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Local-field effects in pattern formation in large-aspect-ratio lasers
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Transverse effects in the laser dynamics due to near dipole-dipole interactions are studied considering the
presence of permanent electric dipole moments. The semiclassical two-level Maxwell-Bloch equations are used
and a single longitudinal mode is assumed. A traveling wave is selected at threshold when the sum of the cavity
detuning and the near dipole-dipole parameter is larger than zero. As a consequence of this, transverse pattern
can occur even when the laser frequency is larger than the frequency of the atomic transition. Also, a cutoff in
the laser field spectrum arises. We found that the near dipole-dipole interactions significantly modify the
stability picture of the traveling waves. Numerical simulations have been carried out and the effect of the near
dipole-dipole on the pattern formation is addressed.
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[. INTRODUCTION and ultrafast switching effect22]. Maki et al. [21] mea-
sured the optical response of a dense potassium vapor and
Pattern formation and related transverse effects in lasedemonstrated that the densities required for the local-field
and other systems have been a field of intense research @ffect to be important are not large. Thus, for example, a
recent year§1—11] (see also special issue in REf2]). The  density of the sodium atoms around'iem2 gives a shift
single-longitudinal-mode laser has been a useful laboratorgf about 1 GHz of the sodiur® line [21]. Another interest-
for the study of transverse phenomena without the influenceng phenomenon induced by the LFC is the so-called intrin-
of other degrees of freedof2]. The control parameter that sic optical bistability(IOB) that was investigated in several
determines the mechanism which gives rise to structure forworks [23—26. Hehlen et al. experimentally showed the
mation is the Fresnel numbéhe aspect ratio of a nonlinear IOB using YB*" ions in a CgY,Brg crystal[27,28. As a
optical system [4]. If the Fresnel number is lowunder result of the introduction of LFC, the Bloch equations be-
=10), the optical resonator imposes the geometry of theome nonlinear with respect to the population inversion and
laser field which can be expanded on a suitable basis gfolarization amplitude. This nonlinear term can be inter-
empty cavity modes. However, as Fresnel number increasepreted as a detuning depending on the population inversion
the behavior of the system becomes more and morand leads to the appearance of IOB, i.e., the bistable depen-
boundary-free, and the structure formation begins to belence of the atomic variables on the intensity of the applied
dominated by bulk parameters and nonlinearities of the acfield.
tive medium. In large-aspect-ratior large Fresnel numbker The LFC has been also taken into account on the temporal
homogeneously broadened two-level lasers, it is well knowrdynamics of lasers. Sanchetal. [29] and Fromageket al.
that the pattern selected just above threshold depends on tf@0] have recently studied the effects of local-field correction
sign of the cavity detuning [1,7,13,14. For negative de- on the laser instabilities in homogeneously broadened media.
tuning (cavities tuned above resonahcthe laser selects a They found that the LFC significantly reduces the instability
transverse spatially homogeneous solution, whereas for podireshold. A similar result was reported by Bowdstral. in
tive detuning(cavities tuned below resonance traveling the case of inhomogeneously broadened la$gig. Re-
wave is selected. In this last case, the laser emission is ofzently, Ahufingeret al. have included the laser field diffrac-
axis which helps the laser to emit on resonance. This pheion to analyze the spatiotemporal dynamics of broad-area
nomenon has been experimentally obserEsi16. lasers with the presence of LHB2,33. They showed that
All these works have been done on the framework of thehe transverse spatial dependence destroys the intrinsic bista-
two-level Maxwell-Bloch equations, and the interactions be-bility. They also found cavity solitons by using a Fourier
tween atoms, which are manifested through dipole-dipole infilter.
teractions, have been ignored. This is generally accurate for Clearly, all of the above works suggest that it is important
large interatomic separations and low dipole moments. Howto understand the influence of the local-field effect on the
ever, when the atomic system is working near resonance, tHaser transverse dynamics since it is very sensitive to detun-
atoms can acquire a large dipole moment. Moreover, thering. For this reason, in the present work we assess theoreti-
are many molecular systems possessing large permanent dally the modifications on the pattern formation in large-
pole moments. A description of some materials with largeaspect-ratio homogeneously broadened two-level lasers
permanent dipole moments can be found in R&%]. The originated by the local-field correction. The description is
inclusion of the local-field correctiofLFC) in the Maxwell- made by means of semiclassical two-level Maxwell-Bloch
Bloch equations leads to a nonlinear relationship between thequations, assuming a single longitudinal mode and the ro-
macroscopic susceptibility and the microscopic polarizabiltating wave and the slowly varying amplitude approxima-
ity, and leads to many interesting phenomena such as selfions. We also study the case where the active molecules
phase modulation in self-induced transpareft§,19, lin- present electrical permanent dipole momdid]. The neu-
ear and nonlinear spectral shif0,21], and novel inversion tral stability curve obtained in the linear stability analysis of
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the nonlasing state presents some features that are similar égcillation of the laser field. represents the pumping param-
those obtained in the case of a Raman laser mddeln our  eter. The spatial transverse size of the lasdr. igight dif-
case, the curve depends on the near dipole-dighleD)  fraction is taken into account by means of the transverse
dimensionless parametbrthat can take positive or negative Laplacian term in the field equation, and is measured by the
values depending on the relevance of the permanent dipokiffraction coefficienta=c?/(2wy, d?), whered is a char-
moments. A traveling wave is selected when the sum of thacteristic spatial scale in the transverse plane. The valde of
cavity detuning and the NDD parameter is larger than zeravas chosen to bie=9d for practical purposes in the numeri-
(6+b>0) and its wave vector depends on the NDDcal simulations.A, =g+ 075 is the transverse Laplacian
strength. We find a lower cutoff whes>0 (an upper cutoff wherex andy are normalized with the spatial scale The
whenb<0) in the laser field spectrum that gives the maxi-time 7 is normalized versus the polarization decay rate (
mum (minimum) spatial scale that can appear in the trans-=y t). The dimensionless parametdr measured the
verse pattern. We have calculated the Busse balloon, that istrength of the near dipole-dipole interactions. The usual
the region of stability of traveling waves and compared it tovalue of this parameter, that is, without permanent dipole
the standard ong7,14]. We found at positive NDD param- moments, is 2/(3w) [35,29,3Q. It has been pointed out in
eter that the near dipole-dipole interactions removes thgrevious works that a bad cavity condition is necessary in
Busse balloon, i.e., there is not any stable travelling waveorder to obtain an appreciable effd@9-31. Unless we
On the other hand, at negative NDD parameter, the nature &fpose this condition of bad cavity, with a frequency not
the instability boundaries changes since the Busse balloon igry large, the value of the NDD parameter will be too small
delimited by amplitude instabilities. We have also performedio produce visible effects. However, if we consider active
numerical simulations to observe the pattern formation abovenolecules with permanent dipole moments, thearameter
threshold. The simulations reveals that a more complex pateads
tern formation takes place when the LFC is considered.

