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Tunneling time distribution by means of Nelson’s quantum mechanics and wave-particle duality
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We calculate a tunneling time distribution by means of Nelson’s quantum mechanics and investigate its
statistical properties. The relationship between the average and deviation of tunneling time suggests the exis-
tence of “wave-particle duality” in the tunneling phenomena.
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[. INTRODUCTION and accompany fluctuating properties. If a tunneling particle
is described by a wave packet with distribution of wave
It was suggested that there is a time associated with theumbers of finite width, then one would have a distribution
passage of a particle under a tunneling barrier, so-called turef tunneling time. The width of the distribution should be
neling time[1]. Actually, several authors have tried to mea-reduced by using the spatially wider wave packet or the
sure the time experimentallj2—4]. However, there is no sharper distribution of wave-number wave packet. In such
clear consensus about any definition of tunneling time adcase, there should still remain the fluctuation of tunneling
missible for everyone. There are several approaches aritine coming from quantum effect. In spite of such an argu-
methods to estimate the tunneling time. For example, Wignefnent, many approaches centered discussion only on the av-
time [5—7] is based on the time evolution of wave packeteraged value, because it is difficult to consider the tunneling
through the barrier, and the delay time of the peak or thdime distribution by the use of the conventional frameworks
centroid is expressed by an energy derivative of phase shifef quantum mechanics. However, Nelson’s quantum me-
Larmor time[8—12] is obtained from the Larmor precession chanics can afford to predict such distribution, because this
angle caused by a magnetic field confined in the barrier remethod enables us to obtain an ensemble of various sample
gion. The traversal time proposed bytBker and Landauer paths in tunneling barrier. Next, from the tunneling time dis-
[13-15 is defined by the analysis of transmission coefficienttribution calculated by this method, we investigate the statis-
through a static barrier augmented by a small oscillation irfical properties of the distribution, such as the average and
the barrier height. This time is obtained by measuring orthe deviation of tunneling time. We found that the relation-
analyzing the effect of “clock” added on the tunneling bar- ship between the deviation and average suggests the exis-
rier. The dwell time[12,16,17 is defined as the total prob- tence of the “wave-particle duality” in the tunneling phe-
ability of the particle within the barrier divided by the inci- nomena. Last, we discuss the “quantum-classical
dent probability current. This is only applicable to the correspondence” by analyzing the “Planck constant depen-
stationary-state case. There are other types of methods baséence” of tunneling time distribution.
on the motion of “particle paths,” for example, Bohmian  In this paper, for simplicity, we analyze the tunneling phe-
mechanics[18—-20, Feynman path integrgl21-23, Nel- nomena with one-dimensional static rectangular potential
son’s quantum mechani¢87-29, and so on. In these meth- barrier with heightV, and widthd as following:
ods, the tunneling time is defined as the time spent by par-

ticle paths under the tunneling barrier. See Rgdd,25 and 0, x<-d/2 (region )
references therein for reviews of this problem. _lv —di2<x=<d/2 (region II

We think that Nelson’s quantum mechanif&6] have V(x) o ( g. : @
some characteristic properties to study the tunneling time as 0, x>di2 (region Ill).

follows. Since this method is described by the real-time sto- _ _ _ )
chastic process, it enables us to describe the real-time evoltthe initial Gaussian wave packet with varianse<,
tion of individual events as the analogy of classical mechan-

ics. We call such an event of evolution as a “sample path.” 1 va (x—(x))2
Moreover, since a sample path has its own history, we can #(x,0)= 2 (Ax)2 expg — TAA2
obtain information of time parameter, in particular, tunneling m(AX) (AX)
time. .

In this paper, first, we calculate a tunneling time distribu- + I—(p)(x—(x)) , 2)
tion by means of Nelson’s quantum mechanj2é]. The h

tunneling phenomena should occur quantum mechanically
is injected into the potential barrier, whefe) and(p) are
expectation value of position and momentum, respectively.
*Email address: khara@hep.phys.waseda.ac.jp We use the natural unin=#=1, and perform numerical
"Email address: ohba@mn.waseda.ac.jp simulations of 100000 sample paths. For the numerical
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simulation, we tak¢ —1000,1000 as the total space for the 520

unit of 1k, and adopt these parameters as followe,= t
—500kg, and{p)=Kkg. 500 | J—

