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Tunneling time distribution by means of Nelson’s quantum mechanics and wave-particle duality
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We calculate a tunneling time distribution by means of Nelson’s quantum mechanics and investigate its
statistical properties. The relationship between the average and deviation of tunneling time suggests the exis-
tence of ‘‘wave-particle duality’’ in the tunneling phenomena.
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I. INTRODUCTION

It was suggested that there is a time associated with
passage of a particle under a tunneling barrier, so-called
neling time@1#. Actually, several authors have tried to me
sure the time experimentally@2–4#. However, there is no
clear consensus about any definition of tunneling time
missible for everyone. There are several approaches
methods to estimate the tunneling time. For example, Wig
time @5–7# is based on the time evolution of wave pack
through the barrier, and the delay time of the peak or
centroid is expressed by an energy derivative of phase s
Larmor time@8–12# is obtained from the Larmor precessio
angle caused by a magnetic field confined in the barrier
gion. The traversal time proposed by Bu¨ttiker and Landauer
@13–15# is defined by the analysis of transmission coefficie
through a static barrier augmented by a small oscillation
the barrier height. This time is obtained by measuring
analyzing the effect of ‘‘clock’’ added on the tunneling ba
rier. The dwell time@12,16,17# is defined as the total prob
ability of the particle within the barrier divided by the inc
dent probability current. This is only applicable to th
stationary-state case. There are other types of methods b
on the motion of ‘‘particle paths,’’ for example, Bohmia
mechanics@18–20#, Feynman path integral@21–23#, Nel-
son’s quantum mechanics@27–29#, and so on. In these meth
ods, the tunneling time is defined as the time spent by
ticle paths under the tunneling barrier. See Refs.@24,25# and
references therein for reviews of this problem.

We think that Nelson’s quantum mechanics@26# have
some characteristic properties to study the tunneling time
follows. Since this method is described by the real-time s
chastic process, it enables us to describe the real-time ev
tion of individual events as the analogy of classical mech
ics. We call such an event of evolution as a ‘‘sample pat
Moreover, since a sample path has its own history, we
obtain information of time parameter, in particular, tunneli
time.

In this paper, first, we calculate a tunneling time distrib
tion by means of Nelson’s quantum mechanics@26#. The
tunneling phenomena should occur quantum mechanic
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and accompany fluctuating properties. If a tunneling parti
is described by a wave packet with distribution of wa
numbers of finite width, then one would have a distributi
of tunneling time. The width of the distribution should b
reduced by using the spatially wider wave packet or
sharper distribution of wave-number wave packet. In su
case, there should still remain the fluctuation of tunnel
time coming from quantum effect. In spite of such an arg
ment, many approaches centered discussion only on the
eraged value, because it is difficult to consider the tunne
time distribution by the use of the conventional framewor
of quantum mechanics. However, Nelson’s quantum m
chanics can afford to predict such distribution, because
method enables us to obtain an ensemble of various sam
paths in tunneling barrier. Next, from the tunneling time d
tribution calculated by this method, we investigate the sta
tical properties of the distribution, such as the average
the deviation of tunneling time. We found that the relatio
ship between the deviation and average suggests the
tence of the ‘‘wave-particle duality’’ in the tunneling phe
nomena. Last, we discuss the ‘‘quantum-classi
correspondence’’ by analyzing the ‘‘Planck constant dep
dence’’ of tunneling time distribution.

In this paper, for simplicity, we analyze the tunneling ph
nomena with one-dimensional static rectangular poten
barrier with heightV0 and widthd as following:

V~x!5H 0, x,2d/2 ~region I!

V0 , 2d/2<x<d/2 ~region II!

0, x.d/2 ~region III!.

~1!

The initial Gaussian wave packet with varianceDx2,

c~x,0!5S 1

2p~Dx!2D 1/4

expF2
~x2^x&!2

4~Dx!2

1
i

\
^p&~x2^x&!G , ~2!

is injected into the potential barrier, where^x& and ^p& are
expectation value of position and momentum, respectiv
We use the natural unitm5\51, and perform numerica
simulations of 100 000 sample paths. For the numer
©2003 The American Physical Society05-1
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simulation, we take@21000,1000# as the total space for th
unit of 1/k0, and adopt these parameters as follows,^x&5
2500/k0, and^p&5k0.

