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Equivalence between the real-time Feynman histories and the quantum-shutter approaches
for the “passage time” in tunneling
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We show the equivalence of the functio@g(t) and | (d,t)|? for the “passage time” in tunneling. The
former, obtained within the framework of the real-time Feynman histories approach to the tunneling time
problem, uses the Gell-Mann and Hartle’s decoherence functional, and the latter involves an exact analytical
solution to the time-dependent Sctinger equation for cutoff initial waves.
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[. INTRODUCTION discussed belojwto a time-dependent wave function. Now,
we have to quickly add the following: In general, a Feynman

The tunneling time problem has remained a controversiapath crosses the barrier region many times, so that we can
issue after the question of how long it takes a particle tadefine “the amount of time taken by a Feynman path to
traverse a classically forbidden region was raised 70 yearsaverse the barrier region” in several ways. We can define it
ago[1]. There are a number of approaches to this problenas the sum of the times during which the Feynman path is
[2]. In this paper, an unexpected close relationship is foundvithin the barrier regiori11], which may be called the resi-
between a real-time Feynman path-integral apprd&ectb] dent time of the Feynman path. Or, we can define it as the
and the quantum shutter approgd@7], which are, at first last time the path leaves the barrier region minus the first
sight, unlikely to be related. time it enters the regiofil2], which may be called the pas-

If we use the real-time Feynman path integf@k we can  sage time of the Feynman path. These two different defini-
define the “amplitude distribution” of tunneling time as the tions at the level of Feynman paths would lead to physically
sum ofe'S" (S being the actionover the paths that take a different tunneling times, which we shall call the tunneling
specified amount of time to traverse the barrier region. Withtime of resident time typéresident timefor shor) and the
the amplitude distribution, we can deal with the interestingtunneling time of passage time tyfgassage timéor shor}.
guestion whether or not a probability distribution is definableReferencg 4] concerns the resident time, while Ref8,5]
for tunneling time[9]. The definability of the probability and this paper concern the passage time. We shall attach, if
distribution depends on whether or not the amplitude distrinecessary, subscriptto the quantities for the resident time
bution has the property of orthogonality, i.e., whether or nofe.g., G,(7)] and subscript p for the passage tire.g.,
the classes of Feynman paths taking timeand 7, (11 Gy(7)].

# 7,) to traverse the region interfere. For rectangular barri-  Another approach, relevant to the tunneling time problem
ers, one of the authors studied the interference quantitativelyg], is to consider an analytic time-dependent solution to the
to conclude thati) a probability distribution is not definable Schralinger equation with the initial condition &0 of an
[3,4], but (ii) the range of the values of tunneling time is incident cutoff wave, to investigate the time evolution of the
definable[4]. In Ref.[4], a functionG(7) is introduced to  probability density through an arbitrary potential barrier.
analyze how different classes of Feynman pd#®ch class This problem may be visualized asgadanken experiment
being characterized by the value 9f contribute to the tun- consisting of a shutter, situated xat=0, which separates a
neling process. The functio®(7) was used to prove the beam of particles from a potential barrier located in the re-
undefinability of the probability distribution and also to esti- gion O0<x=d. At t=0, the shutter is opened and the prob-
mate the range of the tunneling times. For typical opaquebility density rises initially from a vanishing value and
barriers, the graph o&(7) showed a peaked structure near evolves with time througlx>0. At the barrier edge=d,
the Bittiker-Landauer timé10]. It is thus clear thaG(7) is  the probability density at timg |¥(x,t)|?, yields the prob-
an important quantity for the study of the tunneling time ability of finding the particle after a timehas elapsed. Since
problem. It is, however, important to understand hGr) initially there is no particle along the tunneling region, de-
is related to the dynamics of tunneling, which is not evidenttecting the particle at the barrier edge at titnghould pro-
at all from the Feynman path construction @{7). In the vide a relevant time scale of the tunneling process. In a re-
present paper, we will relat€(7) [to be preciseGy(7) as  cent work, two of the author$7,13] analyzed the time
evolution of the probability densitj¥ (d,t)|? for a rectan-
gular potential barrier using the above formalism. There, it
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time-domain resonance, occurring at a titset,, represents  integrations over the initial and the final positions before and
the largest probability of finding the particlerat=d. In Ref.  after taking the square, respectivelit is easier to deal with
[13], the above authors called the attention of the readers t&(7) than D[ 7,,7,] since G(7) is a real function of one
the fact that the shape of the graph|®#(d,t)|? depicted in  variable, whileD[ 7, ; 7,] is a complex function of two vari-
Fig. 1 of that paper resembles the average shape of the grapbles.G(7) has the following propertiesi) G(0)=0 and

