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Local-field effects in pattern formation in large-aspect-ratio lasers

Oscar G. Caldero´n, Eduardo Cabrera, M. Anto´n, and J. M. Guerra
Departamento de Optica, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
~Received 5 June 2002; revised manuscript received 19 November 2002; published 22 April 2003!

Transverse effects in the laser dynamics due to near dipole-dipole interactions are studied considering the
presence of permanent electric dipole moments. The semiclassical two-level Maxwell-Bloch equations are used
and a single longitudinal mode is assumed. A traveling wave is selected at threshold when the sum of the cavity
detuning and the near dipole-dipole parameter is larger than zero. As a consequence of this, transverse pattern
can occur even when the laser frequency is larger than the frequency of the atomic transition. Also, a cutoff in
the laser field spectrum arises. We found that the near dipole-dipole interactions significantly modify the
stability picture of the traveling waves. Numerical simulations have been carried out and the effect of the near
dipole-dipole on the pattern formation is addressed.

DOI: 10.1103/PhysRevA.67.043812 PACS number~s!: 42.60.Mi, 42.60.Jf, 42.50.Fx, 42.70.Hj
se
h

to
nc
t
fo
r

th

s
o
b
a

w
n

o

o
h

th
e
in
f

ow
, t
e

nt
rg

t
bi
se

and
eld
, a

in-
l

e-
nd

er-
sion
pen-
lied

oral

on
dia.
ity

-
rea

ista-
er

nt
the
tun-
reti-
e-
sers
is
ch
ro-
a-
ules

of
I. INTRODUCTION

Pattern formation and related transverse effects in la
and other systems have been a field of intense researc
recent years@1–11# ~see also special issue in Ref.@12#!. The
single-longitudinal-mode laser has been a useful labora
for the study of transverse phenomena without the influe
of other degrees of freedom@2#. The control parameter tha
determines the mechanism which gives rise to structure
mation is the Fresnel number~the aspect ratio of a nonlinea
optical system! @4#. If the Fresnel number is low~under
.10), the optical resonator imposes the geometry of
laser field which can be expanded on a suitable basis
empty cavity modes. However, as Fresnel number increa
the behavior of the system becomes more and m
boundary-free, and the structure formation begins to
dominated by bulk parameters and nonlinearities of the
tive medium. In large-aspect-ratio~or large Fresnel number!
homogeneously broadened two-level lasers, it is well kno
that the pattern selected just above threshold depends o
sign of the cavity detuningd @1,7,13,14#. For negative de-
tuning ~cavities tuned above resonance!, the laser selects a
transverse spatially homogeneous solution, whereas for p
tive detuning~cavities tuned below resonance!, a traveling
wave is selected. In this last case, the laser emission is
axis which helps the laser to emit on resonance. This p
nomenon has been experimentally observed@15,16#.

All these works have been done on the framework of
two-level Maxwell-Bloch equations, and the interactions b
tween atoms, which are manifested through dipole-dipole
teractions, have been ignored. This is generally accurate
large interatomic separations and low dipole moments. H
ever, when the atomic system is working near resonance
atoms can acquire a large dipole moment. Moreover, th
are many molecular systems possessing large permane
pole moments. A description of some materials with la
permanent dipole moments can be found in Ref.@17#. The
inclusion of the local-field correction~LFC! in the Maxwell-
Bloch equations leads to a nonlinear relationship between
macroscopic susceptibility and the microscopic polariza
ity, and leads to many interesting phenomena such as
phase modulation in self-induced transparency@18,19#, lin-
ear and nonlinear spectral shifts@20,21#, and novel inversion
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and ultrafast switching effects@22#. Maki et al. @21# mea-
sured the optical response of a dense potassium vapor
demonstrated that the densities required for the local-fi
effect to be important are not large. Thus, for example
density of the sodium atoms around 1017 cm23 gives a shift
of about 1 GHz of the sodiumD line @21#. Another interest-
ing phenomenon induced by the LFC is the so-called intr
sic optical bistability~IOB! that was investigated in severa
works @23–26#. Hehlen et al. experimentally showed the
IOB using Yb31 ions in a Cs3Y2Br9 crystal @27,28#. As a
result of the introduction of LFC, the Bloch equations b
come nonlinear with respect to the population inversion a
polarization amplitude. This nonlinear term can be int
preted as a detuning depending on the population inver
and leads to the appearance of IOB, i.e., the bistable de
dence of the atomic variables on the intensity of the app
field.