II. ESTIMATION OF THE TUNNELING TIME BASED
ON THE NELSON’S QUANTUM MECHANICS

In this section, we give a brief review of the Nelson
approach of quantum mechanics@26# which plays a centra
role in this paper, and explain how to estimate the tunne
time. Nelson’s quantum mechanics based on the real-t
stochastic process, enables us to describe the quantum
chanics of a single particle in terminology of the ‘‘analog’’ o
classical mechanics, i.e., the ensemble of sample pa
These sample paths are generated by the Ito-type Lang
equation

dx~ t !5@u„x~ t !,t…1v„x~ t !,t…#dt1dw~ t !, ~3!

wherex(t) is a stochastic variable corresponding to the
ordinate of the particle, andu„x(t),t… and v„x(t),t… are the
osmotic velocity and the current velocity, respectively. T
dw(t) is the Gaussian white noise with the statistical pro
erties of

^dw~ t !&50 and ^dw~ t !dw~ t !&5
\

m
dt, ~4!

where^•••& means the ensemble average with respect to
noise. In principle, the osmotic and the current velocities
given by solving coupled two equation, i.e., the kinetic eq
tion and the ‘‘Nelson-Newton equation.’’ Nelson showe
that, for the expectation value of the dynamical variable, e
x,p, the whole ensemble of sample paths gives us the s
results as quantum mechanics in the ordinary approach@26#.
Once the equivalence between Nelson’s framework and
ordinary quantum mechanics is proved, it is convenien
use the relation

u5Re
\

m

]

]x
lnc~x,t ! andv5Im

\

m

]

]x
lnc~x,t !, ~5!

wherec is the solution of Schro¨dinger equation. Since a
individual sample path has its own history, we obtain inf
mation on the time parameter, e.g., tunneling time definit

Now using the Nelson’s quantum mechanics, we estim
the tunneling time of a particle crossing over a poten
barrier. First, we prepare an incident wave packet given
Eq. ~2! from the region I. Next, we solve the time-depende
Schrödinger equation. Last, using the relation Eq.~5!, we
obtain the drift term of the Langevin equation~3!, and cal-
culate sample paths. Assume a simulation of tunneling p
nomena based on Eq.~3!, starting fort52` and endingt
5`. As we treat a wave packet satisfying the tim
dependent Schro¨dinger equation, the wave packet is locat
in region I initially and turns finally into two spatially sepa
rated wave packets which are regions I and III, respectiv
Figure 1 shows a typical transmitted sample path calcula
by Eq. ~3!. Transmitted sample paths originate preferentia
from the front of the initial wave packet as suggested
05210
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Imafuku et al. @27#. Every transmitted sample path has
traversal time of barrier, i.e., the tunneling time which
described as

t i[E
0

t f
Q„xi~ t !…dt ~ i 51,2, . . . ,N!, ~6!

wherexi(t) is the i th sample path,t f is the final time, the
function Q(x) is unity for 2d/2<x<d/2 and zero other-
wise. Collecting these events, we can construct a statis
distribution of tunneling time~Fig. 2!.

III. TUNNELING TIME DISTRIBUTION
AND WAVE-PARTICLE DUALITY

From the ensemble of sample paths, we define a distr
tion of tunneling time as follows:

P~t!dt[
dn~t!

N
, ~7!

dn(t) is the number of sample paths with the tunneling tim
from t to t1dt, andN is the total number of sample path

FIG. 1. Typical transmitted sample path calculated by Eq.~3!. t
shows the traversal time of barrier, i.e., the tunneling time.

FIG. 2. Numerical results of tunneling time distribution as
function of tunneling time with potential heightV0 /E052.0.
5-2
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Figures 3 and 4 show the average of tunneling time^t&
and its deviationDt versus potential barrier width for vari
ous width of wave packetDx. We can see that in the case
Dx greater than 20/k0, behaviors of average and deviatio
are independent onDx. However, in the case ofDx
510/k0, the data deviate remarkably from the others in
region d>10/k0. It is suggested that this effect originate
from the wave packet spreading during the propagation.
deed the spatial deviation of free wave packet at timet is

ADx21
\2

4m2Dx2
t2.