The paper is organized as follows: In Sec. Il we present 2k k(pgp— m11)?
the two-level Maxwell-Bloch equations when the local-field b= 30 a..2
correction is taken into account. We have also considered the

presence of active molecules with permanent dipole MOyhere iy, is the transition dipole moment angy,, and wy;
ments. In Sec. lll, we analyze how the new term affects theyre the permanent dipole moments of the excited and ground
first laser threshold by making a detailed analysis of the NONfaygl, respectively. Now, the presence of the permanent di-
lasing solution. The lasing solutions above threshold andysie moments allows us to obtain a significant effect of the
their stability analysis are presented in Sec. IV. The numerijseq) field correction avoiding the restriction of the bad cav-
cal simulations are presented in Sec. V. Finally, Sec. VI proyyy, condition. The active molecules suitable to show this be-
vides brief conclusions. havior must have a large difference between their permanent
dipole moments. As we have mentioned in the Introduction,
Il. LASER EQUATIONS they are in general, organic compounds with high polariz-
habilities, presenting significant nonlinear optical properties
‘%7,31 Some types of biomolecules also have high perma-

, (2.9
3wﬂi

The starting point for our analysis are the Maxwell-Bloc

equations for a large-aspect-ratio homogeneously broaden ; i o
two-level laser with plane and parallel mirrors in the rotatingr'ent dipole moment§38,39. Another example is the “di-

wave, slowly varying amplitude, and single-longitudinal- pole gas,” that is, a gaseous medium of atoms or molecules

T oS i t dipole moments that may consist of
mode approximations, and taking into account the LFCPOSSESSINg permanen
[29,30,35,3% This system of equations was previously de_hydrogen atom$40]. Note that the NDD parametdr can

rived by Smchezet al.[29] and Fromageet al.[30] without take positive or negative values depend?ng on_the relevance
diffraction to study the temporal dynamics of lasers. of the permanent dipole moments. We will see in the follow-
ing section that how this change of sign bfleads to a

JE change of the behavior of the system.
EziaALEﬂr(P—E), (2.9
ll. STABILITY OF THE NONLASING SOLUTION
P . Let us analyze the stability of the nonlasing solutién
—=—[1+i(6+ + . . .
ar [1+i(5+bD)]P+DE, 22 =0, P=0, D=r. Following the same procedure as in Ref.

