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Quantum limits to dynamical evolution
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We establish the minimum time it takes for an initial state of mean energyE and energy spreadDE to move
from its initial configuration by a predetermined amount. Distances in Hilbert space are estimated by the
fidelity between the initial and final states. In this context, we study the role of entanglement among sub-
systems in speeding up the dynamics of a composite system.
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INTRODUCTION

How fast can a quantum system evolve in time, given
certain amount of energy? If the system is composed o
number of subsystems, is entanglement a useful resourc
speeding up the dynamical evolution? To answer the firs
these two questions, one typically defines some character
time of the dynamics and studies its connections with
energy resources of the initial state of the system. Mos
the previous results in this field@1–3# trace back to the time
energy uncertainty relation in the form derived by Mand
stam and Tamm@4#: in this way, the various lifetimes ar
bounded by the energy spreadDE of the system. More re-
cently, however, Margolus and Levitin pointed out that o
can relate the characteristic times of the system also to
average energyE of the initial state@5#. In particular, defin-
ing the lifetime of the system as the time it takes for it
evolve to an orthogonal state, the above results allow on
introduce aquantum speed limit timeas the minimum pos-
sible lifetime for a system of average energyE and spread
DE. In @6# we analyzed such a bound in the case of comp
ite systems~i.e., systems composed of a collection of su
systems!.

In this paper we extend these results by analyzing w
happens when the quantum speed limit time is general
by redefining it as the minimum timet it takes for the initial
state% to evolve through a unitary evolution to a state%(t)
such that the fidelityF„%,%(t)… of @7# is equal to a givene
P@0,1#. Even though the scenario is more complex than
casee50 of @6#, in this case also it is possible to show th
entanglement is useful to achieve speedup of the dynami
one wants to share the energy resources among the
systems.

In Sec. I we extend the definition of quantum speed lim
time and derive its expression in terms of the energy cha
teristics of the initial state, first considering the case of p
states and then extending the analysis to the more com
case of nonpure states. In Sec. II we analyze the role
entanglement among subsystems plays in achieving
quantum speed limit. Most of the technical details of t
derivations have been inserted in the Appendix.

I. QUANTUM SPEED LIMIT

Since the HamiltonianH is the generator of the dynamica
evolution and defines the energy of a system, one exp
1050-2947/2003/67~5!/052109~8!/$20.00 67 0521
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that the energy characteristics of a state are closely linke
the characteristic times of its dynamics. In particular, we
interested in how the mean energyE and the spreadDE
relate to the maximum ‘‘speed’’ the system can sustain
moving away from its initial stateuC&.

Take the energy basis expansion of the initial state

uC&5(
n

cnun&, ~1!

which has average energyE5^CuHuC& and spreadDE
5A^Cu(H2E)2uC&. To characterize the departure of th
system fromuC& we can use the fidelity

P~ t !5u^CuC~ t !&u25U(
n

ucnu2e2 iEnt/\U2

, ~2!

where En is the energy eigenvalue of the HamiltonianH
relative toun&. The quantityP(t) is the overlap between th
time evolved stateuC(t)& and the initial stateuC&. A mea-
sure of the ‘‘speed of the dynamical evolution’’ is obtaine
by analyzing how fastP(t) changes in time: e.g., given
valueeP@0,1#, how long do we have to wait before the sta
‘‘rotates’’ by an amounte, i.e., beforeP(t)5e? Assuming
~without loss of generality! a zero ground-state energy eige
value, it is possible to prove that the minimum time at whi
this happens is bounded by the quantity

Te~E,DE![maxS a~e!
p\

2E
,b~e!

p\

2DED , ~3!

wherea(e) andb(e) are the functions plotted in Fig. 1. O
course, fore51 this quantity is equal to zero: in fact, n
time has to pass to obtainP(t)51. On the other hand, sinc
for e50 we havea(e)5b(e)51, Eq. ~3! reduces to the
quantum speed limit time that was defined in@5,6#

T0~E,DE![maxS p\

2E
,

p\

2DED , ~4!