in Fig. 2 of Ref.[4], which is the graph oG,(7). Then they (i) G(«)=1. Yamadd4] claimed thata) if G(7) is not an
guessed that¥ (d,t)|2 would be more related to the passageincreasing function of, a probability distribution of tunnel-
time rather than the resident time. In fact, in R§], Ya-  ing time is not definable; ang) the range ¢ ,7-) of times
mada has studie@,(7) to find that if 7 is simply replaced is an estimation of the range of values of tunneling time,
by t, the graph of5,(7) for a monochromatic case is actually where 7. and 7. are such thaG(7)<e for Vr<r_. and
indistinguishable from the graph ¢%(d,t)/T|?, whereTis  |1—G(7)|<e for Yr>7., where O0<e<1. The first claim
the transmission amplitude. However, there has been no exa) is based on theveak decoherence conditiph5,16 in the
plicit proof that these two functions are really equivalent. consistent history approach.

The aim of this paper is to prove that the functiGy(7) For a particle with wave numbeg, (>0) impinging on
and the probability densitj¥(d,t)|? under the initial con- the square barrier of heigM, that extends fromx=0 to x
dition stated above are actually related by =d, G, was found to bg5]

2
‘W(g’t) =Gy(t), R fx dk T(k) e "G m—q |
T)= e ,
P TR e k2—K3
thereby establishing a surprising relationship between the (4

two approaches. As a by-product of our proof to Ek, we
present an alternative derivation, along the transmitted reahere T(k)=T(k,V,,d) is the transmission amplitude for
gion, of the expression fo¥ (x,t) without using the Laplace the square barrier when the wave numberkjsand T
transform method. This derivation is the second purpose of T(ko).
the present paper.

Section Il presents a brief account of the main features of
both approaches. Section Ill deals with the proof to &yg. ) i L o
and also with a new derivation oF(x,t). In Sec. IV, a A direct access to tunneling phenomena in time domain is

numerical example is presented for a rectangular potentigP follow the time evolution of the wave function. In Refs.
barrier in order to exhibit the equivalence of both aIo_[7,13], two of the authors studied the time dependence of the

proaches. Concluding remarks are given in Sec. V. probability density t_Jy using an explicit solutid®] to the
time-dependent Schdinger equation, with a cutoff plane-
wave initial condition,

B. Quantum shutter approach

Il. THE FORMALISMS
A. Real-time Feynman path-integral approach P(x0)= elkoX—e~Tko*  for x<0 ®
In Ref. [4], Yamada introduce(7) by ' 0 for x=0,
1 Td Td ] impinging on a shutter placed &t 0, just at the left edge of
G(n=p | dm | d72Dl7i;7]. (@ the structure that extends over the intervat<d. The
tunneling process begins with the instantaneous opening of
In the above expressioB[ 7, ;7,] is thedecoherence func- th_e shutter ath, enabling the incoming wave to interact
tional for the case of tunneling time for transmission &g with the potential at>0. The exact solution along the trans-

the tunneling probability defined by mitted region &>d) reads[7]
pP= “mf dX|q,(X,t)|2, (3) \P(Xat)=T(kO)M(X1kO;t)_T(_kO)M(Xa_kO;t)
t—owdd o
- TaM (XK 5t). 6
whered is the position of the right edge of the barrier. The n;w MK i) ©)

decoherence functionals were formulated in general terms by

Gell-Mann and Hartlg¢14] in their version of the consistent In the above expression, the quantities+ k) refer to the
history approach to quantum mechanjdgl—-16. The real transmission amplitudes; the indexruns over the complex
part of D[ 7;;7,] is a measure of the interference betweenpoles k,, of T(k), which are distributed in the third and

the classes of Feynman paths that take different amounts @burth quadrants in the compléxplane, and the factdF,, is
time (r; and 7,) to traverse the barrier region. Roughly defined as
speaking,G(7) is the square modulus of the sum &f'”

over those paths that takess thantime 7 to traverse the U (O)u(d)
barrier region(to be precise, the result of the sum over paths Tn=2iko%e*'knd, (7)
is multiplied by the initial wave function, followed by the oKy
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where{u,(x)} are the resonant eigenfunctiof@ which are
the solutions to