[7], we linearize Eqgs(2.1)—(2.3) about this trivial solution
aD 1, . and expand the variables as a Fourier series of transversal
—- =~ Y|D-r+5(EP+EPY)|. (2.3 modes of wave vectork. Then, we obtain the following
instability condition from Eq.(A9), (see derivation in Ap-
E, P, andD are the dimensionless envelopes of the electrigoendix A:
field, the electric polarization and the population inversion,

respectively.y=y/y, ando=x«/y, are the population in- G(r,k?)=b?r?+[2b(5-ak?) = (1+0)’]r +(1+0)?

version decay rate and the cavity losses, respectively, in units +(6—ak?)?
of the polarization decay ratey(). 6= (wy;— w)/y, is the
rescaled detuning between the atomic line center and the fast <0. (3.1
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We clearly observe that the instability condition is a qua- 15
dratic function ofr. Therefore, it is verified for values ofin (@) e
the range limited by the two real roots | T

ro(k)= 1 —2b(8—ak®) +(1+ )%+ (1+0)?
- 2b? -

\/ 4b , . e
X 1—(le )2(5+b—ak) : (3.2 5 T 3

g

therefore, the nonlasing solution will be unstable when the 10
normalized pump verifies_ (k) <r<r, (k). As we will see
in the following section, there are two traveling-wave solu- (b)
tions, Eg- [see Eq(4.2)], due to the LFCr .. (k) being their
corresponding thresholds. This result was previously shown
in the case without laser field diffractidi29,3Q and is re- ~
lated with the intrinsic bistability induced by the LFC. As it 05
was pointed out in those workg9,30, at moderate values a’k
of the NDD parameter the threshald is much larger than [ it
r_. In the following, we will focus our attention on the 0 - >
neutral stability curve _(k). The minimum value of _(k) 05
occurs for the traveling wave with the lowest thresh@iti- a k
cal wave, that is, for the solution expected at the first laser
threshold. Its corresponding wave vector is terrkgdFrom
the derivativedr _(k)/dk=0 we obtain the solutiork=0 (C)
andk?=(8+b)/a. At this point, we consider the following
two cases.

(@) 6<—h: In this case, only the solutiok=0 has physi- &
cal meaning, hence a spatially uniform solution is expected
at the laser thresholdee Figs. (a) and 2a)]. The value of
the threshold, termer;, is then

10

= — — 1 _ 2__ 2 0.5
rc—l’_(kC—O)—z—bz{ 2b6+(1+ o) —(1+0) a k
FIG. 1. General shape of the neutral stability cunve,(solid
4b line) andr, (dashed ling vs the wave vectoa®% for a detuning
X \/1— (1+U)2(5+ b)}. (33 value(@ s=-1<-h, (b) —~b<6=0.5<8,, and(c) 6=1>&,.
The parameter values ake=1.1 andb=0.7. The case without
LFC (b=0) is also showr(dotted ling. All these magnitudes are
(b) 6> —h: In this case, it can be seen that the minimumgimensionless.
value ofr _(k) is for the other solutiok?= (5+b)/a, hence
k.=+/(6+b)/a and traveling waves with: k., are expected Another interesting feature that arises when the LFC is
at the laser thresholflsee Figs. (b), 1(c), and 2b)]. The taken into account is the appearance of a cutoff in the laser
value of the threshold is.=r _(k;)=1. field spectrum. The value of the cut-off is deduced from the
In summary, we have found that the laser emission isiecessary condition far. [see Eq.(3.2)] to be real,
off-axis when the sum of the cavity detuning and the NDD
parameter is larger than zero. It seems that the transverse (14 0)2—4b(5+b—ak?)=0. (3.9
solution selected at threshold is determined by the sign of the
effective detuning 4= 56+b. Now, transverse traveling The condition(3.4) leads to a different result depending on
waves can occur even when the lasing frequency is largdhe sign of the NDD parametdr. This condition implies a
than the transition frequency. This can be understood considower limit (b>0), or an upper limit f<<0), to the value of
ering that the atomic line center shifts to a different valuek, that is, to the size of the transverse structures that can
due to the LFC. As we mentioned above, the valub oin  appear in the laser dynamics. The expression of this cutoff
take positive or negative values depending on the strength ¢fn be easily found from E¢3.4),
the permanent dipole moments, favoring the travelling wave 5
if they have no significant contributiorb&0) or favoring K2 == (1+0) )
the homogeneous solution if they are relevam(Q). cut g 4b

