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Quantum limits to dynamical evolution
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We establish the minimum time it takes for an initial state of mean erm@yyd energy spreaflE to move
from its initial configuration by a predetermined amount. Distances in Hilbert space are estimated by the
fidelity between the initial and final states. In this context, we study the role of entanglement among sub-
systems in speeding up the dynamics of a composite system.
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INTRODUCTION that the energy characteristics of a state are closely linked to
the characteristic times of its dynamics. In particular, we are

How fast can a quantum system evolve in time, given anterested in how the mean ener§yand the spread\E
certain amount of energy? If the system is composed of @elate to the maximum “speed” the system can sustain in
number of subsystems, is entanglement a useful resource inoving away from its initial stat¢¥).
speeding up the dynamical evolution? To answer the first of Take the energy basis expansion of the initial state
these two questions, one typically defines some characteristic
time of the dynamics and studies its connections with the
energy resources of the initial state of the system. Most of |‘1’>:2 caln), @
the previous results in this fie[d—3] trace back to the time- 3
energy uncertainty relation in the form derived by Mandel-,hich has average energg—=(¥|H|¥) and spreadAE

stam and Tamnj4]: in this way, the various lifetimes are T 2y :
bounded by thgie]nergy spreA()l/E of the system. More re- = (W|(H-E)T¥). To characterllze.the departure of the
cently, however, Margolus and Levitin pointed out that oneSyStem from[¥) we can use the fidelity

can relate the characteristic times of the system also to the

average energi of the initial statg/5]. In particular, defin- P(t)=|(‘1’|‘1’(t)>|2:‘2 |c,|2e 1Ent/

ing the lifetime of the system as the time it takes for it to n

evolve to an orthogonal state, the above results allow one to _ ) o

introduce aquantum speed limit timas the minimum pos- Where E,, is the energy eigenvalue of the Hamiltoni&h

sible lifetime for a system of average eneryand spread relative to|n). The quantityP(t) is the overlap between the

AE. In[6] we analyzed such a bound in the case of compostime evolved stat¢¥ (t)) and the initial stat¢¥). A mea-

ite systemg(i.e., systems composed of a collection of sub-sure of the “speed of the dynamical evolution” is obtained

systemg by analyzing how fasP(t) changes in time: e.g., given a
In this paper we extend these results by analyzing whatvaluee [0,1], how long do we have to wait before the state

happens when the quantum speed limit time is generalizettotates” by an amounte, i.e., beforeP(t)=¢e? Assuming

by redefining it as the minimum timeeit takes for the initial  (without loss of generalitya zero ground-state energy eigen-

statee to evolve through a unitary evolution to a st@€t)  value, it is possible to prove that the minimum time at which

such that the fidelity=(¢,o(t)) of [7] is equal to a givere thjs happens is bounded by the quantity
€[0,1]. Even though the scenario is more complex than the

2

)

casee=0 of [6], in this case also it is possible to show that xh wh
entanglement is useful to achieve speedup of the dynamics if TE(E,AE)Eme{ a(e) 5.8 53] (©)
one wants to share the energy resources among the sub-

systems.

wherea(e€) and B(e) are the functions plotted in Fig. 1. Of
course, fore=1 this quantity is equal to zero: in fact, no
Gime has to pass to obtal(t)=1. On the other hand, since
Sor e=0 we havea(e)=pB(e)=1, Eq. (3) reduces to the

gihantum speed limit time that was defined 6]

In Sec. | we extend the definition of quantum speed limit
time and derive its expression in terms of the energy chara
teristics of the initial state, first considering the case of pur
states and then extending the analysis to the more compl
case of nonpure states. In Sec. Il we analyze the role th
entanglement among subsystems plays in achieving the -
guantum speed limit. Most of the technical details of the To(E, AE)=ma EE)
derivations have been inserted in the Appendix.

4

which gives the minimum time it takes for a system to

evolve to an orthogonal configuration. In the remainder of
Since the Hamiltoniakl is the generator of the dynamical the paper, however, we use “quantum speed limit time” to

evolution and defines the energy of a system, one expectefer to the generalized versidf(E,AE) of Eq. (3). The

I. QUANTUM SPEED LIMIT
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FIG. 1. Plot ofa(€) (continuous ling and B(€) (dashed ling
introduced in Eq(3). The inset shows the similarity betwegA(€)
anda(e).

