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Equivalence between the real-time Feynman histories and the quantum-shutter approaches
for the ‘‘passage time’’ in tunneling
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We show the equivalence of the functionsGp(t) and uC(d,t)u2 for the ‘‘passage time’’ in tunneling. The
former, obtained within the framework of the real-time Feynman histories approach to the tunneling time
problem, uses the Gell-Mann and Hartle’s decoherence functional, and the latter involves an exact analytical
solution to the time-dependent Schro¨dinger equation for cutoff initial waves.
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I. INTRODUCTION

The tunneling time problem has remained a controver
issue after the question of how long it takes a particle
traverse a classically forbidden region was raised 70 ye
ago @1#. There are a number of approaches to this prob
@2#. In this paper, an unexpected close relationship is fo
between a real-time Feynman path-integral approach@3–5#
and the quantum shutter approach@6,7#, which are, at first
sight, unlikely to be related.

If we use the real-time Feynman path integrals@8#, we can
define the ‘‘amplitude distribution’’ of tunneling time as th
sum ofeiS/\ (S being the action! over the paths that take
specified amount of time to traverse the barrier region. W
the amplitude distribution, we can deal with the interest
question whether or not a probability distribution is defina
for tunneling time@9#. The definability of the probability
distribution depends on whether or not the amplitude dis
bution has the property of orthogonality, i.e., whether or
the classes of Feynman paths taking timet1 and t2 (t1
Þt2) to traverse the region interfere. For rectangular ba
ers, one of the authors studied the interference quantitati
to conclude that~i! a probability distribution is not definabl
@3,4#, but ~ii ! the range of the values of tunneling time
definable@4#. In Ref. @4#, a functionG(t) is introduced to
analyze how different classes of Feynman paths~each class
being characterized by the value oft) contribute to the tun-
neling process. The functionG(t) was used to prove the
undefinability of the probability distribution and also to es
mate the range of the tunneling times. For typical opaq
barriers, the graph ofG(t) showed a peaked structure ne
the Büttiker-Landauer time@10#. It is thus clear thatG(t) is
an important quantity for the study of the tunneling tim
problem. It is, however, important to understand howG(t)
is related to the dynamics of tunneling, which is not evide
at all from the Feynman path construction ofG(t). In the
present paper, we will relateG(t) @to be preciseGp(t) as

*Electronic address: gaston@fisica.unam.mx
†Electronic address: villavics@uabc.mx
‡Electronic address: yamada@i1nws1.fuis.fukui-u.ac.jp
1050-2947/2003/67~5!/052106~6!/$20.00 67 0521
al
o
rs
m
d

h
g

i-
t

i-
ly

e

t

discussed below# to a time-dependent wave function. Now
we have to quickly add the following: In general, a Feynm
path crosses the barrier region many times, so that we
define ‘‘the amount of time taken by a Feynman path
traverse the barrier region’’ in several ways. We can defin
as the sum of the times during which the Feynman path
within the barrier region@11#, which may be called the resi
dent time of the Feynman path. Or, we can define it as
last time the path leaves the barrier region minus the fi
time it enters the region@12#, which may be called the pas
sage time of the Feynman path. These two different defi
tions at the level of Feynman paths would lead to physica
different tunneling times, which we shall call the tunnelin
time of resident time type~resident timefor short! and the
tunneling time of passage time type~passage timefor short!.
Reference@4# concerns the resident time, while Refs.@3,5#
and this paper concern the passage time. We shall attac
necessary, subscriptr to the quantities for the resident tim
@e.g., Gr(t)] and subscript p for the passage time@e.g.,
Gp(t)].

