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Casimir force and the quantum theory of lossy optical cavities
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We present a derivation of the Casimir force between two parallel plane mirrors at zero temperature. The two
mirrors and the cavity they enclose are treated as quantum optical networks. They are, in general, lossy and
characterized by frequency-dependent reflection amplitudes. The additional fluctuations accompanying losses
are deduced from expressions of the optical theorem. A general proof is given for the theorem relating the
spectral density inside the cavity to the reflection amplitudes seen by the inner fields. This density determines
the vacuum radiation pressure and, therefore, the Casimir force. The force is obtained as an integral over the
real frequencies, including the contribution of evanescent waves besides that of ordinary waves, and then as an
integral over imaginary frequencies. The demonstration relies only on general properties obeyed by real
mirrors which also enforce general constraints for the variation of the Casimir force.
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I. INTRODUCTION

An important prediction of quantum theory is the ex
tence of irreducible fluctuations of electromagnetic fields
vacuum. Besides their numerous observable consequenc
microscopic physics, vacuum fluctuations also have obs
able effects in macroscopic physics, for example, the Cas
force they exert on mirrors@1#.

Casimir calculated this force in a geometrical configu
tion where two plane mirrors are placed a distanceL apart
and parallel to each other, the areaA of the mirrors being
much larger than the squared distanceA@L2. He considered
the ideal case of perfectly reflecting mirrors and obtained
expression which, remarkably, depends only on the g
metrical quantitiesA andL and on the fundamental constan
\ andc,

FCas5
\cp2A

240L4
. ~1!

This attractive force has been observed in a numbe
‘‘historical’’ experiments @2–6# which confirmed its exis-
tence and main properties@7–9#. Several recent experimen
reached an accuracy in the percentage range by meas
the force between a plane and a sphere@10–13# or two cyl-
inders @14#. Similar experiments were also performed wi
MEMS @15,16# ~see also Ref.@17#!. An experiment studied
the plane-plane configuration considered by Casimir@18#
but, as a consequence of the difficulties associated with
geometry, reached only a 15% accuracy~see reviews of re-
cent experiments in Refs.@19,20#!.

The Casimir force is the most accessible experime
consequence of vacuum fluctuations in the macrosco
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world while vacuum energy is known to raise a serious pr
lem with respect to gravity and cosmology~see references in
Refs.@21,22#!. This is a reason for testing the predictions
quantum field-theory concerning the Casimir effect with t
greatest care and accuracy. The theory of the Casimir forc
also a key point for the experiments searching for the n
weak forces predicted by theoretical unification models
arise at distances between nanometer and millimeter@23–
30#. The Casimir force is indeed the dominant effect betwe
two neutral objects at micrometer or submicrometer d
tances so that an accurate knowledge of its theoretical ex
tation is as crucial as the precision of measurements in s
experiments@31#.

In this context, it is essential to account for the differenc
between the ideal case considered by Casimir and the
experimental situation. Recent experiments use metallic m
rors which show perfect reflection only at frequencies bel
their plasma frequency. They are performed at room te
perature, with the effect of thermal fluctuations superi
posed to that of vacuum fluctuations. In the most accur
experiments, the force is measured between a plane a
sphere, and not between two parallel planes. The sur
state of the plates, in particular their roughness, should
affect the force. A large number of works have been devo
to the study of these effects and we refer the reader to R
@19,20# for a bibliography.

The evaluation of the Casimir force between imperfe
lossy mirrors at nonzero temperature has given rise to a b
of controversial results@32–41# which constitutes a part o
the motivations for the present work. For the sake of co
paring experimental measurements and theoretical expe
tions, it is necessary to have at one’s disposal a reliable
pression of the Casimir force in the experimental situati
In the present paper, we focus our attention on the effec
imperfect reflection of the mirrors. Other effects, in partic
lar, the effect of temperature, will be addressed in follow-
papers.

We consider the original Casimir geometry with two pe
fect plane and parallel mirrors. Except for these assumptio
we consider arbitrary frequency dependences for the mir

.
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which, in particular, may be lossy. We evaluate the Casi
force as the effect of vacuum radiation pressure on
Fabry-Perot cavity formed by the two mirrors. The net for
results from the balance between the repulsive and attrac
contributions associated, respectively, with resonant or a
resonant frequencies. It is obtained as an integral over
axis of real frequencies, including the contribution of evan
cent waves besides that of ordinary waves. It is then tra
formed into an integral over imaginary frequencies by us
physical properties fulfilled by all real mirrors.

The formula obtained here for the Casimir force turns
to be identical to the expression already published in R
@42# but the new derivation has a wider scope of validity th
the previous one, since it remains valid for lossy mirrors. T
fact that the formula keeps the same form despite the wid
ing of the assumptions is intimately related to a theorem
relates the spectral density of the fields inside the cavity
the reflection amplitudes seen by the same fields. This th
rem was demonstrated in Refs.@42# and@43# in specific cases
and we prove it in the present paper without any restricti
To this aim, we introduce a systematic treatment of lo
mirrors and cavities as dissipative networks@44#. We define
scattering and transfer matrices for elementary netwo
such as the interface between two media or the propaga
over a given length in a medium. We then deduce the ma
ces associated with composed networks, such as the op
slab or the multilayer mirror.

The results obtained in this manner are therefore ap
cable to a large variety of mirrors, still with the assumpti
of perfect plane geometry. In the particular case of a s
with a large width, the Lifshitz expression@45,46# is recov-
ered. At the limit of perfectly reflectors, the ideal Casim
formula ~1! is obtained. More generally, the expression giv
the Casimir force as an integral written in terms of the
flection amplitudes characterizing the two mirrors. This in
gral is finite as soon as the amplitudes obey the general p
erties of scattering theory already alluded to. In other wor
the difficulties usually associated with the infiniteness
vacuum energy are solved by using the properties of
mirrors themselves rather than through an additional for
regularization technique.

We finally show that the same physical properties c
strain the variation of the Casimir force. In particular, th
invalidate proposals that have been done for ‘‘tayloring’’ t
force at will by using mirrors with specially designed sca
tering amplitudes@47,48#. In these proposals, the balan
between attractive and repulsive contributions to the forc
changed, leading to the hope that the Casimir force co
reach large or have its sign changed from an attractive fo
to a repulsive one@47#. Using the simple model of a one
dimensional space, it has already been shown@49# that these
hopes cannot be met for arbitrary mirrors builtup with diele
tric layers. Here, the argument is generalized to the Cas
geometry in three-dimensional space with the following co
clusions: the Casimir force cannot exceed the value obta
for perfect mirrors, it remains attractive for any cavity leng
and its value is a decreasing function of the cavity leng
This is true for any mirror obtained by piling up layers
media described by dielectric functions. This definition
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multilayer dielectric mirrors includes the case of metal
layers, provided that magnetic effects play a negligible r
in the optical response.

II. VACUUM FIELD MODES

As explained in the Introduction, we consider in this p
per the original Casimir geometry with perfectly aligne
plane and parallel mirrors along the directionsx andy. This
configuration obeys a symmetry with respect to time trans
tion as well as transverse space translations along thes
rections. We use bold letters for two-dimensional vect
along these directions and denoter[(x,y) the transverse
position. As a consequence of this symmetry, the freque
v, the transverse vectork[(kx ,ky), and the polarizationp
5TE,TM are preserved throughout the scattering proces
on a mirror or a cavity. The scattering couples only the fr
vacuum modes that have the same values for the prese
quantum numbers and differ by the sign of the longitudin
componentkz of the wave vector.

In the present section, we introduce notations for
vacuum field modes, first in empty space and then in a
electric medium. These notations are chosen to be w
adapted to the symmetry of the problem.

A. Vacuum modes in empty space

In empty space, the components of the wave vector
given for each field mode by the frequencyv, the incidence
angleu, and the azimuthal anglew,

kx5ukucosw, uku5
v

c
sinu,

~2!

ky5ukusinw, kz5
v

c
cosu,

uku is the modulus of the transverse wave vector, and
longitudinal componentkz may be expressed in terms of th
preserved quantitiesv andk,

kz5fAv2

c2
2k2 f561, ~3!

f is defined as the sign of cosu and represents the directio
of propagation with11 and21 corresponding, respectively
to right-ward and left-ward propagation.

The two polarizationsp5TE,TM are defined by the
transversality with the incidence plane of electric and m
netic fields, respectively. They are given by the unit elec
vectorsê,

êx
TM5cosu cosw, êx

TE52sinw,

êy
TM5cosu sinw, êy

TE5cosw, ~4!

êz
TM52sinu, êz

TE50,
1-2
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or, equivalently, the unit magnetic vectorsb̂TM5 êTE and
b̂TE52 êTM. For each mode, the wave vector and polari
tion vectors form an orthogonal spatial basis. We have c
sen linear polarizations described by real components; he
the unit vectorsê and b̂ are not affected by the comple
conjugation appearing below in the relation between posi
and negative frequencies.

