RAPID COMMUNICATIONS

Anomalous diffusion and Tsallis statistics in an optical lattice

PHYSICAL REVIEW A 67, 051402R) (2003

Eric Lutz
Sloane Physics Laboratory, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 26 February 2003; published 27 May 2003

We point out a connection between anomalous transport in an optical lattice and Tsallis’ generalized statis-
tics. Specifically, we show that the momentum equation for the semiclassical Wigner function which describes
atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland
[Phys. Lett. A245, 67 (1998 ]. The important property of these ordinary linear Fokker-Planck equations is that
their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index
g in terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of
the atomic wave packets is discussed.
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Non-Gaussian distributions occur frequently in systemgical crystal compared to its condensed-matter counterpart is
that do not follow the prescriptions of standard statisticalthat the optical periodic potential is exactly known and, fur-
mechanics. Prominent examples of non-Gaussian stati¢hermore, easily modified in a precise and controlled way.
tics are Ley stable distribution§1]. The probability densi- Originally designed for laser coolingisyphus cooling—for

ty of a one-dimensional symmetric i stable distribu- ~an introduction, see, for example, Rgf4]), optical lattices
tion is defined by its Fourier transform a&C(x)=1/  rapidly evolved to an active field of investigation on its own

(27m) f dkexdikx—C|K|“], where 0<@<2. A key feature of [13]

such a stable distribution is the presence of an asymptotic, An important issue in th|s_context_ Is the underfstandlng of
non-Gaussian, power-law tailg S(x)~1/x|*** when a datomic transport in the optical lattice. Depending on the
' @ depth of the optical potential, three different regimes can be

<2. This Igads to th_e impor'tant consquence th_at, except 'f?Jentified[13,15—19: (i) diffusive motion in deep potentials,
the Gaussian case=2, a Levy probability density has a i) pajiistic motion in shallow potentials, ardi) an inter-

divergent second' momenZ2]. Signatur.es of L\y statistics. mediate regime in betweefof main interest hebe where
have been experimentally observed in a variety of physicajnomalous(non-Gaussiandiffusion takes place. The exis-
systems[3] ranging from micelle system§4] to porous  tence of Ley-like diffusion with long jumps below a given
glasses[5] and subrecoil laser coolinf6]. Another non-  potential threshold has been predicted by Markstegteal.
Gaussian distribution, which naturally arises within the[18] and later experimentally verified by a group at the MPQ
framework of nonextensive statistical mechani¢$], is the  in Garching by studying the dynamics of a single ion in a
Tsallis  distribution, Pg(x)=Z;[1-8(1-q)x*]¥*"9,  one-dimensional optical latticE19]. In the following, we
with 1<q<3. Similar to a Ley stable distribution, the show that the equation governing the evolution of the semi-
function P¢(x) exhibits an asymptotic, non-Gaussian, alge-Classical momentum distribution of the atom in the optical
braic taiI,Pq(x)~1/x2’(q*1), for a Tsallis indexq+ 1. Typi- potential belongs to a family of ordinary linear Fokker-
cal systems where Tsallis’ generalized thermostatistics halanck equations recently defined by Borld@d]. An inter-
been applied are those involving long-range correlations€Sting property of these equations is that their stationary so-
such as self-gravitating systerf§] or long-range magnetic lutions are exactly given by Tsallis statistics. This allows us
systemg9] and systems with fluctuating temperat{t6]. In ~ not only to express the indicesand 8 of the Tsallis distri-

the last decade, the theory of nonextensive statistical physidg!tion in terms of the microscopic parameters of the
witnessed a tremendous developmEtt] and there is now guantum-optical problem, but also to give a physical expla-
also growing experimenta| evidence of the relevance of Tsamation for the non'normalizabi”ty of the diStribUtion, as well
lis statistics in describing physical proces$gs As an ex-  as for the divergence of its variance in some range of param-
ample, we mention fully developed turbulence, where it hasgters to be SPECifiEd. We flnally evaluate the spatial correla-
recently been shown that velocity fluctuations can be detion function of the atomic wave packets and conclude by
scribed by a Tsallis-like distributiofl.2]. discussing their spatial coherence properties.