Therefore, the wave packet spreads twofold att
52m(Dx)2/\. By taking account of the fixed timet
5500/k0

2 in which the peak of initial wave packet arrives
the left edge of the harder barrier, this occurs in the cas
width Dx<A@250/(mk0

2)#\;16/k0.
It seems that the numerical results of^t& are roughly

similar to the WKB time tWKB5md/\k, where k
5A2m(V02E0)/\2, expect for the case ofDx510/k0.
However, let us examine much in detail those values in
thin region (d<4/k0). Figure 5 is an enlarged copy of th

FIG. 3. Numerical results of tunneling time average versus
tential width with potential height ofV0 /E052.0.

FIG. 4. Numerical results of tunneling time deviation vers
potential width for potential height ofV0 /E052.0.
05210
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part in Fig. 3. It has been shown that, in the opaque case
numerical simulation gives almost same values of the W
times @27,28#. While we can see these features of opaq
case in Figs. 3 and 5, the numerical values deviate from
WKB time in the translucent case characterized by smallkd
which is approximately less than 2. The WKB approxim
tion is not proper in the latter case. This suggests that
tunneling phenomena make a ‘‘phase transition’’ in a se
aroundkd;2.

Next we show in Fig. 6 the deviationDt as a function of
the averagêt&, which is calculated by changing the widthd
with fixed potential heightV0 for several cases of inciden
energy E0. For each case we can see a common fea
characterized by the fact thatDt is proportional to^t& for
kd<2 and toA^t& for kd>2. In order to check this feature
quantitatively, we fit the tunneling time distribution using th
gamma distribution,

P~t!5
1

ba11G~a11!
tae2t/b ~a,b,t.0!. ~8!

- FIG. 5. An enlarged copy of thin barrier region (d<4/k0) in
Fig. 3.

FIG. 6. Relationship between the average and the deviatio
tunneling time with the width of wave packetDx550/k0. The dot-
ted line shows the relationDt}^t&. The dashed line shows th
relationDt}A^t&.
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This distribution has the following statistical properties:

^t&5b~a11! and Dt25b2~a11!. ~9!

If a is constant, the relationDt}^t& holds good, and this is
a typical feature of such coherent phenomena as devia
versus average value of photon number in coherent ph
state. On the other hand, ifb is constant, the relationDt
}A^t& holds good, and this is a typical feature of such ra
dom phenomena as Poisson process and Brownian mo
Figure 7 is an example of fitting distribution.

Figures 8 and 9 show the fitting parametersa andk2b as
a function ofkd, respectively. We see that thekd depen-
dence of fitting parameters is universal even for differ
potential heights. Note thatk is kept a constant value fo
each case. Furthermore, we found thata is constant in the
translucent region (kd<2), and k2b is constant in the
opaque region (kd>2). Therefore, this assures theDt-^t&
relation as mentioned above.

There is no doubt that the tunneling time is a pure qu
tum process. However, the tunneling time is not an obse
able in the quantum mechanics. Actually, it can be clos
connected to the time evolution of some specific observa

FIG. 7. Example of tunneling time distribution fitted by th
gamma distribution in the case ofV0 /E052.0,d510/k0 ,Dx
550/k0. In this case, we choose the fitting parametersa511.3 and
b50.79, using least-squares method.

FIG. 8. Fitting parametera versuskd for fixed k.
05210
on
on

-
n.

t

-
v-
y
le

of the tunneling system and it should be measured exp
mentally through the time dependence of the observa
Thus the statistical property of the tunneling time distrib
tion should reflect the characteristic features of underly
quantum process. From the above discussion, we think
the tunneling may occur coherently, or in mode of wa
picture dominantly in the translucent case and randomly
in mode of particle picture dominantly in the opaque ca
The tunneling time distribution reveals the wave-particle d
ality in the tunneling phenomena.

IV. QUANTUM-CLASSICAL CORRESPONDENCE

We discuss the Planck constant dependence of tunne
time distribution. First, we introduce the parametere(0
,e<1) and the Planck constant\̃5e\, and consider
‘‘Schrödinger equation’’ of a wave functionc̃(x,t),

i \̃
]

]t
c̃~x,t !5F2

\̃2

2m

]2

]x2
1V~x!G c̃~x,t !, ~10!

under the conditions with fixed values ofm, V0 , and p0
(5\k0). This wave function describes a virtual quantu
system with scaled Planck constant\̃. This equation is for-
mally transformed into the ordinary Schro¨dinger equation

i\
]

]T
F~X,T!5F2

\2

2m

]2

]X2
1W~X!GF~X,T!, ~11!

by a scale transformation as following:

X[x/e, T[t/e, W~X![V~eX!, and

F~X,T![c̃~eX,eT!. ~12!

