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Deterministic optical Fock-state generation
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We present a scheme for the deterministic generatidi-photon Fock states fromd three-level atoms in
a high-finesse optical cavity. The method applies an external laser pulse that genehx@soaon output state
while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present
analytical estimates of the error due to amplitude leakage from these dark states for jeaedhcompare it
with explicit results of numerical simulations fdf<5. The method is shown to provide a robust source of
N-photon states under a variety of experimental conditions and is suitable for experimental implementation
using a cloud of cold atoms magnetically trapped in a cavity. The resulippoton states have potential
applications in fundamental studies of nonclassical states and in quantum information processing.
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I. INTRODUCTION CQED device that goes beyond the production of single-
photon states, namely, the deterministic production of a Fock
The generation of nonclassical states of light has beestate of the electromagnetic field containing an exact number
central to the confirmation and elucidation of the quantunof photons ). Such nonclassical states are of interest for
theory of radiation. Today, such work takes on an addedundamental tests and applications of the theories of quan-
importance as part of the advancing field of deliberate quantum optics(such as quantum state tomography, as performed
tum state engineering, motivated in part by applications irrecently on the single-photon stdt&2]), as a resource for
quantum communication and computation. For instance, deHeisenberg-limited quantum measurements made possible
terministically generated single-mode single-photon statepy the production of two orthogonal-photon statef13,14),
could greatly advance the efficiency and security of quantumnynd quite generally as a starting point for the controlled en-
cryptography[1]. They are also a crucial resource for imple- gineering of more complex quantum states. Starting with a
menting a quantum computing scheme using linear opticsyrecisely counted number df atoms trapped in the confines
single-photon states, and photodetecfigh These immedi- ¢ 4 pigh-finesse optical cavity, we consider a scheme in
ate potential applications have spurred the development Qfhich a classical pump field is ramped up to induce deter-

dey|ces that can produ_ce single phatons on d_emand,. such finistic Raman emission into a single cavity mode by each
solid-state devices which use the Coulomb interaction be-

tween strongly confined electrons to produce single excitorcl)f the trapped atoms, resuiting in an optical field of exabtly
) ; . . . photons that are emitted from the cavity in a single pulse.

states which then decay opticallg—5], or devices in which he atom-cavit tom i trained t in withi
the fluorescence from single, isolated and optically pumpe € alom-cavity system IS constrained to remain within a
molecules is collectef6,7]. The stream of pulses produced gubspace of optpally darK-atom states, resultmg in a high
from each of these devices has been shown to contain eithdf€lity of production. The present scheme provides a gener-
zero or one, but rarely more than one, photon per pulse, thi@ization of that proposed for the production of single pho-
differing radically from a classical coherent-state pulsetons from single atom$8,9,11 and indicates a systematic
which would contain a Poisson distribution of photon num-foute to generation of other nonclassical states.
ber. While these recent devices all produce fluorescence from Several other theoretical and experimental works have
a single optical emitter on demand, none outputs this fluodiscussed the use of high-finesse cavities for the quantum
rescence into a practical single mode of the optical field. ~engineering of mesoscopic nonclassical optical states. The

It has been shown recently that the effects of cavity quanpossibility of producing both Fock states and arbitrary coher-
tum electrodynamic$CQED) can, in principle, be used to ent superpositions of these inside a cavity by exploiting adia-
overcome this limitation and produce single-mode singlebatic transfer of atomic ground-state Zeeman coherences in
photons on deman(B,9]. In such a scheme, a single three- single atoms was already explored in Ré5]. A scheme for
level atom is induced to fluoresce with high probability into producing an arbitrary quantum optical state using a single
a single resonant mode of a high-finesse optical cavity. Extwo-level atom in a high-finesse cavity has also been pre-
perimental evidence for such cavity-induced Raman transisented by Law and Eberly, based on the arbitrary real-time
tions has been obtain¢dl0], and a variant of this scheme has control of a classical pump field and the coupling to a cavity
very recently been used to generate a sequence of singlield [16]. Experimental evidence for Fock states of a micro-
photons [11]. By creating a highly controlled, single- wave cavity field has recently been obtained as a dynamical
guantum-level interaction of atoms and light, CQED can besquilibrium for a stream of Rydberg atoms passing through a
used quite generally to produce nonclassical states of thmicromasef{17]. Another approach toward the construction
electromagnetic field in a single cavity mode. of a Fock state was proposed in Ref8] in which a Rydberg

In this paper, we analyze a particular desired function of eatom with a Stark-tunable level splitting is used to transfer
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photons one by one from a classically populated cavity field |1 ,0>

to another initially empty cavity field. Initial experimental -3-R- I_A

steps towards this goal have been recently demonstrated r

[19]_ O*)r g .
In contrast to the schemes of Rf$6—18 which require |0,0> >

delicate temporal control of the atom-cavity coupling, our |2 1>
present scheme vyields the desifdephoton state for quite ’

arbitrary temporal profiles of the classical pump field. Thisis £ 1. pictorial representation of the Hamiltonian for a single-
achieved through a rapid adiabatic passage which transfefgree-level atom in a single-mode cavity. The atom is driven by an
the initial “nonclassical” state oN atoms to the nonclassical external driving field of frequency, and coupling strengthr, The
state ofN photons within a short period of time. Thus, the atom is also coupled to a cavity mode of frequengyand coupling
quantum nature of the photon field is already guaranteed bstrengthg. Both the cavity and the driving fields are detuned from
the initial state of the atoms trapped in an initially emptythe atomic transition resonance by a common frequekcylhe
cavity. The initial conditions can be achieved by lowering aatom-cavity states are denoted herdigy wherei=0,1,2 are the
cloud of cold atoms into the cavity, and pulse control is therthree atomic levels anldis the number of cavity photons.
entirely contained in the time dependence of the ramping
field. This avoids the need to make use of atomic motion in II. ATOMIC STATES AND DETERMINISTIC
controlling the coupling to the cavity field, as was required in SINGLE-PHOTON GENERATION
Ref.[15], and is one of the key elements allowidgtermin- _ )
istic production ofN-photon states to be achieved. The num- Our N-photon generation scheme uses the same internal
ber of atoms in the cavity can be determined by detection ofttomic structure used in the single-photon proposals of Refs.
excited-state atoms at the single-atom level, as a result of tH&.9], namely, atoms having three internal levels, lab¢@yd
atom-mediated shifts of the cavity resonance. Such singld1), and|2), arranged in a\ configuration such that states
atom detection has already been demonstrf26j and can  |0) and|2) are nonradiating atomic states whilg) is an
be readily extended to larger numbers of atoms. ConseeXCited state connected to staf@sand|1) by allowed tran-
quently, the present scheme opens the way to deterministitions (Fig. 1). Levels|0) and |2) are typically hyperfine
generation of more complicated quantum states of light byevels of the electronic ground state. We assume that the
first producing nonclassical states of trapped at¢snsh as ~ allowed transitions to statd) can be addressed selectively.
spin-squeezed states produced through interatomic interadhis can be achieved, e.g., as a result of polarization selec-
tions[21,27 or by measuremeri23]), and then transferring tion rules, or merely due to a large energy difference between
that state onto the optical field using CQED. states|0) and|2). The three-level atoms are located in a
The remainder of the paper is constructed as follows. Algh-finesse optical cavity which supports a resonant mode
brief review of the deterministic single-photon generationhaving vacuum Rabi frequenay (i.e., the Rabi frequency
schemes of Ref§8,9] is given in Sec. II, which establishes due to the presence of a single photon in the cavity mode
some common concepts with the present work. A discussiofhat couples statefl) and |2). The cavity mode has fre-
of the N-atom—cavity system in a single-mode external fieldquencyw. which can in general be detuned from the atom
follows in Sec. Ill. We demonstrate here the existence of desonancen,, by A=w.—w;, (see Fig. 1
family of optically dark coupled\-atom—cavity states and  In the schemes of Ref§8,9], single-photon generation is
show generally how adiabatic ramping of an external fieldaccomplished by exposing a single atom in internal gte
can be used to generaiephoton emission from the cavity. to a classical laser field of frequenay and Rabi frequency
Detailed analysis of the energy spectrum of the closed(t), which is controlled dynamically. The laser frequency
N-atom—cavity system as a function of the ramp time pro-w, is chosen to be resonant with the cavity-mediated Raman
vides estimates of the populations in the bright states antfansition between staté8) and|2), i.e., o, — w.=w,q Or
also leads to analytic estimates of the energy gap required fas, — w;0=A. This laser connects the statg®) and |2)
limiting adiabatic state transfers. In Sec. IV, we then presenthrough a cavity-mediated Raman transition and induces the
analysis of the cavity decay responsible for thegphoton  fluorescence of a cavity photon by the atom. The photon
emission, treating in detail the effects of spontaneous emisexits the cavity into a single cavity-output mode, and thereby
sion and nonadiabaticity on the output states. We obtain anaenerates the desired single-photon state. Referdi@@ls
lytic estimates of error rates deriving from these contribu-showed that under suitable conditions on the external pulse
tions that scale linearly in the total number of atoms,field, the single photon can be emitted deterministically.
resulting in a constant relative error in the outpitphoton To understand the operation of such a deterministic de-
states and guaranteeing production oNaphoton state with  vice, it is helpful to first consider the atom-cavity system as
high fidelity. In Sec. V, we present numerical simulations ofa closed quantum system, i.e., we ignore the decay of cavity
the open system using the quantum jump approach. Theg#hotons to cavity-output modes, which actually produces the
numerical calculations are used to explore the sensitivity oflesired Fock state outside the cavity, as well as the possible
the scheme to critical experimental parameters, as well as t&pontaneous decay from the excited stadeto modes other
explore the limits of our analytical estimates of the errorthan the cavity mode. Spontaneous emission lowers the fi-
bounds. Finally, in Sec. VI we summarize and indicate direc-delity of deterministic photon generation, and clearly needs
tions for further work and for experimental implementation. to be avoided or at least minimized. We write the basis states
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of the single-atom—cavity system §0), |1,0), and|2,1), one another. However, they do experience a second-order
where the first index refers to the atomic state and the secoridteraction via the cavity mode. The cavity coupliggand
index gives the number of photons in the cavity, i.e., thethe classical pump Rabi frequencyre taken to be identical
cavity field is implicitly assumed to be quantized. The inter-for each of theN atoms, consistent with their indistinguish-
action Hamiltonian of this closed system is given by ability [25]. Thus theN-atom—cavity interaction Hamiltonian
is given, for the closed system, by
0O r 0