2u,(x) , 2m
dX2 + kl"l_ ?V(X) Un(X):O, (8)
with outgoing boundary conditions
d .
d_Xun(X) - —Iann(O) (9)
x=0
and
d =ik d 10
&un(x) X:d_l nun( ) ( )

Both the complex polesk,} and the corresponding reso-
nant eigenfunctiongu,(x)} can be calculated using a well-

established method, as discussed elsewf®&i@. Note that
from time-reversal consideratiof7], the polek_,,, seated
on the third quadrant of the compléxplane, satisfyk_,=
—k} and correspondingly_,(x) =uy (x). In Eq.(6), theM
functions are defined by

ikx—ifik2t/2m

i (> €
M(x,q;t)sﬂf_ dk

“k—q (11

1 2124 ;
=5 el™ P w(iy,), (12

whereq=k,,, = kg andw(lyq) is the complex error function
[18] with the argumeny,, given by

13

I1l. EQUIVALENCE OF BOTH APPROACHES
A. Proof of Eq. (1)

We will start from the general relationship between an
initial wave function and the time evolved wave functions:

\If(x,t)zﬁc dy K(x,t;y,00¥(y,0), (14

where K(x,t;y,0) is the propagator fromy(0) to (x,t).
Since our initial wave function is vanishing far>0 and we

are interested only in the transmitted region, we need to

know K(x,t;y,0) only for y<0 andx=d, for which it is
well known that

= dk . .
ZT(k)elk(x—y)—lhkzt/Zm' (15)

K(x,t;y,0)=f

—oo

PHYSICAL REVIEW A67, 052106 (2003

- id)(k)eiky
% \/ﬂ '

where ¢(k) is the k-space wave function. Substituting Egs.
(15) and(16) into Eq.(14), we can carry out the integration
overy to have

W(y,0)= (16)

i F 102
W(xt)= f f¢<k>T< el iz (17
—o0
For our initial wave functiorfEq. (5)]
© dy
k =f —=—e ¥(y,0
p00=| 5= VO
_ i 1 1 18
~ 2n\k—Kkotie ktkotie/’ (18
wheree is an infinitesimal positive number. Thus,
v ~ i fw dk 1 1
=0 ) LK Tk Tie Tkikgrie
XT(k)eikx—ihkztlzm (19)

for x=d.
Let us note that, sinc#(x,0)=0 for x=0,

f dk !
k— ko+|€

for x=0, which is also apparent from the fact that the trans-
mission amplitude on the compldxplane has simple poles
only in the lower half plane. Owing to Eq20), we can
rewrite Eq.(19) as

ifw dk 1 1
2] k—kotie ktkotie

X T(k)elkx(gk?t/am_ e—ihkgt/zm)] @)

ikx
K+ k0+ie)T(k)e =0 (20

T(x,t)=

Apply the following equation in Eq(21):

! p
krkot+ie  Kk=ko

— i d(k=Kg). (22

. S22
We then notice thati) sincee™ #KV2m_ g=ifikgtZm_ g at K
=Ko, the contributions from thé functions vanish andii)
. s 1,2
since @ #kAU2m_ g=inkg2my /| ) s regular in the limit
k— ¥ ko, the Cauchy principal value integrals can be re-

which follows from the eigenfunction expansion of the placed by the ordinary integralge., the symbol P can be
propagator. The initial wave function can be expanded as removed. Consequently, we have for=d,
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W(x,t)=— | F dk ! T(k)e'kx W(x,t)=> _fn .\ Tn M(x,Kq:t)
2 k—ko k+ko ’ ~ \ko—kp—ie K, o

—ink2ti2m_ o—ifkZt/2m r_“ Kk

x(e € 0 )} ( kO k —ie kn M(X1 kOvt)

Iko m(ké—kz)t/zm_l M
—inkzt/2 k .

We ifikg mj dkT(k)e' XW. (k0+k +IE K _IE) (X,kn,t).

