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Casimir force and the quantum theory of lossy optical cavities
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We present a derivation of the Casimir force between two parallel plane mirrors at zero temperature. The two
mirrors and the cavity they enclose are treated as quantum optical networks. They are, in general, lossy and
characterized by frequency-dependent reflection amplitudes. The additional fluctuations accompanying losses
are deduced from expressions of the optical theorem. A general proof is given for the theorem relating the
spectral density inside the cavity to the reflection amplitudes seen by the inner fields. This density determines
the vacuum radiation pressure and, therefore, the Casimir force. The force is obtained as an integral over the
real frequencies, including the contribution of evanescent waves besides that of ordinary waves, and then as an
integral over imaginary frequencies. The demonstration relies only on general properties obeyed by real
mirrors which also enforce general constraints for the variation of the Casimir force.
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[. INTRODUCTION world while vacuum energy is known to raise a serious prob-
lem with respect to gravity and cosmolofgee references in

An important prediction of quantum theory is the exis- Refs.[21,22). This is a reason for testing the predictions of
tence of irreducible fluctuations of electromagnetic fields inquantum field-theory concerning the Casimir effect with the
vacuum. Besides their numerous observable consequencesgreatest care and accuracy. The theory of the Casimir force is
microscopic physics, vacuum fluctuations also have obseng|so a key point for the experiments searching for the new
able effects in macroscopic physics, for example, the Casimifyeak forces predicted by theoretical unification models to
force they exert on mirrorgl]. arise at distances between nanometer and millimg@s

Casimir calculated this force in a geometrical configura-30]. The Casimir force is indeed the dominant effect between
tion where two plane mirrors are placed a distahcapart  two neutral objects at micrometer or submicrometer dis-
and parallel to each other, the ardaof the mirrors being tances so that an accurate knowledge of its theoretical expec-
much larger than the squared dista#ice L. He considered tation is as crucial as the precision of measurements in such
the ideal case of perfectly reflecting mirrors and obtained aRxperimentg31].
expression which, remarkably, depends only on the geo- |n this context, it is essential to account for the differences
metrical quantitie\ andL and on the fundamental constants petween the ideal case considered by Casimir and the real

f andc, experimental situation. Recent experiments use metallic mir-
rors which show perfect reflection only at frequencies below

homiA their plasma frequency. They are performed at room tem-

FCas:W- (1) perature, with the effect of thermal fluctuations superim-

posed to that of vacuum fluctuations. In the most accurate
experiments, the force is measured between a plane and a
This attractive force has been observed in a number ofphere, and not between two parallel planes. The surface
“historical” experiments[2—6] which confirmed its exis- state of the plates, in particular their roughness, should also
tence and main properti¢g—9|. Several recent experiments affect the force. A large number of works have been devoted
reached an accuracy in the percentage range by measurit@the study of these effects and we refer the reader to Refs.
the force between a plane and a spHé@-13 or two cyl-  [19,2Q for a bibliography.
inders[14]. Similar experiments were also performed with  The evaluation of the Casimir force between imperfect
MEMS [15,16] (see also Ref{17]). An experiment studied lossy mirrors at nonzero temperature has given rise to a burst
the plane-plane configuration considered by CasiftB]  of controversial result§32—41 which constitutes a part of
but, as a consequence of the difficulties associated with thithe motivations for the present work. For the sake of com-
geometry, reached only a 15% accurdsge reviews of re- paring experimental measurements and theoretical expecta-
cent experiments in Ref§19,20). tions, it is necessary to have at one’s disposal a reliable ex-
The Casimir force is the most accessible experimentapression of the Casimir force in the experimental situation.
consequence of vacuum fluctuations in the macroscopitn the present paper, we focus our attention on the effect of
imperfect reflection of the mirrors. Other effects, in particu-
lar, the effect of temperature, will be addressed in follow-on
*Present address: Huygens Laboratory, Leiden University, P.Opapers.

Box 9504, 2300 RA Leiden, The Netherlands. We consider the original Casimir geometry with two per-
"Email address: reynaud@spectro.jussieu.fr fect plane and parallel mirrors. Except for these assumptions,
www.spectro.jussieu.fr/Vacuum we consider arbitrary frequency dependences for the mirrors
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which, in particular, may be lossy. We evaluate the Casimimultilayer dielectric mirrors includes the case of metallic

force as the effect of vacuum radiation pressure on thédayers, provided that magnetic effects play a negligible role

Fabry-Perot cavity formed by the two mirrors. The net forcein the optical response.

results from the balance between the repulsive and attractive

contributions associated, respectively, with resonant or anti- Il. VACUUM FIELD MODES

resonant frequencies. It is obtained as an integral over the , , ) o

axis of real frequencies, including the contribution of evanes- AS explained in the Introduction, we consider in this pa-

cent waves besides that of ordinary waves. It is then trand2€" the original Ca§|m|r geometry W'th perfectly ahgned

formed into an integral over imaginary frequencies by usingplama and_ parallel mirrors along th_e dlrectlonand_y. This

physical properties fulfilled by all real mirrors. c_onf|gurat|on obeys a symmetry with resp_ect to time transla-_
The formula obtained here for the Casimir force turns out!'®" 88 well as transverse space translapons along these di-

to be identical to the expression already published in Reffections. We use .b°|d letters for two-dimensional vectors

[42] but the new derivation has a wider scope of validity thanalor?g these directions and deno_tg(x,y) the transverse

the previous one, since it remains valid for lossy mirrors. ThePosition. As a consequence of this symmetry, the frequency

fact that the formula keeps the same form despite the widerf® ,Ttge_r:\;lansverse vect dd’“:h(kx 'kﬁ)’ anr:i the polarizatiop
ing of the assumptions is intimately related to a theorem that” " = ' are preserved throughout the scattering processes
n a mirror or a cavity. The scattering couples only the free

relates the spectral density of the fields inside the cavity t& des that h h I for th q
the reflection amplitudes seen by the same fields. This thed/2cUum modes that have the same values for the preserve

rem was demonstrated in Refd2] and[43] in specific cases quantum numbers and differ by the sign of the longitudinal
and we prove it in the present paper without any restrictionc0MpPonenk; of the wave vector. .
In the present section, we introduce notations for the

To this aim, we introduce a systematic treatment of lossy ) Lo . ;
mirrors and cavities as dissipative netwofkg]. We define vacuum f|eld' modes, first in empty space and then in a di-
scattering and transfer matrices for elementary network§!€ctric medium. These notations are chosen to be well
such as the interface between two media or the propagatidifiaPted to the symmetry of the problem.

over a given length in a medium. We then deduce the matri-

ces associated with composed networks, such as the optical A. Vacuum modes in empty space

slab or the multilayer mirror. In empty space, the components of the wave vector are

The results obtai_ned in this manner are therefore app“given for each field mode by the frequeney the incidence
cable to a large variety of mirrors, still with the assumptlonang|e6’ and the azimuthal angle,

of perfect plane geometry. In the particular case of a slab
with a large width, the Lifshitz expressidqa5,46 is recov- ®
ered. At the limit of perfectly reflectors, the ideal Casimir ke=|k|cose, [k|= osing,
formula (1) is obtained. More generally, the expression gives
the Casimir force as an integral written in terms of the re-
flection amplitudes characterizing the two mirrors. This inte- k,=klsine, kz=gcosﬁ,
gral is finite as soon as the amplitudes obey the general prop- c
erties of scattering theory already alluded to. In other words,
the difficulties usually associated with the infiniteness of/K| is the modulus of the transverse wave vector, and the
vacuum energy are solved by using the properties of redPngitudinal componerk, may be expressed in terms of the
mirrors themselves rather than through an additional formaPreserved quantities andk,
regularization technique.