N
Ho=|T —A gl, (1) H=> Hi, €
0 g 0 i=1

whereH; describes the atom-field coupling, E@), for the
ith atom. From now on, we shall use this in the operator
form

wherer (t) ~ 1oE(1)/2 is the time-dependent coupling to the
external (classical laser pump field E(t) (evaluated in a
rotating frame. Unless essential for the analysis, we shall
omit the explicit time dependence ofto streamline the no- Hi=—A|1)(1|i+r(t)(|1)i(0|;+|0)i(1];) +g(al1)i(2];
tation. As discussed by Kuhet al.[9], the dynamics of this .

system are governed by the presence of a null-valued eigen-  +@'[2)i(1[)), (4)
state| W), which is a “dark state” containing no population
in the excited atomic statel), and which is therefore im-
mune to spontaneous decay. This dark state exists for
values ofr(t) and is given by

where the operatora anda' are the annihilation and cre-

rﬁtion operators for the quantized cavity mode. Since this
aHamiItonian is symmetric under the exchange of any two
atoms, a symmetric initial state remains symmetric as it
evolves. We may thus reduce our effective Hilbert state to

1 - o
V)= ——(qgl0,0)—r[2,1)). 2 consider only the states that are completely symmetric with
Vo) Jri+ g2(9| )=ri2.1) @ respect to atomic interchange. We may thus use a number

representation of the atomic state, namely,ny,n,,l),
It is the presence of this dark state that allows the highwheren; gives the number of atoms in stdi¢ (i=0,1,2),
fidelity generation of a single photon in response to a suitandl is the number of photons in the cavity. We allow arbi-
able choice ofr(t). The single-atom—cavity system starts trary values forng, nq, n,, andl, and employ the Bose
initially in the state|0,0), which is the dark state for the creation and annihilation operatdss and bi* for the atomic
initial conditionr (0)=0. During a sufficiently slow ramp of states|i). We can then rewrite the interaction Hamiltonian
r(t) (i.e., a broad pulse of the classical pump Iaséne  for the closed system as
atom-cavity system can adiabatically follow the dark state,
Eq. (2). For sufficiently large values af(t) (r=>g), |¥o) H=—Abjb;+r(t)(bibo+bdb;) +g(bib,a+a’blb,).
~|2,2), i.e., a single cavity photon is produced with a high )

degree of certainty. Th's cavity photon_ t_he_n ra_\pldly decays This many-bodyN-atom—cavity Hamiltonian conserves
from the cavity, resulting in a deterministic single-photon

source that acts within a time interval specified by the perioc}heftc’taI ?“mbe$ of atoms, represer_ned by the operator

: ; =bgbg+bib;+byb,, as well as the difference between the
of the external pump and by the cavity decay time. Law and_ Obo fl 1752k dth ber of cavity bh
Kimble [8] and Kuhnet al. [9] have presented numerical "UMber of atoms in stat2) and t € pum eTr of cavity pho-
calculations to assess deviations from this ideal behaviofons: represented by the operalibr-byb, —a’a. When cav-
caused by spontaneous emission, and have explored the df. decay is added to this description, the operdlogains
tent to which the photon emission probability can be conthe significance of ref(.arnng. to the number of photons that
trolled by modifying the trigger pulse. Recent experimentshave escaped the cavity. Since the operafoesd D com-

by Kuhn, Hennrich, and Rempe have produced single phoMute, we define subspacegN,k) composed of the eigen-
tons by this method11]. states with simultaneous eigenvaluiés-ng+n;+n, andk

=n,—1| of the operatord andD, respectively. This is sum-
marized schematically in Fig. 2.

We find that each manifold(N,k) contains a null-valued
eigenstatdy}), given explicitly by
For the generation of arbitrary Fock states of the electro- _
magnetic field, i.e., with arbitrary large photon numbgmwe N [—r(t)/g] o
now considem such three-level atoms confined within the | ¥ (1) = Zx ]Zk JIN=DIj(—K)! IN=1.0§.j k),
optical cavity. We assume that the atoms are indistinguish- (6)
able in all respects. This provides an important experimental
simplification relative to other CQED schemes in which thewhereZ, is a normalization constant. This state is the analog
atoms are required to be individually addressdBi. Each  of the null-valued dark eigenstate for the single-atom—cavity
atom interacts individually with the laser field and the cavity system[9]. It contains no population in the) internal state
mode, just as for the single-atom case. We make the simpliand is thus arN-atom dark state immune to spontaneous
fying assumption that the atoms do not interact directly withdecay from any atom. Equatidié) represents a continuous

Ill. DETERMINISTIC N-PHOTON GENERATION:
CLOSED-SYSTEM ANALYSIS

N
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31A| e(5,2) to the cavity,r>g. At this final timet;, one finds that ap-
10,3,2.0> Mo, 1> proximately allN atoms are in the sta{®) and there aré\
o photons in the cavity,4(t;))~|0,0N,N).