The two modes corresponding to the same values ofv, k,
andp, but opposite values off are coupled by scattering o
a mirror. For this reason, we introduce a labelm[(v,k,p)
gathering the values ofv, k, andp. A mode freely propagat-
ing in vacuum is thus labeled bym andf and the summation
over modes is described by the symbols

(
mf

[(
p
E d2k

4p2E2`

` dkz

2p
[(

f
(

p
E d2k

4p2E0

` v

ckz

dv

2pc
.

~5!

Note thatf appears implicitly as the sign ofkz in the first
form, whereas it appears explicitly in the second one.

The free vacuum fields are then written as linear super
sitions of modes

E~r ,z,t !5AcZvac (
mf
A\v

2
êm

f@em
fe2 i (vt2k•r2kzz)

1~em
f !†ei (vt2k•r2kzz)#,

~6!

B~r ,z,t !5AZvac

c (
mf
A\v

2
b̂m

f@em
fe2 i (vt2k•r2kzz)

1~em
f !†ei (vt2k•r2kzz)#.

The vacuum impedanceZvac5m0c.377V describes the
electromagnetic constants in vacuum. In the following,
symbol « will be reserved for the relative permittivity with
the value 1 in vacuum.

The quantum-field amplitudesem
f and (em

f)† correspond to
positive and negative frequency components. They fit
definition of annihilation and creation operators of quant
field theory and obey the canonical commutation relatio
@50#

@em8
f8 ,em

f†#5~2p!3d (2)~kÀk8!d~kz2kz8!dpp8dff8

[dmm8dff8 , ~7!

@em8
f8 ,em

f#5@em8
f8† ,em

f†#50.

In the vacuum state, the anticommutators of quantum am
tudes are derived from the corresponding commutators

^em8
f8
•em

f†&vac5
1

2
@em8

f8 ,em
f†#5

1

2
dmm8dff8 ,

~8!

^em8
f8
•em

f&vac5
1

2
@em8

f8 ,em
f#50.
04381
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The dot symbol represents a symmetrized product.

B. Stress tensor in empty space

The energy density per unit volumeT00 is a quadratic
form of the fieldsE andB,

T00~r ,z,t !5
1

2cZvac
~E21c2B2!. ~9!

When subsituting the expression of free fields,T00 is ob-
tained as a bilinear form of the field amplitudes. Here,
study the averaged radiation pressure in the vacuum s
which leads to a contractionm85m in the sums over modes
Using vacuum property~8!, we find the averaged energ
density in vacuum equal to the sum over the modes of\v/2,

^T00~r ,z,t !&vac5(
mf

\v

2
. ~10!

As it is well known, this energy density is infinite.
The radiation pressure on plane mirrors oriented alo

x-y directions is determined by the componentTzz of the
Maxwell stress tensor

Tzz~r ,z,t !5
1

2Zvac
~E•Ē1c2B•B̄!. ~11!

Here, the dot symbol represents a symmetrized produc
the quantum amplitudes and, simultaneously, a scalar p
uct of the vectors; the overline symbol describes the ma
ematical reflexion of a vector with respect to the planexy

Ēx5Ex , Ēy5Ey , Ēz52Ez . ~12!

As for T00, averagingTzz in vacuum state leads to a con
traction over the modes with the result

^Tzz~r ,z,t !&vac5(
mf

\v

4
~ êm

f
• êm

f1b̂m
f
•b̂m

f!5(
mf

\v

2
cos2u.

~13!

This expression is similar to expression~10! of the energy
density with an extra factor cos2u well known in studies of
radiation pressure. The sum over modes is still infinite
this infiniteness problem will be solved in the forthcomin
calculation of the Casimir force.

C. Fields in dielectric media

In the following, we consider mirrors builtup as dielectr
multilayers. Each dielectric medium is characterized by
relative permittivity «@v# or, equivalently, an index of re
fraction n@v#5A«@v# depending on frequency. The mag
netic permeability is kept equal to its vacuum value, sin
this corresponds to all experimental situations studied so
We stress again that this definition of dielectric mirrors
cludes the case of metals as long as the magnetic resp
plays a negligible role. We consider layers thick enough
that the dielectric response is local, i.e. described by a wa
vector-independent permittivity«@v#.
1-3
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We will sometimes take the plasma model as a first
scription of metallic optical response

«@v#512
vP

2

v2
, vP5

2pc

lP
, ~14!

where vP and lP represent, respectively, the plasma fr
quency and the plasma wavelength. This simple model is
sufficient for an accurate evaluation of the Casimir force
tween real mirrors@31#. To this aim, it is necessary to de
scribe the optical response of metals with a dissipative
associated with electronic relaxation processes. As a co
quence of causality, the real and imaginary parts ofn are
related to each other through the Kramers-Kronig dispers
relations@51#.

For any function of frequency more generally, causality
unambiguously characterized in terms of analyticity prop
ties: n@v# or «@v# are analytical functions ofv in the
‘‘physical domain’’ of the complex-frequency plane, that
the domain of frequenciesv with a positive imaginary par
Imv.0. This property is obeyed by other response fu
tions to be encountered below, and it will play an importa
role in the derivation of the Casimir force. We will introduc
an equivalent notationj for complex frequencies with the
physical domain now defined by a positive real part forj,

v[ i j, Rej.0. ~15!

The dispersion relation~2! is changed inside a refractiv
medium to

kx5ukucosw, uku5n@v#
v

c
sinu,

~16!

ky5ukusinw, kz5n@v#
v

c
cosu.

The preservation ofv andk at the traversal of an interface
equivalent to the Snell-Descartes law of refraction.

The sign has to be carefully chosen when extracting
square root to expresskz in terms of the conserved quantitie
v andk. As soon as the refractive index contains an ima
nary part, this is also the case forkz and the dephasing
exp(ikzz) associated with propagation includes an extinct
factor. In order to ensure that this factor is effectively a d
creasing exponential, we have to choose a specific root
fined differently for the two propagation directionsf561
of the field

kz[ ifk,
~17!

k5A«@ i j#
j2

c2
1k2, Rek.0.

The argument has been presented for freely propaga
modes, but it holds also for evanescent waves confined to
vicinity of an interface between two media. In this case,
sign of kz is also chosen so that it corresponds to an exti
tion when the distance to the interface increases and
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choice is still described by Eq.~17!. In the following, we will
use systematically the notationsj and k, keeping in mind
that the causality relations have to be written for each va
of the conserved quantityk.

Besides the dispersion relation~16!, the dielectric medium
also changes the impedance, that is the ratio betw
magnetic- and electric-field amplitudes. Precisely, the imp
ance is changed from the valueZvac in empty space to the
valueZvac/n in a dielectric medium of indexn, resulting in
reflection at the interface.

III. MIRRORS AS OPTICAL NETWORKS

We now introduce the description of mirrors as optic
networks. We present the scattering and transfer represe
tions and the relations between them. The transfer appro
is well adapted to the composition of networks which a
piled up. We first consider elementary networks such as
interface or propagation inside a refractive medium. We th
use the composition law to study composed networks suc
the slab and multilayer. In the present section, we only c
sider classical fields or, equivalently, mean quantum fie
The following section will be devoted to the full quantu
treatment, including the addition of noise associated with
losses inside the mirror.

A. Scattering and transfer representations

We first introduce the scattering and transfer represe
tions for an arbitrary network represented by two ports a
four fields. These fields are identified as left-hand and rig
hand~symbols ‘‘L ’’ and ‘‘ R’’ !, right-ward and left-ward~ar-
rows → and←) or input and output fields~labels ‘‘in’’ and
‘‘out’’ !, as shown in Fig. 1. Let us emphasize that the arro
are a symbolic representation of the two modes coupled
the network which correspond to the same labelm and to the
two opposite signsf561. The geometrical directions o
propagation are given by the wave vectors of equation~16!.
The coupling between the fields is described by reflect
and transmission amplitudes represented below by scatte
or transfer matrices.

In the scattering point of view, we gather the input a
output fields in twofold columns related by anS matrix

uE in&5S EL
in

ER
inD , uE out&5S EL

out

ER
outD ,

~18!

uE out&5SuE in&, S5S r t̄

t r̄
D ,

FIG. 1. Scattering and transfer representations of a network
1-4
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r and r̄ are the reflection amplitudes whilet and t̄ are the
transmission amplitudes. We will also use an equivalent c
vention where the output ket is defined with the upper a
lower components exchanged,

uE out&̃5S E R
out

E L
outD 5huE out&, h5S 0 1

1 0D ,

~19!

uE out&̃5S̃uE in&, S̃5hS5S t r̄

r t̄
D .

This convention simplifies some algebraic manipulatio
while being completely equivalent to the former conventio
For comparison with previous works, note that the form
notation ~18! was used in Ref.@42# whereas the latter on
~19! was used in Ref.@49#.