o+b—

(3.5
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-------- through the LFC, provides the minimum spatial scale,
N (a) 2mlk.,; that can appear in the transverse patfe®e Fig.
™ 2(b)].
We plot the general shape of the neutral stability curve,
r_(k) andr,(k), in Fig. 1 for a positive value db, and in

rth
&

2 ; Ko . Fig. 2 for a negative value df. In all cases, we also plot the
ao‘skc "/ neutral stability curve without LFC for comparison purposes.
IV. SOLUTION ABOVE THRESHOLD: LINEAR
0 r r STABILITY ANALYSIS OF THE LASING SOLUTION
0.0 04 038 12
&k The system admits, above threshold, traveling-wave solu-

tions of the form

E= Estei(R->Z+ wstf), pP= Pstei(lz-)er wstf), D= Dst!

(b) 4.0

4 05 whereEg; andDg; are real numbers, where&; is a com-

< “ cut plex quantity. Introducing the expressiori4.1) in Egs.
W (2.1)—(2.3) we found two solutions for the variabléﬁt,

A 05 '
e 4 kf“/ . EZ.=r—r.(k), (4.2

and the magnitudess;, Ds;, and P, verifying

0 T T
0.0 04 0.8 1.2
bor .+ o5+ak? b
05 = Y
a’k Dst= 1+o st== =
FIG. 2. General shape of the neutral stability cumve,(solid @ers +ak?

line) andr . (dashed ling vs the wave vectoa®% for a detuning Poie=| 1+i b Egir - (4.3
value(a) §p<6=0.3<—b and(b) 6=1>—b. The parameter val-

ues arer=0.1 andb= —0.5. The case without LF(b0) is also

shown(dotted ling. All these magnitudes are dimensionless. Note that only the traveling waves W'ﬁ>kcut (if b>0),

or k2<k2,, (if b<0) are solutions of the system. The LFC

We analyze the consequences of this result for positive anl§2ds to the existence of two traveling wave solutions. The
negative values of the NDD parameter.lst 0 the unstable  Solution Eg; that appears for>r_ and a second one
condition (3.4) leads to a lower cutoff in the electric-field (Est+) that appears for>r, . As we mentioned above, this
spectrum, that is, only the traveling waves whose wave vedesult was previously shown in the case without diffraction

tors k? are larger thark?,, are able to make unstable the [29,3Q and is related with the intrinsic bistability induced by

nonlasing solution. This result provides the maximum spatiaFhe LFC' For the range of pump values used in this wo_rk, the
nonlasing unstable band (<r<r,), only the the solution

scale that can appear in the transverse pattettkg,;. Onl ) . . -
PP P G y Esi_ has a physical meaning. In the following, we eliminate

if kgm>o, a cutoff in the field spectrum appedsee Fig. . X . . . .
: : S the minus sign subindex from this traveling-wave solution.
1(c)]. This occurs when the cavity detuning is larger than a We are going to study the stability of these transverse

threshold value, i.e 5> &, whered, reads solutions to finite side-band perturbations by linearizing
about the traveling-wave solution given by Edg.1). This

2
So=—b+ M (3.6)  stability analysis was originally performed by Jakobseal.
4b [7] and Legaet al. [14]:
otherwise, all the spatial scales are able to make unstable the E.=(Eq+e,e9 "+ e e~ 0% gi(kx+os),
nonlasing solutiorisee Fig. 1b)]. At b<0, that is, when the
permanent dipole moments play an important role, instead of Po= (Pt pleid-£+ pzefid.i)ei(ﬁ-imstr) (4.4)

a lower limit in the electric-field spectrum, an upper limit
arises. Then, only the waves whose wave vecitdrsare
lower thank?,, are able to make unstable the nonlasing so-

lution. In this case, it is essential thieft,>0 in orde_r to find ~ wheree,, €, p;, P,, andd are the perturbations, argis
a traveling wave that makes unstable the nonlasing solutloq . I
) he perturbation wave vector. Then we obtaifw
In other words, the detuning must be larger thigrisee Eq. IR . ) -
(3.6)] to obtain laser emission, otherwise laser emissiori- M(K.d.r)v, where/\:l IS a 'fx ? matrix andv denotes
cannot be obtained, however much the pump be increasea?efO'U”‘n vectorég, ,e5 ,p;1,p; ,d) . The time dependence
This phenomenon, due to the permanent dipole momentsf v is chosen ag'”, \ being the eigenvalues o¥1. For a