2|A| 2 oo o [

This procedure will generafd photons in a closed cavity.
; ; We will show that this procedure can be coupled to cavity
Al 4 5 decay to produce aN-photon state. In practice, realization
21,2,0> 11.1,3,1>0,1.42> of this ideal sequence requires that two key issues be ad-
s \ \ Vi equately addressed. First, the need for adiabatic evolution
|3,o,2>,0> |2,o,3,:> |1,o,4,5> 00535 through the family of dark states via couplings to the excited
atomic level|1) places constraints on how we vary the
strength of the pump pulse, based on the energy spectrum

11,2,2,0> 10,2,3,1>
2 p)

2|A| o2205 e(5,3) of the N-atom—cavity system. Second, spontaneous emission
A of photons from the cavity will provide perturbations to the
A ¥ adiabatic evolution that may be nonnegligible.
1,12,0>10,1.3,1> We examine these issues in detail in Sec. IV. Before this,
we first analyze the energy spectrum of the closeatom—
0 |2,0,270> |1,o,3},1> 00425 cavity system in the remainder of this section. This will al-

low us to establish the critical parameters limiting the adia-

FIG. 2. Pictorial representation of the Hamiltonian for five at- batic evolution, which are required in order to estimate the
oms in thee(5,3) ande(5,2) manifolds written in the number basis errors due to nonadiabaticity and spontaneous emission
representation and assuming red detuning,0. Thee(N,k) mani-  within the open-system approach employed in Sec. IV. While
fold is composed of the eigenstates with simultaneous eigenvaluatie dark state of each(N,k) manifold has a succinct de-
N=no+n;+n; andk=n,—I, wheren; is the number of atoms in  scription, Eq.(6), the general eigenstates for theatom—
atomic statei and| is the number of photons in the cavity. The cavity system are quite complicated. However, in the limit of
transition strength between levels is proportional to either the drivgth large and smali(t), the eigenstates are found to have
ing field r or the cavity couplingy. The energy of the states in the famjjiar forms that render them susceptible to analytic inves-
absence of all couplings is given byn;A. For red detuningA tigation
<0, the states with a higher occupation of the exited atomic state, We éxamine first the strong puniarger) limit. Here the
n, will have a greater energy. The dark state is the superposition ofo o states can be interpreted in terms of the familiar angular
states witn, =0 described in Eq(6). A transition from the mani- momentum states. In the limit wherds large relative to the
fold e(5,3) to e(5,2) occurs when a photon is emitted from the th t ) A lect the t in EG)
cavity. This transition preserves the dark statee text other parame er_s;]( ), we can nNegiect the terms in @

that are proportional to the cavity coupling parameteyVe

) ) then make a transformation from the atomic mobtgsand
family of dark states that are transformed into each other by, to generalized angular momentum operatdnssing the
the time dependence oft). WhenA=0 we find thatforany  gchwinger representatiof26,27. This gives J,= (blb,
e(N,k) subspaceN—k>1) there exist muIUpIg eigenstates —bgbo), J+=bIbo, J,zbgbl, and J,= %(b{bﬁbgbo),
with zero energy for all values af(t). Thus, in order to where J, denotes the total angular momentud?.=J,(J,

move our system adiabatically through the continuous family, ;) “\'this |imit, we find that the system Hamiltonian be-
of dark states, Eq(6), we need to impose a finite detuning ., as

A+#0 such that the zero energy eigenspaceHofs non-

degenerate except at specific values @). (The effect of .

such accidental degeneracies is assessed in Sec) V@ H=—-A@+J,)+2rd,=—AJ+ Q5 J, )

can also show that acting on E@) with the cavity annihi-

lation operatora produces the corresponding dark state havwhere Q) = 4r2+ A2, 7,=2r/Q, 7y=0, andn,=—A/Q.

ing one less photon, i.e., any such dark eigendia® de- The corresponding energy levels are now identical to those

cays to| 4}, ;) by cavity emission. Thus cavity decay does of the generalized angular momentunTherefore the eigen-

not take the system out of the family of dark states. Con-states are simply given y,m, ,n,,l); wherej is the eigen-

versely, the only way to directly couple dark states in differ-value of total angular momentumm,, is the angular momen-

ent manifolds is either to spontaneously lose a photon or ttum projection along the axi#, n, is the number of atoms

add a particle. in atomic statd2), andl is the number of cavity photons as
This representation suggests that adiabatic evolutiobefore. The cavity coupling terng(b{bza+ aTbEbl), can

might be used foN-photon generation in an analogous man-now be considered to act perturbatively on Ef), to mix

ner to that proposed for single-photon generation in Refsstates differing byj=+ 3, and to change the value of the

[8,9]. We illustrate this here with the manifold correspondingcavity photon number by unity. Relating these states in the

to k=0. Initially the pump laser is offf =0, and the corre- large r limit to our invariantsT and D, we find that the

sponding initial state habl atoms in the|0) state and no e(N,k) manifold is composed of statég,m, ,n,!), where

photons in the cavity]#{(0))=|N,0,0,0. One can then 0<j<(N—k)/2, n=N—2j, andl=N—k—2j (see Fig. 3.

imagine slowly ramping the value of the pump laser until theOur dark state at largeis |0,0N,(N—k));. In the number

pump-laser coupling is much larger than the atom couplingepresentation this is simplyny=0,n;=0n,=N,I=(N
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34| ¢(5.2)
N S 5.2) [Nl 31|
Al v \ li,; N l> «—>x( "|5/2,1/2,0,0>
[3/2,112.2,05, 11.13.1> DI <<y v 2IAl
? \ \ L2.0,1,0> 415/2,-1/2,0,1>
A 4 4
Al 32, 1122,0; 110315 x 112,172,423 p ;
: \ i 220>  BAtAs (B23202> |Al
13/2,-3/2,2,0> [1,-1,3,1> [1/2,-1/2,4,2> 10,0,5,3> 5 ) ¥ 0

|1,-1,3,0> [3/2,3/2,2,1> |2,-1,1,2>  [5/2,-5/2,0,3>

FIG. 3. Pictorial representation of the Hamiltonian for five at-
oms in thee(5,3) manifold using the Schwinger representation for ~ FIG. 4. Pictorial representation of the Hamiltonian for five at-
atomic modeg0) and|1) and assuming red detuning,<0. This  oms in thee(5,3) manifold in the Tavis-Cummings basis for atomic
representation is appropriate when the external driving field ~ modes|1) and|2) and assuming red detuning,<0. This repre-
much larger than the cavity couplig The eigenstates to first order sentation is appropriate when the cavity couplgg much larger
are eigenstates of angular momentum about an axis defined by tiiean the external driving field. The eigenstates of the Tavis-
effective magnetic fieldB,= — A andB,=r. The cavity couplingy Cummings Hamiltonian are complicatézke text and Ref28]) but
acts as a perturbation, mixing states differing by a total Schwingepreserve total Schwinger angular momentiusbtained from modes
angular momentum of 1/2. |1) and|2). The coupling to the external fieldacts as a perturba-

tion, mixing states differing by a total Schwinger angular momen-

—k)) [Eq. (6)]. We note that the loss of a photon only re- tum of 1/2.
duces the photon numbkrand conservegm, , andn,. The ) )
eigenstates in the largelimit are shown schematically in Momentum andk is an eigenvalue ob. The states of the
Fig. 3. Tavis-Cummings model are described in detail in R28]

We now consider the weak pungpmallr) limit. Here we and_ qualitatively in Appendlx A. Figure 4 provides a sche-
find that the eigenstates may also be interpreted in terms of @atic of these states in the smallimit. _
known set of states, but these are now the less well-known Oné useful advantage of these Schwinger angular-
eigenstates of the Tavis-Cummings Hamiltonf@8]. We =~ Momentum representations of the atomic states for our
proceed in this limit by starting from the system Hamil- analysis is that in both of these limits of large and small

tonian, Eq.(5), atr(t)=0. This is simply i.e., whether for a fixed or for fixed j, the corresponding
eigenvalueds, andj, provide a measure of the population in
H=—Ablb,+g(blb,a+ablb,). (8)  the excited state. This population is given Ibjb, =F+F,