The LFC has been also taken into account on the temp
dynamics of lasers. Sanchezet al. @29# and Fromageret al.
@30# have recently studied the effects of local-field correcti
on the laser instabilities in homogeneously broadened me
They found that the LFC significantly reduces the instabil
threshold. A similar result was reported by Bowdenet al. in
the case of inhomogeneously broadened lasers@31#. Re-
cently, Ahufingeret al. have included the laser field diffrac
tion to analyze the spatiotemporal dynamics of broad-a
lasers with the presence of LFC@32,33#. They showed that
the transverse spatial dependence destroys the intrinsic b
bility. They also found cavity solitons by using a Fouri
filter.

Clearly, all of the above works suggest that it is importa
to understand the influence of the local-field effect on
laser transverse dynamics since it is very sensitive to de
ing. For this reason, in the present work we assess theo
cally the modifications on the pattern formation in larg
aspect-ratio homogeneously broadened two-level la
originated by the local-field correction. The description
made by means of semiclassical two-level Maxwell-Blo
equations, assuming a single longitudinal mode and the
tating wave and the slowly varying amplitude approxim
tions. We also study the case where the active molec
present electrical permanent dipole moments@34#. The neu-
tral stability curve obtained in the linear stability analysis
©2003 The American Physical Society12-1
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CALDERÓN et al. PHYSICAL REVIEW A 67, 043812 ~2003!
the nonlasing state presents some features that are simi
those obtained in the case of a Raman laser model@7#. In our
case, the curve depends on the near dipole-dipole~NDD!
dimensionless parameterb that can take positive or negativ
values depending on the relevance of the permanent di
moments. A traveling wave is selected when the sum of
cavity detuning and the NDD parameter is larger than z
(d1b.0) and its wave vector depends on the ND
strength. We find a lower cutoff whenb.0 ~an upper cutoff
whenb,0) in the laser field spectrum that gives the ma
mum ~minimum! spatial scale that can appear in the tra
verse pattern. We have calculated the Busse balloon, tha
the region of stability of traveling waves and compared it
the standard one@7,14#. We found at positive NDD param
eter that the near dipole-dipole interactions removes
Busse balloon, i.e., there is not any stable travelling wa
On the other hand, at negative NDD parameter, the natur
the instability boundaries changes since the Busse balloo
delimited by amplitude instabilities. We have also perform
numerical simulations to observe the pattern formation ab
threshold. The simulations reveals that a more complex
tern formation takes place when the LFC is considered.

The paper is organized as follows: In Sec. II we pres
the two-level Maxwell-Bloch equations when the local-fie
correction is taken into account. We have also considered
presence of active molecules with permanent dipole m
ments. In Sec. III, we analyze how the new term affects
first laser threshold by making a detailed analysis of the n
lasing solution. The lasing solutions above threshold a
their stability analysis are presented in Sec. IV. The num
cal simulations are presented in Sec. V. Finally, Sec. VI p
vides brief conclusions.

II. LASER EQUATIONS

The starting point for our analysis are the Maxwell-Blo
equations for a large-aspect-ratio homogeneously broad
two-level laser with plane and parallel mirrors in the rotati
wave, slowly varying amplitude, and single-longitudina
mode approximations, and taking into account the L
@29,30,35,36#. This system of equations was previously d
rived by Sánchezet al. @29# and Fromageret al. @30# without
diffraction to study the temporal dynamics of lasers.

]E

]t
5 iaD'E1s~P2E!, ~2.1!

]P

]t
52@11 i ~d1bD!#P1DE, ~2.2!

]D

]t
52gFD2r 1

1

2
~E* P1EP* !G . ~2.3!

E, P, andD are the dimensionless envelopes of the elec
field, the electric polarization and the population inversio
respectively.g[g i /g' ands5k/g' are the population in-
version decay rate and the cavity losses, respectively, in u
of the polarization decay rate (g'). d5(v212v)/g' is the
rescaled detuning between the atomic line center and the
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oscillation of the laser field.r represents the pumping param
eter. The spatial transverse size of the laser isL. Light dif-
fraction is taken into account by means of the transve
Laplacian term in the field equation, and is measured by
diffraction coefficienta5c2/(2vg'd2), whered is a char-
acteristic spatial scale in the transverse plane. The valued
was chosen to beL59d for practical purposes in the numer
cal simulations.D'5]x