. o o ) ) FIG. 2. Plot of the constraint given by E(f), which shows the
detailed derivation of Eq(3) is given in the Appendix. Here  forhidden region wher@(t) is not allowed to entefshaded areas
we give only a general idea of the procedure. The quantityrhe time-energy uncertainty contribution to E6) defines the light
T.(E,AE) is composed of two contributions. The first con- gray region through~. The Margolus-Levitin type contribution
tribution relates the speed of the dynamical evolution to thelefines the dark gray region through *. The condition plotted
average energ¥ through the functionx(e) and it extends here is forAE/E=1.73. The continuous line represents the trajec-
the Margolus-Levitin theoreni5]. It provides the value of tory P(t) of a “fast” state|Q,) of Eq. (A7) with £=0.5. This state
7.(E,AE) in what we will refer to as the Margolus-Levitin touches the boundary of the forbidden region &+ 0.30 andt
regime, i.e., whelAE/E= B(¢€)/a(€). The functiona(e) is ~ =7Zc-03dE,AE)=0.42(w%/2E).
derived by introducing two functions_ (€) anda-(€) such B B ) .
that @ (e)<a(€e)<a-(€). The first one is obtained by di- wherea ™! and 871 are the inverse functions af(e) and

< = 0> . y | . . . . .
rectly analyzing the conditio(t)=e and using a class of B(€), respectively. This regime is shown on Fig. 2, where an
inequalities that maximizes sines and cosines with lineafX@mple of P(t) trajectory is plotted. By introducing the
functions. The second one is obtained by studying the timdargolus-Levitin type contributiorii.e., the term dependent
evolution of a class of “fast” two level states. This procedure " E) Ed. (6) generalizes the previous bounds Rft) [1,2].
does not allow one to obtain an explicit analytical expressiofVoticeé that, since the contribution dependent to Eq.
for a(€); however, the two bounding functions. and a-. (6) e>_<h_|b|ts a null derivative int=0, it always_ provides a
can be shown numerically to coincide giving an estimate oftontrivial bound toP(t). On the other hand, since the con-
a(€). The second contribution t@.(E,AE) relates the tribution dependent o& exhibits a negative slope &t 0, it

speed of the dynamical evolution to the spreiby means ~ d0€s not provide an achievable bound wiee<E. For the
of the function same reason, the bourid12) on the first derivative oP(t)

is not modified by the presence of the Margolus-Levitin type
contribution of Eq.(6): |dP(t)/dt| is limited only by the

2
Ble)= ;arcco$\/2). 5) energy spreadE.
Quantum speed limit time for mixed states
This term provides the value &f(E,AE) in what we will Up to now we have focused on pure states of the system.

refer to as the Heisenberg regime, i.e., wha&k/E  What happens when the system is in a mixtgrz We will
<pB(e)/a(€). Equation(5) was previously proved ifi1,2]  show that the notion of the quantum speed limit bo¢8d

by employing the general form of the uncertainty relations;can be extended to the density matrices in the sense that
however, for the sake of completeness, in Appendix A weZ (E,AE) gives the lower bound to the time it takes for a
rederived the value g8(¢) starting directly from the expres- stateg with energyE and spread\E to evolve to a configu-

sion (2) for P(t). ration o (t) such that
GivenE and AE, the quantum speed limit defines a for-
bidden evolution regime where the probabil@(t) is not F(e,e(t)=e, @)
allowed to enter. In fact, for €t<7y(E,AE), Eq. (3) im-
plies o ) Fa-O where F(g,0")={Tr V \/EQ’\/E]}Z is the fidelity intro-
duced in[7].
To prove the above statement, first of all notice that in the
P(t)zmax[ al(E) 1( ZAEt)] 6) case of pure states the fidelity reduces to the probalfijty
wh |’ ah ||’ of Eq. (2) and the definition(7) reduces to the quantum
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speed limit bound given in the previous section. More genand (11), choose one such thég,|.)= 6,me~ ', where

erally, consider a generic decompositionaf

e=§ Pl B bl 8

where p,>0, 2.,p,=1, and {|¢,)} is a set of non-
necessarily orthogonal pure states. The fiddiithas been
shown[7,9] to satisfy the property