which gives the minimum time it takes for a system
evolve to an orthogonal configuration. In the remainder
the paper, however, we use ‘‘quantum speed limit time’’
refer to the generalized versionTe(E,DE) of Eq. ~3!. The
©2003 The American Physical Society09-1
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detailed derivation of Eq.~3! is given in the Appendix. Here
we give only a general idea of the procedure. The quan
Te(E,DE) is composed of two contributions. The first co
tribution relates the speed of the dynamical evolution to
average energyE through the functiona(e) and it extends
the Margolus-Levitin theorem@5#. It provides the value of
Te(E,DE) in what we will refer to as the Margolus-Levitin
regime, i.e., whenDE/E>b(e)/a(e). The functiona(e) is
derived by introducing two functionsa,(e) anda.(e) such
that a,(e)<a(e)<a.(e). The first one is obtained by di
rectly analyzing the conditionP(t)5e and using a class o
inequalities that maximizes sines and cosines with lin
functions. The second one is obtained by studying the t
evolution of a class of ‘‘fast’’ two level states. This procedu
does not allow one to obtain an explicit analytical express
for a(e); however, the two bounding functionsa, anda.

can be shown numerically to coincide giving an estimate
a(e). The second contribution toTe(E,DE) relates the
speed of the dynamical evolution to the spreadDE by means
of the function

b~e!5
2

p
arccos~Ae!. ~5!

This term provides the value ofTe(E,DE) in what we will
refer to as the Heisenberg regime, i.e., whenDE/E
<b(e)/a(e). Equation~5! was previously proved in@1,2#
by employing the general form of the uncertainty relatio
however, for the sake of completeness, in Appendix A
rederived the value ofb(e) starting directly from the expres
sion ~2! for P(t).

Given E andDE, the quantum speed limit defines a fo
bidden evolution regime where the probabilityP(t) is not
allowed to enter. In fact, for 0<t<T0(E,DE), Eq. ~3! im-
plies

P~ t !>maxH a21S 2Et

p\ D ,b21S 2DEt

p\ D J , ~6!

FIG. 1. Plot ofa(e) ~continuous line! and b(e) ~dashed line!
introduced in Eq.~3!. The inset shows the similarity betweenb2(e)
anda(e).
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wherea21 and b21 are the inverse functions ofa(e) and
b(e), respectively. This regime is shown on Fig. 2, where
example ofP(t) trajectory is plotted. By introducing the
Margolus-Levitin type contribution~i.e., the term dependen
on E) Eq. ~6! generalizes the previous bounds forP(t) @1,2#.
Notice that, since the contribution dependent onDE to Eq.
~6! exhibits a null derivative int50, it always provides a
nontrivial bound toP(t). On the other hand, since the co
tribution dependent onE exhibits a negative slope att50, it
does not provide an achievable bound whenDE<E. For the
same reason, the bound~A12! on the first derivative ofP(t)
is not modified by the presence of the Margolus-Levitin ty
contribution of Eq.~6!: udP(t)/dtu is limited only by the
energy spreadDE.

Quantum speed limit time for mixed states

Up to now we have focused on pure states of the syst
What happens when the system is in a mixture%? We will
show that the notion of the quantum speed limit bound~3!
can be extended to the density matrices in the sense
Te(E,DE) gives the lower bound to the time it takes for
state% with energyE and spreadDE to evolve to a configu-
ration %(t) such that

F~%,%~ t !!5e, ~7!

where F(%,%8)[$Tr@AA%%8A%#%2 is the fidelity intro-
duced in@7#.

To prove the above statement, first of all notice that in
case of pure states the fidelity reduces to the probabilityP(t)
of Eq. ~2! and the definition~7! reduces to the quantum

FIG. 2. Plot of the constraint given by Eq.~6!, which shows the
forbidden region whereP(t) is not allowed to enter~shaded areas!.
The time-energy uncertainty contribution to Eq.~6! defines the light
gray region throughb21. The Margolus-Levitin type contribution
defines the dark gray region througha21. The condition plotted
here is forDE/E51.73. The continuous line represents the traje
tory P(t) of a ‘‘fast’’ state uVj& of Eq. ~A7! with j50.5. This state
touches the boundary of the forbidden region fore50.30 andt
5Te50.30(E,DE)50.42(p\/2E).
9-2



en

ry
y
em

n.

h
im

r

-

at

he

es

-

ons
olve
ces
te is

the
ns

te in
d to

ng

QUANTUM LIMITS TO DYNAMICAL EVOLUTION PHYSICAL REVIEW A 67, 052109 ~2003!
speed limit bound given in the previous section. More g
erally, consider a generic decomposition of%,

%5(
n

pnufn&^fnu, ~8!

where pn.0, (npn51, and $ufn&% is a set of non-
necessarily orthogonal pure states. The fidelityF has been
shown@7,9# to satisfy the property