Here let us clear up the procedure of the simulation. We
the parametersm,V0 ,E05p2/2m, andd. We scale the space
time variables asX5x/e, T5t/e and the potential width as
D5d/e. In thisX2T reference frame de Broglie plane wav
is scaled asei (kx2vt)→ei ( k̃X2ṽT), where k̃5ek and ṽ

FIG. 9. Fitting parameterb multiplied by k2 versuskd for
fixed k.
5-4
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5ev. Then we perform the numerical simulation based
Eq. ~11! and obtain the distribution oft in the X2T refer-
ence frame. Eventually we obtain the distribution oft̃, the
tunneling time corresponding to a Planck constant\̃, by the
scaling oft̃5et.

Now we will examine how the average^t̃&5e^t& and the
deviationDt̃5eDt depend on\. Let us start the simulation
at a translucent case withe51, where the tunneling proces
proceeds in the wave mode. Then, we decrease the valuee
gradually, the effective width of tunneling barrier becom
wider and the tunneling process should proceed in the
ticle mode, or in other words, quasiclassically. This pro
dure gives us thee dependence of̂t̃& shown in Fig. 10. We
can see that̂ t̃& increases with a tendency to approach
WKB time as e is decreased in the region neare51,
whereas it is almost independent ofe in the region with
smallere. These tendencies may be understood as follo
As it is seen in Fig. 5, the simulated values of^t& fit almost
to the WKB time,

tWKB5A m

2~V02E0!
D, ~13!

in the latter case. Thus, the tunneling time correspondin
\̃ is

^t̃&5etWKB5A m

2~V02E0!
d.

Actually, note that the WKB time can be expressed only
classical quantities. On the other hand, in the transluc
case, the simulated values are smaller than the WKB t
and approach gradually it as the effective width of tunnel
barrier becomes wider, that is,e is decreased. Moreove
these two tendencies cross each other ate;1/2, which sug-
gests that the tunneling phenomena change their p
around\kd;2\̃.

FIG. 10. e dependence of tunneling time average with poten
height V0 /E052.0 and widthd51/k0 (kd51). The dashed line

shows the WKB timet̃WKB5A$m/@2(V02E0)#%d.
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Next, let us consider thee dependence ofDt̃. In this
simulation, we may guess that in the region neare51 ~wave
mode andDt}^t&), the deviation should be proportional t
the average,

Dt̃}^t̃&, ~14!

whereas in the region with smallere ~particle mode and
Dt}A^t&), it should behave as

Dt̃}AeA^t̃&. ~15!

Moreover, the change from the former tendency to the la
one may occur around\kd;2\̃.

We can see these tendencies in Fig. 11, which give
other support of the idea of ‘‘wave-particle duality’’ in th
tunneling phenomena.

V. SUMMARY

We calculate the tunneling time distribution by means
Nelson’s quantum mechanics. From the resulting distri
tion, we derived the statistical properties of it, the avera
and deviation of tunneling time. First, we found that if a
incident wave packet is so large as to look plane-wave-li
the Dx dependence of them is negligible. Next, fitting th
data by gamma distribution, we found that the shape of d
tribution is universally determined only bykd. Furthermore,
by investigating the statistical properties of the distributi
in two characteristic ‘‘translucent’’ and ‘‘opaque’’ region
roughly divided bykd;2, we found that the wave-particl
duality may be seen in the tunneling phenomena. Last,
consider the Planck constant dependence of tunneling t
introducing the parametere as \̃5e\. Consequently, we
found that the dependences of the average and the devi
suggest another support of the idea of wave-particle dua
in tunneling phenomena.

l
FIG. 11. e dependence of tunneling time deviation with pote

tial height V0 /E052.0 and widthd51/k0 (kd51). The dashed

line shows the relationDt̃}AeA^t̃& in the case of particle mode.
5-5
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We are interested in the comparison between the tun
ing time distribution based on the Nelson’s quantum m
chanics and that based on the other method, e.g., Bohm
mechanics. The detailed study of such a comparison
subject in the near future.
a,
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@3# P. Guéret, E. Marclay, and H. Meier, Appl. Phys. Lett.53, 1617

~1988!.
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