F(e.e(t)= max{KxIx")* (9)

[x).x")

where|y) and|y’) are purifications op andg(t), respec-
tively, such as the states

|x>=§ VPol d)  €0), (10
IX')=2 VPaldn(0))|ED), (1)

n

with {|€.)},{| &)} being two orthonormal sets of an ancillary
system. Choosintg; ) =|&,) for all n and assuming that they

Onm=ard (¢, ém(7Z.))]. From Eqgs.(9) and(13), it follows
that

2 2
€= ; pn|<¢n|¢n(Te)>| :(; pn\/e—n) =e, (19

TAE,AE)=T.(E,AE), (16)

where in Eq.(16) we employed the fact that(e) and B(e)
are strictly decreasing functions. Combining E¢&4) and
(16), we find that, for alln,

TAEAE)=>T, (6,,A8,). a7

Consider first the Margolus-Levitin regime, i.eAE/E
= B(€)/a(e). From Eq.(17) it follows that

— 7h Th
a(E)EBQ(En)g. (18
n

Since the energy of the stae is E=X,p,&,, EQ. (18
implies

are all eigenstates of the ground level of the ancillary system, a(:)Zg Pne(€n). (19

|x') becomes the time evolved of) [i.e., |x')=|x(1))]
and Eq.(9) implies that the fidelity is bounded by

F(e,e(t)=[xIx()% (12

Since the pure statgy) has the same enerdy and energy
spreadAE of g, it can rotate by a quantity in a time not
smaller than7_(E,AE), as shown in the previous section.
This, along with inequality(12), proves that the minimum
time t for which F(g,o(t))= € is bounded by the quantity
T.(E,AE), as stated in Eq(7). Notice, finally, that fore
=0 we reobtain all the results that were giverij, since in
this case the conditiori7) is equivalent to the condition
Tr[o(t)e]=0 that was employed thef&].

Mixed states that reach the bound

Before concluding the section, let us analyze under wh

Analggous_ly, in the Heisenberg regime, i.e., whai&/E
<p(e)la(e), sinceAE?=3,p [AE2+(E—&,)?], one ob-
tains

;%2(?)22 PB(€n). (20)

The inequalitieg19) and (20) must be satisfied ip reaches
the quantum speed limit. Since boti{€?) and B%(e?) are
strictly convex functiongsee Eqs(A14) and (A15) of Ap-
pendix A 3|, such conditions can be satisfied only when the
equalities hold: this happens &,=e€ for all n and if the
equality holds also irf14). This shows that the fastest states
o are mixture composed of pure states,) that all achieve
the quantum speed limit bound for the samat the same

conditions a mixed state can reach the quantum speed limit.

Assume that the stai of energyE and spread\ E achieves
the bound for a value, i.e.,

F(e.e(7))=e, (13

where the dependence &@and AE has been dropped for
ease of notation. Define the quantiey=|(#n|dn(7))%,
which measures the rotation of theh component of the
mixture (8) at time 7.. Applying quantum speed limit con-
siderations to the stafeb,), one finds

T(E,AE)=T, (&,A&), (14)

II. ENTANGLED DYNAMICS

In a preceding papef6], we analyzed the role of en-

tanglement in achieving the quantum speed limit bo($d

for composite systems. We found that quantum correlations
among the subsystems allow the state of the system to evolve
to an orthogonal configuration faster if the energy resources
are not devoted to a single subsystem and the initial state is
pure. Here we analyze the generalized bo(®)dand show
that the same result holds even when we do not require the
initial and final states to be orthogonal. Quantum correlations
among subsystems allow the state of the system to rotate in
Hilbert space faster if the energy resources are not devoted to

where&,, andA¢&, are the energy and the spread of the statea single subsystem.

|#,). Now, among all possible purifications of the foft0)

In the following we consider the case of a noninteracting
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composite system withM independent components. Its

Hamiltonian is given byH=2%,H,, whereH, is the free
Hamiltonian of thekth subsystem. Since the Hamiltonigh
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is assumed to have zero ground state, we will redefine all thg\§ hence

H\ to have zero ground states without loss of generality.