In the transfer point of view, the network is described
left-hand and right-hand columns related by aT matrix

uEL&5S EL
→

EL
←D , uER&5S ER

→

ER
←D ,

~20!

uEL&5TuER&, T5S a b

c dD .

The matrixh introduced in Eq.~19! exchanges the two
directions of propagation. We also use in the following t
matricesp6 which project onto each direction,

p15S 1 0

0 0D , p25S 0 0

0 1D . ~21!

These matrices obey simple rules that define an algeb
calculus in the spaceM2(C) of 232 matrices with complex
coefficients,

p1
2 5p1 , p2

2 5p2 , p1p25p2p150,
~22!

h25I , hp15p2h, hp25p1h.

The identification of Fig. 1 is written as

p1uER&5p1uE out&̃, p2uER&5p2uE in&,
~23!

p1uEL&5p1uE in&, p2uEL&5p2uE out&̃.

It relates the transfer and scattering amplitudes. We dec
pose scattering equations~18! on the two components an
use Eq.~23! to rewrite them as

p1uER&5p1S̃~p1uEL&1p2uER&),
~24!

p2uEL&5p2S̃~p1uEL&1p2uER&).

This linear system may be put under a matrix form

~p22S̃p1!uEL&52~p12S̃p2!uER&. ~25!
04381
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It is equivalent to transfer equation~20! with the T matrix
obtained as

T52~p22S̃p1!21~p12S̃p2!. ~26!

The converse transformation is obtained by perform
the same manipulations in the reverse order. Starting fr
transfer equation~20! and using Eq.~23!, one obtains a lin-
ear system which is equivalent to scattering equation~19!
with

S̃52~p22Tp1!21~p12Tp2!. ~27!

The relations~26! and~27! have the same form. They repre
sent an idempotent homographic transformation in the sp
M2(C), care being taken for the noncommutativity of mu
tiplications in this space. When inverting algebraically t
homographic relations~26! and ~27!, one obtains equivalen
expressions

S̃5~p11p2T!~p21p1T!21,
~28!

T5~p11p2S̃!~p21p1S̃!21.

Other equivalent expressions are obtained from the equal

~p22S̃p1!~p22Tp1!5I ,
~29!

~p21p1S̃!~p21p1T!5I .

All these expressions may be written in terms of the sc
tering and transfer amplitudes

a5
1

t
, b52

r̄

t
,

c5
r

t
, d5

t t̄ 2r r̄

t
,

~30!

r 5
c

a
, t̄ 5

ad2bc

a
,

t5
1

a
, r̄ 52

b

a
.

The more formal homographic transformations written abo
are, nevertheless useful, as it will become clear in forthco
ing calculations.

B. Composition of optical networks

The T matrices are perfectly adapted to the composit
of optical networks corresponding to a piling up process~see
Fig. 2!. On each network, the transfer equations are writ
as

uEL$A%&5T$A%uER$A%&,
~31!

uEL$B%&5T$B%uER$B%&.
1-5
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The brackets$% specify the network, for which theT matrix
or field column is written. Identifying the fields according
Fig. 2,

uEL$AB%&[uEL$A%&, uER$A%&[uEL$B%&,
~32!

uER$AB%&[uER$B%&,

we deduce that the piling up process is equivalent to
product ofT matrices

uEL$AB%&5T$AB%uER$AB%&,
~33!

T$AB%5T$A%T$B%.

We have assumed the two networks to be in the immed
vicinity of each other but without any electronic exchan
between them, which again corresponds to the assumptio
thick enough layers.

C. Elementary networks

We now study two elementary networks, that is the t
versal of an interface and the propagation over a given len
inside a dielectric medium.

For the scattering at the plane interface between two
dia with indicesn0 andn1, we write the reflection and trans
mission amplitudes as the Fresnel scattering amplitudes@52#.
Reflection amplitudesr p$ int% are obtained from characteris
tic impedanceszp defined for plane waves with polarizatio
p in each medium and from the continuity equations at
interface

r p$ int%52 r̄ p$ int%5
12zp

11zp
,

zTE5
n1cosu1

n0cosu0
5

k1

k0
, ~34!

zTM5
n1cosu0

n0cosu1
5

«1k0

«0k1
.

Then the transmission amplitudes are obtained as

FIG. 2. Composition of networks, two networks labeledA andB
are piled up to build up a networkAB.
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k0
tp$ int%5Ak0

k1
t̄ p$ int%5A12~r p$ int%!2. ~35!

We deduce the expression of the transfer matrix

Tp$ int%5Ak1

k0

1

A2 sinhbp S ebp/2 2e2bp/2

2e2bp/2 ebp/2 D ,

~36!

bp5 ln
zp11

zp21
,

We now consider the process of field propagation ove
propagation length, inside a dielectric medium characte
ized by a permittivity«. For this elementary network, theT
matrix has the simple form

T$prop%5S ea 0

0 e2aD ,

~37!

a5k,5A«
j2

c2
1k2,,

The optical deptha does not depend on the polarization.
Note that the composition is commutative within the cla

of interfaces or that of propagations: it corresponds to
multiplication of thez parameters for interfaces and to th
addition ofa parameters for propagations. But the compo
tion is no longer commutative when interfaces and propa
tions are piled up.

D. Reciprocity theorem

We now prove a reciprocity theorem obeyed by arbitra
dielectric multilayers, i.e., networks obtained by piling u
interfaces and propagations. To this aim, we first remark
the ratio of the two transmission amplitudes is related to
determinant of theT matrix

t̄

t
5ad2bc5detT. ~38!

This follows from relations~30! betweenSandT amplitudes
for an arbitrary network. Then, it is clear from Eq.~33! that
the determinant ofT is simply multiplied under composition

detT$AB%5detT$A% detT$B%. ~39!

For the two kinds of elementary networks studied previou
@see Eqs.~36!–~37!#, the determinant ofT is the ratio of the
values ofk at the right and left sides of the network,

detT5
kR

kL
. ~40!

It follows that this relation is valid for any optical networ
composed by pilingup interfaces and propagations.
1-6
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In the particular case where the network has its two po
corresponding to vacuum, which is the case for a mirror,
values ofk are equal on its two sides and theT matrix has a
unit determinant

detT51, t̄ 5t. ~41!

Note that reciprocity corresponds to a symmetricalS matrix
and has to be distinguished from the spatial symmetry of
network with respect to its mediane plane which entailr̄
5r .

This theorem is the specific form, when the symmetry
plane mirrors is assumed, of the general reciprocity theo
demonstrated by Casimir@54# as an extension to electroma
netism of Onsager’s microreversibility theorem@55#. We
have disregarded any static magnetic field which could af
these reciprocity relations.

E. Slabs and multilayers

We now consider the dielectric slabs and multilayers
composed networks and we deduce their transfer and sca
ing amplitudes from the preceding results.

The slab is obtained by piling up a vacuum or mat
interface with indicesn051 andn1 at its left and righthand
sides, propagation over a length, inside matter, and a matte
or vacuum interface with nown1 andn051 at its left- and
righ-thand sides. We denoteT$ int% the T matrix associated
with the first interface and obtain theT matrix associated
with the second interface as the inverse ofT$ int%. As a con-
sequence of the composition law~33!, the T matrix associ-
ated with the slab is obtained as

T$slab%5T$ int%T$prop%T$ int%21. ~42!

Using the expressions~36! and ~37! of T$ int% and
T$prop%, we evaluateT$slab% as

T$slab%5
1

sinhb S sinh~b1a! sinha

2sinha sinh~b2a!
D . ~43!

We deduce the form of theSmatrix, which is simultaneously
reciprocal (t̄ 5t) and symmetrical in the exchange of its tw
ports (r̄ 5r ),

S$slab%5
1

sinh~b1a! S 2sinha sinhb

sinhb 2sinha D . ~44!

In the limiting case of a small thicknessa→0, we find
t$slab%→1 andr $slab%→0, which means that the slab tend
to become transparent. In this case indeed, the propag
can be forgotten and the two inverse interfaces have t
effects canceled by each other.

The opposite limiting case of a large thickness is of
considered, since it fits the usual experimental situatio
More precisely, experiments are performed with meta
mirrors having a thickness much larger than the plas
wavelength. This is why the limit of a total extinction of th
field through the medium is assumed in most calculatio
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This corresponds to the so-called ‘‘bulk limit’’ withe2a

→0 andr $slab%→2e2b5r $ int% in Eq. ~44!: the reflection
amplitude is determined entirely by the first interface. Let
emphasize, however, that the bulk limit raises several d
cate problems. First, the transmission amplitudet$slab% van-
ishes in this limit so that theT matrix is not defined, with the
drawback of invalidating the general method used in
present paper. Then, the bulk limit cannot be met in the c
of nonabsorbing media, wheree2a remains a complex num
ber with unit modulus for any value of,. Even in the pres-
ence of absorption, a large value of the width, does not
necessarily imply a large value of the optical thicknessa,
since k may go to zero at normal incidence and at ze
frequency, leading to a transparent slab in contrast with
results of the bulk limit. Therefore, a reliable calculatio
must consider the experimental situation of mirrors with
large but finite thickness. In the present paper, we cons
the general case of arbitrary mirrors and test the reliability
the bulk limit in the end of the calculations.