Another approach, relevant to the tunneling time probl
@6#, is to consider an analytic time-dependent solution to
Schrödinger equation with the initial condition att50 of an
incident cutoff wave, to investigate the time evolution of t
probability density through an arbitrary potential barrie
This problem may be visualized as agedanken experimen
consisting of a shutter, situated atx50, which separates a
beam of particles from a potential barrier located in the
gion 0<x<d. At t50, the shutter is opened and the pro
ability density rises initially from a vanishing value an
evolves with time throughx.0. At the barrier edgex5d,
the probability density at timet, uC(x,t)u2, yields the prob-
ability of finding the particle after a timet has elapsed. Since
initially there is no particle along the tunneling region, d
tecting the particle at the barrier edge at timet should pro-
vide a relevant time scale of the tunneling process. In a
cent work, two of the authors@7,13# analyzed the time
evolution of the probability densityuC(d,t)u2 for a rectan-
gular potential barrier using the above formalism. There
was found that the probability density at the right barr
edgex5d exhibits at short times a transient structure th
they namedtime-domain resonance. The maximum of the
©2003 The American Physical Society06-1
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time-domain resonance, occurring at a timet5tp , represents
the largest probability of finding the particle atx5d. In Ref.
@13#, the above authors called the attention of the reader
the fact that the shape of the graph ofuC(d,t)u2 depicted in
Fig. 1 of that paper resembles the average shape of the g
in Fig. 2 of Ref.@4#, which is the graph ofGr(t). Then they
guessed thatuC(d,t)u2 would be more related to the passa
time rather than the resident time. In fact, in Ref.@5#, Ya-
mada has studiedGp(t) to find that if t is simply replaced
by t, the graph ofGp(t) for a monochromatic case is actual
indistinguishable from the graph ofuC(d,t)/Tu2, whereT is
the transmission amplitude. However, there has been no
plicit proof that these two functions are really equivalent.

The aim of this paper is to prove that the functionGp(t)
and the probability densityuC(d,t)u2 under the initial con-
dition stated above are actually related by

UC~d,t !

T U2

5Gp~ t !, ~1!

thereby establishing a surprising relationship between
two approaches. As a by-product of our proof to Eq.~1!, we
present an alternative derivation, along the transmitted
gion, of the expression forC(x,t) without using the Laplace
transform method. This derivation is the second purpose
the present paper.

Section II presents a brief account of the main feature
both approaches. Section III deals with the proof to Eq.~1!
and also with a new derivation ofC(x,t). In Sec. IV, a
numerical example is presented for a rectangular poten
barrier in order to exhibit the equivalence of both a
proaches. Concluding remarks are given in Sec. V.

II. THE FORMALISMS

A. Real-time Feynman path-integral approach

In Ref. @4#, Yamada introducedG(t) by

G~t![
1

PE0

t

dt1E
0

t

dt2 D@t1 ;t2#. ~2!

In the above expression,D@t1 ;t2# is thedecoherence func
tional for the case of tunneling time for transmission andP is
the tunneling probability defined by

P[ lim
t→`

E
d

`

dxuC~x,t !u2, ~3!

whered is the position of the right edge of the barrier. Th
decoherence functionals were formulated in general term
Gell-Mann and Hartle@14# in their version of the consisten
history approach to quantum mechanics@14–16#. The real
part of D@t1 ;t2# is a measure of the interference betwe
the classes of Feynman paths that take different amoun
time (t1 and t2) to traverse the barrier region. Rough
speaking,G(t) is the square modulus of the sum ofeiS/\

over those paths that takeless thantime t to traverse the
barrier region~to be precise, the result of the sum over pa
is multiplied by the initial wave function, followed by th
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integrations over the initial and the final positions before a
after taking the square, respectively!. It is easier to deal with
G(t) than D@t1 ,t2# since G(t) is a real function of one
variable, whileD@t1 ;t2# is a complex function of two vari-
ables.G(t) has the following properties:~i! G(0)50 and
~ii ! G(`)51. Yamada@4# claimed that~a! if G(t) is not an
increasing function oft, a probability distribution of tunnel-
ing time is not definable; and~b! the range (t, ,t.) of times
is an estimation of the range of values of tunneling tim
where t, and t. are such thatG(t),e for ;t,t, and
u12G(t)u,e for ;t.t. , where 0,e!1. The first claim
~a! is based on theweak decoherence condition@15,16# in the
consistent history approach.