A. Pure states

Consider a composite systemMfnoninteracting parts in
the initial pure separable state

W)=[¢)1 - [dmm s (21
which has energy and energy spread
E=2 E, (22
k
1/2
AE:<2 AEE) , (23)
k

whereEy, andAE, are the energy and the spread of the state

| ) of the kth subsystenj10]. The statd¥') reaches the
guantum speed limit if, for some value ef the following
identity applies:

P(7.(E,AE))=¢, (24)
where P(t) is the probability (2) of the state|¥) and
7T.(E,AE) is the quantum speed limit time of E(B). For a
separable state, the quantR®t) is given by

P(t)=Py(t)---Pyw(t), (25)
where P (t) = | ¥ 4 (t) ) [? is the overlap of the state of
the kth subsystem at timé with its initial value. Defining
e.=P(7(E,AE)) and using Eq.25), the condition(24)
can be rewritten as

€=€1- €y . (26)
Moreover, applying the quantum speed limit relati@ to
the kth subsystem, one finds that
T(E,AE)=T (Ey,AEy). (27
Consider first the Margolus-Levitin regime, i.eAE/E
=pB(€e)/a(e). In this case, Eq(27) and the definitions of
T(E,AE) and7 (E,AEy) imply

wh Th
ale) s==a(€) =

2E 2E,’ (28)

and hence, using the expressi@®) for the total energy of
the system,

M

ale)=2, aley). (29)
k=1

Analogously, in the Heisenberg regime E7) implies that

mh h
B(G)EZE(GK)ZAEK’ (30)
M
Bz(e)Bgl B(e). (31)

A necessary condition for the separable sfate to reach
the quantum speed limit is that there exists a se¢ofhat
satisfy at least one of the two inequaliti®) and(31) under
the constraint(26). According to the strict subadditivity of
a(€) and B%(€) [see Eqs.(A16) and (A17) of Appendix
A 3], the relationg29) and (31) can be satisfied only when
the equality holds: this happens if there existk @ay k')
such thate, =€ and ¢,.=1 for all k#k’. Such a solution
corresponds to the case in which all the energy resources are
devoted to the&k'th subsystem. In fact, fok=k’, the rela-
tions (28) and (30) imply that

E.= —aof(eg)) E=E, (32)
Bl&x) _
A, =" CAE=AE, (33)

where Eq.(32) holds in the Margolus-Levitin regime, while
Eq. (33) holds in the Heisenberg regime. Equati@®) and
the form (22) of E require thatE,,=E and E,=0 for k
#k’ [10]. SinceHy have all zero ground-state energy, this
also implies that\E,,=AE andAE,=0 for k#k’. On the
other hand, Eq(33) and the form(23) of AE require that
AE,,=AE andAE,=0 for k#k’.

In conclusion, the only statga’) of the form (21) that
can reach the quantum speed li8) for some value ofe
are those in which all the energy spreaH is carried by the
single subsysterk’. The other subsystems are in eigenstates
of their HamiltoniansH, . Moreover, if the system is in the
Margolus-Levitin regime, thek’ also carries all the mean
energyE, the other subsystems being in their ground states.
From the dynamical point of view, this means thatis the
only subsystem that rotates in the Hilbert space, while all the
others do not evolve.

A simple example: Separable vs entangled state

The gap between entangled states and nonentangled ones
is particularly evident in the case in which the energy re-
sources are homogeneously distributed among all sub-
systems, i.e., whei,=E/M and AE,=AE/\M for all k.