We finally show that the same physical properties con- w? )
strain the variation of the Casimir force. In particular, they k=¢\/ 5 —k° ¢==%1, 3
invalidate proposals that have been done for “tayloring” the ¢
force at will by using mirrors with specially designed scat-
tering amplitudeg47,48. In these proposals, the balance
between attractive and repulsive contributions to the force i
changed, leading to the hope that the Casimir force coul
reach large or have its sign changed from an attractive forciara
to a repulsive ong47]. Using the simple model of a one-
dimensional space, it has already been shp#@j that these -
hopes cannot be met for arbitrary mirrors builtup with dielec-VECtOrse,
tric layers. Here, the argument is generalized to the Casimir

@

¢ is defined as the sign of cé#sand represents the direction
of propagation with+-1 and—1 corresponding, respectively,
go right-ward and left-ward propagation.

The two polarizationsp=TE,TM are defined by the
nsversality with the incidence plane of electric and mag-
netic fields, respectively. They are given by the unit electric

geometry in three-dimensional space with the following con- eM=cosfcose, eF=—sing,

clusions: the Casimir force cannot exceed the value obtained

for pgrfect mirr_ors, it remains attracti_ve for any Cav_ity length eM_coshsing, elE=cose, ()
and its value is a decreasing function of the cavity length. y y

This is true for any mirror obtained by piling up layers of B . e

media described by dielectric functions. This definition of €, =—sing, €, =0,
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or, equivalently, the unit magnetic vecto&TM=ETE and The dot symbol represents a symmetrized product.

BTE=—€™. For each mode, the wave vector and polariza- _

tion vectors form an orthogonal spatial basis. We have cho- B. Stress tensor in empty space

sen linear polarizations described by real components; hence The energy density per unit volunigy, is a quadratic

the unit vectorse and 3 are not affected by the complex form of the fieldsE andB,

conjugation appearing below in the relation between positive

and negative frequencies. Tool(r,2,t) =
The two modes corresponding to the same values, df, 00L&

andp, but opposite values ap are coupled by scattering on o ) ] )

a mirror. For this reason, we introduce a labek (w,k,p) W.hen subsnu_tmg the expression of free fle|d'§0 is ob-

gathering the values @b, k, andp. A mode freely propagat- tained as a bilinear form of the field amplitudes. Here, we

ing in vacuum is thus labeled by and ¢ and the summation study the averaged radiation pressure in the vacuum state
over modes is described by the symbols which leads to a contractiam’ =m in the sums over modes.

Using vacuum property8), we find the averaged energy
d’k (= dk d?k [» 0 do
mé P 4r?)-=2m °F 5 472)o ck, 2mC

2 2p2
5oz (E+c’B ). (9

density in vacuum equal to the sum over the modéeswi2,

hw
(5) (Todr20)vac= 2 - (10
Note that¢ appears implicitly as the sign ¢ in the first g it is well known, this energy density is infinite.
form, whereas it appears explicitly in the second one. The radiation pressure on plane mirrors oriented along
_ _The free vacuum fields are then written as linear SUPEerpG_y directions is determined by the compondht, of the
sitions of modes Maxwell stress tensor
hw-a . _ _
E(r,z,t)=\CZyae >\ 5-el[ele (oK k) T,(r,z,t)= (E-E+c?B-B). (11)
me 2 2 vac
+ (e el etk k2], Here, the dot symbol represents a symmetrized product of
(6)  the quantum amplitudes and, simultaneously, a scalar prod-
Zyac ho. o i(t—ker—k uct of the vectors; the overline symbol describes the math-
B(rizt)="/— m% — Brlene Hot=ler=ie) ematical reflexion of a vector with respect to the playe

+(ef) etk k2], E,=E., E,=E,, E,=—FE,. (12)

As for Tqg, averagingrl,, in vacuum state leads to a con-

The vacuum impedanc@, .= uoc=377) describes the - .
P vac -~ Mo raction over the modes with the result

electromagnetic constants in vacuum. In the following, thet

symbole will be reserved for the relative permittivity with ho . — . — ho

the value 1 in vacuum. (T, 40,20 hvac= >, R BL-BL=> — cogé.
The quantum-field amplltudﬁ and (e;fg)T correspond to mé mé

positive and negative frequency components. They fit the (13

definition of annihilation and creation operators of quantumrpis expression is similar to expressiét0) of the energy
field theory and obey the canonical commutation re|at'0”§jen5ity with an extra factor cé&&well known in studies of

[50] radiation pressure. The sum over modes is still infinite but
, this infiniteness problem will be solved in the forthcoming
[e2, ,ell]=(2m)3 6 (k—K') 8(k,— K.) Bppr S0 calculation of the Casimir force.
= Omm O @) C. Fields in dielectric media

In the following, we consider mirrors builtup as dielectric
multilayers. Each dielectric medium is characterized by a

. relative permittivity e[ ] or, equivalently, an index of re-
In the vacuum state, the anticommutators of quantum amp“fraction n[w]= ve[@] depending on frequency. The mag-
tudes are derived from the corresponding commutators @ oL P 9 q Y- 9

netic permeability is kept equal to its vacuum value, since
, 1 1 this corresponds to all e_xperimgr)tal situz_itions ;tud?ed so far.
<e$/.er<¢]’r>vac=§[e$/ ,erffj]z Egmm, Sppr s We stress again that this definition of dielectric mirrors in-
cludes the case of metals as long as the magnetic response
(8 plays a negligible role. We consider layers thick enough so
that the dielectric response is local, i.e. described by a wave-
vector-independent permittivity[ w].

’ !T
[ef enl=[en " ep1=0.

m m’

! 1 ’
<e$’ ’ erﬁ>vac=§[e:¢]r 1e$] =0.
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We will sometimes take the plasma model as a first de- T out _ >
scription of metallic optical response €, =¢ & T&
— —

w% 2mcC
slw]=1-—, Wp= (14 4— +—
w P out < in __ <
SL =8L 8R _SR

where wp and \p represent, respectively, the plasma fre-
guency and the plasma wavelength. This simple model is not _ _
sufficient for an accurate evaluation of the Casimir force be- FIG. 1. Scattering and transfer representations of a network.

tween real mirrord31]. To this aim, it is necessary to de- S . . .
scribe the optical response of metals with a dissipative par‘fhoIce s still cjescnbed by Eq.ﬂ)' In the foIIow!ng,_we W'”
se systematically the notatiogsand «, keeping in mind

associated with electronic relaxation processes. As a consg- . . :
quence of causality, the real and imaginary part<are at the causality relations have to be written for each value
’ |9f the conserved quantity.

related to each other through the Kramers-Kronig dispersio Besides the dispersion relatié), the dielectric medium

relations[51]. . . .
elations|51] also changes the impedance, that is the ratio between

For any function of frequency more generally, causality is . S . ; .
unambiguously characterized in terms of analyticity proper_magnetlc— and electric-field amplitudes. Precisely, the imped-

ties: nNfw] or e[w] are analytical functions ofv in the ance is Chaf?ged f_rom the Val@’ac in gmpty Space to '_[he
“physical domain” of the complex-frequency plane, that is valueZvaC/n in a'dlelectrlc medium of index, resulting in
the domain of frequencies with a positive imaginary part reflection at the interface.

Imw>0. This property is obeyed by other response func-
tions to be encountered below, and it will play an important
role in the derivation of the Casimir force. We will introduce
an equivalent notatiog for complex frequencies with the
physical domain now defined by a positive real part§or

IIl. MIRRORS AS OPTICAL NETWORKS

We now introduce the description of mirrors as optical
networks. We present the scattering and transfer representa-
tions and the relations between them. The transfer approach

w=i¢, Re&>0. (15) is well adapted to the composition of networks which are
piled up. We first consider elementary networks such as an

The dispersion relatio(2) is changed inside a refractive interface or propagation inside a refractive medium. We then
medium to use the composition law to study composed networks such as

the slab and multilayer. In the present section, we only con-

sider classical fields or, equivalently, mean quantum fields.

The following section will be devoted to the full quantum
(16)  treatment, including the addition of noise associated with the
losses inside the mirror.

k.= |k|cose, |k|=n[w]%sin 0,

w
ky=|k|sing, k,= n[w]gcosa.

A. Scattering and transfer representations
The preservation ob andk at the traversal of an interface is
equivalent to the Snell-Descartes law of refraction.