For a particle with wave numberk0 (.0) impinging on
the square barrier of heightV0 that extends fromx50 to x
5d, Gp was found to be@5#

Gp~t!5
k0

2

p2uTu2
U E

2`

`

dk T~k! eikd
ei\(k0

2
2k2)t/2m21

k22k0
2 U2

,

~4!

where T(k)[T(k,V0 ,d) is the transmission amplitude fo
the square barrier when the wave number isk, and T
5T(k0).

B. Quantum shutter approach

A direct access to tunneling phenomena in time domai
to follow the time evolution of the wave function. In Ref
@7,13#, two of the authors studied the time dependence of
probability density by using an explicit solution@6# to the
time-dependent Schro¨dinger equation, with a cutoff plane
wave initial condition,

C~x,0!5H eik0x2e2 ik0x for x,0

0 for x>0,
~5!

impinging on a shutter placed atx50, just at the left edge of
the structure that extends over the interval 0<x<d. The
tunneling process begins with the instantaneous openin
the shutter att50, enabling the incoming wave to intera
with the potential att.0. The exact solution along the tran
mitted region (x.d) reads@7#

C~x,t !5T~k0!M ~x,k0 ;t !2T~2k0!M ~x,2k0 ;t !

2 (
n52`

`

TnM ~x,kn ;t !. ~6!

In the above expression, the quantitiesT(6k0) refer to the
transmission amplitudes; the indexn runs over the complex
poles kn of T(k), which are distributed in the third an
fourth quadrants in the complexk plane, and the factorTn is
defined as

Tn52ik0

un~0!un~d!

k0
22kn

2
e2 iknd, ~7!
6-2
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where$un(x)% are the resonant eigenfunctions@6# which are
the solutions to

d2un~x!

dx2
1Fkn

22
2m

\2
V~x!Gun~x!50, ~8!

with outgoing boundary conditions

F d

dx
un~x!G

x50

52 iknun~0! ~9!

and

F d

dx
un~x!G

x5d

5 iknun~d!. ~10!

Both the complex poles$kn% and the corresponding reso
nant eigenfunctions$un(x)% can be calculated using a wel
established method, as discussed elsewhere@6,7#. Note that
from time-reversal considerations@17#, the polesk2n , seated
on the third quadrant of the complexk plane, satisfyk2n5
2kn* and correspondinglyu2n(x)5un* (x). In Eq. ~6!, theM
functions are defined by

M ~x,q;t ![
i

2pE2`

`

dk
eikx2 i\k2t/2m

k2q
~11!

5
1

2
e( imx2/2\t)w~ iyq!, ~12!

whereq5kn ,6k0 andw( iyq) is the complex error function
@18# with the argumentyq given by

yq5e2 ip/4A m

2\tFx2
\q

m
t G . ~13!

III. EQUIVALENCE OF BOTH APPROACHES

A. Proof of Eq. „1…

We will start from the general relationship between
initial wave function and the time evolved wave functions

C~x,t !5E
2`

`

dy K~x,t;y,0!C~y,0!, ~14!

where K(x,t;y,0) is the propagator from (y,0) to (x,t).
Since our initial wave function is vanishing forx.0 and we
are interested only in the transmitted region, we need
know K(x,t;y,0) only for y<0 and x>d, for which it is
well known that

K~x,t;y,0!5E
2`

` dk

2p
T~k!eik(x2y)2 i\k2t/2m, ~15!

which follows from the eigenfunction expansion of th
propagator. The initial wave function can be expanded a
05210
to

C~y,0!5E
2`

` dk

A2p
f~k!eiky, ~16!

wheref(k) is thek-space wave function. Substituting Eq
~15! and~16! into Eq. ~14!, we can carry out the integratio
over y to have

C~x,t !5E
2`

` dk

A2p
f~k!T~k!eikx2 i\k2t/2m. ~17!