F„%,%~ t !…5 max
ux&,ux8&

$ z^xux8& z2%, ~9!

whereux& and ux8& are purifications of% and%(t), respec-
tively, such as the states

ux&5(
n

Apnufn&ujn&, ~10!

ux8&5(
n

Apnufn~ t !&ujn8&, ~11!

with $ujn&%,$ujn8&% being two orthonormal sets of an ancilla
system. Choosingujn8&5ujn& for all n and assuming that the
are all eigenstates of the ground level of the ancillary syst
ux8& becomes the time evolved ofux& @i.e., ux8&5ux(t)&]
and Eq.~9! implies that the fidelity is bounded by

F„%,%~ t !…> z^xux~ t !& z2. ~12!

Since the pure stateux& has the same energyE and energy
spreadDE of %, it can rotate by a quantitye in a time not
smaller thanTe(E,DE), as shown in the previous sectio
This, along with inequality~12!, proves that the minimum
time t for which F„%,%(t)…5e is bounded by the quantity
Te(E,DE), as stated in Eq.~7!. Notice, finally, that fore
50 we reobtain all the results that were given in@6#, since in
this case the condition~7! is equivalent to the condition
Tr@%(t)%#50 that was employed there@8#.

Mixed states that reach the bound

Before concluding the section, let us analyze under w
conditions a mixed state can reach the quantum speed l
Assume that the state% of energyE and spreadDE achieves
the bound for a valuee, i.e.,

F„%,%~Te!…5e, ~13!

where the dependence onE and DE has been dropped fo
ease of notation. Define the quantityen[ z^fnufn(Te)& z2,
which measures the rotation of thenth component of the
mixture ~8! at timeTe . Applying quantum speed limit con
siderations to the stateufn&, one finds

Te~E,DE!>Ten
~En ,DEn!, ~14!

whereEn andDEn are the energy and the spread of the st
ufn&. Now, among all possible purifications of the form~10!
05210
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and ~11!, choose one such that^jnujm8 &5dnme2 iwnm, where
wnm5arg@^fnufm(Te)&#. From Eqs.~9! and ~13!, it follows
that

e>U(
n

pnu^fnufn~Te!&uU2

5S (
n

pnAenD 2

[ē, ~15!

Tē~E,DE!>Te~E,DE!, ~16!

where in Eq.~16! we employed the fact thata(e) andb(e)
are strictly decreasing functions. Combining Eqs.~14! and
~16!, we find that, for alln,

Tē~E,DE!>Ten
~En ,DEn!. ~17!

Consider first the Margolus-Levitin regime, i.e.,DE/E
>b( ē)/a( ē). From Eq.~17! it follows that

a~ē !
p\

2E
>a~en!

p\

2En
. ~18!

Since the energy of the state% is E5(npnEn , Eq. ~18!
implies

a~ē !>(
n

pna~en!. ~19!

Analogously, in the Heisenberg regime, i.e., whenDE/E
<b( ē)/a( ē), sinceDE25(npn@DE n

21(E2En)2#, one ob-
tains

b2~ ē !>(
n

pnb2~en!. ~20!

The inequalities~19! and~20! must be satisfied if% reaches
the quantum speed limit. Since botha(e2) and b2(e2) are
strictly convex functions@see Eqs.~A14! and ~A15! of Ap-
pendix A 3#, such conditions can be satisfied only when t
equalities hold: this happens ifen5e for all n and if the
equality holds also in~14!. This shows that the fastest stat
% are mixture composed of pure statesufn& that all achieve
the quantum speed limit bound for the samee at the same
time.

II. ENTANGLED DYNAMICS

In a preceding paper@6#, we analyzed the role of en
tanglement in achieving the quantum speed limit bound~4!
for composite systems. We found that quantum correlati
among the subsystems allow the state of the system to ev
to an orthogonal configuration faster if the energy resour
are not devoted to a single subsystem and the initial sta
pure. Here we analyze the generalized bound~3! and show
that the same result holds even when we do not require
initial and final states to be orthogonal. Quantum correlatio
among subsystems allow the state of the system to rota
Hilbert space faster if the energy resources are not devote
a single subsystem.