The sign has to be carefully chosen when extracting th
square root to express in terms of the conserved quantities
w andk. Ashs_oo_n asl thegefractwefgndex dcoEtalgs ahn Maghows — and+«) or input and output fieldglabels “in” and
nary part, this Is aiso the case fe; and the dephasing . . ), as shown in Fig. 1. Let us emphasize that the arrows
exp(k,2) associated with propagation includes an extinction

are a symbolic representation of the two modes coupled by

factor: In order to ensure that this factor is effectl_v_ely a de'the network which correspond to the same labelnd to the
creasing exponential, we have to choose a specific root d

. ) ) o Swo opposite signsp==*1. The geometrical directions of
fined differently for the two propagation directiors= =1 propagation are given by the wave vectors of equati®).

We first introduce the scattering and transfer representa-
tions for an arbitrary network represented by two ports and
Sour fields. These fields are identified as left-hand and right-
hand(symbols “L” and “ R"), right-ward and left-wardar-

of the field The coupling between the fields is described by reflection
K,=idxk, and transmissio_n amplitudes represented below by scattering
17 or transfer matrices.
> In the scattering point of view, we gather the input and
= /s[i§]§—2+k2, Rex>0. output fields in twofold columns related by &matrix

’ ’
The argument has been presented for freely propagating |5m>:(gn>: |5°u{>:(5out)’
modes, but it holds also for evanescent waves confined to the R R
vicinity of an interface between two media. In this case, the roT (18)
sign ofk, is also chosen so that it corresponds to an extinc- |gouty = g giny, S=( .
tion when the distance to the interface increases and this tor
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r andr are the reflection amplitudes whiteand t are the It is equivalent to transfer equatid20) with the T matrix
transmission amplitudes. We will also use an equivalent conobtained as
vention where the output ket is defined with the upper and

lower components exchanged, T=—(7m_~Sm.) Y=, ~Sm.). (26)
. out 0 1 The converse transformation is obtained by performing
|50u!>:( Out) = p|&°W, 77:( ) the same manipulations in the reverse order. Starting from

ton 10 transfer equatiori20) and using Eq(23), one obtains a lin-

(199  ear system which is equivalent to scattering equatit®)

—_— - r with
|EM)=8EM), S=nS=

S=—(m_—Tmy) Yy —Tm). (27)

This convention simplifies some algebraic manipulationsyy,, relationg26) and(27) have the same form. They repre-
while being completely equivalent to the former convention.gont an idempotent homographic transformation in the space
For c_omparison with pr_evious works, note that the formeer(C), care being taken for the noncommutativity of mul-
notation (18) was used in Refl42] whereas the latter one tiplications in this space. When inverting algebraically the

(19) was used in Ref.49]. homographic relationé26) and (27), one obtains equivalent
In the transfer point of view, the network is described byexpregsicf)ns 6 @9, g

left-hand and right-hand columns related by anatrix
é=(77+ +7 T (m_+m,T) L,

L R
&)= . &)= , 5 B (28)
& (5?) &) <5§) T=(mo+7_S)(m_+m,.S)
(20)

a b Other equivalent expressions are obtained from the equalities
|E0)=T[&R), T:(c d)'
(W—_§W+)(7T—_T7T+):|,

The matrix » introduced in Eq.19) exchanges the two 5 (29

directions of propagation. We also use in the following the (m_+7, S)(m_+7,T)=I.

matricesw.. which project onto each direction, _ _ _
All these expressions may be written in terms of the scat-

1 0 00 tering and transfer amplitudes
= _= . 21
™7lo o "7lo 1 21 —
B 1 b r
These matrices obey simple rules that define an algebraic a= t’ ot
calculus in the spaca1,(C) of 2X2 matrices with complex
coefficients, r tt—rr
c=-, d= ,
2 _ 2 _ _ _ t t
m=my, wo=mw_, wym_=m_m,=0,
2_ _ _ c — ad-bc
=L muy=T_7, NT_=T47. r=—, t= ,
a a
The identification of Fig. 1 is written as
— b
7 |Ey=7 €, m_|gy=m |, Ta Ta
. (23) _ : :
7 |E) = ,n_+|gin> &) =m_ |0, The more formal homographic transformations written above

are, nevertheless useful, as it will become clear in forthcom-
It relates the transfer and scattering amplitudes. We deconitg calculations.
pose scattering equatiori8) on the two components and
use Eq.(23) to rewrite them as B. Composition of optical networks

The T matrices are perfectly adapted to the composition
of optical networks corresponding to a piling up processe
(29) Fig. 2. On each network, the transfer equations are written

7| &Ry = S(m | E) + T_|ER)),

m_|E&)=m_S(m |E)+7_|&R)). as
This linear system may be put under a matrix form |E{AY) =T{A} E{A}),
~ ~ (31
(m_—=Smy)|&)=—(m,—Sm_)|ER). (25) |&{B}) =T{B}|Er{B}).
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A B

\/::;tp{int}z \/i:(l)ﬁ’{int}: VI=(rP{inthZ (35

- We deduce the expression of the transfer matrix
_ P 1 eBp/Z _ e—ﬁp/z
THint} = \| ———— o o ,
Ko/2 sinhgP\ —e= A2  gB"2
— (36)
AB zP+1
sz In ,

FIG. 2. Composition of networks, two networks labekedndB z’-1

are piled up to build up a networkB.

We now consider the process of field propagation over a
The bracketq} specify the network, for which th& matrix ~ Propagation lengtif’ inside a dielectric medium character-
or field column is written. Identifying the fields according to ized by a permittivitys. For this elementary network, the

Fig. 2, matrix has the simple form
|E{AB)=|e{A), |&x{A)=|c{B}), T{prop}:<e 0)
(32 0 e
|E-{AB})=|Ex{B}), (37)
2
we deduce that the piling up process is equivalent to the a=kl="\/ 8—2+k2€.
product of T matrices ¢
_ The optical depthwe does not depend on the polarization.
[E{AB})=T{AB}|ER{AB}). 33 Note that the composition is commutative within the class
(33 of interfaces or that of propagations: it corresponds to the
T{AB}=T{A}T{B}.

multiplication of thez parameters for interfaces and to the

) ] _addition of« parameters for propagations. But the composi-
We have assumed the two networks to be in the immediatgop js no longer commutative when interfaces and propaga-

vicinity of each other but without any electronic exchangetjons are piled up.
between them, which again corresponds to the assumption of

thick enough layers. D. Reciprocity theorem

C. Elementary networks _ We now prove a regiprocity theorem opeyed by g.rbitrary
) dielectric multilayers, i.e., networks obtained by piling up

We now study two elementary networks, that is the tra-interfaces and propagations. To this aim, we first remark that

versal of an interface and the propagation over a given lengtthe ratio of the two transmission amplitudes is related to the

inside a dielectric medium. determinant of tha matrix
For the scattering at the plane interface between two me-

dia with indicesny andn,, we write the reflection and trans-
mission amplitudes as the Fresnel scattering amplit[&&s
Reflection amplitudesP{int} are obtained from characteris-

tic impedanceg® defined for plane waves with polarization 1y foliows from relationg30) betweenS and T amplitudes
p in each medium and from the continuity equations at th&q o arbitrary network. Then, it is clear from E@3) that
interface the determinant of is simply multiplied under composition,

~ | —~+

=ad—bc=detT. (38

-2 detT{AB} =detT{A} detT{B}. (39

— 1
rP{intt=—rP{intl= ,
finty = —P{ing} =

For the two kinds of elementary networks studied previously
n,cos6; K, [see Eqs(36)—(37)], the determinant of is the ratio of the

B = —= =, (34  values ofx at the right and left sides of the network,
n000800 Ko
™ _ n1C0300 _ €1Kp detT_ K_L (40)
n0C0801 EpKq '
It follows that this relation is valid for any optical network
Then the transmission amplitudes are obtained as composed by pilingup interfaces and propagations.
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In the particular case where the network has its two port§his corresponds to the so-called “bulk limit” witke™
corresponding to vacuum, which is the case for a mirror, the—~0 andr{slag— —e #=r{int} in Eq. (44): the reflection
values ofx are equal on its two sides and thenatrix has a amplitude is determined entirely by the first interface. Let us
unit determinant emphasize, however, that the bulk limit raises several deli-