) ) ) =J;+J,. This property will be used in Sec. IV C to make
We again make a transformation to a Schwinger representgstimates of the population in the scattering state, i.e., in the
tion, but this time we choose the transformation to be mad@tomic statd1), which is susceptible to spontaneous emis-

between modeb, andb,. The generalized angular momen- sion, and hence of the errors due to spontaneous decay.
tum operators that are created from these two modes will be

denoted here by, i.e., F,=3(bib;—blbs), F,=bib,, IV. OPEN-SYSTEM APPROACH
F_=bjb,, andF,=%(b]b,+blb,), whereF, denotes the o _
corresponding total angular momenturf?=F(F+1). The above description of thie-atom—cavity system as a
Equation(8) then becomes closed quantum system is clearly incomplete, since a proper
assessment of the operation of ARphoton generator re-
H=—-A(F,+F,+g(F,a+F_a"), (9)  quires the consideration of this CQED device as an open

quantum system. We must take into account the two channels
which is recognized to be the off-resonant Tavis-Cummingsy which theN-atom—cavity system interacts with its envi-
Hamiltonian[28]. Note that this Hamiltonian conserves the ronment. These aré) the possibility of spontaneous decay
generalized angular momentufy. It also conserves the from atoms in the excited staj&) to optical modes outside
sum of the number of photonk,and the angular momentum  the cavity, determined by the spontaneous decayyatnd
in the z direction,F,. In the smallr limit we can then in- (i) the coupling of cavity photons to electromagnetic modes
vestigate the effect of finite using a perturbative analysis. outside the optical cavity, characterized by the cavity decay
This perturbative analysis has two consequences for the efate « [29]. The latter provides the required coupling to
ergetics. First, the perturbation duertovhich is of the form  transfer arN-photon state from the cavity mode to an exter-
blby+bgby, will only couple states whose totBlvalue dif-  nal mode. Cavity decay thus plays two different roles here.
fers by 1/2. Second, as a result of this, the resulting change iRirst, in allowing emission of thé&-photon state, and, sec-
energy of the eigenstates of H§) is only second order in.  ond, affecting the dynamics inside the cavity as discussed
The eigenstates of the Tavis-Cummings Hamiltonian are navelow. We describe th&l-atom—cavity system as an open
trivial, but we note that in the limit of larged they are  system within a quantum wave-function formulati@®|. To
approximately eigenstates bf, with a number of photons in  characterize its action as &xphoton generator, we evaluate
the cavity given byl =f —f,—k wheref is the total angular the cavity flux «(a'a).
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In this section, we use the quantum wave-function formu- rZyi1
lation in a perturbative regime to derive analytic estimates a|\IfE)= T|‘I’|':‘+1 . (11
for the error rates of its action as &hphoton generator. In 9%
Sec. V we then make numerical simulations of the full Open(See Sec. Il abov)‘g_'rhus neither of the quantum Jump op-
quantum system, which allow us to ascertain the extent ogratorska or yb, will lead to errors(i.e., to nondarknessn
validity of these perturbative error estimates. the operation of our CQED device, as long as the system is
In this open quantum system analysis, we will show thaimaintained within the dark statd®¥}). Consequently, in
the structure of the closed quantum system, namely, the idegyder to quantify the failure rate of tHe-photon generator
tification of manifolds of statee(N,k), each of which con- ynder these conditions, one need only consider the evolution
tains a dark state that is immune to spontaneous emissigst the system under the conditional Hamiltonidg,,q. We
and that connects adiabatically to the initial state, still plays &l now make a detailed analysis of the errors, starting with
critical role. Whenr(t) is varied in the open quantum sys- ap estimate of the extent of nondarkness introduced by cavity
tem, theN-atom—cavity system e&/olves primarily within the gecay, then estimating the adiabatic error in following the
family of accessible dark stateg) (ke{0,... N}) from  gark state as(t) is varied, and finally estimating the spon-
which no spontaneous emission occurs, just as in the closagneous emission flux rate due to population in |theinter-

quantum system. The system can fail to produce the desirggh) state that is introduced by a combination of cavity decay
N-photon output statenly if photons are actually lost to  and nonadiabaticity.

spontaneous emissioithus a crucial part of assessing the
failure rate of theN-photon generator is to quantify the ex-
tent of “nondarkness,” i.e., the probability that the system ) ) )
will evolve towards a bright state from which spontaneous We first analyze the errors due to cavity dynamics. For
emission may indeed occur. Nondarkness can arise from twiis purpose, we treat thieca’a term in Eq.(10) as a per-
factors: nonadiabatic evolution when the rate of change ofurbation to the closed-system Hamiltonian, £5). In par-
r(t) is too fast, and the conditional dynamics resulting fromticular, under the realistic scenario when cavity decay is
cavity decay which can couple the dark stad) to a non- ~ Weaker than the cavity coupling«(<g), we find that the
dark state. cavity decay term causes the dark stdigs) of the closed-

In the quantum trajectory approaf30—3J, the dynamics  system Hamiltonian to be modified to the staff@f) of the
of the N-atom—cavity system are characterized by determineonditional Hamiltonian, according to
istic nonunitary evolution, interspersed with random

A. Effect of cavity decay on dark states

“ljumps” determined by photon losses from the cavity and by 00 = 421 — i 2 e <¢L(t)|aTa| l//(|3>
spontaneous emissigacattering from the excited state. The | 4(0) =l c(D) 'K#O |4(0) o :
nonunitary evolution is given by the conditional Hamiltonian (12)

Here we have modified our notation to define the states
Heondt)=H(t)—ika'a—iyblb;. (10 |4 (t)) as the instantaneous eigenvalues of the closed-
system Hamiltoniat ;,,q With corresponding energiésw; .
Using this expression, we find the degree of nondarkness due
The imaginary terms-ixa'a and —iyblb; describe the ¢, cavity decayet®=1- (%2492, to be equal to
back action on the quantum system that accumulates be-
tween instances of cavity decay and spontaneous emission K lﬂL(t)|aTa|¢E>|2
jumps, respectively. The corresponding quantum jump opera- V=12,
tors are given bya and yb,. Theb; quantum jump opera-
tor implies that1) decays to an unknown state that is [@t
or |2). For a full discussion of the quantum jump approach
see Ref[30].
For the numerical calculations presented in Sec. V we use

(13

1#0 |wi|2

From this expression we can generate an upper bound on
the degree of nondarkness;’. We first note that

the full conditional Hamiltonian, as required in the quantum > Kk latalyd =, Kyi(t)|atalyd)P

trajectory formulation[30—32. In order to obtain analytic 1#0 !

error estimates here, we proceed first by assuming that the —|<1,//8(t)|aTa|z,/;§>|2 (14)

adiabatic errors are small. Therefore, at all times the state of

lhe dark state. In ths oituation we may negleor he Spontane- = Var(a'a) g, @9
. y neglect the spontane k

ous emission term—iyb{bl treating it implicitly as a + . ; - ;
. T ' ) where Var@'a),o is the variance in the cavity photon
higher-order perturbation than the cavity decay term. The € )‘”k(t) y P

cavity decay termx is treated in first-order perturbation Number in the dark statgy (t)). Our upper bound is then
theory. Before describing the details of this analysis, we not@btained by replacing the Bohr frequencies in Eq. (13)
again that the cavity decay, characterized by the jump operavith the minimal Bohr frequency, and replacing the time-
tor ka, connects dark states in the manif@leN, k) to dark ~ varying variance Vag'a) w0 With its maximum. This re-
states in a lower manifolé(N,k+1), i.e., sults in
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maxVa(aTa)chJ(t) —k, and the maxmg;\r/n pgdobablhty of the system being in a
V< kP (16)  hondark statee =€, "+ €. We can thus obtain an upper
min| w;|? bound on the spontaneous emission flux rate &&,@N
: : : —K).
The maximum variance oé'a is bounded byN—k (see Naturally, by detuning from resonance, we expect to mini-

Appendix B, while the minimal Bohr frequency depends on mize the population that will leak to population in the ex-
A, and will be discussed in detail in Sec. IV C. Our expres-cited state as is the case in both off-resonant Rayleigh and
sion for the bound on the extent of nondarkness due to cavitgaman scattering. Hence, we expect the spontaneous emis-

decay thus becomes sion flux rate to change as a function of the detumingrhe
) value of A affects the spontaneous error rate in two ways.
SV< x“(N—k) 17) First, it controls the value of the minimal Bohr frequency,
min|wi|2 ' and can thereby either reduce or enhance the first-order

population leakage from the dark state. Second, we know by

analogy with the three-level systef8ec. Il and Refg[8,9))

that the nondarkness should contain less excited-state char-
We now examine errors that arise due to nonadiabatigcter as the absolute magnitudefofincreases. Our scheme

evolution resulting from a nonzero derivativeg(t). Using  works independent of the sign d&f. However, for concrete-

the standard treatme[83] we estimate the population leak- nessA is assumed to be negativeed detuning throughout

age from the adiabatic state at a timeZ®=[(D(t)|4p)|? to  the rest of the paper.