D =Dg+ded4*+d*e 19X
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parallel instabilities (1D)

givenIZ andr, the traveling-wave solution is stable if, for all 8

values ofq, the matrix of the coefficients\{ has all its (a)
eigenvalues with negative real part. If any eigenvalue has ¢ 6

positive real part, the solution represented lEyrI is un- / E’s‘f::l‘ft;
stable. The problem of finding the eigenvalues of the% =~ P :

matrix has been approached numerically. Let us now calcu- 41 Eckhaus | /

late the stability boundaries of the traveling waves in the instability} ; /

(k,r) plane. Note that we have to assume a direction for the ] 5_ / )
traveling wavek and consider perturbations at arbitrary di- //

rections relative to the fixed direction. Here, we will consider
two cases; perturbations occurring along the direction of the o . . .

traveling wave G parallel toIZ) which give one-dimensional 00 03 ro b3 20
(1D) instabilities, and perturbations occurring at right angles &k

of the traveling wave d perpendicular t) which give 2D 2
instabilities. In both cases, instabilities that correspond to b
modes that are neutregigenvalue with vanishing real part at (b)
g=0), are identified as phase instabilitied. This type of 6
instability occurs at long wavelengths. On the other hand,
instabilities that correspond to modes that are not neutral a
g=0 are identified as amplitude instabilitigg]. Amplitude = ~ 44
instabilities occur at short wavelengths. Of the phase insta:
bilities, the Eckhaus instability, occurring along the direction
of the traveling wavg1D instability), and the zigzag insta- 29 ‘
bility, occurring at right angles to the traveling wave direc- s
tion (2D instability), are the most common. A variety of am-
plitude instabilities have been found in 1D both near and 7}, 05 10 s 20
well beyond lasing thresholi®b].
Let us now to consider the following parametesss 1, ak

vy=0.1, anda=0.01. Fenget al. used similar parameters to _ . N
study the stability of transverse traveling waves in the usuallj.l.t'.:le' 3. Phase((j(_jottetd ling arlnldlalr%ph_tudte(g??hed “ni'nSta_'
case without LFC[5]. In that work, the analysis was re- fies correspon 'ng__(_éa) para %( ) instabilities and_( ) per
stricted to the case of one transverse dimension, and th .ndlcglar(ZD) instabilities |nthe.k,r.) plane. Both magnltydes are
found a new class of amplitude instabilities. First of all anddimensionless. The traced area indicates the stable region of travel-
for comparison purpose, we calculate the Busse balloon fof'9 Waves |r_1;|ud|ng bOth th_e phase and amplitude |n§tabllltles. The
. . . neutral stability curvésolid line) is also shown. Case without LFC,
the case without LFC, i.eb=0. Figure 3 shows the parallel . -~ = a -
. . - ) ie.,b=0. The parameters are=1, y=0.1, andé=1.

and perpendicular instability boundaries above the neutral
stability curve for the case without LFC. We have chosen &oncern of the parallel perturbations, we observe a similar
positive detuning §=1), where a traveling wave with wave pehavior than in the usual case without LFC; the stable
vector \Jak,=\/6=1 is selected above lasing threshold. In boundary of traveling waves is defined by amplitude insta-
agreement with Refl7] we find a Eckhaus unstable band bilities [see Fig. 4a) (dashed ling. However, this stable
symmetrically placed around the critical traveling wasee  band is not symmetrically placed around the critical traveling
Fig. 3@ (dotted ling]. However, the stable boundary of wave. Now, traveling waves with wave vector lower than the
traveling waves due to 1D instabilities is defined by ampli-critical one are 1D unstable. A more interesting result is
tude instabilitiegsee Fig. 8a) (dashed ling. A zigzag un-  found in the case of perpendicular perturbatijase Fig.
stable band occurs to the immediate left of the critical trav-4(b)]. The LFC has removed the zigzag instability. Instead of
eling wave and extends all the way to the left boundary outhis, an amplitude instability define the 2D stable region of
to the neutral stability curvgsee Fig. 8)]. This is the domi-  traveling waves. We have found that the LFC &t 0
nant instability occurring at right angles to the traveling- changes the nature of the instability boundary occurring at
wave direction(2D instabilities. right angles to the traveling-wave direction. Let us analyze