For our initial wave function@Eq. ~5!#

f~k!5E
2`

` dy

A2p
e2 ikyC~y,0!

5
i

A2p
S 1

k2k01 i e
2

1

k1k01 i e D , ~18!

wheree is an infinitesimal positive number. Thus,

C~x,t !5
i

2pE2`

`

dkH S 1

k2k01 i e
2

1

k1k01 i e D
3T~k!eikx2 i\k2t/2mJ ~19!

for x>d.
Let us note that, sinceC(x,0)50 for x>0,

E
2`

`

dk S 1

k2k01 i e
2

1

k1k01 i e DT~k!eikx50 ~20!

for x>0, which is also apparent from the fact that the tran
mission amplitude on the complexk plane has simple pole
only in the lower half plane. Owing to Eq.~20!, we can
rewrite Eq.~19! as

C~x,t !5
i

2pE2`

`

dkH S 1

k2k01 i e
2

1

k1k01 i e D
3T~k!eikx~e2 i\k2t/2m2e2 i\k0

2t/2m!J . ~21!

Apply the following equation in Eq.~21!:

1

k6k01 i e
5P

1

k6k0
2p id~k6k0!. ~22!

We then notice that~i! sincee2 i\k2t/2m2e2 i\k0
2t/2m50 at k

5k0, the contributions from thed functions vanish and~ii !

since (e2 i\k2t/2m2e2 i\k0
2t/2m)/(k6k0) is regular in the limit

k→7k0, the Cauchy principal value integrals can be r
placed by the ordinary integrals~i.e., the symbol P can be
removed!. Consequently, we have forx>d,
6-3
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C~x,t !5
i

2pE2`

`

dkH S 1

k2k0
2

1

k1k0
DT~k!eikx

3~e2 i\k2t/2m2e2 i\k0
2t/2m!J

5
ik0

p
e2 i\k0

2t/2mE
2`

`

dkT~k!eikx
ei\(k0

2
2k2)t/2m21

k22k0
2

.

~23!

With this expression forC, it is easy to see thatuC(d,t)/Tu2
agrees with the right-hand side of Eq.~4! if t is replaced by
t. This completes the proof of Eq.~1!.

B. New derivation of the quantum shutter solution

As mentioned earlier, the transmission amplitude has
general an infinite number of simple poles distributed on
lower half of the complexk plane. The transmission ampl
tude may be expanded in terms of its complex poles
corresponding residues by using a special form of
Mittag-Leffler theorem due to Cauchy@19#. It may be written
as @5#

T~k!5 (
n52`

` S r n

k2kn
1

r n

kn
D , ~24!

wherer n is the residue ofT(k) at k5kn . Using Eq.~24! in
Eq. ~19!, we have, forx>d,

C~x,t !5
i

2p (
n
E

2`

`

dkH S 1

k2k01 i e
2

1

k1k01 i e D
3S r n

k2kn
1

r n

kn
Deikx2 i\k2t/2mJ . ~25!

If we expand

S 1

k2k01 i e
2

1

k1k01 i e D S 1

k2kn
1

1

kn
D

and use the partial fraction decompositions, we see that
right-hand side of Eq.~25! can be expressed as a sum of t
integrals of the form of Eq.~11!. The expansion gives fou
terms, which arekn

21(k6k01 i e)21 and

1

k6k01 i e

1

k2kn
5

1

6k01kn1 i e S 1

k2kn
2

1

k6k01 i e D ,

~26!

so that Eq.~25! becomes, after some algebra,
05210
in
e
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C~x,t !5(
n

S r n

k02kn2 i e
1

r n

kn
D M ~x,k0 ;t !