B. Adiabatic errors

first order for a giverN andk as Referring to the discussion in Sec. Ill, for small values of
o A, i.e., |A|<r,g, there exist states with energy ontyA
ad KO | g ())]? away from the dark state. In both the small and largjmits,
€x :2 - .z (18)  these states are the=0 states(Sec. Il). Hence, for|Al

70 |wil? <g, the minimal Bohr frequency is equal 2o Furthermore,

the eigenstates are effectively eigenstates),obr F, and
therefore have average valug=0. Therefore, whatever
states the dark state falls into due to either adiabatic error or
cavity decay, these states will have large population in the

excited atomic statgl). So in the smal|A| limit, our upper

Here |y2(t))=(d/dt)| y2(t)). We then apply the standard
upper bound for adiabatic errf83], given by the square of
the maximum angular velocity of the state, divided by the
square of the minimal Bohr frequency,

max( 420 #2(1)) bound described above is reasonable_. Consequently, we use
eﬁdg K k ) (190  the nondarkness factors calculated in El7) and (20)
min| w;|? times 2y(N—k). Hence, we find that the error rate for small

) _values of detuningA| is always less than
One can bound the maximum angular velocity,

max(y(®)|y(t)), to be smaller than mang)?(N—K)/(k , (N—K)2maxr)2 x24(N—k)2

k—)kolgaléfee Appendix € This results in the following upper Y=Y (k+1)g? A2 + |A|2 : (22)

(N—K)max(i)? In contrast, fo_r large values oA |, the energy eigenstates
< ) (20) are effectively eigenstates df or F, (Sec. Ill). The eigen-

(k+1)gmin|w;|? states closest in energy to the dark state arertke-J and

m= —F states. To first order, these states closest in energy to

Equations(20) and (17) provide an upper bound for the the dark state are degenerate with the dark state, but the
nondarkness in the limit where our perturbative approach igsmallest second order energy scalesBgs- — (k+1)(g?
appropriate. When the minimal-energy separation,|aqfiis 4 r2)/A. This smallest energy eigenstate has a population in
independent ofN, both equations suggest that the nondark-the excited state that scales at worse las 1)g¥ A% We
ness scales at worst linearly with Furthermore, we note pelieve that it is a reasonable assumption to multiply this
that the maximum nondarkness decreases with incre&sing smallest eigenstate estimate of the excited-state population
We now proceed to estimate the effect of spontaneous emigy our calculated nondarkness factgrin order to arrive at
sion, or equivalently, the rate of spontaneous emitted flux. 3 petter estimate of the excited atomic state population. This
procedure yields the following expression for large values of

&

C. Spontaneous emission flux rate |A|, namely, an error rate that is independentAjf
The spontaneous emission flux rate is equal to the product - 5
of the population in the spontaneously emitting state and , (N=k)maxr)* «“(N—k)

twice the decay rate of that state, i.eq(®]b;). Unfortu- rey 22
nately, we are unable to analytically calculate the average

population in the excited atomic statblb,). The simplest Careful analysis shows that in the laigg limit, the state
way to estimate an upper bound on the spontaneous flux ratéf energyE; = — (k+1)(g®+r?)/A is not always the closest

is then to use the maximum possible value(bfb;)=N  state to the dark state. Indeed states can be identified for

(k+1)%g* (k+1)g? /"
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particular settings oA andr which are degenerate with the 0.06 —N_z
zero energy dark state. However, these states are shown to be ,f' ---N=3
characterized by highdror j, and therefore in the perturba- 0.05 e N N

tive limit they do not couple directly with the dark state. i Y
Numerical simulations suggest that the situation is similar 0.04f '
for states which cross the null state in the nonperturbative
limit.

Cavity Flux
o
o
(&)

o
o
R

D. Small number of photons in the cavity

Having obtained error estimates due to cavity decay,
nonadiabaticity, and spontaneous emission, we now consider
the dependence on the cavity photon numbén the limit
that one very slowly ramps up, the average number of 0 50 100 150 200
photons in the cavity is always much smaller than 1. We Time (gt)
assume that our dark state is simply

0.01} &

FIG. 5. The cavity flux Z(a'a) for N=2-5 atoms plotted vs

#=I(N=k),0,k,0)+ 7| (N—k—1),0,(k+1),1). dimensionless timeT=gt. These simulations were done using a
linear rampr(T)=RT where R=g/100. The other cavity param-

eters werey=g/20kx=g/10, andA= —2g. The integrated cavity

; tay— 2 A 2_ At
For this_state Va'a)=»"—7"'<»n°=(a'a), where flux Ng increases linearly withN as expected.

=(r/g)y(N—=Kk)/(k+1) [Eg. (6)]. In the limit of small 7,
the variance of the number of ph_otong in the cavity _equal%mdyzo_%g [34], we expect that only 1 of every 200 pho-
the number of photons in the cavity. Since the ramp is veryons will be lost to spontaneous emission.

slow, we expect that the error rate will be solely due to the
cavity dynamics and, therefore, proportional to the variance,
Eqg. (16). The rate of photon output is proportional to the
number of photons in th_e cavity. _Hence, in the case of a The quantum trajectory or quantum jump approach allows
small number of photonkin the cavity, we expect at worse gne to calculate the properties of open quantum systems by
for the error to scale proportional to the number of phOtons’averaging over individual quantum trajector[@9—32. The
o_utput. This implies a total error that scales at worse proporpyasic elements of this approach were described briefly in
tional to the number of atoms, when|A[>g. Sec. IV. Technical details of the algorithm are given in Ref.

One might ask how can we increaseto be of equal [30]. The calculations described below average over 5000
magnitude withg, and still maintain a small number of pho- trajectories per simulation. The simulations were run until
tons in the cavity. The reason is thatraacreases, there is an  the cavity flux and spontaneous emission flux were less than
increasing chance of a photon being emitted. If one varies 196 This results in 2000—5000 steps of length=0.1/g,
slowly enough, the chance of that occurring beforbe- depending on the specific parameters of the system.
comes too large is quite high. At this point, we then change The basic quantity we calculate is the cavity flux,
manifoldse(N,k). Examining the equation for the dark state 2x(a'a), which describes the number of photons emitted
[Eq.(6)] and looking at only the first two terms, one sees thakrom the cavity. For these simulations, we have chosen as our
changing manifolds is equivalent to reducing the effectivefigyre of merit the fractional spontaneous loss. The fractional
value ofr. Compared to th&=0 manifold, the effective’  gpontaneous loss is defined as the number of photons lost to
of the k manifold is equal toy[(N—k)/N(k+1)]Jr. AS N spontaneous emissioNy, divided by the expected number
increases, for small values &fone then needs smaller and of photons outN. We calculateN; as the product of 2 and
smaller values of for the approximation to hold. For ex-  the integral of(b]b,). Due to the statistical error resulting
ample, wherk=0, n=Nr/g. However, as the value &f  from the finite number of trajectories, we have estimated a
increasesr can eventually reach a value comparable to theyymerical uncertainty of- 3% in Ng/N.
productNg and still imply a small number of photons in the
cavity.