In the following we consider the case of a noninteracti
9-3
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GIOVANNETTI, LLOYD, AND MACCONE PHYSICAL REVIEW A 67, 052109 ~2003!
composite system withM independent components. I
Hamiltonian is given byH5(kHk , where Hk is the free
Hamiltonian of thekth subsystem. Since the HamiltonianH
is assumed to have zero ground state, we will redefine all
Hk to have zero ground states without loss of generality.

A. Pure states

Consider a composite system ofM noninteracting parts in
the initial pure separable state

uC&5uc1&1•••ucM&M , ~21!

which has energy and energy spread

E5(
k

Ek , ~22!

DE5S (
k

DEk
2D 1/2

, ~23!

whereEk andDEk are the energy and the spread of the st
uck&k of the kth subsystem@10#. The stateuC& reaches the
quantum speed limit if, for some value ofe, the following
identity applies:

P~Te~E,DE!!5e, ~24!

where P(t) is the probability ~2! of the stateuC& and
Te(E,DE) is the quantum speed limit time of Eq.~3!. For a
separable state, the quantityP(t) is given by

P~ t !5P1~ t !•••PM~ t !, ~25!

where Pk(t)5 zk^ckuck(t)&kz2 is the overlap of the state o
the kth subsystem at timet with its initial value. Defining
ek5Pk„Te(E,DE)… and using Eq.~25!, the condition~24!
can be rewritten as

e5e1•••eM . ~26!

Moreover, applying the quantum speed limit relation~3! to
the kth subsystem, one finds that

Te~E,DE!>Tek
~Ek ,DEk!. ~27!

Consider first the Margolus-Levitin regime, i.e.,DE/E
>b(e)/a(e). In this case, Eq.~27! and the definitions of
Te(E,DE) andTek

(Ek ,DEk) imply

a~e!
p\

2E
>a~ek!

p\

2Ek
, ~28!

and hence, using the expression~22! for the total energy of
the system,

a~e!>(
k51

M

a~ek!. ~29!

Analogously, in the Heisenberg regime Eq.~27! implies that
05210
e

e

b~e!
p\

2DE
>b~ek!

p\

2DEk
, ~30!

and hence

b2~e!>(
k51

M

b2~ek!. ~31!

A necessary condition for the separable stateuC& to reach
the quantum speed limit is that there exists a set ofek that
satisfy at least one of the two inequalities~29! and~31! under
the constraint~26!. According to the strict subadditivity o
a(e) and b2(e) @see Eqs.~A16! and ~A17! of Appendix
A 3#, the relations~29! and ~31! can be satisfied only when
the equality holds: this happens if there exists ak ~say k8)
such thatek85e and ek51 for all k5” k8. Such a solution
corresponds to the case in which all the energy resources
devoted to thek8th subsystem. In fact, fork5k8, the rela-
tions ~28! and ~30! imply that

Ek8>
a~ek8!

a~e!
E5E, ~32!

DEk8>
b~ek8!

b~e!
DE5DE, ~33!

where Eq.~32! holds in the Margolus-Levitin regime, while
Eq. ~33! holds in the Heisenberg regime. Equation~32! and
the form ~22! of E require thatEk85E and Ek50 for k
Þk8 @10#. SinceHk have all zero ground-state energy, th
also implies thatDEk85DE andDEk50 for k5” k8. On the
other hand, Eq.~33! and the form~23! of DE require that
DEk85DE andDEk50 for k5” k8.

In conclusion, the only statesuC& of the form ~21! that
can reach the quantum speed limit~3! for some value ofe
are those in which all the energy spreadDE is carried by the
single subsystemk8. The other subsystems are in eigensta
of their HamiltoniansHk . Moreover, if the system is in the
Margolus-Levitin regime, thenk8 also carries all the mean
energyE, the other subsystems being in their ground sta
From the dynamical point of view, this means thatk8 is the
only subsystem that rotates in the Hilbert space, while all
others do not evolve.

A simple example: Separable vs entangled state

The gap between entangled states and nonentangled
is particularly evident in the case in which the energy
sources are homogeneously distributed among all s
systems, i.e., whenEk5E/M and DEk5DE/AM for all k.
For the sake of simplicity we analyze an example in wh
all the subsystems are in the same stateuck&k5uc&k . In this
case the minimum timete for which the global stateuCs&
5uc&1•••uc&M rotates by a quantitye is given by the mini-
mum time it takes for each subsystem to rotate by a quan
e1/M. Applying the quantum speed limit~3! to each sub-
system, one obtains thatte>T e1/M(E/M ,DE/AM ). The ratio
R(e) betweente andTe(E,DE), i.e.,
9-4
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QUANTUM LIMITS TO DYNAMICAL EVOLUTION PHYSICAL REVIEW A 67, 052109 ~2003!
R~e!>minS M
a~e1/M !

a~e!
,AM

b~e1/M !

b~e! D , ~34!

shows how much slower the separable stateuCs& is in com-
parison with the maximum speed allowed for a system of
same energetic resources asuCs& ~see Fig. 3!. From the su-
badditivity properties~A16! and ~A17!, it follows that R(e)
>1. In particular, fore50, R(e) is always greater or equa
to AM , as discussed in@6#.