Our aim in this paper is to show that there is a connection Starting from the minOSCOpiC Hamiltonian that describes
between Tsallis statistics and anomalous transport in opticdhe atom-laser interaction in the optical lattice, an atomic
lattices. An optical lattice is a standing-wave potential thatquantum master equation can be deriy2d]. After spatial
can be obtained by a superposition of counterpropagatingveraging, the Rayleigh equation for the corresponding semi-
laser beams with linear orthogonal polarizatigother con- ~ classical Wigner functionW(p,t) can be written as
figurations are also possible—for a recent review, see Ref15,16,18
[13]). The optical potential so produced is spatially periodic
and, as a consequence, shares many common properties with
crystalline lattices in solid-state physics, such as Bragg scat- J

W J d
—_—— — + —_
tering and Bloch oscillations. The main advantage of an op- ot &p[K(p)W] ap[D(p)

IW
} . (1)

ap
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The Rayleigh equatioifl) is obtained under the following
assumptions(i) the laser intensity is low, that is, the satura-
tion parameter is smalg<1, (ii) the atoms move very fast, 0.
mv?/2>U,, whereU, is the potential depth, so that all po- =
sitions along the lattice can be considered equiprobable 3@ 0.
(hence, allowing spatial averagingnd (iii) the semiclassi-

[<=X

cal limit further imposes thap>#k, wherek is the wave T 2
number of the laser field. Equatiqd) has the form of an 0.
ordinary linear Fokker-Planck equation with momentum-
dependent drift and diffusion coefficients, 0.
K(p) P D(p)=Det . (@)
p)=——"—7, p)=Lot —7—7.
1+(p/pe)? 1+(p/po)?

These two quantities have a simple physical interpretation: FIG. 1. Stationary momentum distributioN,(p) (5) for three
The drift K(p) represents a cooling forqelue to the Sisy- values of the potential deptlia) Uy>44Eg, (b) Uy=44Eg, and
phus effect with damping coefficient. This force acts only  (¢) Uo=24ERg.

on slow particles with a momentum smaller than the capture . -
momentunp, . This is an important point as we shall discussStanth being a normalizing factor. The fact that the steady-

below. The diffusion factoD(p), on the other hand, de- state solution of Eq(1) is non-Gaussian is, of course, well
) ; . known[15,16,18. Surprisingly, however, it has not been re-
scribes stochastic momentum fluctuations and accounts far,

heating processes. We note tiistp) has two contributions alized that thigreciselycorresponds to a Tsallis distribution.
[15]: Agcgnstant pa.rD that correSponds to fluctuations due A_mong infinitely many _non-Ggussian. distribution_s, E8)

' 0 e . X .singles out the Tsallis distributiof®). It is worth noting that
;O sponta?e%us photobn er’gls;lonshand flulctuaucb)ns n thel di he Tsallis indices) and 8 can be simply expressed in terms
erence of photons absorbed in the two laser beams, plus . .
term proportional td; which stems from fluctuations in the ot the microscopic parameters of the problgsee Eqs(4)].

dipolar forces. This last term has the same limited momenl-n particular, we see thaf depends on the ratio of the diffu-

) . sion constanD to the product of the friction coefficient
tum rangep. as the drift force. Interestingly, we remark that with the square of the capture moment and does not
for vanishingD,, Eq. (1) exactly reduces to the Fokker- q b bk

Planck equation studied by Stariolo and gives rise to nonex(—jeloenol orD;. Equations4) thus provide a link between the

tensive statistic§22]. It should also be mentioned that in macroscopic Tsallis distributiof6) and the underlying mi-

. N croscopic dynamics in the optical potential. This allows us to
Eifzs[i{)?';nn dac?%f?ﬁé?fyi?\gpfrc())r)(llgrzzogsoi 5%1)) \(,\(/:;)snsctng give a physical interpretation of the characteristics of distri-

X ; : bution (5).
sidered to evaluate the long-time behavior of the momentum Let us first remind that distributiofb) is not normalizable

correlation function. Here, we shall be interested in the exac11Or a Teallis index 3q or, equivalently, forapgsDo.

stationary solution of Eq(1). . . .
It is easily seen from Eq(2) thatK and D satisfy the Ph)2/3|gally, this means that the cooling force, as measured by
following condition: apg, is too weak compared to the random momentum fluc-
tuations, given byD,, to maintain the particle in a steady

K(p) B du(p) state aroundp=0 (this is often referred to adecrochage

Dip)~  1-B(1-qU(p) dp (3 [15,16). On the other hand, in the limit wherg—1
(D0<ap§), the stationary solution(5) reduces to the

with standard Maxwell-Boltzmann distribution, W;(p)