_ cate problems. First, the transmission amplittig#al} van-
detT=1, t=t. (42 ishes in this limit so that th& matrix is not defined, with the
drawback of invalidating the general method used in the
Note that reciprocity corresponds to a symmetri8ahatrix  present paper. Then, the bulk limit cannot be met in the case
and has to be distinguished from the spatial symmetry of thef nonabsorbing media, whees ¢ remains a complex num-
network with respect to its mediane plane which entails ber with unit modulus for any value d@f. Even in the pres-
=r. ence of absorption, a large value of the widthdoes not

This theorem is the specific form, when the symmetry ofnecessarily imply a large value of the optical thickness
plane mirrors is assumed, of the general reciprocity theorerince k may go to zero at normal incidence and at zero
demonstrated by Casinif4] as an extension to electromag- frequency, leading to a transparent slab in contrast with the
netism of Onsager’s microreversibility theoreff5]. We  results of the bulk limit. Therefore, a reliable calculation
have disregarded any static magnetic field which could affecnust consider the experimental situation of mirrors with a

these reciprocity relations. large but finite thickness. In the present paper, we consider
the general case of arbitrary mirrors and test the reliability of
E. Slabs and multilayers the bulk limit in the end of the calculations.

. he dielectric s il We can deal with the case of dielectric multilayers simi-
We now consider the dielectric slabs and multilayers ag,qy it we consider as an example the multilayer obtained
composed networks and we deduce their transfer and scatteHy piling up a vacuum or matter interface with indices
mgTer\]mpllltut()jgs frgm_thed pgeceql_mg results. =1 andn, at its left- and righ-thand sides, propagation over
e slab is obtained by piling up a vacuum or matter, length¢, inside the medium 1, an interface between media

|r_1(tjerface with |nd|cemo=1| andﬁl "?‘é its left and rclighthand 1 and 2, propagation over a length inside the medium 2,
sides, propa_lgau?n ove_rr:? engt n5|d € rEaltter, _anl ?tmatéer and an interface between medium 2 and vacuunT, itsatrix
or vacuum interface with now; andny=1 at its left- and ;5 Jpiained as the product

righ-thand sides. We denofE{int} the T matrix associated

with the first interface and obtain thE matrix associated T{multilayer

with the second interface as the inversel¢int}. As a con- ) ) )

sequence of the composition 1ai83), the T matrix associ- =T{int 01} T{prop B T{int12} T{prop2 T{int20}.

ated with the slab is obtained as (45)
T{slat} = T{int} T{prog T{int} ~*. (42)  Alternatively, the same multilayer may be obtained by piling

) ) ) up two slabs each corresponding to one of the layers
Using the expressiong36) and (37) of T{int} and

T{prop;, we evaluatel{slal} as T{multilayer = T{slab01QT{slab020. (46)

In the last two equations, the indices specify the different
. (43 interfaces, propagations or slabs using an obvious conven-
tion.
Since any multilayer mirror is obtained by piling up slabs
connecting two vacuum ports and thus obeying the reciproc-

ity relationt=t, we can use a simple form of the composi-

1 (sinr(,8+ a) sinha

T{Slaﬁzsinhﬂ —sinha  sinh(B—a)

We deduce the form of th® matrix, which is simultaneously
reciprocal ¢ =t) and symmetrical in the exchange of its two

ports (=r), tion law written in terms of scattering amplitudgt9]
1 —sinha  sinhB 2 T2
tar - rat
la = ———| . . . (44 AlB Als
S{slal sinh(B+a)| sinhB —sinha (44) rap=fat ———, M=rgt——,
l-rarg 1-ralg
In the limiting case of a small thickness—0, we find (47)
t{sla}—1 andr{slal—0, which means that the slab tends o tals
to become transparent. In this case indeed, the propagation AB 1_r_ArB.
can be forgotten and the two inverse interfaces have their
effects canceled by each other. For readibility, we have specified the networks by using sub-

The opposite limiting case of a large thickness is oftenscripts rather than brackets. We will proceed similarly in
considered, since it fits the usual experimental situationsorthcoming specific computations. Iterating this composi-
More precisely, experiments are performed with metalliction law, we can compute the scattering amplitudes for any
mirrors having a thickness much larger than the plasmalielectric multilayer. This systematic technique is quite simi-
wavelength. This is why the limit of a total extinction of the lar to the classical computation techniques used for studying
field through the medium is assumed in most calculationsmultilayers[56]. It is generalized to the full quantum treat-
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ment in the following section. It also leads in the following
to general results constraining the variation of the Casimir
force for arbitrary dielectric mirrors. It reproduces the known
results for the multilayer systems which have already been
studied[57,19.

IV. QUANTUM TREATMENT OF LOSSY MIRRORS
Up to now, we have performed a classical analysis which
is not sufficient for the purpose of describing the scattering
of vacuum fluctuations. Real mirrors consist of absorbing
media which scatter incident fields to spontaneous emission
modes and reciprocally scatter fluctuations from noise modes
to the modes of interest. TH&matrix calculated previously
cannot be unitary for a lossy mirror, but it should be the
restriction to the modes of interest of a lar@matrix which
includes the noise modes and obeys unitarity_ In the present FIG. 3. Representation ofa dissipative network, with additional
section, we characterize the additional fluctuations for dluctuations coming from the noise modes.
lossy mirror by using the corresponding “optical theorem,”
that is also the unitarity of the larges matrix (see Refs. coupled field modes is unitary and this basic property makes
[58,59 and references thergin the canonical commutation relations compatible for input
We assume that the scattering restricted to the modes @nd output fields. In contrast, the reduced scattering matrix
interest still fulfills the symmetry of plane mirrors considered containing only the classical scattering amplitudes coupling
in the previous classical calculations. This amounts to nethe main mode?, is not unitary, except in the particular
glect multiple scattering processes which could couple difcase of lossless mirrors.
ferent modes through their coupling with noise modes. Ex- In order to write the unitarity property of the whole scat-
cept for this assumption, we consider arbitrary dissipativéering matrix, it is convenient to represent the additional
media and discuss the optical theorem in the scattering arftlictuations|F), by introducing auxiliary noise modes)
transfer points of view. We use the latter one to deal withand auxiliary noise amplitudes gathered in a noise m&trjx
composition of additional fluctuations when lossy mirrors are
piled up. r' t'
F)=s'If), S’=(t, F)

(49)
A. Noise in the scattering approach

Should we use the previous classical equations for thehe components of the twofold colunifiy are defined to
quantum amplitudes, we would find that the output fieldshave the same canonical commutators as the input fields in
cannot obey the canonical commutators, except in the pathe main modes. In fact, they are linear superpositions of the
ticular case of lossless mirrors. This implies that the input Olinput vacuum modes responsible for the fluctuation process.
output transformation for quantum field must include addi-They are defined up to an ambiguity: any canonical transfor-
tional fluctuations superimposed on the classical equationsmation of the noise modes leads to an equivalent representa-

: tion of the additional fluctuations, which corresponds to a
out, — n 1
&™) =Sle") +[F), (48) different form for the noise amplitudes, while leading to the
ou in ' . . same physical results at the end of the computations.
e ‘}l_tar:jd e .> arle def'?fﬁ asi In qu?) :’c\g’h Sthetﬂuantum For any of these equivalent representations, the norm ma-
amplitudese in piace ot he classical e IS IN€ Same iy 5's' 'has the same expression determined by the optical

matrix as prewous_l_y, angF) is a twofold column matrix theorem, that is the unitarity condition for the whole scatter-
describing the additional fluctuations. All these quantities de-

N ing process,
pend on the quantum numben which is common to all gp
fields coupled in the scattering process.