II. ESTIMATION OF THE TUNNELING TIME BASED
ON THE NELSON’'S QUANTUM MECHANICS

480

460

In this section, we give a brief review of the Nelson’s
approach of quantum mechani@6] which plays a central
role in this paper, and explain how to estimate the tunneling7
time. Nelson’s quantum mechanics based on the real-time
stochastic process, enables us to describe the quantum m
chanics of a single particle in terminology of the “analog” of 20 r
classical mechanics, i.e., the ensemble of sample paths

These sample paths are generated by the Ito-type Langevi ’ )
equation x (unit of 1/k)

unit of 1/k3)

V0= 2 Eo
d = S/k()
D x = 50/k,

potential
—— e

-20 -15 -10 5 0 5 10 15 20

dx(t) =[u(x(t),t)+ v (x(t),t)Jdt+dw(t), 3 FIG. 1. Typical tra_nsmitted sa}mpl_e path caIcuIaFed t_)y(B)q.r
shows the traversal time of barrier, i.e., the tunneling time.
wherex(t) is a stochastic variable corresponding to the co-
ordinate of the particle, and(x(t),t) andv(x(t),t) are the Imafuku et al. [27]. Every transmitted sample path has its
osmotic velocity and the current velocity, respectively. Thetraversal time of barrier, i.e., the tunneling time which is
dw(t) is the Gaussian white noise with the statistical prop-described as
erties of

5 Tizftf(@(xi(t))dt (i=1,2,...N), ©6)
(dw(t))=0 and<dw(t)dw(t)>=ﬁdt, (4) 0

. wherex;(t) is theith sample pathts is the final time, the
wh_ere(- +-) means the ensemble average with respep_t 1o thﬁmctionl (G))(x) is unity forp— d?stfsd/Z and zero other-

) . T Y Svise. Collecting these events, we can construct a statistical
given by solving coupled two equation, i.e., the kinetic equaistribution of tunneling timeFig. 2

tion and the “Nelson-Newton equation.” Nelson showed
that, for the expectation value of the dynamical variable, e.g.,

X,p, the whole ensemble of sample paths gives us the same lIl. TUNNELING TIME DISTRIBUTION
results as quantum mechanics in the ordinary apprb2gh AND WAVE-PARTICLE DUALITY
Once the equivalence between Nelson’s framework and the
ordinary quantum mechanics is proved, it is convenient 19i,
use the relation

From the ensemble of sample paths, we define a distribu-
n of tunneling time as follows:

hoo hoo _ on(7)
u=ReE§—XIn¢(x,t) andv=lmma—xlnw(x,t), (5) P(7)o7= N (@)

where ¢ is the solution of Schidinger equation. Since an dn(7) is the number of sample paths with the tunneling time
individual sample path has its own history, we obtain infor-from 7 to 7+ 7, andN is the total number of sample paths.
mation on the time parameter, e.g., tunneling time definitely.

Now using the Nelson’s quantum mechanics, we estimate 0.045
the tunneling time of a particle crossing over a potential 0.04
barrier. First, we prepare an incident wave packet given by 0.035
Eq. (2) from the region I. Next, we solve the time-dependent 0.03

Schralinger equation. Last, using the relation E§), we
obtain the drift term of the Langevin equati¢8), and cal-
culate sample paths. Assume a simulation of tunneling phe-
nomena based on E¢B), starting fort=—c and endingt

=, As we treat a wave packet satisfying the time-
dependent Schdinger equation, the wave packet is located
in region | initially and turns finally into two spatially sepa- 0
rated wave packets which are regions | and lll, respectively. 7 (unit of 1/k2)

Figure 1 shows a typical transmitted sample path calculated

by Eq.(3). Transmitted sample paths originate preferentially FIG. 2. Numerical results of tunneling time distribution as a
from the front of the initial wave packet as suggested byfunction of tunneling time with potential height,/E,=2.0.
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FIG. 3. Numerical results of tunneling time average versus po-

. X . . ) FIG. 5. An enlarged copy of thin barrier regiod<£4/k,) in
tential width with potential height o¥/,/E,=2.0.

Fig. 3.