We can deal with the case of dielectric multilayers sim
larly. If we consider as an example the multilayer obtain
by piling up a vacuum or matter interface with indicesn0
51 andn1 at its left- and righ-thand sides, propagation ov
a length,1 inside the medium 1, an interface between me
1 and 2, propagation over a length,2 inside the medium 2,
and an interface between medium 2 and vacuum, itsT matrix
is obtained as the product

T$multilayer%

5T$ int 01%T$prop 1%T$ int12%T$prop2%T$ int20%.

~45!

Alternatively, the same multilayer may be obtained by pili
up two slabs each corresponding to one of the layers

T$multilayer%5T$slab010%T$slab020%. ~46!

In the last two equations, the indices specify the differe
interfaces, propagations or slabs using an obvious conv
tion.

Since any multilayer mirror is obtained by piling up sla
connecting two vacuum ports and thus obeying the recipr
ity relation t̄ 5t, we can use a simple form of the compos
tion law written in terms of scattering amplitudes@49#

r AB5r A1
tA
2 r B

12 r̄ Ar B

, r̄ AB5 r̄ B1
r̄ AtB

2

12 r̄ Ar B

,

~47!

tAB5
tAtB

12 r̄ Ar B

.

For readibility, we have specified the networks by using s
scripts rather than brackets. We will proceed similarly
forthcoming specific computations. Iterating this compo
tion law, we can compute the scattering amplitudes for a
dielectric multilayer. This systematic technique is quite sim
lar to the classical computation techniques used for study
multilayers@56#. It is generalized to the full quantum trea
1-7
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ment in the following section. It also leads in the followin
to general results constraining the variation of the Casi
force for arbitrary dielectric mirrors. It reproduces the know
results for the multilayer systems which have already b
studied@57,19#.

IV. QUANTUM TREATMENT OF LOSSY MIRRORS

Up to now, we have performed a classical analysis wh
is not sufficient for the purpose of describing the scatter
of vacuum fluctuations. Real mirrors consist of absorb
media which scatter incident fields to spontaneous emis
modes and reciprocally scatter fluctuations from noise mo
to the modes of interest. TheS matrix calculated previously
cannot be unitary for a lossy mirror, but it should be t
restriction to the modes of interest of a largerSmatrix which
includes the noise modes and obeys unitarity. In the pre
section, we characterize the additional fluctuations fo
lossy mirror by using the corresponding ‘‘optical theorem
that is also the unitarity of the largerS matrix ~see Refs.
@58,59# and references therein!.

We assume that the scattering restricted to the mode
interest still fulfills the symmetry of plane mirrors consider
in the previous classical calculations. This amounts to
glect multiple scattering processes which could couple
ferent modes through their coupling with noise modes. E
cept for this assumption, we consider arbitrary dissipat
media and discuss the optical theorem in the scattering
transfer points of view. We use the latter one to deal w
composition of additional fluctuations when lossy mirrors a
piled up.

A. Noise in the scattering approach

Should we use the previous classical equations for
quantum amplitudes, we would find that the output fie
cannot obey the canonical commutators, except in the
ticular case of lossless mirrors. This implies that the inpu
output transformation for quantum field must include ad
tional fluctuations superimposed on the classical equatio

ueout&5Suein&1uF&, ~48!

ueout& and uein& are defined as in Eq.~18! with the quantum
amplitudese in place of the classical fieldsE, S is the same
matrix as previously, anduF& is a twofold column matrix
describing the additional fluctuations. All these quantities
pend on the quantum numberm which is common to all
fields coupled in the scattering process.

The additional fluctuations are linear superpositions of
modes coupled to the main modesem

f by the microscopic
couplings which cause absorption. As an example, the at
constituting a dielectric medium couple the main modes
all electromagnetic modes through spontaneous emis
processes, represented symbolically by the wavy arrows
Fig. 3. The stationarity assumption implies that only mod
having the same frequencies are coupled. In particula
forbids parametric couplings which could couple modes w
different frequencies and ‘‘squeeze’’ the vacuum fluctuatio
@60#. The whole scattering matrix that takes into account
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coupled field modes is unitary and this basic property ma
the canonical commutation relations compatible for inp
and output fields. In contrast, the reduced scattering ma
containing only the classical scattering amplitudes coupl
the main modesem

f is not unitary, except in the particula
case of lossless mirrors.

In order to write the unitarity property of the whole sca
tering matrix, it is convenient to represent the addition
fluctuationsuF&, by introducing auxiliary noise modesu f &
and auxiliary noise amplitudes gathered in a noise matrixS8,

uF&5S8u f &, S85S r 8 t8

t8 r̄ 8
D . ~49!

The components of the twofold columnu f & are defined to
have the same canonical commutators as the input field
the main modes. In fact, they are linear superpositions of
input vacuum modes responsible for the fluctuation proce
They are defined up to an ambiguity: any canonical trans
mation of the noise modes leads to an equivalent represe
tion of the additional fluctuations, which corresponds to
different form for the noise amplitudes, while leading to t
same physical results at the end of the computations.

For any of these equivalent representations, the norm
trix S8S8 † has the same expression determined by the opt
theorem, that is the unitarity condition for the whole scatt
ing process,

SS†1S8S8 †5I , ~50!

whereI is the 232 unity matrix. This is easily proven by a
direct inspection of the explicit expressions of the commu
tors of the output fields. The same inspection shows t
noise modes corresponding to different values ofm are not
correlated to each other. Condition~50! is made more ex-
plicit when SS† and S8S8 † are developed in terms of sca
tering amplitudes

rr * 1tt* 1r 8r 8* 1t8t8* 5tt* 1 r̄ r̄ * 1t8t8* 1 r̄ 8 r̄ 8* 51,

FIG. 3. Representation of a dissipative network, with additio
fluctuations coming from the noise modes.
1-8
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rt * 1t r̄ * 1r 8t8* 1t8 r̄ 8* 5tr * 1 r̄ t* 1t8r 8* 1 r̄ 8t8* 50.
~51!

More detailed discussions are presented for the case o
slab in Appendix A.

The description of noise may also be represented with
alternative representation~19! of the scattering process

ueout&̃5S̃uein&1uF &̃,
~52!

ueout&̃5hueout&, uF &̃5huF&.

The additional fluctuations are then represented in term
the same noise modes and of a modified noise matrix

uF &̃5S8̃u f &, S8̃5hS8,
~53!

S8̃S8̃†5I 2S̃S̃†.

B. Noise in the transfer approach

We now present the description of additional fluctuatio
in the transfer approach. Performing the same manipulat
as in the preceding section, we transform Eq.~52! into

~p22S̃p1!ueL&52~p12S̃p2!ueR&1uF &̃. ~54!

We thus get transfer equations with additional fluctuatio
described by a twofold columnuG&,

ueL&5TueR&1uG&,
~55!

uG&5~p22S̃p1!21uF &̃.

TheT matrix has the same expression~26! as previously and
the additional fluctuationsuG& are a linear expression of th
fluctuationsuF& defined in the scattering approach. This li
ear relation may be written under alternative forms by us
relations~29!,

uF&5~p22S̃p1!uG&̃5~p22Tp1!21uG&̃,
~56!

uG&5~p22Tp1!uF &̃.

In the scattering approach, the norm of additional fluct

tions is described by matricesS8S8 † and S8̃S8̃† which are
themselves determined by optical theorem~50! or ~53!. In
order to translate these properties to the transfer appro
we rewrite Eq.~55! in terms of the canonical noise modesu f &
and of noise amplitudes gathered in a matrixT8,

uG&5T8u f &,
~57!

T85~p22S̃p1!21S8̃5~p22Tp1!S8̃.

The associated norm matrix is

T8T8†5~p22Tp1!S8̃S8̃†~p22Tp1!†. ~58!
04381
he

e

of

s
ns

s

g

-

ch,

Using Eqs.~53! and ~27!, we rewrite it as

T8T8†5TFT†2F, F5p12p2 , ~59!

F is a diagonal matrix with two eigenvalues representing
directions of propagationf561 of the field.

C. Composition of dissipative networks

Using these tools, we now write composition laws for t
fluctuations and their norms. We start from transfer equati
written for each networkA andB,

ueL$A%&5T$A%ueR$A%&1uG$A%&,
~60!

ueL$B%&5T$B%ueR$B%&1uG$B%&.