The additional fluctuations are linear superpositions of all

modes coupled to the main mode$ by the microscopic

couplings which cause absorption. As an example, the atomhere! is the 2x2 unity matrix. This is easily proven by a
constituting a dielectric medium couple the main modes tdI"€ct inspection of the explicit expressions of the commuta-
all electromagnetic modes through spontaneous emissidd's ©f the output fields. The same inspection shows that
processes, represented symbolically by the wavy arrows ofiCiS€ modes corresponding to different valuesroére not
Fig. 3. The stationarity assumption implies that only mode<orrelated to each O'Eh‘?rT' ConditidB0) is made more ex-
having the same frequencies are coupled. In particular, @/t when _S§ andS’'S’ " are developed in terms of scat-
forbids parametric couplings which could couple modes with€"ing amplitudes

different frequencies and “squeeze” the vacuum fluctuations L L

[60]. The whole scattering matrix that takes into account all rr* +tt* +r/r'* +t't’"* =tt* +rr*+t't'"*+r'r'* =1,

SS+s'8t=], (50)
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FE* i 1 % 4t  =tr* 1t 1 * +1/t'* =0, Using Eqgs.(53) and (27), we rewrite it as
51
6 TT=T0T'-®, d=7,-7_, (59
More detailed discussions are presented for the case of the . o _ .
slab in Appendix A. @ is a diagonal matrix with two eigenvalues representing the
The description of noise may also be represented with thélirections of propagatiogp= =1 of the field.
alternative representatidd9) of the scattering process
. — C. Composition of dissipative networks
out\ Q| ain
|e7)=S|e") +[F), Using these tools, we now write composition laws for the
(52)  fluctuations and their norms. We start from transfer equations

|2 = n|e®), |F)=n|F). written for each networtd and B,
The additional fluctuations are then represented in terms of le {A}) =T{A}|er{A}) +|G{A}),
the same noise modes and of a modified noise matrix (60)

|e.{B})=T{B}|ex{B}) +|G{B}).

(53 Using the identification$32) associated with the composi-

[Fy=sIf), =78,

St TG tion law, we deduce for the composed network
o le{AB}) =T{AB}|ex{AB}) +|G{AB}),
B. Noise in the transfer approach 61)
We now present the description of additional fluctuations |G{AB})=|G{A}) + T{A}|G{B}).

in the transfer approach. Performing the same manipulations
as in the preceding section, we transform Exp) into The fluctuationdG{AB}) are a linear superposition of fluc-

N N — tuations|G{A}) and|G{B}) added inA andB.

(m_—Smy)|e)=—(m, —Sm_)|leg)+|F). (59 In order to obtain the composition law for the norm ma-

trices, we develop the additional fluctuatid@{AB}) on the
We thus get transfer equations with additional fluctuationssanonical noise modes associated with the two elements,
described by a twofold colum|G),
G{ABLH=T'{A}|T{A})+T{A}T'{B}|f{B}). (62
o) =Te+ |G, (GAB) =T {A}[F{A)+ T(AT'{B}|{{B}). (62
_ — (55)  Since the noise modes associated with different elements are
|GY=(7_—Sm,) YF). uncorrelated,|G{AB}) may be rewritten in terms of new

canonical noise modes and new noise amplitudes, such that
The T matrix has the same expressi@®) as previously and
the additional fluctuationfG) are a linear expression of the |G{AB})=T'{AB}|f{AB}),
fluctuations|F) defined in the scattering approach. This lin- (63)
ear relation may be written under alternative forms by using T'{AB}T'{AB'=T'{A}T'{A}],
relations(29),
. . +T{AYT'{B}T"{B}'T{A}".
|FY=(m_—Sm)|G)=(m_—Tm,) YG), _ _ .
(56) Using expression59) of the optical theorem for both net-
works A and B, we deduce that the composed netwéB

1G)=(m_~Tm)|F). obeys the same relation

In the scattering approach, the norm of additional fluctua-

tions is described by matrice®S' T and'S'S'T which are
themselves determined by optical theorés0) or (53). In XOT{B} - @) T{A}
order to translate these properties to the transfer approach, _ -

we rewrite Eq(55) in terms of the canonical noise modés =T{AB}®T{AB}'— . (64)
and of noise amplitudes gathered in a mafiix

T'{AB}T'{AB'=T{A}®T{A}"— D+ T{A}(T{B}

Equivalently, theS matrix of the composed networRB
1G)=T"'|f) obeys optical theoren60) as soon as the two networks
’ (57 andB do.

T'=(r_~%m.) 'S =(a_~Tw,)S
(r ™) (ar ™) D. Resonance for cavity fields

The associated norm matrix is We have studied the scattering or, equivalently, the left-
e hand or right-hand transfer of fields by a composed network
TT'=(7r_—Tw)S' SN 7w —Tm,)". (58  AB. We want now to characterize the properties of the fields
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g In order to express the cavity fields in terms of the input
-G modes and additional fluctuations, we first write the cavity
2 2 fields |ec) in terms of the right-hand onésg),
: R
—— : — lec)=Teler) +|Ga). (66)
<§ % We then identify the two components [&z) as
L : R
— : — — ~ ~
: 7 leg) = |eM) =7 (S|e") +|F)),
. (67)
< m_|eg)=m_|eM.
€c

Using the expression ¢f) in terms of|G) and the compo-
FIG. 4. Cavity formed within a composed netwotk:and R sition law (61) for |G), we deduce

denote the fields at left and right sides of the network, whe@as in , ,

denotes the cavity fields. lec) =R[e"™) +Ru|fa) + Rglfe),

inside the cavity formed betweefandB. This problem will R=TgN, N=(7.S+7 )=(7_+m,.T)%

play a key role in the evaluation of the Casimir forsze ;L , _

following section. Ra=TgPTa, P=—-Nm,, (68)
The situation is illustrated by Fig. 4 which, in contrast to

Fig. 2, keeps the trace of the intracavity fields. In algebraic

terms, the cavity fields are defined by rewriting identifica-  As already explained, the unitarity of scattering entails

Rg=(1+TgPTa)Tg.

tions (32 as that the output fields have the same commutators as the input
. _ ones. But this is not the case for the cavity fields which have
le.{ABh)=le{A}) |ex{AB})=|ex{B}), (65 their commutators determined by the matrix
lec{AB})=|er{A})=e.{B}). G=RR'+RAR,+R4RL' . (69)
From now on, we drop the labdlAB} for the composed Expanding this quadratic form and using composition law
network and use subscripts for the netwofandB. (63), we rewriteG as
|
G=TgNN'TL+ TP T T T PTT L+ TgP TATA TS + TaTE TAP T+ ToTS' . (70)
|
Using relation(59) for the three network#, B, andAB, we 1 1 f_A
obtain a simpler expression after a few rearrangements —TgPT\P=—— _ (74)
1_ I’Ar B rB rAI’B
G=—P—TgPT,&—PTLPTL. (71)

Collecting these results and proceeding to slight rearrange-

We now proceed to explicit calculations of these matricesments, we finally get
We note thatP= —ta, , wheret is the transmission ampli-

tude of the networkAB and deduce g=1+ 1 (f_AfB r_A )
aBaA —aBbA l—I’AI’B rB I’AI’B
Cgda —Cgba 1 (rArB N ) 75
(1-ralg)* | e Talg

t is simply the inverse of the transfer amplitud@ssociated
with the networkAB [see Eq(30)] and the latter is deduced

from composition law(33), In the following we will use the diagonal terms of the matrix

G to evaluate the Casimir force.

t= 7 @~ aadst baCg- (73 E. Scattering on a Fabry-Perot cavity

In order to prepare the evaluation of the Casimir force, we
Then, the transfer amplitudes of the netwok&ndB may  generalize the preceding expression to the case of the Fabry-
be substituted by the associated scattering amplitudes, leaBerot cavity containing a zone of field propagation between
ing to the two mirrors M1 and MZsee Fig. 5.
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2a