21]y
2 is the transverse Laplacia

wherex and y are normalized with the spatial scaled. The
time t is normalized versus the polarization decay ratet
5g't). The dimensionless parameterb measured the
strength of the near dipole-dipole interactions. The us
value of this parameter, that is, without permanent dip
moments, is 2k/(3v) @35,29,30#. It has been pointed out in
previous works that a bad cavity condition is necessary
order to obtain an appreciable effect@29–31#. Unless we
impose this condition of bad cavity, with a frequency n
very large, the value of the NDD parameter will be too sm
to produce visible effects. However, if we consider acti
molecules with permanent dipole moments, theb parameter
reads

b5
2k

3v
2

k~m222m11!
2

3vm12
2

, ~2.4!

wherem12 is the transition dipole moment andm22 andm11
are the permanent dipole moments of the excited and gro
level, respectively. Now, the presence of the permanent
pole moments allows us to obtain a significant effect of
local-field correction avoiding the restriction of the bad ca
ity condition. The active molecules suitable to show this b
havior must have a large difference between their perman
dipole moments. As we have mentioned in the Introducti
they are in general, organic compounds with high polar
abilities, presenting significant nonlinear optical propert
@17,37#. Some types of biomolecules also have high perm
nent dipole moments@38,39#. Another example is the ‘‘di-
pole gas,’’ that is, a gaseous medium of atoms or molecu
possessing permanent dipole moments that may consis
hydrogen atoms@40#. Note that the NDD parameterb can
take positive or negative values depending on the releva
of the permanent dipole moments. We will see in the follo
ing section that how this change of sign ofb leads to a
change of the behavior of the system.

III. STABILITY OF THE NONLASING SOLUTION

Let us analyze the stability of the nonlasing solutionE
50, P50, D5r . Following the same procedure as in Re
@7#, we linearize Eqs.~2.1!–~2.3! about this trivial solution
and expand the variables as a Fourier series of transve
modes of wave vectorsk. Then, we obtain the following
instability condition from Eq.~A9!, ~see derivation in Ap-
pendix A!:

G~r ,k2![b2r 21@2b~d2ak2!2~11s!2#r 1~11s!2

1~d2ak2!2

,0. ~3.1!
2-2
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LOCAL-FIELD EFFECTS IN PATTERN FORMATION IN . . . PHYSICAL REVIEW A67, 043812 ~2003!
We clearly observe that the instability condition is a qu
dratic function ofr. Therefore, it is verified for values ofr in
the range limited by the two real roots

r 6~k!5
1

2b2 H 22b~d2ak2!1~11s!26~11s!2

3A12
4b

~11s!2
~d1b2ak2!J , ~3.2!

therefore, the nonlasing solution will be unstable when
normalized pump verifiesr 2(k),r ,r 1(k). As we will see
in the following section, there are two traveling-wave so
tions,Est6 @see Eq.~4.2!#, due to the LFC,r 6(k) being their
corresponding thresholds. This result was previously sho
in the case without laser field diffraction@29,30# and is re-
lated with the intrinsic bistability induced by the LFC. As
was pointed out in those works@29,30#, at moderate values
of the NDD parameter the thresholdr 1 is much larger than
r 2 . In the following, we will focus our attention on th
neutral stability curver 2(k). The minimum value ofr 2(k)
occurs for the traveling wave with the lowest threshold~criti-
cal wave!, that is, for the solution expected at the first las
threshold. Its corresponding wave vector is termedkc . From
the derivative]r 2(k)/]k50 we obtain the solutionk50
andk25(d1b)/a. At this point, we consider the following
two cases.

~a! d,2b: In this case, only the solutionk50 has physi-
cal meaning, hence a spatially uniform solution is expec
at the laser threshold@see Figs. 1~a! and 2~a!#. The value of
the threshold, termedr c , is then

r c[r 2~kc50!5
1

2b2 H 22bd1~11s!22~11s!2

3A12
4b

~11s!2
~d1b!J . ~3.3!

~b! d.2b: In this case, it can be seen that the minimu
value ofr 2(k) is for the other solutionk25(d1b)/a, hence
kc5A(d1b)/a and traveling waves with6kc are expected
at the laser threshold@see Figs. 1~b!, 1~c!, and 2~b!#. The
value of the threshold isr c[r 2(kc)51.

In summary, we have found that the laser emission
off-axis when the sum of the cavity detuning and the ND
parameter is larger than zero. It seems that the transv
solution selected at threshold is determined by the sign of
effective detuningdeff[d1b. Now, transverse traveling
waves can occur even when the lasing frequency is la
than the transition frequency. This can be understood con
ering that the atomic line center shifts to a different va
due to the LFC. As we mentioned above, the value ofb can
take positive or negative values depending on the strengt
the permanent dipole moments, favoring the travelling wa
if they have no significant contribution (b.0) or favoring
the homogeneous solution if they are relevant (b,0).
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Another interesting feature that arises when the LFC
taken into account is the appearance of a cutoff in the la
field spectrum. The value of the cut-off is deduced from t
necessary condition forr 6 @see Eq.~3.2!# to be real,

~11s!224b~d1b2ak2!>0. ~3.4!