Using the identifications~32! associated with the compos
tion law, we deduce for the composed network

ueL$AB%&5T$AB%ueR$AB%&1uG$AB%&,
~61!

uG$AB%&5uG$A%&1T$A%uG$B%&.

The fluctuationsuG$AB%& are a linear superposition of fluc
tuationsuG$A%& and uG$B%& added inA andB.

In order to obtain the composition law for the norm m
trices, we develop the additional fluctuationsuG$AB%& on the
canonical noise modes associated with the two elements

uG$AB%&5T8$A%u f $A%&1T$A%T8$B%u f $B%&. ~62!

Since the noise modes associated with different elements
uncorrelated,uG$AB%& may be rewritten in terms of new
canonical noise modes and new noise amplitudes, such

uG$AB%&5T8$AB%u f $AB%&,
~63!

T8$AB%T8$AB%†5T8$A%T8$A%†,

1T$A%T8$B%T8$B%†T$A%†.

Using expression~59! of the optical theorem for both net
works A and B, we deduce that the composed networkAB
obeys the same relation

T8$AB%T8$AB%†5T$A%FT$A%†2F1T$A%~T$B%

3FT$B%†2F!T$A%†

5T$AB%FT$AB%†2F. ~64!

Equivalently, theS matrix of the composed networkAB
obeys optical theorem~50! as soon as the two networksA
andB do.

D. Resonance for cavity fields

We have studied the scattering or, equivalently, the le
hand or right-hand transfer of fields by a composed netw
AB. We want now to characterize the properties of the fie
1-9
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inside the cavity formed betweenA andB. This problem will
play a key role in the evaluation of the Casimir force~see
following section!.

The situation is illustrated by Fig. 4 which, in contrast
Fig. 2, keeps the trace of the intracavity fields. In algebr
terms, the cavity fields are defined by rewriting identific
tions ~32! as

ueL$AB%&[ueL$A%& ueR$AB%&[ueR$B%&,
~65!

ueC$AB%&[ueR$A%&5ueL$B%&.

From now on, we drop the label$AB% for the composed
network and use subscripts for the networksA andB.

FIG. 4. Cavity formed within a composed network:L and R
denote the fields at left and right sides of the network, whereaC
denotes the cavity fields.
es
-

d

ea

04381
c
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In order to express the cavity fields in terms of the inp
modes and additional fluctuations, we first write the cav
fields ueC& in terms of the right-hand onesueR&,

ueC&5TBueR&1uGB&. ~66!

We then identify the two components ofueR& as

p1ueR&5p1ueout&̃5p1~S̃uein&1uF &̃),
~67!

p2ueR&5p2uein&.

Using the expression ofuF &̃ in terms ofuG& and the compo-
sition law ~61! for uG&, we deduce

ueC&5Ruein&1RA8 u f A&1RB8 u f B&,

R5TBN, N5~p1S̃1p2!5~p21p1T!21,

RA8 5TBPTA8 , P52Np1 , ~68!

RB85~ I 1TBPTA!TB8 .

As already explained, the unitarity of scattering enta
that the output fields have the same commutators as the i
ones. But this is not the case for the cavity fields which ha
their commutators determined by the matrix

G5RR†1RA8RA8
†1RB8RB8

† . ~69!

Expanding this quadratic form and using composition l
~63!, we rewriteG as
G5TBNN†TB
†1TBPT8T8†P†TB

†1TBPTATB8TB8
†1TB8TB8

†TA
† P†TB

†1TB8TB8
† . ~70!
ge-

ix

we
bry-
en
Using relation~59! for the three networksA, B, andAB, we
obtain a simpler expression after a few rearrangements

G52F2TBPTAF2FTA
† P†TB

† . ~71!

We now proceed to explicit calculations of these matric
We note thatP52tp1 , wheret is the transmission ampli
tude of the networkAB and deduce

2TBPTAF5tS aBaA 2aBbA

cBaA 2cBbA
D . ~72!

t is simply the inverse of the transfer amplitudea associated
with the networkAB @see Eq.~30!# and the latter is deduce
from composition law~33!,

t5
1

a
, a5aAaB1bAcB . ~73!

Then, the transfer amplitudes of the networksA andB may
be substituted by the associated scattering amplitudes, l
ing to
.

d-

2TBPTAF5
1

12 r̄ Ar B
S 1 r̄ A

r B r̄ Ar B
D . ~74!

Collecting these results and proceeding to slight rearran
ments, we finally get

G5I 1
1

12 r̄ Ar B
S r̄ Ar B r̄ A

r B r̄ Ar B
D

1
1

~12 r̄ Ar B!*
S r̄ Ar B r̄ A

r B r̄ Ar B
D †

. ~75!

In the following we will use the diagonal terms of the matr
G to evaluate the Casimir force.

E. Scattering on a Fabry-Perot cavity

In order to prepare the evaluation of the Casimir force,
generalize the preceding expression to the case of the Fa
Perot cavity containing a zone of field propagation betwe
the two mirrors M1 and M2~see Fig. 5!.
1-10
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The distance between the two mirrors is denotedL and the
cavity fields are defined at an arbitrary position inside
cavity, say at distancesL1 from M1 andL2 from M2 with
L11L25L. In these conditions, the study of the Fabry-Pe
cavity is reduced to the problem studied in the preced
subsection through the following identifications: the netwo
A contains the mirror M1 and the propagation L1 withTA
5TM1TL1 , while the networkB contains the propagationL2
and the mirror M2 withTB5TL2TM2 . The transfer ampli-
tudes for the networksA andB are derived from those cor
responding to M1 and M2 and from phase factors cor
sponding to the propagationsL1 andL2

tA5 t̄ A5t1e2a1, a15k0L1 ,

r̄ A5 r̄ 1e22a1, r A5r 1 ,
~76!

tB5 t̄ B5e2a2t2 , a25k0L2 ,

r̄ B5 r̄ 2 , r B5r 2e22a2.

We have labeled the amplitudes for the mirrors M1 and
with mere indices 1 and 2;k0 is defined in vacuum. Thes
results entail that the reflection amplitudesr̄ A andr B are seen
from a point inside the cavity as the product of phase fac
by the reflection amplitudesr̄ 1 and r 2 seen from a point in
the immediate vicinity of M1 and M2.

We then deduce the scattering amplitudes for the wh
cavity,

r 5r 11
t1
2r 2e22a

D
, r̄ 5 r̄ 21

r̄ 1t2
2e22a

D
,

t5 t̄ 5
t1t2e2a

D
, ~77!

D512 r̄ 1r 2e22a, a5a11a2 ,

and the expression ofG,

FIG. 5. Representation of a Fabry-Perot cavity:L andR denote
the fields at left and right sides of the cavity, whereasC denotes the
cavity fields inside the Fabry-Perot cavity; these cavity fields
defined at an arbitrary position between the two mirrors.
04381
e

t
g

-

2

rs

le

G5I 1
1

D S r̄ 1r 2e22a r̄ 1e22a1

r 2e22a2 r̄ 1r 2e22aD
1

1

D*
S r̄ 1r 2e22a r̄ 1e22a1

r 2e22a2 r̄ 1r 2e22aD †

. ~78!

The diagonal terms in the matrixG coincide with the Airy
function

g511 f 1 f * 5
12u r̄ 1r 2e22au2

u12 r̄ 1r 2e22au2
,

~79!

f 5
r̄ 1r 2e22a

12 r̄ 1r 2e22a
.

This result will play the central role in the derivation of th
Casimir force in the following section. It means that th
commutators of the intracavity fields are not the same
those of the input or output fields. They correspond to
spectral density modified through a multiplication by t
Airy function g. This is the basic property used in cavi
quantum electrodynamics@61#.

It is clear from the present derivation that this result ha
quite general status: it is obtained for any inner field in a
composed network, assuming the symmetry of plane mirr
This property was already known for nonabsorbing mirro
@42# and for lossy mirrors symmetrical with respect to the
mediane plane@43#. The present derivation proves that it
also valid for arbitrary dielectric multilayers with dissipatio
The final result only depends on the reflection amplitudesr̄ 1
andr 2 of the mirrors as they are seen from the inner side
the cavity. The reflection amplitudes seen from the outer s
and the transmission amplitudes do not appear in express
~78! and ~79!. This can be interpreted as resulting from t
unitarity of the whole scattering processes.

V. THE CASIMIR FORCE BETWEEN REAL MIRRORS

We may now deal with the radiation pressure of vacu
fields on the mirrors of a Fabry-Perot cavity. We show th
the resulting Casimir force is a regular integral which can
written over real or imaginary frequencies. We then der
general constraints obeyed by the Casimir force for arbitr
dielectric mirrors.

A. Vacuum radiation pressure

If we first consider a mirror isolated in vacuum, the rad
tion pressure is obtained by adding the contributions of
four fields coupled in the scattering process

^P&vac5(
m

\vmcos2um^emL
→
•emL

→†1emL
←
•emL

←†2emR
→

•emR
→†

2emR
←

•emR
←†&vac. ~80!