=27, Y exd— BU(p)], with an inverse temperatuye (see Fig.
a 2Dy ) 1). In this case, the cooling force is much stronger than the
B= 2(DgtDy)’ q= 1+a—p27 and U(p)=p°. random momentum fluctuations. It thus appears that the Tsal-
¢ lis index q is intimately related to the interplay between sto-
“ chastic heatin i
g processésomentum fluctuations, as mea-
Equation (3) has been first obtained by Borlaf#0]. We  sured byD,) and the cooling force with capture momentum
mention that in her original work, Borland considered the ItoPc - It is important to remark that the finiteness of the latter is
form of the Fokker-Planck equation, whereas here, By. directly responsible for the occurrence of the non-Gaussian
applies to the Stratonovich foriti). Condition (3) implies ~ Tsallis distribution in this problem. This is confirmed by the
that the stationary solutiow,(p) of the Rayleigh equation observation that for infinitep., Eq. (1) reduces to the

(1) is given by the Tsallis distribution: Ornstein-Uhlenbeck equation with well-known Gaussian dy-
namics. Using the parametrization of REE5], the indexq
Wq(p)=Z4 ' [1-B(1-q)U(p)]¥* 9, (5)  can be further written ag=1+44Ex/U,, whereEg is the

recoil energy. We thus see that the Tsallis index can be re-
Equation(5) is the exact general stationary solution of Eq.lated to the ratio of the recoil energy to the potential depth.
(1) with the requirementV,(p) —0 whenp— *«, the con-  This means that the nature of the atomic dynamics can be
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simply tuned by varying the depth of the optical lattice. Webeing even used as a tool to optimize the cooling process. A
also notice that the inverse temperatyés written as the recent measurement of the momentum distribution nicely
ratio of the friction coefficient to the sum of the diffusion confirmed the prediction of this statistical modél.
coefficients, in analogy with the fluctuation-dissipation rela- An interesting quantity to look at is the spatial correlation
tion. We hasten to add that E(p) corresponds to a steady function G(a)= [dx¥(x,t)¢* (x+a,t), wherey(x,t) is the
state and not to an equilibrium state, and as such, temperasave function of an atomic wave packet at tinf3]. In the
ture is not well defined in this problem. case of a free evolutiorG(a) is simply the Fourier trans-
We now turn to the intermediate regime with a Tsallis form of the initial momentum distributionG(a)=fdpexp
index 5/3<q<3(Do<ap?<3D,). Here, the second mo- [—ipa/k]|¥(p,0)|%. The spatial correlation function is an im-
ment,<p2>=fp2Wq(p)d p, of the Tsallis distribution is infi- portant quantity both from a theoretical and an experimental
nite. As a consequence, the mean kinetic energy of the papoint of view. Theoretically, the functio®(a) is the overlap
ticle, Ex=(p?)/2m, diverges. In this regime, rare but large integral between two identical wave packets separated by a
momentum fluctuations occur which shove the particle outdistancea and, henceG(a) gives a measure of the spatial
side the range of the cooling force before it is recaptureccoherence of a state between two different points. On the
again. This leads to an anomalous momentum diffusion. Thether hand, experimentally it is often easier to directly mea-
transition from Gaussian to anomalous diffusion as the depteure G(a) rather than|#(p,0)|?, especially when the mo-
of the optical lattice is decreased has recently been investmentum distribution is very narrof24]. This method has
gated experimentally and the divergence of the mean kinetibeen recently used to measure the temperature of ultracold
energy has been observgld]. This is a clear signature of atoms obtained by VSCP[R5]. For atoms in an optical lat-
the underlying non-Gaussian statistics. A dissipative opticatice, the measurement of the functioB(a) could be
lattice hence appears as a unique system that allows an inchieved by first switching off the optical potential, splitting
vestigation of the Tsallis distribution in a whole rangegdfy ~ the atomic wave packet, and then, after a time intetyal
simply varying a single parameter, the depth of the opticaprojecting one of the wave packets onto the other. If the
potential. atoms are not in a pure state but in a mixture of states, the
We emphasize that the non-Gaussian Tsallis statistics ispatial correlation function can be generalized Gga)
here generated by amdinary linear Fokker-Planck equation = [dxp(x,x+a,t)=fdpexd —ipa/fi]o(p,p,0), where p(t)
(3), which is often associated with the usual Boltzmann-is the density operator at tinte Now making use of a well-
Gibbs statistics. To our knowledge, atomic transport in arknown property of the Wigner transform, we readily infer
optical lattice constitutes the only physical system, known sahat p(p,p,0)=Wg(p), where p(p,p,0) is the initial mo-
far, where this occurs. Again, this results from the subtlementum distribution of the atoms just after the lattice has
interplay between the deterministi@rift) and stochastic been switched off anW/y(p) is the stationary solution of the
(diffusion) forces(2) that act on the particlg20]. This is, for ~ Fokker-Planck equation as given by E®&). After Fourier
instance, at variance with the fully developed turbulenceransformation, we find
problem discussed in Refl12]. In the latter case, Tsallis