For the sake of simplicity we analyze an example in which
all the subsystems are in the same stéag=|#). In this
case the minimum time, for which the global stat¢W )
=|¢),- - - |y rotates by a quantity is given by the mini-
mum time it takes for each subsystem to rotate by a quantity
™. Applying the quantum speed limiB3) to each sub-
system, one obtains thgt=7.1m(E/M,AE/\{M). The ratio
R(€) betweent, and7.(E,AE), i.e.,
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e to reach a configuratiop(t) with fidelity e. Moreover, we
already know that the state will reach the quantum speed
limit bound for mixed states of Eq7) only if all the states
| W (M) rotate by an amour in the time7.(&,,A&,), given
&, andA&,, the energy and energy spread|#(). Since
|w (M) is a separable pure state, from the previous section it
follows that this is possible only if there exists a subsystem
© (say thek,th) that possesses all the energy resources. This
ol ] means that the only separable stagethat reach the bound
L ] (7) are those for which, for any statistical realizatioof the
o '_-7"---"'_'6-'----"_'5----'-"_'4--~---'_-3--~---' ol s mixture (36), a single subsystem evolves to an orthogonal
1077 107 107 107 107 0.01 01 1 configuration at its own maximum speed limit tirhehich
€ coincides with7(E,AE) of the whole systerh All the other
subsystems do not evolve. Since the above derivation applies
for any product state expansiqr, one can say that in each
%%erimental run only one of the subsystems evolves. Of
course, other possible ensembles can be used in the decom-
(€M) B(M) position of@, which are not necessarily of the fczlgl;%) For

, , (34) instance, one can have unravelings in yvhj@]h ) is an
a(e€) B(e) entangled state of th&l subsystems. This means that, as
o building blocks to produce a “fast” mixed state, we need
shows how much slower the separable sfate) is in com-  gjther entanglement or to use product states in which only
parison with the maximum speed allowed for a system of the,ng of the subsystems evolves. What is definitely impossible
same energetic resources|ds;) (see Fig. 3 From the su- g 5 produce such a state mixing product states where the
badditivity propertiedA16) and (A7), it follows thatR(e)  energy is homogeneously distributed. This is essentially the
=1. In particular, fore=0, R(e) is always greater or equal game result that was obtained[#, although here we con-

to VM, as discussed if6]. _ sidered the more general casee# 0.
Consider now the following family of entangled states:

[P ) =V1-¢%0)1- - -[O)m+E[Eq)1- - -|Eoym, (35
In this paper we have generalized the definition of quan-

where ¢€[0,1] and |0) and |[Eq) are eigenstates of the tum speed limit time[5,6] to take into account the case in
Hamiltonian of energy O an#,>0, respectively. The state which the system does not evolve to an orthogonal state. As
|W,) represents a homogeneous configuration where each“measure of the distance” between the initial and the final
subsystem has energ¥E, and spread\1—°Ey. How-  states we have used the fidelfio,o(t)) [7]. However, the
ever, unlike the separable stdtl,) discussed before, for a entire analysis can be performed also using other kinds of
suitable choice of the parametgér |¥,) achieves the quan- measures which are connected with the fidelity, such as the
tum speed limit bound, as can be shown by comparison withrace distance Te—e¢(t)]/2 or the relative entropy
the statg{),) of Eq. (A7) in Appendix A 1. S(e||e(t))=Tr ¢ log,o—e log,e(t)] [9,11]. In this context,

By proving that homogeneous separable states cannot exre have analyzed the role of quantum correlations among
hibit speedup while at least one homogeneous entangled cageninteracting subsystems in a composite system. As a re-
that exhibits speedup exists, we have shown that entangleult, we have shown that entanglement plays an important

R(e)

FIG. 3. Plot of the lower bound d®(e) from Eq.(34). It shows
that homogeneous separable states cannot achieve the quant
speed limit boundgiven by the dashed lineHereM =5.

R(€)=min| M

IlI. CONCLUSION

ment is a fundamental resource in this context. role in the speedup of the dynamical evolution in a compos-
ite system. In fact, the only separable pure states that can
B. Entangled dynamics for mixed states achieve the quantum speed limit bound are those where only

In this section we generalize the results of the previous, . subsystem at a time is evolving, while the others are
. . 9 P Stationary. Analogously, for mixed states, we have shown
section to mixed states.