(23) 27

In the limit e— 0, the sums oven in the first and the second
With this expression foW, it is easy to see thaw (d,t)/T|? lines on the right-hand side of Edq27) give T(kg) and
agrees with the right-hand side of Ed) if 7 is replaced by T(—Kkg), respectivelyfsee Eq(24)]. We thus obtain
t. This completes the proof of E¢l).
W(x,t)=T(kog)M(X,ko;t) = T(—Ko)M(X,—Kpg:t)

[

B. New derivation of the quantum shutter solution M
. . . _ . —2ko X S Mk t). (28
As mentioned earlier, the transmission amplitude has, in n=-x= kg—kp
general an infinite number of simple poles distributed on the
lower half of the compleX plane. The transmission ampli- Our goal here is to derive E@6). In fact, Egs.(28) and

tude may be expanded in terms of its complex poles and6) are the same because of the relationship
corresponding residues by using a special form of the _
Mittag-Leffler theorem due to Cauclig9]. It may be written Fh=iUn(0)uy(d)e*nd, (29
as[s] We shall prove Eq(29) to conclude this section. It is helpful
i r rn to consider the outgoing Green’s functioc®* (x,x’;k),
T(k)= > (k—kn + k_n) (24)  which is the solution to

n=—o

PGT(x,x":k) , 2m I ,
wherer,, is the residue off (k) atk=k,. Using Eq.(24) in 2 Tk ?V(x) G (6x k)= 6x=x")
Eqg. (19), we have, fox=d, (30

with outgoing boundary conditions. We first use the fact that

1 + /. H H
_ G7(x,x";k) can be written in terms of the resonant states as
YxH= 2 J dk[(k kotic Kikotie [20]
rn rn ey — i 7 2 * 2
% 4 ) ikx-ink t/2m]_ (25) P Un(X)Up(X") ,
k_kn kn G (XYX 1k) n;w 2kn(k_kn) (ngyx $d)
(31
If we expand The above expansion is not valid far=x"=0 or x=x’
=d and holds provided that the resonant eigenfunctions
( 1 1 1 1 u,(x) are normalized according to the conditil
—— . +—
k—kot+ie k+kotie/lk—k, Kk, a u2(0)+u2(d)
up(X)dx+i——m——=1. (32
0 an

and use the partial fraction decompositions, we see that the

right-hand side of Eq(25) can be expressed as a sum of theNext, we use the fact that the transmission amplitude and
integrals of the form of Eq(1l). The expansion gives four G+ (0,d;k) are related by21]

terms, which arés, *(k+ko+ie)~* and

T(k)=2ikG*(0d;k)e k. (33
1 1 1 1 1 From Eq.(31), we have
k+xkot+ie k—k, =*kot+k,+ielk—k, k=xky+ie/’
(26) lim (k—kn)G™(0,d;k)=uy(0)up(d)/2k,, (34
k—kpn
so that Eq.(25) becomes, after some algebra, while from Eq.(33) together with Eq(24), we have
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lim (k—k,)G"(0,d;k)=r,e'*n%2ik,, . (35) 4.0x10°
k—Kkp
Equating the two results, we obtain HG9). 5
= 3.0x10° [
IV. EXAMPLE E‘L
To exemplify the time evolution of the probability density, ‘“lf 20x10° F
we consider the set of parameter§/;=0.70 eV, d W
=10.083 nmE=0.140 eV, andn=0.067m, (m, being the —
bare electron magsinspired by the semiconductor quantum Coxto® F
.UX

structureq22]. In this particular example, the potential bar-
rier parameters are chosen in such a way that=V,/E
=5, whereko=[2mE]Y%#%. The opacitya of the barrier is
defined ase=k’d, wherek’ =[2mV,]¥%%. In our casex 0.5 5 50 30 2o 50
=11.18, corresponding to an opaque barriez>1). The ' ' ' ' ' '
solid line in Fig. 1 shows$W (d,t)|2 calculated with Eq(6) t/t
at the barrier edge=d as a function of time and in units of
the free passage timé=md/7iky=11.753 fs. At early
times, one sees @me-domain resonancstructure[7]. The
maximum of this transient structure represents the largeg
probability to find the tunneling particle at the barrier edge
x=d. In our example, as shown in Fig. 1, the maximum oftunneling. This may prove to be of interest in the pursue of
the time-domain resonanceccurs att,=5.347 fs, faster elucidating the notion of tunneling time through a classically
than the free passage time across the same distance fefbidden region.

10.083 nm, that igt,,/t;=0.455. Front/t;=2.0 onward, the
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