The LFC induces several changes in the stability of thehe case with positivé, that is, when the permanent dipole
traveling waves. We first analyze the case where the differmoments do not have a relevant contribution. A positive
ence between the permanent dipole moments is large, whidfalue of the NDD parameter can also modify the stability
gives a negative value df. The Busse balloon at similar picture significantly. The Busse balloon at similar parameter
parameter values than above, but with negative NDD paramyalues but withb=0.5 is shown in Fig. 5. The right bound-
eter b=—0.5) is shown in Fig. 4. As we showed in the ary of the 1D stable region is defined by amplitude instabili-
preceding section, a traveling wave is selected above thges, as it happens in the usual case without LFC. However,
laser threshold with wave vectofak,=\6+b=0.7. In  the left boundary is a combination of Eckhagmhase and

/ perpendicular instabilities (2D)

amplitude;
instability}

<
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parallel instabilities (1D) 8 = parallel instabilities (1D)

@ T @ =
=

64 amplitude / ; iU .,
instability / Eckhaus %
B ’ / ~ ; i

 Bckhaug

4 v r: N
// ; instabilify
2 : L
0 r T T
0 . . : . . 0.0 0.3 1.0 L5 2.0
000 025 050 075 1.00 125 1.50 os
05 a k
a’'k
8 ) perpendicular instabilities (2D)
8 7 perpendicular instabilities (2ID) (b)
(b) 5
; 6 \
6 !
~ amplitude .Z‘g;ﬁ gy
. 44 instability \‘ instability g / -
4
2 5
\ /
2- \—/
0 T T T
0.0 0.5 1.0 15 2.0
0 T T L} L} L} L} 05
000 025 050 075 100 125 150 a >k
0.5
a’k FIG. 5. Phasddotted ling and amplitude(dashed ling insta-

bilities corresponding td¢a) parallel (1D) instabilities and(b) per-

bilities corresponding tda) parallel (1D) instabilities and(b) per-  PendiculanD) instabilities in the k,r) plane. Both magnitudes are
pendicular(2D) instabilities in the E,r) plane. Both magnitudes are dimensionless. The traced area indicates the stable region of travel-

dimensionless. The traced area indicates the stable region of travehd Waves mc;ludmg bOth. thg phase and amplitude |nsFab|I|t|g§. The
eutral stability curvésolid line) is also shown. Case with positive

ing waves including both the phase and amplitude instabilities. Th - -
neutral stability curvésolid line) is also shown. Case with negative %DD parameterb=0.5. The parameters ate=1, y=0.1, ands

NDD parameterb= —0.5. The parameters are=1, y=0.1, and
o=1.

FIG. 4. Phasddotted ling and amplitude(dashed ling insta-

rithm. We have chosen a dimensionless cell size=0.06

amplitude instabilitiessee Fig. $a)]. The stable band is which allows a good representation of the traveling wave,
symmetrically placed around the critical traveling wave. Thethat is, enough cells per wavelength and also enough number
perpendicular instabilities are shown in Fighp We ob-  of phase rolls in the lattice. The system starts with small-
serve that the usual zigzag unstable band has shifted to th#nplitude random initial conditions and runs for times much
right from its usual position at the critical wave vector, in our larger than the characteristic relaxation tin{éisal dimen-
caseyak,=\/8+b=1.2. We must point out that if we con- sionless time of the order af=2x 10°).
sider simultaneously both instabilities; parallel and perpen- We have analyzed the pattern formation using the same
dicular, we find that there is not any stable traveling wave inparameter values as in Sec. IV. We first solve the case with-
the (k,r) plane. It means that the LFC has removed theout LFC, i.e.,b=0. We used a detuning valug=1 and a
Busse balloon. pump value close to threshold=€ 1.1). After an initial tran-

These results seem to indicate that a more complex besient, the system reaches a steady state where a traveling-
havior is expected when the LFC is taken into account. Invave solution takes place. The phase field and the power
order to show the characteristic patterns above threshold, wepectrum are shown in Fig. 6. Its wave vector corresponds to
have carried out numerical simulations. the critical wave vectorK.= Jé/a=10). We have found a
similar behavior at higher pump values=1.2).