- — T a2«
a 1 I‘ll’ze rle 1
2 2 2 G=1+~= _
8L SC: 8R D r2e72‘12 rar e—Zuz
—_ —_— —_— 1'2
: —  oa - t
£ < € 1 [rire 2® re?n
PR PR —or +— T, — . (79)
§ D* | rpe " ryrpe 2®

The diagonal terms in the matri& coincide with the Airy
FIG. 5. Representation of a Fabry-Perot cavityandR denote  function
the fields at left and right sides of the cavity, wher€adenotes the

cavity fields inside the Fabry-Perot cavity; these cavity fields are 1—|ryr,e 22
defined at an arbitrary position between the two mirrors. g=1+f+f* :m'
—hif2
The distance between the two mirrors is dendteohd the Tore2a (79
cavity fields are defined at an arbitrary position inside the fo_ 120
cavity, say at distancels; from M1 andL, from M2 with 1—rre 2@

L,+L,=L. In these conditions, the study of the Fabry-Perot ] . o

cavity is reduced to the problem studied in the precedingTh'S result will play the central role in the derivation of the
subsection through the following identifications: the networkCasimir force in the following section. It means that the
A contains the mirror M1 and the propagation L1 wii commutators of the intracavity fields are not the same as
=Ty TL1, While the networkB contains the propagatidr2 those of the input or output fields. They_cqrre_spond to a
and the mirror M2 withTg=T,Ty. The transfer ampli- spectral dgnsﬂy m.Od.Ierd through a multlpllcatlo.n by t.he
tudes for the networks andB are derived from those cor- Airy function g. This is the basic property used in cavity
responding to M1 and M2 and from phase factors correduantum electrodynamig§1].

sponding to the propagatiohsl andL2 It is clear from the present derivation that this result has a
quite general status: it is obtained for any inner field in any
ta=ta=t;07%,  a;=Kolq, composed network, assuming the symmetry of plane mirrors.

This property was already known for nonabsorbing mirrors
[42] and for lossy mirrors symmetrical with respect to their
Ta=re72%,  ra=r, mediane plang43]. The present derivation proves that it is
(76) also valid for arbitrary dielectric multilayers with dissipa_tion.
— The final result only depends on the reflection amplitudes
tg=tg=€ "y, a;=xolo, andr, of the mirrors as they are seen from the inner side of
the cavity. The reflection amplitudes seen from the outer side
and the transmission amplitudes do not appear in expressions
(78) and (79). This can be interpreted as resulting from the
unitarity of the whole scattering processes.
We have labeled the amplitudes for the mirrors M1 and M2
with mere indices 1 and 2, is defined in vacuum. These V. THE CASIMIR FORCE BETWEEN REAL MIRRORS

results entail that the reflection amplitud_gsandrB are seen We may now deal with the radiation pressure of vacuum
from a point inside the cavity as the product of phase faCtorTﬁelds on the mirrors of a Fabry-Perot cavity. We show that

by the reflection amplitudes; andr, seen from a point in  the resulting Casimir force is a regular integral which can be

rg=r,, rg=rye 2%

the immediate vicinity of M1 and M2. written over real or imaginary frequencies. We then derive
We then deduce the scattering amplitudes for the wholgeneral constraints obeyed by the Casimir force for arbitrary
cavity, dielectric mirrors.
- t%rzeiza - r_ltgefz”‘ A. Vacuum radiation pressure
r=rfi+—pg— r=ht—pF— If we first consider a mirror isolated in vacuum, the radia-

tion pressure is obtained by adding the contributions of the
four fields coupled in the scattering process

— e
<P>vac: % ﬁmeOg‘ 0m<emL' €L T emL mL —€mr" EmR
J— — <—‘f'
D=l—r1r2972a, a=a1+a’2, _emR'emR>vaC' (80)
The identification of these fields is given by Fig. 1. We have
and the expression df, developed the sum oves and kept the symbom to
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represent the quantum numbeus k,p). We assume that the The sign conventions used here are such that the positive
whole system is in vacuum, that is at zero temperature, sgalue obtained below foF corresponds to an attraction of
that the anticommutators of input fields are given by relatiorthe two mirrors to each other.

(8). Since the commutators are the same for the output and

input fields, the vacuum radiation pressure vanishes in the B. The force as an integral over real frequencies

case of an isolated mirror. In other words, the two sides of
the mirror play equivalent roles, so that no mean force can,
appear.

When we consider two mirrors forming a Fabry-Perot &k  dw
cavity, the two sides of a given mirror are no longer equiva- ~ F=A(P;),.=A>, J —J STk, (1—gf[w]).
lent since one is an inner side and the other an outer side. It p 47%) 2w
follows that the compensation observed for an isolated mir- (85
ror does no longer hold, resulting in the appearance of th@N

Casimir force. In order to evaluate the force, we write the eUWIItlonr?Z)VWSF\)/\?:ILya:/Ze d(ijSCTjgjsr:agftar:etes%r:tttlg:i]nf&z‘br ordinar
mean radiation pressuréB ;). and(P,),,. on mirrors M1 b N ) 9 Y
and M2 (see Fig. 5 waves which freely propagate in vacuum and correspond to

frequenciesw larger than the bound|k| fixed by the norm
of the transverse wave vector. But we must also take into

We now perform a change of variable to rewrite the sum-
ation symbol as specified in Eh),

(Pvac= > homcoS (e -eml+en -en—ercend account the contribution of evanescent waves which corre-
m spond to frequencie® smaller thanc|k|. These waves are
—e- _e<—T> fed by the additional fluctuations coming from the noise lines
me: =me/vac: into the dielectric medium and propagating with an incidence
angle larger than the limit angle. They are thus transformed
(Po)vac= > TromCOS O €mc- Ema + € €ma — €mR- Emp at the interface into evanescent waves decreasing exponen-
m tially when the distance from the interface increases. As is
e et 8 well known [53], the properties of these evanescent waves
€mRr’ €mR Jvac: (81

are conveniently described through an analytical continua-
For the same reasons as previously, the field anticommudion of those of ordinary waves. This anglytical cpntinuation
tators are given by Eq8) for input and output fields. For ¢&n only be dealt with in terms of functions having a well-
intracavity fields, they are multiplied by the Airy function deflngd analyticity behavior. This is n_ot the case for the Airy
(79) like the commutators function gR[ w], but we know that this function is the sum
(79 of parts having well-defined analyticity properties,

¢ oot oo ol
(elcr emc>vac:§[emrc1em cl= Egm5mm' Sper - (82 1—-|pP[w]|?
gflo]=1+flo]+flo]*=———,
‘ T i-pflell?
As shown in the previous section, these expressions do not X
depend on the position inside the cavity where the cavity Plo]
fields are defined. We finally deduce the mean radiation pres- fPlw]= pk—' (86)
sures on mirrors M1 and M2, 1-pRlw]
Plwl=rP p —2kolL
<P1>vac: _<P2>vac:2 ﬁmeoszam(l—gm)- (83 pk[w] rk’l[w]rk’z[w]e o
m

pblw] is the “open loop function” corresponding to one
At this point, it is worth emphasizing that we have assumedound trip of the field inside the cavity and defined as the
equilibrium at zero temperature for the whole system : nofproduct of the reflection amplitudefzﬁvl[w] and rﬁyz[w] of
only the input fields but also any fluctuations associated witlthe two mirrors and of the propagation phases#ift<: it
loss mechanisms inside the mirrors correspond to zero-poing an analytical function in the physical domain of complex
fluctuations, whatever their microscopic origin may be. Oth-frequencies R&€>0 with the branch of the square root cho-
erwise, the expression of the force discussed in the followingen so that Re>0. Since the transverse wave vector is
would be affected. spectator throughout the whole scattering process, analyticity
The pressures have opposite values on the two mirrorgs defined withk fixed.
M1 and M2. This entails that the global force exerted by Then,ff[ ] is the “closed loop function” built up on the
vacuum upon the cavity vanishes, in consistency with thepen loop functiorpf[w]. It is also an analytical function,
translational invariance of vacuum. In the f0||OWing, we de'thanks to ana|yticity Of the Open |00p and to a stab|||ty prop_
noteF the Casimir force Calculated for M1 When ConSidering erty which has a natural interpretation: the System formed by
the limit of a large are#A>L7?, the Fabry-Perot cavity and the vacuum fluctuations is stable,
because neither the mirrors nor the vacuum would have the
_ _ _ ability to sustain an oscillation. In some cases, the stability
F=AP)vac A% h0nCOS (1= Gn). &4 can be derived from a more stringent passivity proppts}
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which may essentially be written dp[ w]|<1. However, Imo=Ret feoooo.
the passivity property is sometimes too stringent to be : h
obeyed by real mirrorésee more detailed discussions in Ap- : .
pendix B. In any case, the stability property, i.e., the absence C
of self-sustained oscillations, is sufficient for the present : o
derivation of the Casimir force. : Ci