The condition~3.4! leads to a different result depending o
the sign of the NDD parameterb. This condition implies a
lower limit (b.0), or an upper limit (b,0), to the value of
k, that is, to the size of the transverse structures that
appear in the laser dynamics. The expression of this cu
can be easily found from Eq.~3.4!,

kcut
2 [

1

a S d1b2
~11s!2

4b D . ~3.5!

FIG. 1. General shape of the neutral stability curve,r 2 ~solid
line! and r 1 ~dashed line!, vs the wave vectora0.5k for a detuning
value ~a! d521,2b, ~b! 2b,d50.5,d0, and ~c! d51.d0.
The parameter values ares51.1 andb50.7. The case without
LFC (b50) is also shown~dotted line!. All these magnitudes are
dimensionless.
2-3
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CALDERÓN et al. PHYSICAL REVIEW A 67, 043812 ~2003!
We analyze the consequences of this result for positive
negative values of the NDD parameter. Atb.0 the unstable
condition ~3.4! leads to a lower cutoff in the electric-fiel
spectrum, that is, only the traveling waves whose wave v
tors k2 are larger thankcut

2 are able to make unstable th
nonlasing solution. This result provides the maximum spa
scale that can appear in the transverse pattern 2p/kcut . Only
if kcut

2 .0, a cutoff in the field spectrum appears@see Fig.
1~c!#. This occurs when the cavity detuning is larger than
threshold value, i.e.,d.d0, whered0 reads

d0[2b1
~11s!2

4b
, ~3.6!

otherwise, all the spatial scales are able to make unstable
nonlasing solution@see Fig. 1~b!#. At b,0, that is, when the
permanent dipole moments play an important role, instea
a lower limit in the electric-field spectrum, an upper lim
arises. Then, only the waves whose wave vectorsk2 are
lower thankcut

2 are able to make unstable the nonlasing
lution. In this case, it is essential thatkcut

2 .0 in order to find
a traveling wave that makes unstable the nonlasing solut
In other words, the detuning must be larger thand0 @see Eq.
~3.6!# to obtain laser emission, otherwise laser emiss
cannot be obtained, however much the pump be increa
This phenomenon, due to the permanent dipole mom

FIG. 2. General shape of the neutral stability curve,r 2 ~solid
line! and r 1 ~dashed line!, vs the wave vectora0.5k for a detuning
value~a! d0,d50.3,2b and~b! d51.2b. The parameter val-
ues ares50.1 andb520.5. The case without LFC (b50) is also
shown~dotted line!. All these magnitudes are dimensionless.
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through the LFC, provides the minimum spatial sca
2p/kcut that can appear in the transverse pattern@see Fig.
2~b!#.

We plot the general shape of the neutral stability cur
r 2(k) and r 1(k), in Fig. 1 for a positive value ofb, and in
Fig. 2 for a negative value ofb. In all cases, we also plot th
neutral stability curve without LFC for comparison purpose

IV. SOLUTION ABOVE THRESHOLD: LINEAR
STABILITY ANALYSIS OF THE LASING SOLUTION

The system admits, above threshold, traveling-wave s
tions of the form

E5Este
i (kW•xW1vstt), P5Pste

i (kW•xW1vstt), D5Dst ,
~4.1!

whereEst andDst are real numbers, whereasPst is a com-
plex quantity. Introducing the expressions~4.1! in Eqs.
~2.1!–~2.3! we found two solutions for the variableEst

2 ,

Est6
2 5r 2r 6~k!, ~4.2!

and the magnitudesvst , Dst, andPst verifying

vst652
bsr 61sd1ak2

11s
, Dst65r 6 ,

Pst65S 11 i
vst61ak2

s DEst6 . ~4.3!