The most general separable statdvbkubsvstems can be that one cannot create a fast separable configuration starting
9 P y from product states in which the energy is shared among

written as multiple subsystems.
0=2 pa| TN WO, (36) ACKNOWLEDGMENTS
n
This work was funded by the ARDA, NRO, and by ARO
wherep,>0, 2,p,=1, and under a MURI program.
|\If(n)>:|¢(ln)>l' : |¢§\;|1)>M ’ (37) APPENDIX

with (V) a state of thekth subsystem. As discussed in  In Secs. A1 and A2 we derive the forms of the functions
Sec. | A, 7(E,AE) is the minimum time it takes for the state a(€) andB(e€), respectively. In Sec. A3 we study these two
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FIG. 5. Comparison ofx_(€) and a-(€) for some random

FIG. 4. Plot of the inequalitfA2) for q=m/4. In this casea values ofe. The plot showsa- (€)— a_(€) with the error bars
=0.64. denoting thes6—0 extrapolation error ofr_(€) (see text Since
all the values are compatible with zero, we can conclude that
functions, giving some mathematical properties that are used._ (€)= a- (€)= a(e).
in the paper.

, Et
1. Derivation of a(e) Je(coso—qgsing)=1-a—-. (A4)

In order to determiner(€) we will: (i) give a lower bound . . . L
for it; (i) give an upper bound for ifiii ) show numerically From the definition ofa(€) introduced in Eq(3), this im-

that these two bounds coincide, thus providing an estimatioR!1€S

of a(e).
(i) A lower bound fora(€) can be obtained by observing a(€)=[1— Je(cosh—qsin 9)]1_ (A5)
that if P(t) =€, then(¥|W(t))=ee'’, i.e., from Eq.(1) ma

) ot Since, for a given value of, Eq. (A5) must be valid for all
En: |cal CoS7—= € C0s/, g=0, then the following lower bound fos(€) can be ob-
tained:
> e |zsinE——\/_sin0 (A1) , 2
= [Cn 5 Vesing, max [1— \e(cosf—qsin l—| |
q

a(€)=a_(€)=min
0

with #e[0,27]. Consider now the following class of in- (AG)

equalities forq=0: (i) To provide an upper bound fas(e), consider the

cosx+q sinx=1—ax, A2) following family of two-level states:

which is valid forx=0 and wherea is a function ofq de- 129 =1=£70)+¢[Eo), (A7)

fined implicitly by the set of equations where £€[0,1], and|0) and |E,) are Hamiltonian eigen-

states of energy O anly, respectively. The stat) ) has
y+ vy (1+99)+q average energy E=¢%E, and energy spreadAE

1+y? ' =¢\J1- £%E,. Solving the dynamical evolution of the state
(A3) |Q,), one can show that the first timdor which P(t) =€ is
_a(l-qy)+q given by
siny= T
q Et —1+2¢3(1—¢?
7=§2arcco{6 5 & 5 &) (A8)
for ye[w—arctan(14), 7+ arctan@)]. The inequality(A2) 28°(1- &)

is obtained by bounding the term on the left with the linear
function that is tangent to it and is equal to 1 for0, as  Minimizing over ¢ the right-hand term of E((A8) gives the
shown in Fig. 4. Since we assumed zero ground-state energipllowing upper bound forx(e):

all the energy levels are positive and we can repbawéth
E,t/% in Eq. (A2). Summing om and employing Eq(Al),
we obtain the inequality

e—1+22(1-2)
22(1-2)

2
ale)=a-(e)= ;z arcco%

, (A9)
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FIG. 6. Convexity conditior(A14) for a(€?) in the caseN=2:
A= a(€)codp+ a(&)sirPd—al( €, CoFp+ e, sirf)?)=0. In this
plot e,=0.7. Notice thatA, is null only for e;=¢€, and for ¢
=0,7/2,m.

FIG. 7. Subadditivity conditiofA16) for «(e€) in the caseN

where thez is a function ofe defined implicitly by =21 Ap=a(e;) +a(e;) —a(e162) =0, for €;,6,=0. Notice that
Ay is null only for ;=1 ore,=1.