We are now able to give more precise specifications of the :
domain of integration in Eq85). Using decompositiol86),

we write the contribution of ordinary waves to this integral C C :
as the sum of two conjugated expressions, B g O eue. i,
clk =
Ford= Ford™ ]:grdv K Reo=-Img
(87) FIG. 6. Contour representing the frequencies of interest for the
d?k (= dw evaluation of the Casimir forceC, and C, correspond to the real
Ford= —A% f ﬁquﬁﬁsz o] frequencies associated with ordinary and evanescent wayesy-

responds to the imaginary frequencies, &dto a quarter circle

. . . . with a radius allowed to go to infinity.
The integral 7,4 is built on the retarded functiofif[ w], g R4

which may be extended through an analytical continuation g e Kof
from the sector of ordinary waves to that of evanescen
waves. The contribution of evanescent waves to the force i
thus obtained as

Pli €] is analytical in the domain Re>0, its
Fntegral over a closed contour lying in this domain has to
Vanish. We choose the contour drawn on Fig. 6, which con-
sists of the positive part of the real axis including ordinary
(C,) and evanescentdy) waves, a quarter of circl€., with
a very large radius and, finally, the imaginary aisrun
(88) from infinity to zero. Now the functiomff[i £] goes to zero
kald_“’hk Pl w] for large values of the frequency, as a consequence of trans-
o 2m KL parency at high frequency, a property certainly valid for any
realistic model of optical mirror. Thanks to this property, the
The final expression of the Casimir force is the sum of thecontribution to the integral o€., vanishes. We then deduce
contributions of ordinary and evanescent waves that is alsthat the integrals over the real axi§,+«[ and over the

Feva= Fevat -7:;\,&,

d%k

472

Feva= _Azp f

the integral over the whole axis of real frequencies, imaginary axig 0,+i«[ are equal.
We thus get a new expression of the foFeas an integral
F=FoqtFev=F+ 7", over imaginary frequencias, that is also as an integral over
(89 real values of,
F=—AY, f o xdwh' fP
AL | ) 2Rl kL] F=F+F*=2F,

As far as ordinary waves are concerned, this corresponds to F=AS f ﬂfmﬁhx oig] 00
the intuitive picture where the Casimir force results from the 3 4m2)o 27 TOKLSD

radiation pressure of vacuum fluctuations filtered by the cav-

ity [42]. The contribution of evanescent waves is but the 2

extension of the domain of integration to the whole real axis Ko= "\ [K24+ 2=

with the cavity response functidif[ ] extended through an c?

analytical continuation. In the evanescent sector, the CaVitYN ] o
function ff[ w] is written in terms of reflection amplitudes & have used the fact that is real, so that™ is simply

calculated for evanescent waves and exponential factors cagfdu@l toF. This property is less obvious, but also true, with

responding to evanescent propagation through the cavity Witten as an integral over real frequencies. We wish to
This means that it describes the “frustration” of total reflec- €MPhasize more generally that expressiad) is mathemati-

tion on one mirror due to the presence of the other. Thigally equivalent to Eq(89). The former expression is closer
explains why the radiation pressure of evanescent waves 9 the physical intuition, whereas the latter is better adapted
not identical on the two sides of a given mirror and, there-{0 €xplicit computations of the force.

fore, how evanescent waves have a non-null contribution to EXPression90) gives the Casimir force between real mir-
the Casimir force. rors described by arbitrary frequency-dependent reflection

amplitudes. It is a regular integral as soon as these ampli-
tudes obey the physical assumptions used in the derivation:
causality, unitarity, and high-frequency transparency for each

Using the Cauchy theorem, we now rewrite the Casimirmirror, stability of the system formed by the two mirrors and
force (89) as an integral over the axis of imaginary frequen-the scattered vacuum fields. The demonstration holds for dis-
cies. sipative mirrors and not only for lossless ones.

C. The force as an integral over imaginary frequencies
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The limit of perfect mirrors is obtained in expressi@®)  This means that the properties obeyed by real mirrors
by letting the reflection amplitudes go to unity, which leadsstrongly constrain the possible variation of the Casimir force,
to the Casimir formula(1). This can be considered as an contrarily to what might have been expected at first sight
alternative demonstration of the Casimir formula without any[47,48.
reference to a renormalization or regularization technique. Note that we have considered mirrors used in the experi-
Basically, the properties of real mirrors, in particular their ments which have electric permittivity but no magnetic per-
high-frequency transparency, are sufficient to provide a regumeability. Different results would be obtained with magnetic
lar expression of the force, as it was guessed a long time aguirrors, precisely with one of the mirrors dominated by elec-
by Casimir[1]. tric response and the other one by magnetic response. The

As a simple model of the mirrors used in the experimentsproduct of the two reflection amplitudes would indeed
let us consider a metallic slab with a large width, that is abe negative in this case and the Casimir force repulsive
width ¢ larger than a few plasma wavelengths. We use exf62—-65.
pression(90) of the force written as an integral over imagi-
nary values of the frequenciesm &ié, ¢ rea). Hence, the
phase factor corresponding to one round trip inside the slab VI. CONCLUSION

is a decreasing exponential with a real exporestit“‘. For We have presented a derivation of the Casimir force be-
the plasma modefl14), «; is given by J£°/c®+ wi/c®+k®  tween lossy mirrors characterized by arbitrary frequency-
and it is larger than 2/\p for all values of¢ andk. When  dependent reflection amplitudes, in the Casimir geometry,
relaxation is taken into account, this is still the case except ifvhere the cavity is made with two parallel plane mirrors.
a very narrow domain with values @fandk both close to We have shown how mirrors and cavities may be dealt
zero. This domain has a negligible contribution to the inte-with by using a quantum theory of optical networks. We have
gral (90) and it follows that the reflection amplitude of the deduced the additional fluctuations accompanying dissipa-
slab may be replaced by the limiting expression obtained fotion from expressions of the optical theorem adapted to
the bulk. One thus recovers the Lifshitz expression for thequantum network theory. The optical theorem is equivalent
Casimir force[45], which is widely used for comparing ex- to the unitarity of the whole scattering process, which
perimental results with theoretical expectati¢@s]. couples the modes of interest and the noise modes, and it
ensures that the quantum commutators of the output fields
are the same as those of the input fields. The situation is
. o ] different for the cavity fields which do not freely propagate.
We now deduce general constraints which invalidate proye have given a general proof of a theorem previously dem-
posals made for tayloring the Casimir force at will by using onstrated in particular caséd2,43, which states that the
specially designed mirror47,48. This generalizes to 3D  mggification of the commutators is determined by the usual
space the results obtained for 1D space in Rid] to which  ajry function, that is, the spectral density associated with the
the reader is referred for further discussions. Fabry-Perot cavity. For arbitrary lossy mirrors, the spectral
Expression(90) is an integral over the axis of imaginary gensity is determined by the reflection amplitudes as they are
frequencies essentially determined by the reflection ampliseen by the intracavity fields. It determines the radiation
tudesr,[i£] andr,[i£] for £ real. These amplitudes always pressure exerted by vacuum fluctuations upon the mirrors
have a modulus smaller than unity, for arbitrary dielectricyjith repulsive and attractive contributions associated, re-
multilayers(see Appendix € They are negative for arbitrary gpectively, with resonant or antiresonant frequencies. The
dielectric slabs(see Appendix A and we deduce from the casimir force is then obtained as an integral over the whole
composition law(47) that this is still the case for arbitrary gxis of real frequencies, including the contribution of evanes-
a modulus smaller than unity, derivation only uses a few general assumptions certainly
. : valid for real optical mirrors, namely, causality, unitarity,
O<ryfig]ralig]<1. (1) high-frequency tF;ansparency for eachymirror, an)él stabilityyof
the compound cavity-vacuum system. It leads to a finite re-

From this, we deduce first that the Casimir force has arsylt without any further reference to a regularization tech-
absolute value smaller than val(® reached for perfect mir- nique[42].