statistics are obtained from a generalized Langevin equation S22 4l N -@r)
with fluctuatingfriction and diffusion coefficientgthe prob- Gq(a)= 7 —
ability distribution of the corresponding temperature fluctua- 21 (1/4)+ (1/2r) h
tions being arbitrary For comparison, the Langevin equa- Cr (Br)
tion that corresponds to the Rayleigh equatithreads
1 |a
, oD X K(1/2)(1/r)( |7 ) , (7)
p=K(p)+ 2P BBy ), ®) Vprih

ap

whereK (x) is the modified Bessel function of the second
kind of orderv andr=q—1. In the Gaussian limig—1,
the spatial correlation function is given by a Gaussian,

where 7(t) is a centered Gaussian random force with vari-
ance {n(t)»(t'))=8(t—t"). Equation (6) is a Langevin
equation with multiplicative white noise andieterministic

coefficients.
Broad momentum distributions also occur in velocity se- 1 /= a?
lective coherent population trappiry SCPT), a subrecoil Gi(a)= z, V3 - apn2| (8

laser cooling methodfor a recent review, see RdB]). The
physical mechanism that leads here to power-law distribu-
tions is based on a succession of trapping and recycling prawith a correlation lengthx ;=27 JB. Forg>1, we can use
cesses: during their random walk in momentum space, ththe asymptotic representation of the modified Bessel function
particles can remain trapped for a very long time in a regiorfor large arguments<,(x) ~ v @/2x exd —x], to write for a
|p|<Ppyap. around the originp=0, before leaving again. >1,

The broad momentum distribution of the cold atoms can then

be shown to result from the competition between the rates of

entry and departure in the trap. Interestingly, VSCPT can be Gg(a)~a2-d/a-1) exr{ -
successfully modeled using g statistics—Ley statistics d

a
—. 9
Mﬂ(q—l)l ©
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We see that due to the power-law tails of the momentunby some generalizethonlineaj diffusion equation. Further-
distribution, the functiorG,(a) now asymptotically decays more, the Tsallis indeg can be simply expressed in terms of
according to an exponential—hence much slower than in théhe microscopic parameters of the quantum-optical problem,
Gaussian case—with a spatial correlation lengtly  in particular, the potential deptl,. This shows that the
=#h+B(g—1), which is explicitlyq dependent. We also note shape of the distribution can be straightforwardly modified—
that \, increases with increasing We can therefore con- from a Gaussian to a uniform distribution—by solely varying
clude that forqg>1, the atomic wave packets show more Ug. We have also discussed the spatial coherence of the
spatial coherence than in the Gaussian regime. Nonethelesgomic wave packets with the help of the spatial correlation
in the limit of very large separation, the non-Gaussian wavdunction Gy(a) and have found a higher degree of spatial
packets do become orthogonal since the fundBigte) van-  coherence in the non-Gaussian regime. Can these results be
ishes. As a final remark, we also mention tpép,p,0), as transposed to higher-dimensional optical lattices? For isotro-
given by Eq.(5), has exactly the same form as the densitypic potentials, one might expect that this is indeed the case,
operator corresponding to the power-law quantum wavéiowever, for more general potentials the question remains
packets recently introduced by Lillo and Manted24)|. open.

In conclusion, we have shown that Tsallis statistics natu-
rally appear in anomalous transport in a one-dimensional op- We thank Lisa Borland and Nir Davidson for discussions.
tical lattice. Remarkably, the Tsallis distribution is here gen-This work was funded in part by the ONR under Contract
erated by an ordinary linear Fokker-Planck equation and ndio. N0O0014-01-1-0594.
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