Figures 3 and 4 show the average of tunneling time  part in Fig. 3. It has been shown that, in the opaque case, the
and its deviatiomA 7 versus potential barrier width for vari- umerical simulation gives almost same values of the WKB
ous width of wave packeix. We can see that in the case of times [27,28. While we can see these features of opaque
Ax greater than 2@, behaviors of average and deviation case in Figs. 3 and 5, the numerical values deviate from the
are independent om\x. However, in the case ofAX  \WKB time in the translucent case characterized by small
=10k,, the data deviate remarkably from the others in theyhich is approximately less than 2. The WKB approxima-
region d=10k,. It is suggested that this effect originates tjon is not proper in the latter case. This suggests that the
from the wave packet spreading during the propagation. Ingynneling phenomena make a “phase transition” in a sense

deed the spatial deviation of free wave packet at tirise aroundxd~2.
Next we show in Fig. 6 the deviatiohr as a function of
Ax? h? 5 the averag€r), which is calculated by changing the widih
Xot 4m2Ax2t ' with fixed potential heigh¥, for several cases of incident

energy Ey. For each case we can see a common feature

Therefore, the wave packet spreads twofold t characterized by the fact thatr is proportional to{r) for
=2m(Ax)2/#%. By taking account of the fixed time xd<2 and to\(7) for kd=2. In order to check this feature
=500,k§ in which the peak of initial wave packet arrives at quantitatively, we fit the tunneling time distribution using the
the left edge of the harder barrier, this occurs in the case dgjamma distribution,
width Ax=< \[250/(m2)]7~ 16Kk,. 1

It seems that the numerical results ©f) are roughly P(r)=————7% "B (a,8,7>0). (8)
similar to the WKB time ryxg=mdhk, where k B T (a+1)

=\2m(Vo—Eg)/%?, expect for the case ofAx=10k,.

However, let us examine much in detail those values in the 100 ' '
thin region d=<4/k,). Figure 5 is an enlarged copy of this i
N
NO
Ax=10/k, © 3 :
~ 5| Ax=20/k + o S
= Ax =50/k, O o> | R
— 4t o H =
S H =
o g B ~
g3 & e
g ) <
— w 0.1 |
o 2 © Vy/Er= 125 (X =0.5 ko)
< + VolE= 2.0 (1 =10 k)
l ] B Vy/E=5.0 (k=2.0k)
0.01 : :
0 . , , , 0.1 1 10 100
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d (unit of 1/ky)

FIG. 6. Relationship between the average and the deviation of
FIG. 4. Numerical results of tunneling time deviation versustunneling time with the width of wave packatx=50k,. The dot-
potential width for potential height of,/Ey=2.0. ted line shows the relatiod 7(7). The dashed line shows the
relation A o< /(7).
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FIG. 7. Example of tunneling time distribution fitted by the oot - . 0 100
gamma distribution in the case o¥y/Ey=2.00=10k,,AX xd
=50Kk,. In this case, we choose the fitting parameters11.3 and . o
B=0.79, using least-squares method. FIG. 9. Fitting parameted multiplied by «? versusd for

fixed .
This distribution has the following statistical properties: ) ) )
of the tunneling system and it should be measured experi-
(ty=pB(a+1) and AP?=B%(a+1). 9) mentally through the time dependence of the observable.
Thus the statistical property of the tunneling time distribu-
If « is constant, the relatioA 7o<({ 7} holds good, and this is tion should reflect the characteristic features of underlying
a typical feature of such coherent phenomena as deviatioguantum process. From the above discussion, we think that
versus average value of photon number in coherent photote tunneling may occur coherently, or in mode of wave
state. On the other hand, # is constant, the relatioa r picture dominantly in the translucent case and randomly, or
«(7) holds good, and this is a typical feature of such ranin mode of particle picture dominantly in the opaque case.
dom phenomena as Poisson process and Brownian motiomhe tunneling time distribution reveals the wave-particle du-

Figure 7 is an example of fitting distribution. ality in the tunneling phenomena.
Figures 8 and 9 show the fitting parameterand «?3 as
a function of xd, respectively. We see that thed depen- IV. QUANTUM-CLASSICAL CORRESPONDENCE

dence of fitting parameters is universal even for different _ .
potential heights. Note that is kept a constant value for . We @sgus; the I?Ianck constant dependence of tunneling
each case. Furthermore, we found thats constant in the M€ distribution. First, we introduce the parameiefO
translucent region Kd<2), and x4 is constant in the <e€<1) and the Planck constanfi=e#, and consider
opaque region £d=2). Therefore, this assures ther-(7) “Schrodinger equation” of a wave functiog(x,t),
relation as mentioned above.