Note that only the traveling waves withk2.kcut
2 ~if b.0),

or k2,kcut
2 ~if b,0) are solutions of the system. The LF

leads to the existence of two traveling wave solutions. T
solution Est2 that appears forr .r 2 and a second one
(Est1) that appears forr .r 1 . As we mentioned above, thi
result was previously shown in the case without diffracti
@29,30# and is related with the intrinsic bistability induced b
the LFC. For the range of pump values used in this work,
nonlasing unstable band (r 2,r ,r 1), only the the solution
Est2 has a physical meaning. In the following, we elimina
the minus sign subindex from this traveling-wave solution

We are going to study the stability of these transve
solutions to finite side-band perturbations by linearizi
about the traveling-wave solution given by Eq.~4.1!. This
stability analysis was originally performed by Jakobsenet al.
@7# and Legaet al. @14#:

Es5~Est1e1eiqW •xW1e2e2 iqW •xW !ei (kW•xW1vstt),

Ps5~Pst1p1eiqW •xW1p2e2 iqW •xW !ei (kW•xW1vstt), ~4.4!

Ds5Dst1deiqW •xW1d* e2 iqW •xW,

wheree1 , e2 , p1 , p2, andd are the perturbations, andqW is
the perturbation wave vector. Then we obtain]tvW

5M(kW ,qW ,r )vW , whereM is a 5 3 5 matrix andvW denotes
the column vector (e1 ,e2* ,p1 ,p2* ,d)T. The time dependence

of vW is chosen aselt, l being the eigenvalues ofM. For a
2-4



ll

s

lc
th

th

i-
e
th
l
le

t
t

nd
l

st
on
-
c-
-
n

o
u
-
th
nd
f
l
tr
n
e
In
d

f
li

av
ou

g-

th
fe
hi
r
am
e
t

ilar
ble
ta-

ing
he
is

of
of

at
ze

le
ive
ity
ter
-
ili-
ver,

e
avel-
The
,

LOCAL-FIELD EFFECTS IN PATTERN FORMATION IN . . . PHYSICAL REVIEW A67, 043812 ~2003!
givenkW andr, the traveling-wave solution is stable if, for a

values of qW , the matrix of the coefficientsM has all its
eigenvalues with negative real part. If any eigenvalue ha

positive real part, the solution represented by (kW ,r ) is un-
stable. The problem of finding the eigenvalues of the 535
matrix has been approached numerically. Let us now ca
late the stability boundaries of the traveling waves in

(kW ,r ) plane. Note that we have to assume a direction for

traveling wavekW and consider perturbations at arbitrary d
rections relative to the fixed direction. Here, we will consid
two cases; perturbations occurring along the direction of
traveling wave (qW parallel tokW ) which give one-dimensiona
~1D! instabilities, and perturbations occurring at right ang
of the traveling wave (qW perpendicular tokW ) which give 2D
instabilities. In both cases, instabilities that correspond
modes that are neutral~eigenvalue with vanishing real part a
q50), are identified as phase instabilities@7#. This type of
instability occurs at long wavelengths. On the other ha
instabilities that correspond to modes that are not neutra
q50 are identified as amplitude instabilities@7#. Amplitude
instabilities occur at short wavelengths. Of the phase in
bilities, the Eckhaus instability, occurring along the directi
of the traveling wave~1D instability!, and the zigzag insta
bility, occurring at right angles to the traveling wave dire
tion ~2D instability!, are the most common. A variety of am
plitude instabilities have been found in 1D both near a
well beyond lasing threshold@5#.

Let us now to consider the following parameters;s51,
g50.1, anda50.01. Fenget al. used similar parameters t
study the stability of transverse traveling waves in the us
case without LFC@5#. In that work, the analysis was re
stricted to the case of one transverse dimension, and
found a new class of amplitude instabilities. First of all a
for comparison purpose, we calculate the Busse balloon
the case without LFC, i.e.,b50. Figure 3 shows the paralle
and perpendicular instability boundaries above the neu
stability curve for the case without LFC. We have chose
positive detuning (d51), where a traveling wave with wav
vector Aakc5Ad51 is selected above lasing threshold.
agreement with Ref.@7# we find a Eckhaus unstable ban
symmetrically placed around the critical traveling wave@see
Fig. 3~a! ~dotted line!#. However, the stable boundary o
traveling waves due to 1D instabilities is defined by amp
tude instabilities@see Fig. 3~a! ~dashed line!#. A zigzag un-
stable band occurs to the immediate left of the critical tr
eling wave and extends all the way to the left boundary
to the neutral stability curve@see Fig. 3~b!#. This is the domi-
nant instability occurring at right angles to the travelin
wave direction~2D instabilities!.