2(
n

S r n

2k02kn2 i e
1

r n

kn
D M ~x,2k0 ;t !

2(
n

S r n

k01kn1 i e
1

r n

k02kn2 i e D M ~x,kn ;t !.

~27!

In the limit e→0, the sums overn in the first and the second
lines on the right-hand side of Eq.~27! give T(k0) and
T(2k0), respectively@see Eq.~24!#. We thus obtain

C~x,t !5T~k0!M ~x,k0 ;t !2T~2k0!M ~x,2k0 ;t !

22k0 (
n52`

`
r n

k0
22kn

2
M ~x,kn ;t !. ~28!

Our goal here is to derive Eq.~6!. In fact, Eqs.~28! and
~6! are the same because of the relationship

r n5 iun~0!un~d!e2 iknd. ~29!

We shall prove Eq.~29! to conclude this section. It is helpfu
to consider the outgoing Green’s functionG1(x,x8;k),
which is the solution to

]2G1~x,x8;k!

]x2
1Fk22

2m

\2
V~x!GG1~x,x8;k!5d~x2x8!

~30!

with outgoing boundary conditions. We first use the fact th
G1(x,x8;k) can be written in terms of the resonant states
@20#

G1~x,x8;k!5 (
n52`

`
un~x!un~x8!

2kn~k2kn!
~0<x,x8<d!.

~31!

The above expansion is not valid forx5x850 or x5x8
5d and holds provided that the resonant eigenfunctio
un(x) are normalized according to the condition@6#

E
0

d

un
2~x!dx1 i

un
2~0!1un

2~d!

2kn
51. ~32!

Next, we use the fact that the transmission amplitude
G1(0,d;k) are related by@21#

T~k!52ikG1~0,d;k!e2 ikd. ~33!

From Eq.~31!, we have

lim
k→kn

~k2kn!G1~0,d;k!5un~0!un~d!/2kn , ~34!

while from Eq.~33! together with Eq.~24!, we have
6-4
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lim
k→kn

~k2kn!G1~0,d;k!5r neiknd/2ikn . ~35!

Equating the two results, we obtain Eq.~29!.

IV. EXAMPLE

To exemplify the time evolution of the probability densit
we consider the set of parameters:V050.70 eV, d
510.083 nm,E50.140 eV, andm50.067me (me being the
bare electron mass!, inspired by the semiconductor quantu
structures@22#. In this particular example, the potential ba
rier parameters are chosen in such a way thatk0d5V0 /E
55, wherek05@2mE#1/2/\. The opacitya of the barrier is
defined asa5k8d, wherek85@2mV0#1/2/\. In our casea
511.18, corresponding to an opaque barrier (a@1). The
solid line in Fig. 1 showsuC(d,t)u2 calculated with Eq.~6!
at the barrier edgex5d as a function of time and in units o
the free passage timet f5md/\k0511.753 fs. At early
times, one sees atime-domain resonancestructure@7#. The
maximum of this transient structure represents the larg
probability to find the tunneling particle at the barrier ed
x5d. In our example, as shown in Fig. 1, the maximum
the time-domain resonanceoccurs at tp55.347 fs, faster
than the free passage time across the same distanc
10.083 nm, that is,tp /t f50.455. Fromt/t f52.0 onward, the
probability density approaches essentially to its asympt
value. We have also included in Fig. 1 the plot ofGp(t)
~dotted line! calculated from Eq.~4! for the same set of pa
rameters; it is indistinguishable from the previous calcu
tion, i.e., both curves coincide exactly.

V. CONCLUDING REMARKS

We have found a surprising relationship between the r
time Feynman histories approach and an analytical exp
sion for the probability density for cutoff initial waves in
volving the quantum shutter setup for the ‘‘passage time’
-
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ng
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tunneling. This may prove to be of interest in the pursue
elucidating the notion of tunneling time through a classica
forbidden region.
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