To summarize, in the limit of a small number of photdns
in the cavity andA|>g, we expect the ratio of spontaneous  Using a simple driving field which increases linearly with
emission flux to cavity flux to be either a constant, or atime, and realistic cavity parameters based on the cavity of
decreasing function dfl. Explicitly, we expect spontaneous Kimble [34] (r=g/30x=g/10,y=g/20A=—2g), we find
flux to be smaller than (2«%/g®[Var(a'a)dt thatthe deterministic production &F photons within a single
<(2yx% g% [ n?dt [see Eqs(22) and(16)]. The ratio of the  pulse with small loss is indeed possible. Figure 5 shows the
spontaneous flux, (R«%/g%)fn?dt, to the cavity flux, output pulse as a function of time fod<5. We see the
2« [ 7%dt, is thenyx/g? which is larger than the fractional expected linear increase in the area of the output pulse, i.e.,
spontaneous loss, the spontaneous flux divided by the exhe cavity flux 2(a’a), with N. We then calculated the loss
pected number of photons oulN. Therefore, for current of photons into the spontaneous emitted modes, shown in
state-of-the-art optical cavity technology for whiet+0.1g Fig. 6. When the simulation was run in the limit of a small

V. QUANTUM TRAJECTORY SIMULATIONS

A. Production of N-photon state
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FIG. 6. Fractional spontaneous loss k¥ 2-5 as a function of
|Al. A linear ramp was used wittR=g/100, y=g/20, and
=g/10. As expected, one sees that in the Iduyg limit the frac-
tional spontaneous loss scales less tNasee text. Our analytical
bounds in the largk\| limit suggest that the fractional spontaneous
loss should be less thapk/g?=5%10"2 (dotted lind. The dis-

FIG. 7. Fractional spontaneous loss as a function of rampRate
and detuning\ (y=g/20, andx=g/10). As expected, larger ramp
rates lead to an increased loss when the system can no longer adia-
batically follow the dark state. Note how the dependenceAon
varies withR. In the adiabatic limit, smalR, large|A| yields the

crepancy at largk| represents parameters for which our erturba_Iowest fractional spontaneous loss. However, when one ramps the
pancy 9 P P P system quickly, i.e., at largR, the dependence da\| dependence

tive approach is invalid. For the smdly| limit, the increasing . .
. . . . is reversed and smal| yields the lowest loss.
fractional spontaneous loss is consistent with leakage to states that

have a higher occupation of the excited state. .
g P suggested that at worse the fractional error should be con-

stant for small occupation of photons in the cavifyec.

IV D). Figure 7 shows that as the ramp speed increases be-

P/ond the adiabatic regime, the errors increase rapidly. One
n further reduce the error by using a more sophisticated

number of photons in the cavity and with|>g, we ex-
pected that the total photon loss will grow at worst linearly,
as explained above in Sec. IV D. Therefore, the fractiona

_spontaneous IO.SS should e_-lthe_r be cqnstant or (_jecrea_lse Wﬁ e-dependent driving field. For example, the application of
increasingN. This expectation is confirmed by simulations, a Gaussian pulsa,(t) =g ex —(t—to)2(27)], reduces the
. . y - 0. ’
2§ee|:cltgez Soi?g gf g lgot/h ef:g]cct)irsr;a:rse iﬁg&:o‘c‘u@ﬂi tg:g gLfFactional spontaneous loss by a factor of 2, relative to the
P 70 P ' Fractional spontaneous loss resulting from a linear ramp, as

IV D. : g .
. . illustrated in Fig. 8. One expects that appropriate pulse shap-
Although, we have made calculations with only a Sma”ing could further lead to at most an order of magnitude in-

nmuTber Oﬂ\: \éa{:;ﬁrs] tu?rer,l ':nafipea\:ﬁj tfrllat ?‘zqrsgnalytlc etSt"crease in the fidelity. However, the minimal fractional spon-
ates coupie S humeric évidence SUGGESt  aneous loss obtained by pulse shaping is limited by errors

that the deterministic production of larffeFock states when ue to cavity dynamics. In Fig. 6, one sees that this limit is
|A|~g is indeed possible. The numerical results Summa”zegpproached by ramp speedsgst.00.

in Fig. 6 show that fojA|=g we have minimal fractional

spontaneous losses 6£0.3% and that these actually de-
crease with increasinly. Since our analytical results suggest . ] )
an upper bound of 0.5% on the fractional spontaneous loss, The ability to detune from resonance is one of the basic
we can expect to be able to produce a Fock state containi§0!s of atomic physics. Therefore, it is important to deter-
on the order of 100 photons before the total integrated los§ine how the fidelity of our operation scales with the detun-

as|A| is increased fromA =0, the initially large fractional

spontaneous loss should decrease, eventually reaching a con-
) ] ) stant nonzero value fdA|>g. Our numerical calculations
In the preceding section, we used current experimentadonfirm this prediction foN=2-5 atoms, Fig. 6.
cavity parameter$34] and, for simpli_cifty,_a linear driving In Fig. 6, one sees that for detunings| smaller than the
pulse. We now show how one can minimize the spontaneousayity coupling constang, the error decreases as the detun-
loss by tuning various cavity parameters and modifying theng jncreases. One then sees a relatively flat region, followed
driving field. by an increase in error d4| increases. This rise is outside
of the predictive ability of our analytical model and repre-
sents a breakdown in the first-order perturbative methods
For linear ramping with a small rate of change, one findswhen the energy separation between the dark state and
that the fractional error actually decreases with increabing nearest-neighbor state becomes smaller than the ramping
(Fig. 6). This is in line with our analytical bounds which speed. The main conclusion from our numerical simulations

2. Effect of detuning

B. Minimizing the spontaneous loss

1. Pulse shape

043818-9



BROWN et al. PHYSICAL REVIEW A 67, 043818 (2003

0.035

8 —o A=-100x
0.03l —— A=—10x

4 ' —— A=-1x
0.025 = A=0

[=2]
©
o
[

o
o
=
0

N

Fractional Spontaneous Loss

Fractional Spontaneous Loss
[,

(%]

0 20 40 60 80 100
Vacuum Rabi Frequency (g/)

FIG. 9. Fractional spontaneous loss as a function of cavity cou-
pling g and detuningd (R=g/100,y=«/2). One sees that at all

FIG. 8. Fractional spontaneous loss for linear and Gaussiaalues ofA there is a significant decrease in fractional spontaneous
ramping (A= —2g,y=g/20, and k=g/10). For the linear ramp 108s for increasingy. In the large|A| limit, one finds that the de-
(circles, R=g/30. For the Gaussian rampdiamonds, r(t) crease in spontaneous loss with decreagihgs a 1g? dependence,
=g expt—t)%(27), r=50ly. The Gaussian width- was chosen @S predicted by our pertubative analyse Sec. IV D.
such that the process of emitting a single photon would occur at the
same time as the linear ramp. One expects that a more sophisticattm may be constructed in the near future is using a combi-
pulse could result in an order of magnitude reduction of the frachation of an ultracold atomic source and a high-finesse opti-
tional spontaneous loss. cal resonator(with parameters such as those used for the

calculations in Sec. ¥such as those used in the works of

is thatN-photon generation over a wide region of detuningskimble [35]. Modern techniques of laser and evaporative
is nevertheless possible. In terms of Eﬁ:iCielfIWiO of num- Coo|ing in magnetic traps can read”y produce cold and
ber of photons out per time and fractional spontaneous,losstightly confined atomic gases, which can be transported in
our data suggest that a detuning|af~(1—10)g would be  vacuum from a production region to the confines of an opti-

