Za) that are tabulated in
the last column of Table II.

VI. DISCUSSION

A number of numerical issues arise in the calculation t
we note here. In some parts the use of a uniform distribut
with its step function behavior, caused loss of accuracy
those cases a Fermi distribution was used: while this lead
small changes inQ0, the effect onR(Za) is negligible.
More serious is the difficulty of controlling numerical inst
bilities at lowZ, which led to our choosing the lowestZ to be
10. A graph of the numerical value ofR(Za), along with
results from the two leading terms given in Eq.~3!, is shown
in Fig. 3. The accuracy of the calculation at lowZ is suffi-
cient to allow a fit that determines

R~Za!fit52
1

2
20.045~2!Z, ~59!

which is in agreement with the numerical value of Eq.~3!,

R~Za!52
1

2
20.045154Z. ~60!

This agreement provides a check on the rather comp
numerical calculation. The advantage of the numerical
05211
e
th

f
f
e

t
n,
n
to

x
-

proach is, of course, the fact that it does not assumeZa to be
a small parameter, and thus can be used for highZ. In the
particularly interesting case ofZ555, we see that the pertur
bative formula happens to give22.983, as compared with
the exact result24.007.

However, at this point we make no claims about the a
plicability of the present calculation to the case of PNC tra
sitions in neutral cesium. The actual process studied in
experiment that measures PNC@6# involves a double pertur-
bation, where not only the weak Hamiltonian but also
external laser photon field act either to first transform
6s1/2 electron into a state with the opposite parity, followe
by an allowed dipole transition to a 7s1/2 electron, or vice
versa. To extend our calculation to the actual experim
requires the following steps.

The first step is replacing the Coulomb wave functio
used here with realistic wave functions for neutral cesiu

FIG. 3. Comparison of exact calculation~solid line! with first
two terms of perturbative expansion forR(Za) ~dashed line!.

FIG. 4. Feynman diagrams for the radiative correction to el
tron excitation by a laser photon, indicated by the wavy line term
nated with a triangle, in the presence of interaction with the nucl
through exchange of aZ boson, indicated by the dashed line term
nated with a cross.
0-9
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The technology to carry out radiative corrections in neu
many-electron atoms has only recently been put into plac
is now possible, using a local potential that incorpora
screening, to carry out accurate self-energy@13,14# and ra-
diative corrections to hfs@15# calculations. The second ste
is to incorporate the laser photon. This is a more complica
task, since the set of diagrams shown in Fig. 4 must
evaluated. We note that, while Fig. 4~a! corresponds to the
vertex correction considered here, Fig. 4~c! corresponds to a
radiative correction to the electromagnetic vertex, and F
4~e! to a different radiative correction specific to the expe
ment. We expect that these contributions will affectR(Za)
at the order (Za)2, but until they are explicitly evaluated
their importance for cesium PNC is unknown.

The principal results of this paper are then as follow
First, an independent scattering calculation of the lead
binding correction in the functionR(Za) has been presented
which confirms the calculation of Ref.@12#. Second, it has
been shown that numerical methods that allow the evalua
. A

y

I

.

05211
l
It
s

d
e
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n

of R(Za) to all orders inZa for the case of gauge-invarian
2s1/2-2p1/2 transitions in hydrogenlike ions can be applie
The behavior of the function shows that large binding c
rections are present. If these corrections behave the sam
the realistic cesium case, and the extra corrections of o
(Za)2 mentioned above are small, the apparent 2s discrep-
ancy noted in Ref.@8# is reduced, but until a complete ca
culation is done the theoretical status of PNC in cesi
should be regarded as unresolved.
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