:1_22 / 1-e The extrapolated value aof_(€) with its error bars is
1-z Ve-1+4z(1-2z) compared with the calculated value of.(€) in Fig. 5.
(A10)  Machine-precision accuracy is rapidly attainable in the cal-
culation of a~(€) and we have considered it as unaffected
(ii ) The obvious difficulty in deriving the explicit analyti- by error. Since the values of..(€) anda—(e) are compat-
cal form of the boundsyr_(€) and a-(€) defined in Eqs. ible for arbitrary values ok we can conclude that the two
(A6) and (A9) can be overcome by performing a numerical functions coincide and are thus both equald(e). This
study of these two conditions. We will show that.(€) allows us to give the numerical estimations of this function
=a-(€), thus giving an estimate af(e). that have been used throughout the paper. Notice, however,
In order to estimater- (€) numerically one has to solve thate(e) is roughly approximatedp to a few percent errpr
Eq. (A10). Using a bisection algorithm, it is simple to get a by the functions?(e), as can be seen from Fig. 1.
machine-precision accurate solution very rapidly for all val-
ues ofe. On the other hand, the estimate @f (€) requires 2. Derivation of B(e)
greater care, since two different parametegsand 6 of Eq.
(A6)—are present in its definition. For each valueeoit is
necessary to calculate the term on the right of &%) on a
bidimensional grid of values af and ¢ and find for eachy
the maximum ong. The value ofa_(€) is calculated by aP(t)
choosing the minimum among these maxima. Of course, this
procedure is biased, since it depends on the grid spadiggs 2 _
and 6. In order to remove the bias in the calculation result, < gE |cnl?|eml?(E,— E)e  (EnEmUA
H n,m
one can repeat the whole procedure for different values of '
the grid spacing and then extrapolate the result for the spac- 2
ings 6q and 86 tending to zero. We have used a least squares =%‘ 2 |cn|2(En—E)
linear interpolation, wherg? minimization allows us also to n
recover an “error bar” that measures how well the linear
interpolation works for each value &f The error bar has no X
statistical meaning: it simply gives an idea of how well the

linear extrapolation fo6— 0 works for the value ot un- h he last identity has b btained by addi
der consideration. It can be used also to give a “confidencd/Nere the last identity has been obtained by adding a zero

interval” for the result obtained. Théq—0 extrapolation e tO the sum on. Applying the Cauchy-Schwarz inequal-

error has been found negligible in all cases, meaning that & t© Ed- (AL1), we find

linear extrapolation is well suited. To reduce aliasing prob-

lems, instead of us_ing an equispaced griq, it is prgfer_able to ’EP(t)‘s ZA_E P(O[1-P(D)], (A12)
adopt a random grid of values gfand 6 uniformly distrib- dt h

uted so that the average distance between distinct values is

6q and 66, respectively. which for O<t<=w#A/(2AE) implies[1,2]

e—1+2z2(1-2)
arcc 22(1-2)

The functionB(e) can be derived starting from E®) by
the following chain of relations:

2 E.—E
== lenl?lenlX(Eqn—E)sin ———t
h n,m fi

, (A1D)

% |Cm|2efi(En7Em)t/h_ P(t))
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AE
P(t)?cosz(?t). (A13)
This means that the smallest tiniefor which P(t)=¢€ is
bounded by the quantitg(e) 7wh/(2AE) with B(e€) defined
in Eqg. (5). Notice that the boundA13) is achievable since,
for example, the state),_,, ) of Eq. (A7) reaches it.

3. Mathematical properties of a(€) and B(¢€)

Both a(€) andB(e€) are strictly decreasing functiorisee
Fig. 1). Moreover they satisfy the following constraints.

(@) The functionsa(e?) and B%(€?) are strictly convex,
i.e., fore,e[0,1],

N 2 N

a(( nzl ann) )gnzl pna(eﬁ), (A14)
N 2 N

BZ(( n§=:1 pnfn) )ggl pnIBZ(Eﬁ)7 (A15)
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wherep,>0 andZ,,p,=1. The identity in(A1l4) and(Al15)
holds only ife,= €, for all nandn’.

(b) The functionsa(e) andB?(€) are strictly subadditive,
i.e., fore,e[0,1],

N N

a( I1 ek)sE a(ey), (A16)
k=1 k=1
N N

32( I1 ek)s2 B2(€), (A17)
k=1 k=1

with the identity holding only when there existkdsayk')
such thate, =1 for all k#k’.

To prove these properties, one can discuss the cabke of
=2 and then extend it by induction to arbitral; When
referred toB(€), both properties can be analytically proved
using its definition(5). For a(€) we must instead resort to
numerical verificatior(e.g., see Figs. 6 and.7
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