The LFC induces several changes in the stability of
traveling waves. We first analyze the case where the dif
ence between the permanent dipole moments is large, w
gives a negative value ofb. The Busse balloon at simila
parameter values than above, but with negative NDD par
eter (b520.5) is shown in Fig. 4. As we showed in th
preceding section, a traveling wave is selected above
laser threshold with wave vectorAakc5Ad1b.0.7. In
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concern of the parallel perturbations, we observe a sim
behavior than in the usual case without LFC; the sta
boundary of traveling waves is defined by amplitude ins
bilities @see Fig. 4~a! ~dashed line!#. However, this stable
band is not symmetrically placed around the critical travel
wave. Now, traveling waves with wave vector lower than t
critical one are 1D unstable. A more interesting result
found in the case of perpendicular perturbations@see Fig.
4~b!#. The LFC has removed the zigzag instability. Instead
this, an amplitude instability define the 2D stable region
traveling waves. We have found that the LFC atb,0
changes the nature of the instability boundary occurring
right angles to the traveling-wave direction. Let us analy
the case with positiveb, that is, when the permanent dipo
moments do not have a relevant contribution. A posit
value of the NDD parameter can also modify the stabil
picture significantly. The Busse balloon at similar parame
values but withb50.5 is shown in Fig. 5. The right bound
ary of the 1D stable region is defined by amplitude instab
ties, as it happens in the usual case without LFC. Howe
the left boundary is a combination of Eckhaus~phase! and

FIG. 3. Phase~dotted line! and amplitude~dashed line! insta-
bilities corresponding to~a! parallel ~1D! instabilities and~b! per-

pendicular~2D! instabilities in the (kW ,r ) plane. Both magnitudes ar
dimensionless. The traced area indicates the stable region of tr
ing waves including both the phase and amplitude instabilities.
neutral stability curve~solid line! is also shown. Case without LFC
i.e., b50. The parameters ares51, g50.1, andd51.
2-5
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CALDERÓN et al. PHYSICAL REVIEW A 67, 043812 ~2003!
amplitude instabilities@see Fig. 5~a!#. The stable band is
symmetrically placed around the critical traveling wave. T
perpendicular instabilities are shown in Fig. 5~b!. We ob-
serve that the usual zigzag unstable band has shifted to
right from its usual position at the critical wave vector, in o
caseAakc5Ad1b.1.2. We must point out that if we con
sider simultaneously both instabilities; parallel and perp
dicular, we find that there is not any stable traveling wave
the (kW ,r ) plane. It means that the LFC has removed
Busse balloon.

These results seem to indicate that a more complex
havior is expected when the LFC is taken into account.
order to show the characteristic patterns above threshold
have carried out numerical simulations.

V. NUMERICAL SIMULATIONS

We have numerically integrated the Eqs.~2.1!–~2.3! in a
square bidimensional lattice of 1513 151 cells with periodic
boundary conditions by means of a finite-difference alg

FIG. 4. Phase~dotted line! and amplitude~dashed line! insta-
bilities corresponding to~a! parallel ~1D! instabilities and~b! per-

pendicular~2D! instabilities in the (kW ,r ) plane. Both magnitudes ar
dimensionless. The traced area indicates the stable region of tr
ing waves including both the phase and amplitude instabilities.
neutral stability curve~solid line! is also shown. Case with negativ
NDD parameter,b520.5. The parameters ares51, g50.1, and
d51.
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rithm. We have chosen a dimensionless cell sizeDx50.06
which allows a good representation of the traveling wa
that is, enough cells per wavelength and also enough num
of phase rolls in the lattice. The system starts with sm
amplitude random initial conditions and runs for times mu
larger than the characteristic relaxation times~final dimen-
sionless time of the order oft523105).

We have analyzed the pattern formation using the sa
parameter values as in Sec. IV. We first solve the case w
out LFC, i.e.,b50. We used a detuning valued51 and a
pump value close to threshold (r 51.1). After an initial tran-
sient, the system reaches a steady state where a trave
wave solution takes place. The phase field and the po
spectrum are shown in Fig. 6. Its wave vector correspond
the critical wave vector (kc5Ad/a510). We have found a
similar behavior at higher pump values (r 51.2).

