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Anomalous diffusion and Tsallis statistics in an optical lattice
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We point out a connection between anomalous transport in an optical lattice and Tsallis’ generalized statis-
tics. Specifically, we show that the momentum equation for the semiclassical Wigner function which describes
atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland
@Phys. Lett. A245, 67 ~1998!#. The important property of these ordinary linear Fokker-Planck equations is that
their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index
q in terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of
the atomic wave packets is discussed.
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Non-Gaussian distributions occur frequently in syste
that do not follow the prescriptions of standard statisti
mechanics. Prominent examples of non-Gaussian st
tics are Lévy stable distributions@1#. The probability densi-
ty of a one-dimensional symmetric Le´vy stable distribu-
tion is defined by its Fourier transform asL a

C(x)51/
(2p)*dk exp@ikx2Cukua#, where 0,a<2. A key feature of
such a stable distribution is the presence of an asympt
non-Gaussian, power-law tail,L a

C(x);1/uxua11 when a
,2. This leads to the important consequence that, excep
the Gaussian casea52, a Lévy probability density has a
divergent second moment@2#. Signatures of Le´vy statistics
have been experimentally observed in a variety of phys
systems@3# ranging from micelle systems@4# to porous
glasses@5# and subrecoil laser cooling@6#. Another non-
Gaussian distribution, which naturally arises within t
framework of nonextensive statistical mechanics@7,8#, is the
Tsallis distribution, Pq(x)5Zq

21@12b(12q)x2#1/(12q),
with 1<q,3. Similar to a Le´vy stable distribution, the
function Pq(x) exhibits an asymptotic, non-Gaussian, alg
braic tail, Pq(x);1/x2/(q21), for a Tsallis indexqÞ1. Typi-
cal systems where Tsallis’ generalized thermostatistics
been applied are those involving long-range correlatio
such as self-gravitating systems@8# or long-range magnetic
systems@9# and systems with fluctuating temperature@10#. In
the last decade, the theory of nonextensive statistical phy
witnessed a tremendous development@11# and there is now
also growing experimental evidence of the relevance of T
lis statistics in describing physical processes@8#. As an ex-
ample, we mention fully developed turbulence, where it h
recently been shown that velocity fluctuations can be
scribed by a Tsallis-like distribution@12#.

Our aim in this paper is to show that there is a connect
between Tsallis statistics and anomalous transport in op
lattices. An optical lattice is a standing-wave potential th
can be obtained by a superposition of counterpropaga
laser beams with linear orthogonal polarizations~other con-
figurations are also possible—for a recent review, see R
@13#!. The optical potential so produced is spatially period
and, as a consequence, shares many common properties
crystalline lattices in solid-state physics, such as Bragg s
tering and Bloch oscillations. The main advantage of an
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tical crystal compared to its condensed-matter counterpa
that the optical periodic potential is exactly known and, fu
thermore, easily modified in a precise and controlled w
Originally designed for laser cooling~Sisyphus cooling—for
an introduction, see, for example, Ref.@14#!, optical lattices
rapidly evolved to an active field of investigation on its ow
@13#.

An important issue in this context is the understanding
atomic transport in the optical lattice. Depending on t
depth of the optical potential, three different regimes can
identified@13,15–19#: ~i! diffusive motion in deep potentials
~ii ! ballistic motion in shallow potentials, and~iii ! an inter-
mediate regime in between~of main interest here!, where
anomalous~non-Gaussian! diffusion takes place. The exis
tence of Lévy-like diffusion with long jumps below a given
potential threshold has been predicted by Marksteineret al.
@18# and later experimentally verified by a group at the MP
in Garching by studying the dynamics of a single ion in
one-dimensional optical lattice@19#. In the following, we
show that the equation governing the evolution of the se
classical momentum distribution of the atom in the optic
potential belongs to a family of ordinary linear Fokke
Planck equations recently defined by Borland@20#. An inter-
esting property of these equations is that their stationary
lutions are exactly given by Tsallis statistics. This allows
not only to express the indicesq andb of the Tsallis distri-
bution in terms of the microscopic parameters of t
quantum-optical problem, but also to give a physical exp
nation for the non-normalizability of the distribution, as we
as for the divergence of its variance in some range of par
eters to be specified. We finally evaluate the spatial corr
tion function of the atomic wave packets and conclude
discussing their spatial coherence properties.