The identification of these fields is given by Fig. 1. We ha
developed the sum overf and kept the symbolm to

e

1-11
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represent the quantum numbers (v,k,p). We assume that the
whole system is in vacuum, that is at zero temperature
that the anticommutators of input fields are given by relat
~8!. Since the commutators are the same for the output
input fields, the vacuum radiation pressure vanishes in
case of an isolated mirror. In other words, the two sides
the mirror play equivalent roles, so that no mean force
appear.

When we consider two mirrors forming a Fabry-Pe
cavity, the two sides of a given mirror are no longer equiv
lent since one is an inner side and the other an outer sid
follows that the compensation observed for an isolated m
ror does no longer hold, resulting in the appearance of
Casimir force. In order to evaluate the force, we write t
mean radiation pressures^P1&vac and^P2&vac on mirrors M1
and M2 ~see Fig. 5!

^P1&vac5(
m

\vmcos2um^emL
→
•emL

→†1emL
←
•emL

←†2emC
→

•emC
→†

2emC
←

•emC
←†&vac,

^P2&vac5(
m

\vmcos2um^emC
→

•emC
→†1emC

←
•emC

←†2emR
→

•emR
→†

2emR
←

•emR
←†&vac. ~81!

For the same reasons as previously, the field anticom
tators are given by Eq.~8! for input and output fields. Fo
intracavity fields, they are multiplied by the Airy functio
~79! like the commutators

^em8C
f8

•emC
f† &vac5

1

2
@em8C

f8 ,em C
f † #5

1

2
gmdmm8dff8 . ~82!

As shown in the previous section, these expressions do
depend on the position inside the cavity where the ca
fields are defined. We finally deduce the mean radiation p
sures on mirrors M1 and M2,

^P1&vac52^P2&vac5(
m

\vmcos2um~12gm!. ~83!

At this point, it is worth emphasizing that we have assum
equilibrium at zero temperature for the whole system :
only the input fields but also any fluctuations associated w
loss mechanisms inside the mirrors correspond to zero-p
fluctuations, whatever their microscopic origin may be. O
erwise, the expression of the force discussed in the follow
would be affected.

The pressures have opposite values on the two mir
M1 and M2. This entails that the global force exerted
vacuum upon the cavity vanishes, in consistency with
translational invariance of vacuum. In the following, we d
noteF the Casimir force calculated for M1 when consideri
the limit of a large areaA@L2,

F5A^P1&vac5A(
m

\vmcos2um~12gm!. ~84!
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The sign conventions used here are such that the pos
value obtained below forF corresponds to an attraction o
the two mirrors to each other.

B. The force as an integral over real frequencies

We now perform a change of variable to rewrite the su
mation symbol as specified in Eq.~5!,

F5A^P1&vac5A(
p
E d2k

4p2E dv

2p
\kz~12gk

p@v#!.

~85!

We will now specify the domain of integration forv.
Up to now, we have discussed the scattering for ordin

waves which freely propagate in vacuum and correspon
frequenciesv larger than the boundcuku fixed by the norm
of the transverse wave vector. But we must also take i
account the contribution of evanescent waves which co
spond to frequenciesv smaller thancuku. These waves are
fed by the additional fluctuations coming from the noise lin
into the dielectric medium and propagating with an inciden
angle larger than the limit angle. They are thus transform
at the interface into evanescent waves decreasing expo
tially when the distance from the interface increases. As
well known @53#, the properties of these evanescent wav
are conveniently described through an analytical contin
tion of those of ordinary waves. This analytical continuati
can only be dealt with in terms of functions having a we
defined analyticity behavior. This is not the case for the A
function gk

p@v#, but we know that this function is the sum
~79! of parts having well-defined analyticity properties,

gk
p@v#511 f k

p@v#1 f k
p@v#* 5

12urk
p@v#u2

u12rk
p@v#u2

,

f k
p@v#5

rk
p@v#

12rk
p@v#

, ~86!

rk
p@v#5r k,1

p @v#r k,2
p @v#e22k0L,

rk
p@v# is the ‘‘open loop function’’ corresponding to on

round trip of the field inside the cavity and defined as t
product of the reflection amplitudesr k,1

p @v# and r k,2
p @v# of

the two mirrors and of the propagation phaseshifte22k0L; it
is an analytical function in the physical domain of compl
frequencies Rej.0 with the branch of the square root ch
sen so that Rek.0. Since the transverse wave vector
spectator throughout the whole scattering process, analyt
is defined withk fixed.

Then, f k
p@v# is the ‘‘closed loop function’’ built up on the

open loop functionrk
p@v#. It is also an analytical function

thanks to analyticity of the open loop and to a stability pro
erty which has a natural interpretation: the system formed
the Fabry-Perot cavity and the vacuum fluctuations is sta
because neither the mirrors nor the vacuum would have
ability to sustain an oscillation. In some cases, the stab
can be derived from a more stringent passivity property@49#
1-12
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which may essentially be written asurk
p@v#u,1. However,

the passivity property is sometimes too stringent to
obeyed by real mirrors~see more detailed discussions in A
pendix B!. In any case, the stability property, i.e., the abse
of self-sustained oscillations, is sufficient for the pres
derivation of the Casimir force.

We are now able to give more precise specifications of
domain of integration in Eq.~85!. Using decomposition~86!,
we write the contribution of ordinary waves to this integr
as the sum of two conjugated expressions,

Ford5Ford1Ford* ,
~87!

Ford52A(
p
E d2k

4p2Ecuku

` dv

2p
\kzf k

p@v#.

The integralFord is built on the retarded functionf k
p@v#,

which may be extended through an analytical continuat
from the sector of ordinary waves to that of evanesc
waves. The contribution of evanescent waves to the forc
thus obtained as

Feva5Feva1Feva* ,
~88!

Feva52A(
p
E d2k

4p2E0

cukudv

2p
\kzf k

p@v#.

The final expression of the Casimir force is the sum of
contributions of ordinary and evanescent waves that is
the integral over the whole axis of real frequencies,

F5Ford1Feva5F1F* ,
~89!

F52A(
p
E d2k

4p2E0

`dv

2p
\ ik0f k

p@v#.

As far as ordinary waves are concerned, this correspond
the intuitive picture where the Casimir force results from t
radiation pressure of vacuum fluctuations filtered by the c
ity @42#. The contribution of evanescent waves is but t
extension of the domain of integration to the whole real a
with the cavity response functionf k

p@v# extended through an
analytical continuation. In the evanescent sector, the ca
function f k

p@v# is written in terms of reflection amplitude
calculated for evanescent waves and exponential factors
responding to evanescent propagation through the ca
This means that it describes the ‘‘frustration’’ of total refle
tion on one mirror due to the presence of the other. T
explains why the radiation pressure of evanescent wave
not identical on the two sides of a given mirror and, the
fore, how evanescent waves have a non-null contribution
the Casimir force.

C. The force as an integral over imaginary frequencies

Using the Cauchy theorem, we now rewrite the Casim
force ~89! as an integral over the axis of imaginary freque
cies.
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Since k0f k
p@ i j# is analytical in the domain Rej.0, its

integral over a closed contour lying in this domain has
vanish. We choose the contour drawn on Fig. 6, which c
sists of the positive part of the real axis including ordina
(Co) and evanescent (Ce) waves, a quarter of circleC` with
a very large radius and, finally, the imaginary axisCi run
from infinity to zero. Now the functionk0f k

p@ i j# goes to zero
for large values of the frequency, as a consequence of tr
parency at high frequency, a property certainly valid for a
realistic model of optical mirror. Thanks to this property, t
contribution to the integral ofC` vanishes. We then deduc
that the integrals over the real axis@0,1`@ and over the
imaginary axis@0,1 i`@ are equal.

We thus get a new expression of the forceF as an integral
over imaginary frequenciesv, that is also as an integral ove
real values ofj,

F5F1F* 52F,

F5A(
p
E d2k

4p2E0

` dj

2p
\k0f k

p@ i j#, ~90!

k05Ak21
j2

c2
.

We have used the fact thatF is real, so thatF* is simply
equal toF. This property is less obvious, but also true, wi
F written as an integral over real frequencies. We wish
emphasize more generally that expression~90! is mathemati-
cally equivalent to Eq.~89!. The former expression is close
to the physical intuition, whereas the latter is better adap
to explicit computations of the force.

Expression~90! gives the Casimir force between real mi
rors described by arbitrary frequency-dependent reflec
amplitudes. It is a regular integral as soon as these am
tudes obey the physical assumptions used in the deriva
causality, unitarity, and high-frequency transparency for e
mirror, stability of the system formed by the two mirrors an
the scattered vacuum fields. The demonstration holds for
sipative mirrors and not only for lossless ones.