As we have seen in the stability analysis of the travelin
wave solutions, a more complex behavior in the case w
LFC is expected. We first analyze the case with nega
NDD parameter (b520.5) for the pump valuer 51.1. The
stability analysis of this case was shown in Fig. 4. We fi

el-
e

FIG. 5. Phase~dotted line! and amplitude~dashed line! insta-
bilities corresponding to~a! parallel ~1D! instabilities and~b! per-

pendicular~2D! instabilities in the (kW ,r ) plane. Both magnitudes ar
dimensionless. The traced area indicates the stable region of tr
ing waves including both the phase and amplitude instabilities.
neutral stability curve~solid line! is also shown. Case with positiv
NDD parameter,b50.5. The parameters ares51, g50.1, andd
51.
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LOCAL-FIELD EFFECTS IN PATTERN FORMATION IN . . . PHYSICAL REVIEW A67, 043812 ~2003!
that the critical traveling-wave solution (kc5A(d1b)/a
.7.1) appears although a pair of optical vortices, i.e., dis
cation defects in the phase structure@see Fig. 7~b! first row#
accompanied by zeros in the intensity field@see Fig. 7~a! first
row# are in the pattern. Figure 7 shows a sequence of th
frames of the intensity field~a!, the phase field~b!, and the
power spectrum~c!. An interesting phenomenon can be o
served in this sequence. In the first half of the time evoluti
a traveling wave with some optical vortices takes place~Fig.
7, first row!. The corresponding wave vector is the critic
one (kc), and the intensity field shows a constant profile w

FIG. 6. ~a! The phase field and~b! the power spectrum for the
usual case without LFC, i.e.,b50. The parameters ares51, g
50.1, a50.01, r 51.1, andd51. All the magnitudes presented i
this figure are dimensionless@including the real (x,y) and the Fou-
rier (kx ,ky) space coordinates#. Note that the traveling-wave solu
tion obtained in this case is characterized in the power spectrum
only one wave vector. This is due to the fact that the electric fi
that we are using in the Maxwell-Bloch equations~2.1!–~2.3! is the
complex electric-field envelope, and therefore the traveling-w
solution@see Eq.~4.1!# is represented by only one wave vector~the
complex conjugate component is not presented!.

FIG. 7. Three frames from a movie showing~a! the intensity
field, ~b! the phase field, and~c! the power spectrum for the cas
with negative NDD parameter,b520.5. The parameters ares
51, g50.1, a50.01, r 51.1, andd51. All the magnitudes pre-
sented in this figure are dimensionless@including the real (x,y) and
the Fourier (kx ,ky) space coordinates#.
04381
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ee
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two opposite topological charge optical vortices. After th
another tilted wave traveling near the opposite direction
pears and the laser cross section breaks in different dom
~Fig. 7, second row!. Both waves have the same wave vect
kc . These domains of tilted waves traveling at opposite
rections are separated by a row of vortices@see Fig. 7~a!
second row#. This is a transient regime of coexistence of tw
transversal structures in the pattern. Finally, the origi
wave disappears and the new one remains during the re
the time evolution~Fig. 7, third row!. In conclusion, we have
seen a pattern formation mechanism in which the traveli
wave direction changes after a competition between the
waves. This phenomenon can mainly result from the para
instability since this instability defines the global stable
gion of traveling wave in the (kW ,r ) plane. We have found tha
for an unstable traveling wavek, the parallel perturbationq
that grows faster is such that the resulting wave vecto
opposite to the critical one, i.e.,k2q.2kc . By increasing
the pump parameter tor 51.2, we find that this phenomeno
~the change of traveling wave direction after competition
two opposite waves! is repeated in an irregular sequence.

To analyze the case withb.0, we have chosen the valu
b50.5, with the same pump valuer 51.1. The stability
analysis was shown in Fig. 5. In this case, the power sp
trum reveals that several traveling waves are in the tra
verse dynamics of the laser@see Fig. 8~c!#. Their correspond-
ing wave vectors are placed around the critical wave vec
(kc5A(d1b)/a.12). The intensity field, the phase field
and the power spectrum are shown in Fig. 8. Several di
cation defects in the phase profile@see Fig. 8~b!#, accompa-
nied by zeros in the intensity field@see Fig. 8~a!# appear.
These optical vortices remains during the whole evolution
the pattern, and also new spatial structures arise. These s
tures are larger than the critical transverse wave and ap
in the intensity field@see Fig. 8~a!# as bright ridges aligned a
right angles to the local traveling wave direction. As we ha
found in previous section, in this case (b50.5) there is not
any stable traveling wave. In particular, the critical traveli
wave is unstable for perpendicular perturbations. Theref
spatial structures perpendicular to the critical traveling wa
are expected.

VI. CONCLUSIONS

The local-field correction in the laser transverse dynam
has been analyzed considering the presence of active

by
d

e

FIG. 8. ~a! The intensity field,~b! the phase field, and~c! the
power spectrum for the case with positive NDD parameter,b
50.5. The parameters ares51, g50.1, a50.01, r 51.1, andd
51. All the magnitudes presented in this figure are dimension
@including the real (x,y) and the Fourier (kx ,ky) space coordi-
nates#.
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CALDERÓN et al. PHYSICAL REVIEW A 67, 043812 ~2003!
ecules with permanent electric dipole moments. This loc
field correction arises from near dipole-dipole interactions
a dense medium. This correction leads to a nonlinear term
the semiclassical Maxwell-Bloch equations which can be
terpreted as a detuning depending on the population in
sion. As it is well known, this term leads to the so-call
intrinsic optical bistability .