Starting from the microscopic Hamiltonian that describ
the atom-laser interaction in the optical lattice, an atom
quantum master equation can be derived@21#. After spatial
averaging, the Rayleigh equation for the corresponding se
classical Wigner functionW(p,t) can be written as
@15,16,18#

]W

]t
52

]

]p
@K~p!W#1

]

]p FD~p!
]W

]p G . ~1!
©2003 The American Physical Society02-1



a-
,
-
b

m

io

ur
ss
-

f

e
d

us
e
en
at
r-
e
n

tu
a

Ito

q

y-
ll
e-
.

s

-

e

to
tri-

d by
uc-
y

the
sal-
o-
-

m
is
ian
e

y-

re-
th.
be

RAPID COMMUNICATIONS

ERIC LUTZ PHYSICAL REVIEW A 67, 051402~R! ~2003!
The Rayleigh equation~1! is obtained under the following
assumptions:~i! the laser intensity is low, that is, the satur
tion parameter is small,s!1, ~ii ! the atoms move very fast
mv2/2@U0, whereU0 is the potential depth, so that all po
sitions along the lattice can be considered equiproba
~hence, allowing spatial averaging!, and~iii ! the semiclassi-
cal limit further imposes thatp@\k, wherek is the wave
number of the laser field. Equation~1! has the form of an
ordinary linear Fokker-Planck equation with momentu
dependent drift and diffusion coefficients,

K~p!52
ap

11~p/pc!
2

, D~p!5D01
D1

11~p/pc!
2

. ~2!

These two quantities have a simple physical interpretat
The drift K(p) represents a cooling force~due to the Sisy-
phus effect! with damping coefficienta. This force acts only
on slow particles with a momentum smaller than the capt
momentumpc . This is an important point as we shall discu
below. The diffusion factorD(p), on the other hand, de
scribes stochastic momentum fluctuations and accounts
heating processes. We note thatD(p) has two contributions
@15#: A constant partD0 that corresponds to fluctuations du
to spontaneous photon emissions and fluctuations in the
ference of photons absorbed in the two laser beams, pl
term proportional toD1 which stems from fluctuations in th
dipolar forces. This last term has the same limited mom
tum rangepc as the drift force. Interestingly, we remark th
for vanishing D1, Eq. ~1! exactly reduces to the Fokke
Planck equation studied by Stariolo and gives rise to non
tensive statistics@22#. It should also be mentioned that i
Ref. @18#, an asymptotic approximation of Eq.~1! ~constant
diffusion and drift decaying for largep as 21/p) was con-
sidered to evaluate the long-time behavior of the momen
correlation function. Here, we shall be interested in the ex
stationary solution of Eq.~1!.

It is easily seen from Eq.~2! that K and D satisfy the
following condition:

K~p!

D~p!
52

b

12b~12q!U~p!

]U~p!

]p
, ~3!

with

b5
a

2~D01D1!
, q511

2D0

apc
2

, and U~p!5p2.

~4!

Equation ~3! has been first obtained by Borland@20#. We
mention that in her original work, Borland considered the
form of the Fokker-Planck equation, whereas here, Eq.~3!
applies to the Stratonovich form~1!. Condition ~3! implies
that the stationary solutionWq(p) of the Rayleigh equation
~1! is given by the Tsallis distribution:

Wq~p!5Zq
21@12b~12q!U~p!#1/(12q). ~5!

Equation~5! is the exact general stationary solution of E
~1! with the requirementWq(p)→0 whenp→6`, the con-
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stantZq being a normalizing factor. The fact that the stead
state solution of Eq.~1! is non-Gaussian is, of course, we
known @15,16,18#. Surprisingly, however, it has not been r
alized that thispreciselycorresponds to a Tsallis distribution
Among infinitely many non-Gaussian distributions, Eq.~3!
singles out the Tsallis distribution~5!. It is worth noting that
the Tsallis indicesq andb can be simply expressed in term
of the microscopic parameters of the problem@see Eqs.~4!#.
In particular, we see thatq depends on the ratio of the diffu
sion constantD0 to the product of the friction coefficienta
with the square of the capture momentumpc , and does not
depend onD1. Equations~4! thus provide a link between th
macroscopic Tsallis distribution~5! and the underlying mi-
croscopic dynamics in the optical potential. This allows us
give a physical interpretation of the characteristics of dis
bution ~5!.