Number of Atoms (N)

optimal. cal resonator. Using ultracold alkali atoms, the st#ésand
o |2) can be chosen to be two ground-state hyperfine levels
3. The good-cavity limit minimizes errors which are both magnetically trapped, such as|fhe 1,mq
For large values ofA|, one can reduce the error by in- =—1) and [F=2me=1) hyperfine states of’Rb. These

creasing the value of. As predicted analytically in Sec. may be connected by Amg=2 Raman transition using ex-
IV C, the total error will reduce ag increases. Furthermore, cited levels on th®1 or D2 transitions—while the strength

if one variesg and r proportionally, one can numerically Of this transition is suppressed at large detunipjsfrom

observe the 3 dependence of fractional loss predicted bythe atomic resonance, our work shows that only moderate
Eq. (22). This is shown in Fig. 9. detunings(severalg) are necessary for high-fidelity opera-

tion. The initialN-atom state may be generated by following
a weak microwave excitation with atom-number-sensitive se-
lection, or, alternately, by real-time observation of the atomic
We have presented a scheme for the deterministic productumber in a given hyperfine level. This would set proper
tion of N-photon Fock states from coupling three-level initial conditions forN-photon generation.
atoms in a high-finesse optical cavity to an external field. Several additional comments are in order. Throughout this
The method relies on adiabatic passage through a continuowsork, we have assumed that the atoms are identically
family of dark states, which is controlled by the ramping upcoupled to the cavity and pump fields. Similarly, we assume
of the external field. We have shown that this procedure cathat these atoms are indistinguishable in their spontaneous
reliably output pulses o photons from the cavity. We have emission to optical modes outside the cavity. It would be
made a detailed analysis of the errors involved in thedesirable for theN-photon generator to operate similarly if
N-photon state production. These result when there is #ese restrictions are eased. Toward this end, it is still pos-
breakdown of adiabaticity and from spontaneous emissiorsible to define a family of dark states for atoms which are not
This error analysis yields analytical bounds on the errorgdentically coupled to the cavity and pump fields. As such,
which are well reproduced by the results of numerical simu-our analytical approach to estimating the photon losses to
lations for up toN=5 photons. Our estimates for physically spontaneous emission could be similarly extended to such
realistic cavity and atom-field parameters indicate that thicases. We believe this would provide similar performance to
scheme may be used reliably to generate states with up the idealized case we have provided herein, i.e., the deter-
N=100 photons. ministic production of Fock states containing as manyas
One way in which such a deterministic Fock-state genera= 100 photons should be possible. However, one would ex-

VI. CONCLUSIONS
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pect that while different spatial arrangementdNcdtoms in a APPENDIX A
cavity would all produceN-photon Fock states, the specific
optical mode occupied by tho$éphotons would differ. Ap-
plications requiring many orthogonal, simultaneous pulses og
N photons (such as Heisenberg-limited interferometry !
would be constrained by these differences.

We envisage a number of applications for deterministi-
cally producedN-photon states. As alluded to in the above
discussion, two orthogon&l-photon states can be combined
using linear beam splitters to create an interferometer whic
is sensitive to differential phase shifts between the two arm
of the interferometer which are on the order oN1{the

In this appendix, we present a qualitative picture of the
igenstates of our system in the smaliimit, i.e., a descrip-
on of the eigenstates of the nonresonant Tavis-Cummings
Hamiltonian, Eq.(8). First, note that if the creation and an-
nihilation operators associated with the cavity were not
present in Eq(8), the Tavis-Cummings Hamiltonian would
become again simply a Hamiltonian describing angular mo-

gentum(F) about some axiszj. In fact, for large enough
L.Al, one sees that is indeed the case, and we do merely have
eigenstates of angular momentum about zhexis. In order

. . . L to get a qualitative picture of the Tavis-Cummings eigen-
Heisenberg limi, rather than the typical JN sensitivity sta?es forqgeneral vaFI)ues of the cavity coupl'gpgndgfinitg

(the standard quantum limibtained with classical light values ofl, it is useful to treat the cavity creation and anni-

pulseq 36]. Two orthogonaN-photon states can also be used, . B
. . h{latlon operators as operators that act to enhance the “effec-
to create a highly entangled state using only measuremen

and linear optic§37]. Such highly entangled photon states tive magnetic field” in the ‘X"dlrecupn. For ex_ample, when
can be used to perform precision measuremé&ags-44. one ha§ a Igrgg number of photohsn_the cavity a standard
The CQED device described in this work could thus be use@PProximation is to replace the cavity photon creation and
for demonstrations of this interferometric method. While the@nnihilation operators with/l. Applying this transformation
low photon numbers deterministically available from thisto Ed. (9), one finds that the Hamiltonian becomes simply
CQED device(given current state-of-the-art cavity param- H=A(F+F,) +gVIF,, ie. the cavity coupling has been
eterg would not yield the precision available from the use oftransformed into an effective magnetic field in thedirec-
much more intense classical light sources, there may be apion.

plications requiring high precision at low light levels that are  The eigenstates of Eq9) are constructed as follows.
enabled by this Fock-state generator, e.g., coherent contrélirst, one starts with atomic states that are the eigenstates of
[41]. Other applications in the field of quantum information, F,, namely,|f,f,)=|n)=f+f,,n,=f—f,. We know that
communciation, cryptography, and computation are also poghe Hamiltonian conserves, the difference in the number of
sible, and we intend to investigate such potential applicationatoms in stat¢2) and the number of photonis,in the cavity.

in future work. Finally, a deterministidN-photon source In this representation, the conserved quantity-ig+ f,+|
would find both basic and applied use for the absolute cali=—k. We can then append a photon state that reflects this
bration of optical detectors, particularly those designed to beéonservation symmetry to the atomic states of mgdgsind
sensitive to multiple photongas opposed to conventional |2) identified viaF,. This results in the atom-photon states
avalanche photodiode devigeSimilarly, theN-photon gen- | f, k)r=|f,f,)e|l=—k+f—f,). The only missing com-
erator can be used as the light source for multiphoton spegonent is now an atomic state of mod®. We then append
troscopy, e.g., resonantly enhanced multiphoton ionizatioghe appropriate number state of the atomic mé@je such
[42], although the optical frequency range that can be prothat N is conserved, according tdl=2f+n,. This then

duced by a given atom-based system would be quite limitedspecifies the remaining index. We have thereby arrived at
Note addedAfter this work was completed we learned 3 set of stategf,f,,k,N)=|ny=N—-2f,n;=f+f, n,=f

that similar N-atom dark states have been proposed in-f, |=—k+f—f,), which may now be used as a basis for

Ref.[43]. expansion of the exact eigenstates of E®). Since the
Hamiltonian Eq.(9) conserved, k, andn, the exact eigen-
states can be formally written as|f,m,k,n)g
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valuesk>0, the eigenstate degeneracy equals the degen- N-—k %2
eracy expected for a total angular-momentum valuef of Z2= > ' T
—k/2, i.e., 2f—k/2)+1. Note that in our scheme we al- =o (N=k=Drd+lt!
;/.v;),/i;%s.ume that there are initially no photons in the CavnyTherefore,
In summary, we see that one can think of the states N-k o1x2 -1
|f,m,k,N)g as being effectively “angular-momentum” states — 72=277,= >, X
possessing a total angular momentipequal tof —k/2 and dx 7K K (N=k=DI(I+ k)
angular-momentum projection ah about the “magnetic
axis.” Although this analogy is not perfect because of theand
spread of actual eigenstates over this basis, it does contain
the following important feature: folA| larger thang i ax ' Ix
- ; ; XZZy= 2, :
=gv2f —k, wherel,,,, is the maximum number of photons i=o (N=k=D!I(I+Kk)!!
in the cavity, the eigenstates are eigenstateB gfwith ei-
genvaluem—k/2. In contrast, for small and medium size Dividing both sides b)ZE gives us
values of|A|, the eigenstates are superpositions over a wide
range off, states. XZ, 1 Ix

Z 22 56 (N—k=DI(+k)!

N—k 2|

N—k 2|

APPENDIX B

In this appendix, we derive an upper bound on the vari- =D« [from Eq. (B4)]

ance of cavity photon number for the dark state. In order to Property 2.

reach this bound, we need to first outline other properties of 7 2
the dark state. We begin with a few definitions. The dark (x k+1 (1. (B5)
state in thee(N,k) manifold is given by Zy
1 Nz—k (—x)! Proof. Z.,, is the normalizaton constant for the state
V=5 v . Hence by definition,
¥ Z 56 J(N—k=D)I(I+ k) [Wicea) y
I(N—Kk—=1),0,(1+K), B1) o x*
X - - ’ 1 + 7 1 p—
( ).0,(1+K).1) ( 2, 3

=6 [N—(k+1)—I(+k+D)"
wherex=r/g andZ, is the normalization constant.
Let |@,) be the state given byd(dx)|¥,). Thus, Therefore,

N—Kk N-k-1 x2(+1)

1 1 [(— -1 =
(—X) (XZy41)?= |:Eo (N—k—1—DI(I+k+1)11’

[P0=3 |7, & VIN=Kk=D!(T+K)!!