There is no doubt that the tunneling time is a pure quan- 0~
tum process. However, the tunneling time is not an observ- |fi5¢(x,t)=
able in the quantum mechanics. Actually, it can be closely
connected to the time evolution of some specific observabl@nder the conditions with fixed values of, V,, and p,

(=#kg). This wave function describes a virtual quantum
system with scaled Planck constdnt This equation is for-

F2 2

_ﬁﬁ_‘—V(X)

P(X,1), (10

100 T T

S VolEy=1.25 (K =0.5 k) mally transformed into the ordinary Scliiager equation
+ W/E=2.0 (x=1.0ky)
B Vo/Ep=5.0 (K=20k) P 2 g2

. 9 I A

if aT(D(X’T) M W(X)|P(X,T), (11

v by a scale transformation as following:

X=xle, T=tle, W(X)=V(eX), and

DX, T)="(eX,€T). (12)

Here let us clear up the procedure of the simulation. We fix
1 : - the parameters),V,,E,=p?/2m, andd. We scale the space-

0.1 ! 10 100 time variables aX=x/¢e, T=t/e and the potential width as
xd D=d/e. InthisX—T reference frame de Broglie plane wave
FIG. 8. Fitting parametew versuskd for fixed «. is scaled ase/(*~@Y_,gl(kX=T)  \where k=ek and o
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FIG. 10. e dependence of tunneling time average with potential
height V4 /Ey=2.0 and widthd=1/k, (kd=1). The dashed line

shows the WKB timeryg = V{m/[2(Vo— Eg) 11d.

FIG. 11. € dependence of tunneling time deviation with poten-
tial heightVy/Ey=2.0 and widthd=1/k, (kd=1). The dashed

line shows the relatiod 7= \/e\/(7) in the case of particle mode.

=ew. Then we perform the numerical simulation based on _ _ _
Eq. (11) and obtain the distribution of in the X—T refer- ~Next, let us consider the dependence ofA7. In this
ence frame. Eventually we obtain the distributionmofthe ~ Simulation, we may guess that in the region nearl (wave
_— . = mode andA 7o (7)), the deviation should be proportional to
tunneling time corresponding to a Planck constanby the th
_ ~ e average,
scaling ofr=er.

Now we will examine how the averade)= e(7) and the A7 (7), (14)
deviationA 7= eA 7 depend orfi. Let us start the simulation
at a translucent case wiéh= 1, where the tunneling process whereas in the region with smaller (particle mode and
proceeds in the wave mode. Then, we decrease the vakie 0fA 7o \[( 7)), it should behave as
gradually, the effective width of tunneling barrier becomes
wider and the tunneling process should proceed in the par- ~ ~
ticle mode, or in othergw%rds, quasiclasspically. This prof:)e— AT \/E\/@

dure gives us the dependence dfr) shown in Fig. 10. We  \15reqver, the change from the former tendency to the latter
can see thaf{7) increases with a tendency to approach theone may occur arountixd~ 27 .

WKB time as € is decreased in the region near1, We can see these tendencies in Fig. 11, which give an-

whereas it is almost indgpendent efin the region with ., support of the idea of “wave-particle duality” in the
smallere. These tendencies may be understood as fOHOWStunneling phenomena.

As it is seen in Fig. 5, the simulated values(ej fit almost
to the WKB time,

(15

V. SUMMARY

— m We calculate the tunneling time distribution by means of
TWKB D, (13 . . o
2(Vo—Eo) Nelson’s quantum mechanics. From the resulting distribu-
) ) i ) tion, we derived the statistical properties of it, the average
in the latter case. Thus, the tunneling time corresponding t@nq deviation of tunneling time. First, we found that if an

i is incident wave packet is so large as to look plane-wave-like,
the Ax dependence of them is negligible. Next, fitting the
~ ] m data by gamma distribution, we found that the shape of dis-
()= €mwke= 2(Vo— Eo)d' tribution is universally determined only byd. Furthermore,

by investigating the statistical properties of the distribution
Actually, note that the WKB time can be expressed only byin two characteristic “translucent” and “opaque” regions
classical quantities. On the other hand, in the translucenbughly divided byxd~2, we found that the wave-particle
case, the simulated values are smaller than the WKB timeuality may be seen in the tunneling phenomena. Last, we
and approach gradually it as the effective width of tunnelingconsider the Planck constant dependence of tunneling time,
barrier becomes wider, that i, is decreased. Moreover, introducing the paramete¢ as % =efi. Consequently, we
these two tendencies cross each other-all/2, which sug-  found that the dependences of the average and the deviation
gests that the tunneling phenomena change their phasgggest another support of the idea of wave-particle duality
aroundf xd~ 27. in tunneling phenomena.
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We are interested in the comparison between the tunnel-
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