Consider now the following family of entangled states

uCj&5A12j2u0&1•••u0&M1juE0&1•••uE0&M , ~35!

where jP@0,1# and u0& and uE0& are eigenstates of th
Hamiltonian of energy 0 andE0.0, respectively. The stat
uCj& represents a homogeneous configuration where e
subsystem has energyj2E0 and spreadjA12j2E0. How-
ever, unlike the separable stateuCs& discussed before, for a
suitable choice of the parameterj, uCj& achieves the quan
tum speed limit bound, as can be shown by comparison w
the stateuVj& of Eq. ~A7! in Appendix A 1.

By proving that homogeneous separable states canno
hibit speedup while at least one homogeneous entangled
that exhibits speedup exists, we have shown that entan
ment is a fundamental resource in this context.

B. Entangled dynamics for mixed states

In this section we generalize the results of the previo
section to mixed states.

The most general separable state ofM subsystems can b
written as

%5(
n

pnuC (n)&^C (n)u, ~36!

wherepn.0, (npn51, and

uC (n)&5uc1
(n)&1•••ucM

(n)&M , ~37!

with uck
(n)&k a state of thekth subsystem. As discussed

Sec. I A,Te(E,DE) is the minimum time it takes for the stat

FIG. 3. Plot of the lower bound ofR(e) from Eq.~34!. It shows
that homogeneous separable states cannot achieve the qua
speed limit bound~given by the dashed line!. HereM55.
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% to reach a configuration%(t) with fidelity e. Moreover, we
already know that the state% will reach the quantum spee
limit bound for mixed states of Eq.~7! only if all the states
uC (n)& rotate by an amounte in the timeTe(En ,DEn), given
En andDEn , the energy and energy spread ofuC (n)&. Since
uC (n)& is a separable pure state, from the previous sectio
follows that this is possible only if there exists a subsyst
~say theknth) that possesses all the energy resources. T
means that the only separable states% that reach the bound
~7! are those for which, for any statistical realizationn of the
mixture ~36!, a single subsystem evolves to an orthogo
configuration at its own maximum speed limit time@which
coincides withT(E,DE) of the whole system#. All the other
subsystems do not evolve. Since the above derivation app
for any product state expansionpn , one can say that in eac
experimental run only one of the subsystems evolves.
course, other possible ensembles can be used in the de
position of%, which are not necessarily of the form~36!. For
instance, one can have unravelings in whichuC (n)& is an
entangled state of theM subsystems. This means that,
building blocks to produce a ‘‘fast’’ mixed state, we nee
either entanglement or to use product states in which o
one of the subsystems evolves. What is definitely imposs
is to produce such a state mixing product states where
energy is homogeneously distributed. This is essentially
same result that was obtained in@6#, although here we con
sidered the more general case ofe5” 0.

III. CONCLUSION

In this paper we have generalized the definition of qu
tum speed limit time@5,6# to take into account the case i
which the system does not evolve to an orthogonal state
a ‘‘measure of the distance’’ between the initial and the fin
states we have used the fidelityF„%,%(t)… @7#. However, the
entire analysis can be performed also using other kinds
measures which are connected with the fidelity, such as
trace distance Tr@%2%(t)#/2 or the relative entropy
S„%uu%(t)…[Tr@% log2%2% log2%(t)# @9,11#. In this context,
we have analyzed the role of quantum correlations am
noninteracting subsystems in a composite system. As a
sult, we have shown that entanglement plays an impor
role in the speedup of the dynamical evolution in a comp
ite system. In fact, the only separable pure states that
achieve the quantum speed limit bound are those where
one subsystem at a time is evolving, while the others
stationary. Analogously, for mixed states, we have sho
that one cannot create a fast separable configuration sta
from product states in which the energy is shared am
multiple subsystems.