Let us first remind that distribution~5! is not normalizable
for a Tsallis index 3<q or, equivalently, forapc

2<D0.
Physically, this means that the cooling force, as measure
apc

2 , is too weak compared to the random momentum fl
tuations, given byD0, to maintain the particle in a stead
state aroundp50 ~this is often referred to asdécrochage
@15,16#!. On the other hand, in the limit whereq→1
(D0!apc

2), the stationary solution~5! reduces to the
standard Maxwell-Boltzmann distribution, W1(p)
5Z1

21 exp@2bU(p)#, with an inverse temperatureb ~see Fig.
1!. In this case, the cooling force is much stronger than
random momentum fluctuations. It thus appears that the T
lis index q is intimately related to the interplay between st
chastic heating processes~momentum fluctuations, as mea
sured byD0) and the cooling force with capture momentu
pc . It is important to remark that the finiteness of the latter
directly responsible for the occurrence of the non-Gauss
Tsallis distribution in this problem. This is confirmed by th
observation that for infinitepc , Eq. ~1! reduces to the
Ornstein-Uhlenbeck equation with well-known Gaussian d
namics. Using the parametrization of Ref.@15#, the indexq
can be further written asq51144ER /U0, whereER is the
recoil energy. We thus see that the Tsallis index can be
lated to the ratio of the recoil energy to the potential dep
This means that the nature of the atomic dynamics can

FIG. 1. Stationary momentum distributionWq(p) ~5! for three
values of the potential depth:~a! U0@44ER , ~b! U0544ER , and
~c! U0524ER .
2-2
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simply tuned by varying the depth of the optical lattice. W
also notice that the inverse temperatureb is written as the
ratio of the friction coefficient to the sum of the diffusio
coefficients, in analogy with the fluctuation-dissipation re
tion. We hasten to add that Eq.~5! corresponds to a stead
state and not to an equilibrium state, and as such, temp
ture is not well defined in this problem.

We now turn to the intermediate regime with a Tsal
index 5/3,q,3(D0,apc

2,3D0). Here, the second mo
ment,^p2&5*p2Wq(p)dp, of the Tsallis distribution is infi-
nite. As a consequence, the mean kinetic energy of the
ticle, EK5^p2&/2m, diverges. In this regime, rare but larg
momentum fluctuations occur which shove the particle o
side the range of the cooling force before it is recaptu
again. This leads to an anomalous momentum diffusion.
transition from Gaussian to anomalous diffusion as the de
of the optical lattice is decreased has recently been inve
gated experimentally and the divergence of the mean kin
energy has been observed@19#. This is a clear signature o
the underlying non-Gaussian statistics. A dissipative opt
lattice hence appears as a unique system that allows a
vestigation of the Tsallis distribution in a whole range ofq by
simply varying a single parameter, the depth of the opti
potential.

We emphasize that the non-Gaussian Tsallis statistic
here generated by anordinary linearFokker-Planck equation
~3!, which is often associated with the usual Boltzman
Gibbs statistics. To our knowledge, atomic transport in
optical lattice constitutes the only physical system, known
far, where this occurs. Again, this results from the sub
interplay between the deterministic~drift! and stochastic
~diffusion! forces~2! that act on the particle@20#. This is, for
instance, at variance with the fully developed turbulen
problem discussed in Ref.@12#. In the latter case, Tsallis
statistics are obtained from a generalized Langevin equa
with fluctuatingfriction and diffusion coefficients~the prob-
ability distribution of the corresponding temperature fluctu
tions being arbitrary!. For comparison, the Langevin equ
tion that corresponds to the Rayleigh equation~1! reads

ṗ5K~p!1
]D~p!

]p
1A2D~p!h~ t !, ~6!

whereh(t) is a centered Gaussian random force with va
ance ^h(t)h(t8)&5d(t2t8). Equation ~6! is a Langevin
equation with multiplicative white noise anddeterministic
coefficients.

Broad momentum distributions also occur in velocity s
lective coherent population trapping~VSCPT!, a subrecoil
laser cooling method~for a recent review, see Ref.@6#!. The
physical mechanism that leads here to power-law distri
tions is based on a succession of trapping and recycling
cesses: during their random walk in momentum space,
particles can remain trapped for a very long time in a reg
upu,ptrap , around the originp50, before leaving again
The broad momentum distribution of the cold atoms can t
be shown to result from the competition between the rate
entry and departure in the trap. Interestingly, VSCPT can
successfully modeled using Le´vy statistics—Le´vy statistics
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being even used as a tool to optimize the cooling proces
recent measurement of the momentum distribution nic
confirmed the prediction of this statistical model@6#.