FIG. 6. Contour representing the frequencies of interest for
evaluation of the Casimir force:Co and Ce correspond to the rea
frequencies associated with ordinary and evanescent waves,Ci cor-
responds to the imaginary frequencies, andC` to a quarter circle
with a radius allowed to go to infinity.
1-13
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The limit of perfect mirrors is obtained in expression~90!
by letting the reflection amplitudes go to unity, which lea
to the Casimir formula~1!. This can be considered as a
alternative demonstration of the Casimir formula without a
reference to a renormalization or regularization techniq
Basically, the properties of real mirrors, in particular th
high-frequency transparency, are sufficient to provide a re
lar expression of the force, as it was guessed a long time
by Casimir@1#.

As a simple model of the mirrors used in the experimen
let us consider a metallic slab with a large width, that is
width , larger than a few plasma wavelengths. We use
pression~90! of the force written as an integral over imag
nary values of the frequencies (v5 i j, j real!. Hence, the
phase factor corresponding to one round trip inside the
is a decreasing exponential with a real exponente22k1,. For
the plasma model~14!, k1 is given byAj2/c21vP

2/c21k2

and it is larger than 2p/lP for all values ofj andk. When
relaxation is taken into account, this is still the case excep
a very narrow domain with values ofj andk both close to
zero. This domain has a negligible contribution to the in
gral ~90! and it follows that the reflection amplitude of th
slab may be replaced by the limiting expression obtained
the bulk. One thus recovers the Lifshitz expression for
Casimir force@45#, which is widely used for comparing ex
perimental results with theoretical expectations@19#.

D. Constraints on the force

We now deduce general constraints which invalidate p
posals made for tayloring the Casimir force at will by usi
specially designed mirrors@47,48#. This generalizes to 3D
space the results obtained for 1D space in Ref.@49# to which
the reader is referred for further discussions.

Expression~90! is an integral over the axis of imaginar
frequencies essentially determined by the reflection am
tudesr 1@ i j# andr 2@ i j# for j real. These amplitudes alway
have a modulus smaller than unity, for arbitrary dielect
multilayers~see Appendix C!. They are negative for arbitrar
dielectric slabs~see Appendix A! and we deduce from the
composition law~47! that this is still the case for arbitrar
dielectric multilayers. It follows that the product of the r
flection amplitudes of the two mirrors is always positive w
a modulus smaller than unity,

0,r 1@ i j#r 2@ i j#,1. ~91!

From this, we deduce first that the Casimir force has
absolute value smaller than value~1! reached for perfect mir-
rors and that it remains attractive,

0<F<FCas. ~92!

We also derive that the Casimir force decreases as a func
of the length,

dF

dL
<0. ~93!
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This means that the properties obeyed by real mirr
strongly constrain the possible variation of the Casimir for
contrarily to what might have been expected at first si
@47,48#.

Note that we have considered mirrors used in the exp
ments which have electric permittivity but no magnetic p
meability. Different results would be obtained with magne
mirrors, precisely with one of the mirrors dominated by ele
tric response and the other one by magnetic response.
product of the two reflection amplitudes would inde
be negative in this case and the Casimir force repuls
@62–65#.

VI. CONCLUSION

We have presented a derivation of the Casimir force
tween lossy mirrors characterized by arbitrary frequen
dependent reflection amplitudes, in the Casimir geome
where the cavity is made with two parallel plane mirrors.

We have shown how mirrors and cavities may be de
with by using a quantum theory of optical networks. We ha
deduced the additional fluctuations accompanying diss
tion from expressions of the optical theorem adapted
quantum network theory. The optical theorem is equival
to the unitarity of the whole scattering process, whi
couples the modes of interest and the noise modes, an
ensures that the quantum commutators of the output fi
are the same as those of the input fields. The situatio
different for the cavity fields which do not freely propagat
We have given a general proof of a theorem previously de
onstrated in particular cases@42,43#, which states that the
modification of the commutators is determined by the us
Airy function, that is, the spectral density associated with
Fabry-Perot cavity. For arbitrary lossy mirrors, the spec
density is determined by the reflection amplitudes as they
seen by the intracavity fields. It determines the radiat
pressure exerted by vacuum fluctuations upon the mir
with repulsive and attractive contributions associated,
spectively, with resonant or antiresonant frequencies.
Casimir force is then obtained as an integral over the wh
axis of real frequencies, including the contribution of evan
cent waves besides that of ordinary waves. It is equivale
expressed as an integral over imaginary frequencies.
derivation only uses a few general assumptions certa
valid for real optical mirrors, namely, causality, unitarit
high-frequency transparency for each mirror, and stability
the compound cavity-vacuum system. It leads to a finite
sult without any further reference to a regularization tec
nique @42#.

The formula obtained in the present paper for the Casi
force was already known@42#, but its scope of validity is
widened by the present demonstration. It has been use
discuss the effect of imperfect reflection for the metallic m
rors used in the experiments. Different descriptions of
optical response of metals have been used, from the c
application of plasma model~14! to a more complete char
acterization of the dielectric constant derived from tabula
optical data and dispersion relations. This kind of calcu
tion, discussed in great detail for the mirrors correspond
1-14
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to the recent experiments~see, for example, Ref.@31#!, has
not been reproduced here. Instead, we have presented ge
results valid for any real mirrors obeying the physical pro
erties already evoked, and shown that they strongly const
the variation of the Casimir force.

In the present paper, we have restricted our attention
the limit of zero temperature although our work was par
motivated by a recent polemical discussion of the effect
temperature on the Casimir force between real mirrors@32–
41#. Since contradictory results may have raised dou
about the validity and consistency of various derivations
the Casimir force, we have considered it was importan
come back to the first principles in this derivation. This h
been done in the present paper for the case of zero temp
ture. A follow-on publication will show how to include th
effect of thermal fluctuations in the treatment in order
obtain an expression free from ambiguities for the Casi
force between arbitrary lossy mirrors at nonzero tempe
tures.
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APPENDIX A: THE DIELECTRIC SLAB

In this appendix we discuss in more detail the spec
case of the dielectric slab. We consider lossy as well as l
less slabs.

For a lossless dielectric medium, the permittivity« is real
at real frequencies. For ordinary waves,k0 andk1 are purely
imaginary, so that the impedance ratios are real for both
larizations. Henceb is real (b5b r) anda purely imaginary
(a5 ia i), so that the scattering amplitudes~44! are read as

t5
sinhb r

sinh~b r1 ia i !
5

sinhb r

sinhb rcosa i1 i coshb rsina i
,

~A1!

r 52
sinh~ ia i !

sinh~b r1 ia i !
52

i sina i

sinhb rcosa i1 i coshb rsina i
.

The sum of the squared amplitudes is unityutu21ur u251
while the reflexion and transmission amplitudes are
quadrature to each othertr * 1rt * 50, which means thatS is
a unitary 232 matrix, as it was expected for a lossless m
ror. This implies that the reflection amplitude has a modu
smaller than unityur u,1. This property also holds for loss
mirrors thanks to positivity of dissipation~see Appendix C!.

Unitarity is defined without ambiguity only in the case
ordinary waves. For a lossless slab and evanescent wavek0
is real—it is just the inverse of the penetration length
evanescent wave in vacuum—whereask1 remains purely
imaginary. Henceb as well asa are purely imaginary and i
is no longer possible to obtain general bounds for the s
tering amplitudes
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t5
sinh~ ib i !

sinh~ ib i1 ia i !
5

sinb i

sin~b i1a i !
,

~A2!

r 52
sinh~ ia i !

sinh~ ib i1 ia i !
52

sina i

sin~b i1a i !
.

In particular,ur u does not remain always smaller than 1~see
more explicit discussions in Appendix B with different re
sults for the TE and TM polarizations!.

For imaginary frequencies finally,b and a are positive
real numbers, for lossy as well as lossless slabs. In this c
general bounds are easily obtained for the amplitudes

0,t5
sinh~b r !

sinh~b r1a r !
,1,

~A3!

0,2r 5
sinh~a r !

sinh~b r1a r !
,1.

The fact thatr is negative with a modulus smaller than uni
plays an important role in the derivation of constraints on
Casimir force.

Interesting results are also obtained for the eigenvalue
the S matrix, which have a simple forms65r 6t, since the
slab is symmetrical in the exchange of its two ports. In t
sector of ordinary waves, unitarity~50! has a simple form in
terms ofs65r 6t and of the similar quantitiess68 5r 86t8
defined on the noise matrixS8,

us6u21us68 u251. ~A4!

For the lossless slab,s6 have a unit modulus ands68 vanish.
For a lossy slab, we have

us6u2<1. ~A5!

This can be considered as a consequence of Eq.~A4! with
us68 u2>0. Equivalently, it can be considered that unitar
~A4! fixes the modulus ofs68 when the modulus ofs6 is
known.