, N—k—1

. [+ 1)x20+1)
><|(N—k—|),0,(|+k),|)—Z—t|\Ifk), (B2) (XZys1)?= |Zo (I+1)x

IN—k—(1+ D) (1+1+K)!(T+ 1)1

whereY, is the normalization constant and/@x)Z,=Z, . and

We now present some properties relating these normaliza- N-k (1)x?
tion constants to each other and their derivatives. S¢l Jet (XZyr1)2= D .
be the average number of photons in the cavity for the dark =1 (N—k=Dt{+iH!

state in thek manifold. In other words, o ] )
Dividing both sides byZ; , we get the result

(Ne=(¥Ja'a|¥y)

L Nk L2 (xzkﬂ)z:i ”ik ()x? |
= (B3) Zy Z2 =0 (N—k=D!(I+k)!!

-z 2 NSk

From Eq.(B3), we prove the required result.
Property 1. Property 3.If the system is in the dark staf@,), then

!

Z tay— 2
Xz_t:mk' (B4) Var(a'a)=(xY,)*. (B6)

Proof. It is trivial to see that Property 3 is true when
Proof. By definition, Z, is the normalization constant of =0. Letx#0. Consider the statgb,) given by Eq.(B2).
the dark stat¢W¥,). Hence, Sincex#0, we can extend the summationlte 0. Thus,
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1 (1 NZk I(—x)' 2 Proof.
[Py = N—k
Yi\ Zk 5 JIN=k=DI(T+ K] 1 1%x2
7! (IPh=>z 2 (N—k=D)!(I+k)!!
><|(N—k—|),0,(|+k),|>—Z—k|‘1’k>) -
k [x?
I=N-k ZI; (_X)I—l Z - _I)I( +k)|(|_1)'
|_ —
Yka =) ( XZk)\/(N—k_l)!(|+k)!|! N-k-1 (I+1)x20+D)
X|(N=k—=1),0,(1+k),1} [using EqQ.(B1)] T2 .20 (N—k—I—=D1)I(I+1+K)!I!
1 o (—x) N-(k+1) 21
=—— > (I-(I)p X225, 1 (I+1)x
YiZk =0 “IIN=K-D (TR T 2272 |=20 [N—(k+ 1) — T (T +k+1)!!
X|[(N=k-1),0,(I1+k),l) [using Property 1 X272, 1 N—(k+1) (1+1)x?
Y\ is the normalization constant ¢,). Thus, - z2 a lgo [N=(k+1)= ]I (I +k+ 1)t
N—k 2(-1) x?Z2,,
= I+ 1),
2 (= 00* Nk zz e
Therefore, Using Property 2, we get the required result.
Property 5.
N—k X2I
(xY?=— E (I=0* N DT (= (Dicra- (B8)
Proof. We need to show that
and

(D= (Hx+1=0, (B9)

which is equivalent to showing that

(XY 2= (12— (1))

It easy to see that this is merely Vai@).

Property 4. ZiZics o= ZiZics o i 1=0, (810
1= Me(Ds 1+ 1). (B7)  sinceZ; is positive for allj. We have
|
N-—k Ix2 2N—k—l ™

252 5252 _ 52 _
L2 ZZis sl = Zen 2 (NS FioT 2 2y (N=K=T=m)l (ks Dyiml
Nkt x2m Nik Ix
&= (N—k=1-m)!(m+k+1)'m! &5 (N=k—=DI(+k)!!
N—k 2l

X zk mx2m
_I:O (N=k=D!({+K)!! (N=k=1-m)!(m+k+1)Im!

2l

X2(N—k) N—k-1 (N_k_m)XZm
NI(N=K)!'| &= (N—k—1—m)!(m+k+1)!m!

(I _m)XZ(m+|)
“o & (N—k—1—-m)l(m+k+ L) Im (N—k—DI(T+K)!T

We note that

x2(N=k)  [N_k=1 (N—k—m)x2™
NI(N=K)!| & (N—k—1—m)!I(m+k+1)im!

=0. (B11)
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Thus,

(| _ m)XZ(m-H)

-1
4 (N—k—1—m)!(m+k+1)Im(N—k—DI(T+K)!T"

N—k
> (B12)

N—k—1
Z§ZE+1<I>k_Z§ZE+1<I>k+1B mz,o |

In order to evaluate the sum in E@®12), we choose two integers between 0 &ahe k— 1, a andb. We then evaluate the sum
of the two terms corresponding te=a, m=b, andl=b, m=a. We see that

(a_b)XZ(a+b) (b_a)XZ(eH—b)
(N—k—1-b)!(b+k+1)!b!(N—k—a)!(a+k)!al * (N—k—1-a)!(at+k+1)lal(N—k—b)!(b+k)!b!
B x(2(a+b))
(N—k—Db)!(b+Kk)!b!(N—k—a)!(a+k)!al

(a—b)

Since

x(2(a+b)) _
(N—k—=b)!(b+k)!bl(N—k—a)!(a+k)lal

01

we simply need to determine whether

N—-k—b N-k—a
— =
b+k atk

(a—b)

If a>b, a—Db is positive, and

N—-k—b N-k-a
b+k  a+k

is positive, so the product is therefore also positiveb3fa, a—b is negative, and

N—-k—b N-k—a
b+k  a+k

is also negative, so therefore the product is still positive . Hence, fa atidb

x2@+h) o N-k—b N-k-a 0 B13
- - =
(N=k=b)I(b+ Kbl (N—k—a)l(arkial| 2P| "ok atk ' (B13)
which implies that
N-—k—1 N-k-1 (| _m)xz(m+|) s oy
o b (N—k—=1-m)!(m+k+1)Im/(N=k=DI{+k)!t~— = (B14)
|

By Egs.(B12) and(B14), we have Var(a'a) = (12),— ((1))?

7272 (1) —22Z2, (1):,=0 (B15) =(e((NDkr1t1) = (1)?*  [using Property %

<(l), [using Property 5B<=N—k.
and thus

(Mh=Dier- (B16) APPENDIX C

We determine here an upper bound on the angular veloc-
ity of the dark state, maaZ=max(gL(t)|(t)). We first note
Var(a'a),<(N—Kk). (B17) that using the chain rule, the maﬁ is equivalent to deter-

mining the maximum value ()'szﬁ whereY) is the normal-
Proof. ization constant defined in EqB2). For convenience, we

Property 6.1f the system is in the dark sta{@,),
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will  define c¢=(—x)/V(N—k=DI(I+k)!IT and SinceYZ must be positive and bofB'*(c/)? and Z;)? are
c/ =(—x)"/(N=k=DI(I+K)!I' (throughout this appen- positive, we can write the following inequality:

dix, we will usef’ to represent the derivative éfwith re-

spect tox, andf to represent the derivative dfwith respect

N-k
tot). ;1 (c])?
Since the maximum of the product of two functions is Yi< —
always less than or equal to the product of the maximum of Zy
each function, the first step is to simply take the maximum of
X2, This yields Note thatYZ is an even function of, so the value offZ
at x=0 must be a local minimum or maximum. When one
maxr | 2 takes the derivative of, with respect ta, one finds only a
) (C1)  single zero at the origin. The identi&?YZ=Var(a'a), im-
plies thatY? must go to zero as increases in order to main-
The second step is to determine the maximum value ofain a finite variance. Therefore, the maximum valueYgf
YE_ Using the notation from Appendix B, we first note that occurs at the origin. Explicitly calculating the limit at the
(W | D)= (1N ){(¥|¥)=0, since|¥,) is normalized. origin yields
From Eq.(B2), this implies that

v

(C4

maxx2= (

N—k

N—k -
k+1

> ¢/

I=1

maxYZ= (CH

(N—k—l),O,(I+k),I>=ZQ. (e%)

Consequently, we have an expression for the maximum an-

Hence, we can write the following expression f: gular velocity
1 [Nk "
YE=—( > (c()z—(zoz) . (c3) 2 (N—kjmaxr?
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