The neutral stability curve obtained in the linear stabil
analysis of the nonlasing state depends now on the
dipole-dipole parameterb. This parameter can take positiv
or negative values depending on the relevance of the pe
nent dipole moments. The presence of the LFC shifts
value of the detuning that separates at threshold
traveling-wave solution from the homogeneous one to
negative value~if b is positive! or to a positive one~if b is
negative!. Therefore, the LFC favors the traveling wave
b.0 or the homogeneous solution ifb,0. A lower cutoff
when b.0 was found~an upper cutoff was found whenb
,0) in the laser field spectrum, which provides the ma
mum ~minimum! spatial scale that can appear in the tra
verse pattern.

We have calculated the stability boundaries of the trav
ing waves, i.e., the Busse balloon. We found that the n
dipole-dipole interactions modified the stability picture s
nificantly. We have analyzed the stability when the ND
parameter takes a negative value and we found that the B
balloon is delimited by amplitude instabilities occurrin
along the direction the traveling wave, as in the usual c
without LFC, and at right angles to the traveling wave dire
tion. Therefore, we have found a 2D instability in the las
dynamics. We have also studied the stability at positive v
ues of the NDD parameter. The usual zigzag unstable b
shifts to the right from its usual position at the critical wa
vector. This means that the Busse balloon is removed by
LFC. Finally, we have carried out numerical simulations
the system. We observed close to the threshold that the
favors the growth of defects in the pattern. At negative ND
parameter, we found domains of tilted waves traveling
opposite directions separated by a row of vortices. As a re
of this setup, a new transverse solution traveling at the
posite direction replaces the original one.
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APPENDIX: LINEAR STABILITY ANALYSIS
OF THE NONLASING SOLUTION

In order to analyze the nonlasing solution (E5P50, D
5r ), we linearize the laser equations~2.1!–~2.3! about the
trivial solution and expand the variables as a Fourier se
of transversal modes of wave vectorsk. Therefore, we get for
each set of Fourier components (Ek , Pk , Dk) the following
system:

]Ek

]t
52 iak2Ek1s~Pk2Ek!, ~A1!
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]Pk

]t
52@11 i ~d1br !#Pk1rEk , ~A2!

]Dk

]t
52gDk , ~A3!

which yields the three eigenvalues,

l352g, ~A4!

l652
11s1 i ~d1br1ak2!

2

6AS 12s1 i ~d1br2ak2!

2 D 2

1sr . ~A5!

The trivial solution is linearly unstable if one of the eige
values has a positive real part. The expression under
square root is a complex number that will be denoted
(x1 i j)2, with x>0, namely,

~x1 i j!2[S 12s1 i ~d1br2ak2!

2 D 2

1sr . ~A6!

It can be seen that the trivial solution is unstable if and o
if the real part of Eq.~A5! is positive, i.e.,2„(11s)/2…
6x.0, equivalent tox2.„(11s)/2…2. Equating the real
and imaginary parts on both sides of Eq.~A6! we find thatx
satisfies

F~x2![x42F S 12s

2 D 2

2S d1br2ak2

2 D 2

1sr Gx2

2S 12s

2 D 2S d1br2ak2

2 D 2

50. ~A7!

This expression can be interpreted as a function of a varia
F(u2), which has a real and positive zero foru25x2. It can
be seen that the parabolaF(u2) has two real zeros, one o
them positive and the other negative, but only the posit
one has a physical meaning sincex is defined as real and
then x2 must be positive. Hence,F(u2),0 for u2,x2. In
particular, if @(11s)/2#2,x2 ~the above instability condi-
tion!, the function F takes a negative value foru25@(1
1s)/2#2. Thus, whenx2 is replaced by@(11s)/2#2 in Eq.
~A7!, we have the instability condition,

F„@~11s!/2#2
…[

s

4
@~11s!21~d1br2ak2!22r ~11s!2#

,0, ~A8!

which can be rearranged to read

G~r ,k2![~11s!2~12r !1~d1br2ak2!2,0. ~A9!

It is easy to see that the normalized pumpr must verify r
.1 for Eq. ~A9! to be fulfilled.
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