As we have seen in the stability analysis of the traveling-
wave solutions, a more complex behavior in the case with

We have numerically integrated the E¢8.1)—(2.3) ina  LFC is expected. We first analyze the case with negative
square bidimensional lattice of 154 151 cells with periodic NDD parameter lf= —0.5) for the pump value=1.1. The
boundary conditions by means of a finite-difference algo-stability analysis of this case was shown in Fig. 4. We find

V. NUMERICAL SIMULATIONS
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x -10 0 10 FIG. 8. (a) The intensity field,(b) the phase field, an¢t) the
K, power spectrum for the case with positive NDD parameler,
=0.5. The parameters are=1, y=0.1, a=0.01,r=1.1, andé$
FIG. 6. (a) The phase field antb) the power spectrum for the =1. All the magnitudes presented in this figure are dimensionless
usual case without LFC, i.eh=0. The parameters are=1, y  [including the real X,y) and the Fourier K, ,k,) space coordi-
=0.1,a=0.01,r=1.1, ands=1. All the magnitudes presented in nateg.
this figure are dimensionle$mcluding the real X,y) and the Fou-
rier (ky,k,) space coordinat¢sNote that the traveling-wave solu-
tion obtained in this case is characterized in the power spectrum b
only one wave vector. This is due to the fact that the electric field
that we are using in the Maxwell-Bloch equatid2sl)—(2.3) is the
complex electric-field envelope, and therefore the traveling-wav
solution[see Eq(4.1)] is represented by only one wave vecttire
complex conjugate component is not presented

@ (b)

N

’HHHWHH

two opposite topological charge optical vortices. After that,
nother tilted wave traveling near the opposite direction ap-
ears and the laser cross section breaks in different domains
(Fig. 7, second royv Both waves have the same wave vector,
é(c. These domains of tilted waves traveling at opposite di-
rections are separated by a row of vortidese Fig. 7a)
second rovl This is a transient regime of coexistence of two
transversal structures in the pattern. Finally, the original

- . . _ =T~ =  Wwave disappears and the new one remains during the rest of
that the critical traveling-wave solutionk{=(5+b)/a the time evolution(Fig. 7, third row. In conclusion, we have

=7.1) appears although a pair of optical vortices, i.e., dislo- : L ) ;
cation defects in the phase structfisee Fig. ) first row] seen a pattern formation mechanism in which the traveling-

accompanied by zeros in the intensity figee Fig. 7a) first wave direction changes after a competition between the two

row] are in the pattern. Figure 7 shows a sequence of threyaves. This phenomenon can mainly result from the parallel

frames of the intensity fielda), the phase fieldb), and the Ihstability since this instability defines the global stable re-
power spectrunic). An interesting phenomenon can be ob- 9ion of traveling Wave'in thek(r) plane. We have found that
served in this sequence. In the first half of the time evolutionfor an unstable traveling wave the parallel perturbatiog
a traveling wave with some optical vortices takes pldgig.  that grows faster is such that the resulting wave vector is
7, first row). The corresponding wave vector is the critical ©PPOSIte to the critical one, i.ek—q=—k.. By increasing

one (), and the intensity field shows a constant profile withthe pump parameter to=1.2, we find that this phenomenon
(the change of traveling wave direction after competition of

two opposite wavesis repeated in an irregular sequence.

To analyze the case with™>0, we have chosen the value
5 b=0.5, with the same pump value=1.1. The stability
analysis was shown in Fig. 5. In this case, the power spec-
trum reveals that several traveling waves are in the trans-
verse dynamics of the lasggee Fig. &)]. Their correspond-
ing wave vectors are placed around the critical wave vector
(ke=+(8+b)la=12). The intensity field, the phase field,
and the power spectrum are shown in Fig. 8. Several dislo-
cation defects in the phase profileee Fig. 8)], accompa-
nied by zeros in the intensity fieltsee Fig. 8)] appear.
These optical vortices remains during the whole evolution of
the pattern, and also new spatial structures arise. These struc-
tures are larger than the critical transverse wave and appear
in the intensity field see Fig. &)] as bright ridges aligned at
right angles to the local traveling wave direction. As we have
found in previous section, in this cask=0.5) there is not
any stable traveling wave. In particular, the critical traveling
50 5 wave is unstable for perpendicular perturbations. Therefore,
spatial structures perpendicular to the critical traveling wave
are expected.