An interesting quantity to look at is the spatial correlati
functionG(a)5*dxc(x,t)c* (x1a,t), wherec(x,t) is the
wave function of an atomic wave packet at timet @23#. In the
case of a free evolution,G(a) is simply the Fourier trans-
form of the initial momentum distribution,G(a)5*dp exp
@2ipa/\#uc(p,0)u2. The spatial correlation function is an im
portant quantity both from a theoretical and an experimen
point of view. Theoretically, the functionG(a) is the overlap
integral between two identical wave packets separated b
distancea and, hence,G(a) gives a measure of the spati
coherence of a state between two different points. On
other hand, experimentally it is often easier to directly me
sure G(a) rather thanuc(p,0)u2, especially when the mo
mentum distribution is very narrow@24#. This method has
been recently used to measure the temperature of ultra
atoms obtained by VSCPT@25#. For atoms in an optical lat-
tice, the measurement of the functionG(a) could be
achieved by first switching off the optical potential, splittin
the atomic wave packet, and then, after a time intervat,
projecting one of the wave packets onto the other. If
atoms are not in a pure state but in a mixture of states,
spatial correlation function can be generalized toG(a)
5*dxr(x,x1a,t)5*dp exp@2ipa/\#r(p,p,0), where r(t)
is the density operator at timet. Now making use of a well-
known property of the Wigner transform, we readily inf
that r(p,p,0)5Wq(p), where r(p,p,0) is the initial mo-
mentum distribution of the atoms just after the lattice h
been switched off andWq(p) is the stationary solution of the
Fokker-Planck equation as given by Eq.~5!. After Fourier
transformation, we find

Gq~a!5
Ap2(3/2)2(1/r )

ZqGS 1

r D ~br !(1/4)1(1/2r )
Ua\U

(1/r )2(1/2)

3K (1/2)2(1/r )S 1

Abr
Ua\U D , ~7!

whereKn(x) is the modified Bessel function of the secon
kind of ordern and r 5q21. In the Gaussian limitq→1,
the spatial correlation function is given by a Gaussian,

G1~a!5
1

Z1
Ap

b
expF2

a2

4b\2G , ~8!

with a correlation lengthl152\Ab. For q.1, we can use
the asymptotic representation of the modified Bessel func
for large arguments,Kn(x);Ap/2x exp@2x#, to write for a
@1,

Gq~a!;a(22q)/(q21) expF2
a

\Ab~q21!
G . ~9!
2-3
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We see that due to the power-law tails of the moment
distribution, the functionGq(a) now asymptotically decays
according to an exponential—hence much slower than in
Gaussian case—with a spatial correlation lengthlq

5\Ab(q21), which is explicitlyq dependent. We also not
that lq increases with increasingq. We can therefore con
clude that forq.1, the atomic wave packets show mo
spatial coherence than in the Gaussian regime. Nonethe
in the limit of very large separation, the non-Gaussian wa
packets do become orthogonal since the functionGq(a) van-
ishes. As a final remark, we also mention thatr(p,p,0), as
given by Eq.~5!, has exactly the same form as the dens
operator corresponding to the power-law quantum w
packets recently introduced by Lillo and Mantegna@26#.

In conclusion, we have shown that Tsallis statistics na
rally appear in anomalous transport in a one-dimensional
tical lattice. Remarkably, the Tsallis distribution is here ge
erated by an ordinary linear Fokker-Planck equation and
ys
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o
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by some generalized~nonlinear! diffusion equation. Further-
more, the Tsallis indexq can be simply expressed in terms
the microscopic parameters of the quantum-optical probl
in particular, the potential depthU0. This shows that the
shape of the distribution can be straightforwardly modified
from a Gaussian to a uniform distribution—by solely varyin
U0. We have also discussed the spatial coherence of
atomic wave packets with the help of the spatial correlat
function Gq(a) and have found a higher degree of spat
coherence in the non-Gaussian regime. Can these resul
transposed to higher-dimensional optical lattices? For iso
pic potentials, one might expect that this is indeed the ca
however, for more general potentials the question rema
open.
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