ACKNOWLEDGMENTS

This work was funded by the ARDA, NRO, and by AR
under a MURI program.

APPENDIX

In Secs. A 1 and A 2 we derive the forms of the functio
a(e) andb(e), respectively. In Sec. A 3 we study these tw

tum
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GIOVANNETTI, LLOYD, AND MACCONE PHYSICAL REVIEW A 67, 052109 ~2003!
functions, giving some mathematical properties that are u
in the paper.

1. Derivation of a„e…

In order to determinea(e) we will: ~i! give a lower bound
for it; ~ii ! give an upper bound for it;~iii ! show numerically
that these two bounds coincide, thus providing an estima
of a(e).

~i! A lower bound fora(e) can be obtained by observin
that if P(t)5e, then^CuC(t)&5Aeeiu, i.e., from Eq.~1!

(
n

ucnu2 cos
Ent

\
5Ae cosu,

(
n

ucnu2 sin
Ent

\
52Ae sinu, ~A1!

with uP@0,2p#. Consider now the following class of in
equalities forq>0:

cosx1q sinx>12ax, ~A2!

which is valid for x>0 and wherea is a function ofq de-
fined implicitly by the set of equations

a5
y1Ay2~11q2!1q2

11y2
,

~A3!

siny5
a~12qy!1q

11q2
,

for yP@p2arctan(1/q),p1arctan(q)#. The inequality~A2!
is obtained by bounding the term on the left with the line
function that is tangent to it and is equal to 1 forx50, as
shown in Fig. 4. Since we assumed zero ground-state en
all the energy levels are positive and we can replacex with
Ent/\ in Eq. ~A2!. Summing onn and employing Eq.~A1!,
we obtain the inequality

FIG. 4. Plot of the inequality~A2! for q5p/4. In this casea
.0.64.
05210
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gy,

Ae~cosu2q sinu!>12a
Et

\
. ~A4!

From the definition ofa(e) introduced in Eq.~3!, this im-
plies

a~e!>@12Ae~cosu2q sinu!#
2

pa
. ~A5!

Since, for a given value ofu, Eq. ~A5! must be valid for all
q>0, then the following lower bound fora(e) can be ob-
tained:

a~e!>a,~e![min
u

Fmax
q

S @12Ae~cosu2q sinu!#
2

paD G .

~A6!

~ii ! To provide an upper bound fora(e), consider the
following family of two-level states:

uVj&5A12j2u0&1juE0&, ~A7!

where jP@0,1#, and u0& and uE0& are Hamiltonian eigen-
states of energy 0 andE0, respectively. The stateuVj& has
average energy E5j2E0 and energy spread DE
5jA12j2E0. Solving the dynamical evolution of the sta
uVj&, one can show that the first timet for which P(t)5e is
given by

Et

\
5j2 arccosF e2112j2~12j2!

2j2~12j2!
G . ~A8!

Minimizing overj the right-hand term of Eq.~A8! gives the
following upper bound fora(e):

a~e!<a.~e![
2

p
z arccosFe2112z~12z!

2z~12z! G , ~A9!

FIG. 5. Comparison ofa,(e) and a.(e) for some random
values ofe. The plot showsa.(e)2a,(e) with the error bars
denoting thedu→0 extrapolation error ofa,(e) ~see text!. Since
all the values are compatible with zero, we can conclude t
a,(e)5a.(e)5a(e).
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where thez is a function ofe defined implicitly by

arccosFe2112z~12z!

2z~12z! G5
122z

12z
A 12e

e2114z~12z!
.

~A10!

~iii ! The obvious difficulty in deriving the explicit analyti
cal form of the boundsa,(e) and a.(e) defined in Eqs.
~A6! and ~A9! can be overcome by performing a numeric
study of these two conditions. We will show thata,(e)
5a.(e), thus giving an estimate ofa(e).