Condition~A5! will be found in Appendix C to express
passivity property for the slab, here for ordinary waves. T
property still holds in the sector of imaginary frequencies,
a consequence of Eq.~A3! and of the following inequalities
obeyed for all positive real numbersa andb,

usinhb7sinhau<sinh~a1b!. ~A6!

Using the terms of Appendix C, this means that the dom
of passivity always includes the sectors of ordinary wav
and imaginary frequencies, in the case of a dielectric s
However, it does not necessarily include the sector of e
nescent waves~see Appendix B!.

APPENDIX B: THE SECTOR OF EVANESCENT WAVES

Ordinary waves correspond to frequenciesv>cuku and
real wave vectorskz , whereas evanescent waves correspo
to frequenciesv<cuku and imaginary values ofkz . Causal
scattering amplitudes can be extended from ordinary to e
1-15
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GENET, LAMBRECHT, AND REYNAUD PHYSICAL REVIEW A67, 043811 ~2003!
nescent waves, by an analytical continuation through
physical domain of complex frequenciesv5 i j with Rej
.0 and Rek.0. The ‘‘energy conditions’’ which bear on
quadratic forms are not necessarily preserved in this proc

In order to illustrate the idea, let us consider reflecti
amplitude~34! at the interface between vacuum («051) and
a lossless dielectric medium («1 real forv real!. In the sector
of evanescent waves,k1 is imaginary andk0 real, so thatr
and r̄ are complex numbers with a unit modulus, that is a
pure dephasings corresponding to the phenomenon of
reflection. Meanwhile, the transmission amplitudes dif
from zero, which describes how evanescent waves
vacuum are fed by the fields coming from the dielectric m
dium with an incidence angle larger than the limit angle.
these conditions, it is clear that the conditionur u21utu2<1
fails.

For the TE polarization, it turns out that

ur TEu<1 ~B1!

in the evanescent sector at the interface between vacuum
any dielectric medium. This property is always true in t
sectors of ordinary waves and imaginary frequencies for
arbitrary mirror ~see Appendices A and C!. Using high-
frequency transparency, it follows from the Phragme´n-
Lindelöf theorem@66# that inequality~B1! holds in the whole
physical domain in the complex plane. This ensures that
closed loop functionf TE is analytic and, in particular, has n
pole in the domain Rej.0. In other words, since the ope
loop gain is smaller than unity, the closed loop cannot re
the oscillation threshold, leading to the stability prope
used in the derivation of the Casimir force.

Although it seems quite natural, this argument is not va
in the general case. For metallic mirrors, for example,
condition ur u<1 is violated in the evanescent sector for T
modes. The reflection amplitude is even known to rea
large resonant values at the plasmon resonances@67#. Of
course, this does not prevent the stability property to be
filled: the Fabry-Perot cavity is, in this case, a stable clo
loop built on an open loop exceeding the unit modulus,
with a phase such that the oscillation threshold is
reached.

We stress again that the stability property is necessar
the derivation of the Casimir force, since it entails that t
closed loop function is properly defined in the evanesc
sector. When the more stringent propertyur u<1 is also
obeyed, it follows from expression~86! that the Airy func-
tion, which has been defined with the significance of a po
tive spectral density on ordinary waves, remains positive
the evanescent sector. When the propertyur u<1 fails, the
Airy function can no longer be thought of as a spectral d
sity in the whole physical domain, but this does not inva
date the derivation of the Casimir force.

APPENDIX C: THE DOMAIN OF PASSIVITY

In this appendix, we discuss the related but not ident
properties corresponding to positivity of dissipation and p
sivity.
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We consider an arbitrary mirror, that is a reciprocal n
work connecting two vacuum ports. For ordinary waves,
define the power dissipated by the mirror

p5~eL
in †eL

in2eL
out †eL

out!1~eR
in †eR

in2eR
out †eR

out!

5^einuuein&2^eoutuueout&, ~C1!

where we have introduced row vectors conjugated to the
umn vectors

^eoutu5ueout&†, ^einu5uein&†. ~C2!

This power is positive as a consequence of unitarity,

p5^einuI 2S†Suein&5^einuS8†S8uein&>0, ~C3!

which corresponds to the positivity of the matrixI 2S†S,

^euI 2S†Sue&>0, ; ue&, ~C4!

whereue& represents arbitrary input fields. Positivity can al
be expressed in terms of the eigenvalues, of S†S,

det~S†S2,I !50, ,>0. ~C5!

These eigenvalues are always real, and positivity of diss
tion is equivalent to the fact that they are smaller than un

,<1. ~C6!

Passivity is a property directly related to positivity of di
sipation, but defined more generally for complex frequenc
in the physical domain. In order to discuss it, we extend
matrix S from the sector of ordinary waves through the an
lytical continuation already discussed. We extendS† simi-
larly, with the complex conjugation cautiously defined, sin
it involves complex frequencies : conjugation corresponds
j→j* and k→k* and it preserves the physical doma
Rej.0, Rek.0; the derivations performed for an ampl
tude in the domain Rej.0, Imj,0 are thus translated to
similar derivations for the conjugated amplitude in the qu
ter plane Rej.0, Imj.0.

Then, the domain of passivity ofS is defined by the do-
main of j for which I 2S†S is a positive matrix@Eq. ~C4!#
that is also for which the eigenvalues, of S†S are smaller
than unity@Eq. ~C6!#. An important feature of this property i
that it is stable under composition: when two networksA and
B are piled up as in Fig. 2, the quadratic forms appearing
~C4! simply add up, so that passivity of the networkAB
follows from passivity of the two networksA andB. This is
a special case of a general theorem@44# which states that
networks built up with passive elements are passive.

Passivity means that the eigenvalues 12, of the matrix
I 2S†S are both positive, which is equivalent to the follow
ing inequalities:

Tr~ I 2S†S!>0, det~ I 2S†S!>0. ~C7!

It may be written in terms of the scattering amplitudes,

ur u21u r̄ u212utu2<2,
1-16
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ur r̄ 2t2u2>ur u21u r̄ u212utu221. ~C8!

Passivity implies that the scattering amplitudes have a mo
lus smaller than unity,

ur u<1, u r̄ u<1, utu<1. ~C9!

Conversely, the latter conditions are necessary but not s
cient for passivity.

For a mirror symmetrical in the exchange of its two por
a

F.

F.

e

ep

.R

in

e

n

.
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a slab for example, the passivity conditions take the sim
form ur 6tu2<1. The results of Appendix A thus entail tha
the domain of passivity always includes the sectors of o
nary waves and imaginary frequencies, for arbitrary sla
@Eq. ~A5!#. Using the stability of passivity under compos
tion, we deduce that this is also the case for arbitrary mu
layers. It follows that the reflection amplitudes always hav
modulus smaller than unity for imaginary frequenciesj
real!

ur @ i j#u<1. ~C10!
.

.

o,
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duction à l’ElectroDynamique Quantique~InterEditions/
CNRS, Paris, 1987!.

@51# L. Landau, E.M. Lifshitz, and L.P. Pitaevskii,Landau and Lif-
shitz Course of Theoretical Physics: Electrodynamics in C
tinuous Media ~Butterworth-Heinemann, Washington, DC
1980!, pp. 79 and 82.

@52# See p. 86 in Ref.@51#.
@53# M. Born and E. Wolf,Principles of Optics~Cambridge Uni-

versity Press, Cambridge, 1999!, p. 1.5.4.
@54# H.B.G. Casimir, Rev. Mod. Phys.17, 343 ~1945!.
@55# L. Onsager, Phys. Rev.37, 405 ~1931!; 38, 2265~1931!.
@56# F. Abelès, Ann. Phys.~Paris! 5, 611 ~1955!.
@57# F. Zhou and L. Spruch, Phys. Rev. A52, 297 ~1995!.
@58# S.M. Barnett, C.R. Gilson, B. Huttner, and N. Imoto, Phy

Rev. Lett.77, 1739~1996!.
@59# J.M. Courty, F. Grassia, and S. Reynaud, inNoise, Oscillators
04381
-

.

and Algebraic Randomness, edited by M. Planat~Springer,
New York, 2000!, p. 71.

@60# S. Reynaud, Ann. Phys.~Paris! 15, 63 ~1990!.
@61# S. Haroche, inNew Trends in Atomic Physics, edited by G.

Grynberg and R. Stora~North-Holland, Amsterdam, 1984!, p.
193.

@62# T.H. Boyer, Phys. Rev. A9, 2078~1974!.
@63# D. Kupiszewska, J. Mod. Opt.40, 517 ~1993!.
@64# D.T. Alves, C. Farina, and A.C. Tort, Phys. Rev. A61, 034102

~2000!.
@65# O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Re

Lett. 89, 033001~2002!.
@66# H.M. Nussenzveig,Causality and Dispersion Relations~Aca-

demic Press, New York, 1972!.
@67# G. Barton, Rep. Prog. Phys.42, 65 ~1979!.
1-18