(b) ©)

AN

FIG. 7. Three frames from a movie showiri@ the intensity
field, (b) the phase field, an¢t) the power spectrum for the case

with negative NDD parametelh=—0.5. The parameters are VI. CONCLUSIONS

=1, y=0.1,a=0.01,r=1.1, ands=1. All the magnitudes pre-

sented in this figure are dimensionl¢sxluding the real x,y) and The local-field correction in the laser transverse dynamics
the Fourier k,,k,) space coordinatés has been analyzed considering the presence of active mol-
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ecules with permanent electric dipole moments. This local- Py _

field correction arises from near dipole-dipole interactions in —7 — ~[1+i(6+bn)]P+TE, (A2)
a dense medium. This correction leads to a nonlinear term in

the semiclassical Maxwell-Bloch equations which can be in-
terpreted as a detuning depending on the population inver-
sion. As it is well known, this term leads to the so-called ar

intrinsic optical bistability . ] ) )

The neutral stability curve obtained in the linear stability Which yields the three eigenvalues,
analysis of the nonlasing state depends now on the near
dipole-dipole parametds. This parameter can take positive
or negative values depending on the relevance of the perma-
nent dipole moments. The presence of the LFC shifts the

ID
——=—7Dx, (A3)

)\32_71 (A4)

_ 1l+o+i(st+br+ak’)

+

value of the detuning that separates at threshold the = 2

traveling-wave solution from the homogeneous one to a i —

negative valugif b is positive or to a positive onéif b is N \/( 1-o+i(d+br—ak?) for. (A5)
negative. Therefore, the LFC favors the traveling wave if - 2 '

b>0 or the homogeneous solutionb& 0. A lower cutoff
whenb>0 was found(an upper cutoff was found whem  The trivial solution is linearly unstable if one of the eigen-
<0) in the laser field spectrum, which provides the maxi-values has a positive real part. The expression under the
mum (minimum) spatial scale that can appear in the trans-square root is a complex number that will be denoted by
verse pattern. (x+i€)2, with y=0, namely,

We have calculated the stability boundaries of the travel-
ing waves, i.e., the Busse balloon. We found that the near ., [1—o+i(é+br—ak’)
dipole-dipole int ti dified the stability pict ig- (X Fié)"=

pole-dipole interactions modified the stability picture sig 2
nificantly. We have analyzed the stability when the NDD
parameter takes a negative value and we found that the Busgecan be seen that the trivial solution is unstable if and only
balloon is delimited by amplitude instabilities occurring if the real part of Eq.(A5) is positive, i.e.,— ((1+¢)/2)
along the direction the traveling wave, as in the usual case- >0, equivalent toy?>((1+ ¢)/2)2. Equating the real

without LFC, and at right angles to the traveling wave direc-and imaginary parts on both sides of E&6) we find thaty
tion. Therefore, we have found a 2D instability in the lasergatisfies

dynamics. We have also studied the stability at positive val-

2
+or. (A6)

ues of the NDD parameter. The usual zigzag unstable band 1-o\? [S+br—ak?\?

shifts to the right from its usual position at the critical wave F(XZ)EXA—[( > ) —( > +or |x?
vector. This means that the Busse balloon is removed by the

LFC. Finally, we have carried out numerical simulations of 1—0\?( 6+br—ak?\?

the system. We observed close to the threshold that the LFC _( > > =0. (A7)

favors the growth of defects in the pattern. At negative NDD

parameter, we found domains of tilted waves traveling atrpis expression can be interpreted as a function of a variable,
opposite directions separated by a row of vortices. As a resu&(ez) which has a real and positive zero fé7= y2. It can
of this setup, a new transverse solution traveling at the oppq se,en that the parabdfe( 6%) has two real zeros, one of
posite direction replaces the original one. them positive and the other negative, but only the positive
one has a physical meaning singeis defined as real and
then x2 must be positive. Hencds (62)<0 for #2<x?. In

We are very grateful to 1. Gonzalo for his helpful advice Particular, if [(1+0)/2]?<x? (the above inStabiIit)é condi-
and to T. Lorca for the correction of the manuscript. Thistion), the functionF takes a negative value fof*=[(1

work was supported by Project No. BFM2000-07@pain.  +)/2]%. Thus, wheny? is replaced by (1+¢)/2]* in Eq.
(A7), we have the instability condition,
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APPENDIX: LINEAR STABILITY ANALYSIS

g
In order to analyze the nonlasing solutioB€P=0, D
=r), we linearize the laser equatiof®.1)—(2.3) about the <0, (A8)

trivial solution and expand the variables as a Fourier series

of transversal modes of wave vectérsTherefore, we get for  which can be rearranged to read

each set of Fourier components,(, Py, Dy) the following

system: G(r,k¥)=(1+0)%(1—r)+(5+br—ak??<0. (A9)

JIE,

or

It is easy to see that the normalized pummust verify r

i 2 _
=1k B (P B, (A =1 for Eq. (A9) to be fulfilled.
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