In order to estimatea.(e) numerically one has to solv
Eq. ~A10!. Using a bisection algorithm, it is simple to get
machine-precision accurate solution very rapidly for all v
ues ofe. On the other hand, the estimate ofa,(e) requires
greater care, since two different parameters—q andu of Eq.
~A6!—are present in its definition. For each value ofe it is
necessary to calculate the term on the right of Eq.~A5! on a
bidimensional grid of values ofq andu and find for eachu
the maximum onq. The value ofa,(e) is calculated by
choosing the minimum among these maxima. Of course,
procedure is biased, since it depends on the grid spacingdq
anddu. In order to remove the bias in the calculation resu
one can repeat the whole procedure for different values
the grid spacing and then extrapolate the result for the s
ingsdq anddu tending to zero. We have used a least squa
linear interpolation, wherex2 minimization allows us also to
recover an ‘‘error bar’’ that measures how well the line
interpolation works for each value ofe. The error bar has no
statistical meaning: it simply gives an idea of how well t
linear extrapolation fordu→0 works for the value ofe un-
der consideration. It can be used also to give a ‘‘confide
interval’’ for the result obtained. Thedq→0 extrapolation
error has been found negligible in all cases, meaning th
linear extrapolation is well suited. To reduce aliasing pro
lems, instead of using an equispaced grid, it is preferabl
adopt a random grid of values ofq andu uniformly distrib-
uted so that the average distance between distinct valu
dq anddu, respectively.

FIG. 6. Convexity condition~A14! for a(e2) in the caseN52:
La[a(e1

2)cos2f1a(e2
2)sin2f2a„(e1 cos2f1e2 sin2f)2

…>0. In this
plot e250.7. Notice thatLa is null only for e15e2 and for f
50,p/2,p.
05210
l

-

is

,
of
c-
s

r

e

a
-
to

is

The extrapolated value ofa,(e) with its error bars is
compared with the calculated value ofa.(e) in Fig. 5.
Machine-precision accuracy is rapidly attainable in the c
culation of a.(e) and we have considered it as unaffect
by error. Since the values ofa.(e) anda,(e) are compat-
ible for arbitrary values ofe we can conclude that the tw
functions coincide and are thus both equal toa(e). This
allows us to give the numerical estimations of this functi
that have been used throughout the paper. Notice, howe
thata(e) is roughly approximated~up to a few percent error!
by the functionb2(e), as can be seen from Fig. 1.

2. Derivation of b„e…

The functionb(e) can be derived starting from Eq.~2! by
the following chain of relations:

U d

dt
P~ t !U5 2

\ U(
n,m

ucnu2ucmu2~En2E!sinS En2Em

\
t D U

<
2

\ U(
n,m

ucnu2ucmu2~En2E!e2 i (En2Em)t/\U
5

2

\ U(
n

ucnu2~En2E!

3S (
m

ucmu2e2 i (En2Em)t/\2P~ t ! DU, ~A11!

where the last identity has been obtained by adding a z
term to the sum onn. Applying the Cauchy-Schwarz inequa
ity to Eq. ~A11!, we find

U d

dt
P~ t !U< 2DE

\
AP~ t !@12P~ t !#, ~A12!

which for 0<t<p\/(2DE) implies @1,2#

FIG. 7. Subadditivity condition~A16! for a(e) in the caseN
52: Lb[a(e1)1a(e2)2a(e1e2)>0, for e1 ,e2>0. Notice that
Lb is null only for e151 or e251.
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P~ t !>cos2S DE

\
t D . ~A13!

This means that the smallest timet for which P(t)5e is
bounded by the quantityb(e)p\/(2DE) with b(e) defined
in Eq. ~5!. Notice that the bound~A13! is achievable since
for example, the stateuVj51/A2& of Eq. ~A7! reaches it.

3. Mathematical properties of a„e… and b„e…

Both a(e) andb(e) are strictly decreasing functions~see
Fig. 1!. Moreover they satisfy the following constraints.

~a! The functionsa(e2) and b2(e2) are strictly convex,
i.e., for enP@0,1#,

aXS (
n51

N

pnenD 2C< (
n51

N

pna~en
2!, ~A14!

b2XS (
n51

N

pnenD 2C< (
n51

N

pnb2~en
2!, ~A15!
. A
.

t

ion

05210
wherepn.0 and(npn51. The identity in~A14! and~A15!
holds only if en5en8 for all n andn8.

~b! The functionsa(e) andb2(e) are strictly subadditive,
i.e., for ekP@0,1#,

aS )
k51

N

ekD<(
k51

N

a~ek!, ~A16!

b2S )
k51

N

ekD<(
k51

N

b2~ek!, ~A17!

with the identity holding only when there exists ak ~sayk8)
such thatek51 for all k5” k8.

To prove these properties, one can discuss the caseN
52 and then extend it by induction to arbitraryN. When
referred tob(e), both properties can be analytically prove
using its definition~5!. For a(e) we must instead resort to
numerical verification~e.g., see Figs. 6 and 7!.
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