D. Constraints on the force

rors and that it remains attractive, The formula obtained in the present paper for the Casimir
force was already knowfd2], but its scope of validity is
O0=<F=F¢g (920  widened by the present demonstration. It has been used to

discuss the effect of imperfect reflection for the metallic mir-
We also derive that the Casimir force decreases as a functid?'> used in the experiments. Different descriptions of the
of the length optical response of metals have been used, from the crude

’ application of plasma modéll4) to a more complete char-

acterization of the dielectric constant derived from tabulated

dF optical data and dispersion relations. This kind of calcula-
—=<0. (93 : . . . . .

tion, discussed in great detail for the mirrors corresponding
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to the recent experimentsee, for example, Ref31]), has sinh(i B;) sing;
not been reproduced here. Instead, we have presented general t=——— Tia) SnB+a)
results valid for any real mirrors obeying the physical prop- SINN Bitiar) SN+ ax)

erties already evoked, and shown that they strongly constrain sinh(i ;) sina: (A2)
the variation of the Casimir force. r=——— Y = S
In the present paper, we have restricted our attention to sini(i g +iai) sin(B; + ai)

the limit of zero temperature although our work was partly
motivated by a rﬁcegt p_oIgn:caI dtl)scussmn Ofl th? gtée_ct Ohore explicit discussions in Appendix B with different re-
temperature ont e Casimir force etween rea mw[ sults for the TE and TM polarizations

All. Since C(_)n_tradlctory re_sults may hgve rals_ed _doubts For imaginary frequencies finally3 and « are positive
about the validity and consistency of various derivations ofreal numbers, for lossy as well as lossless slabs. In this case,

the Casimir force, we have_ consjdergd it was import.ant tct}eneral bounds are easily obtained for the amplitudes
come back to the first principles in this derivation. This has

been done in the present paper for the case of zero tempera- sinh(B,)

ture. A follow-on publication will show how to include the 0<t= W<
effect of thermal fluctuations in the treatment in order to rr
obtain an expression free from ambiguities for the Casimir

. : sinh(a,)
force between arbitrary lossy mirrors at nonzero tempera- o<—-r=——7——
tures. sinh(B; + ar)

The fact that is negative with a modulus smaller than unity
ACKNOWLEDGMENTS plays an important role in the derivation of constraints on the
Casimir force.

Thanks are due to Gabriel Barton and Marc-Thierry Interesting results are also obtained for the eigenvalues of
Jaekel for their helpful comments. the S matrix, which have a simple forrs.. =r *=t, since the
slab is symmetrical in the exchange of its two ports. In the
sector of ordinary waves, unitaritp0) has a simple form in
terms ofs. =r =t and of the similar quantities’, =r’ =t’

In this appendix we discuss in more detail the specificdefined on the noise matr&’,
case of the dielectric slab. We consider lossy as well as loss-
less slabs. g |s+|2+[sk*=1. (A4)

For a Iosslesg dielectric F”edi“m’ the permittivtys real For the lossless slak,. have a unit modulus arnsl. vanish.
at real frequencies. For ordinary waveg,and x4 are purely For a lossv slab h =
) ; . . y slab, we have
imaginary, so that the impedance ratios are real for both po-
larizations. Hencg is real (8= 3,) and« purely imaginary |s.|?<1. (A5)
(a=iq;), so that the scattering amplitude®}) are read as

n particular,|r| does not remain always smaller thariske

1,

(A3)
<1.

APPENDIX A: THE DIELECTRIC SLAB

This can be considered as a consequence of(&4). with
|s’.|?=0. Equivalently, it can be considered that unitarity

__ sinhg sinhf, , (Ad) fixes the modulus 0B, when the modulus of. is
sinh(B,+ia;) sinhB,cosq;+i coshB,sing;’ Known. -
(AL) Condition (A5) will be found in Appendix C to express a
sinh(i ;) i sinay passivity property for the slab, here for ordinary waves. This

=— — = _ S— property still holds in the sector of imaginary frequencies, as
sinh( B, +ia;) sinhB,cosa;+i coshB,sing; a consequence of E¢A3) and of the following inequalities
obeyed for all positive real numbets and 3,

The sum of the squared amplitudes is unjit}’+|r|>=1
while the reflexion and transmission amplitudes are in

quadrature to each other* +rt* =0, which means th&§is  ysing the terms of Appendix C, this means that the domain
a unitary 2<2 matrix, as it was expected for a lossless mir-of passivity always includes the sectors of ordinary waves
ror. This implies that the reflection amplitude has a modulugyg imaginary frequencies, in the case of a dielectric slab.
smaller than unityr|<1. This property also holds for lossy However, it does not necessarily include the sector of eva-

mirrors thanks to positivity of dissipatiofsee Appendix & nescent waveésee Appendix B
Unitarity is defined without ambiguity only in the case of

ordinary waves. For a lossless slab and evanescent wayes,
is real—it is just the inverse of the penetration length of
evanescent wave in vacuum—whereas remains purely Ordinary waves correspond to frequencies:c|k| and
imaginary. HenceB as well asa are purely imaginary and it real wave vector&,, whereas evanescent waves correspond
is no longer possible to obtain general bounds for the scato frequenciesv<c|k| and imaginary values df,. Causal
tering amplitudes scattering amplitudes can be extended from ordinary to eva-

|sinh B+ sinha|<sinh a+ B). (AB)

APPENDIX B: THE SECTOR OF EVANESCENT WAVES
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nescent waves, by an analytical continuation through the We consider an arbitrary mirror, that is a reciprocal net-
physical domain of complex frequencies=i¢ with Re¢  work connecting two vacuum ports. For ordinary waves, we
>0 and R&>0. The “energy conditions” which bear on define the power dissipated by the mirror

guadratic forms are not necessarily preserved in this process.

: , . : ot ) i :
In order to illustrate the idea, let us consider reflection m=(e]" e — el Tel) + (e} ep —eR " eR"
amplitude(34) at the interface between vacuuryE 1) and =(ei“| |ei”>—<e°”'1 g0y, (C1)

a lossless dielectric mediuna { real for w real). In the sector

of evanescent waveg, is imaginary andc, real, so thar  \yhere we have introduced row vectors conjugated to the col-
andr are complex numbers with a unit modulus, that is alsoumn vectors
pure dephasings corresponding to the phenomenon of total , ,
reflection. Meanwhile, the transmission amplitudes differ (™M =e®T, (eM=]eMT. (C2
from zero, which describes how evanescent waves in ) - o
vacuum are fed by the fields coming from the dielectric me-ThiS Power is positive as a consequence of unitarity,
dium with an incidence angle larger than the limit angle. In o in Fal i\ inl o7 tar | min
these conditions, it is clear that the conditip?®+ |t|?<1 7=(e"|-S'ge") =(e"5''S[e"=0,  (C3
fails. o which corresponds to the positivity of the mattix S'S,
For the TE polarization, it turns out that
el —S'Sle)=0, V |e), ca
R o1 (ell ~S'Sle)=0, V [e) (4
where|e) represents arbitrary input fields. Positivity can also
in the evanescent sector at the interface between vacuum ahe expressed in terms of the eigenvaléiesf S'S,
any dielectric medium. This property is always true in the .
sectors of ordinary waves and imaginary frequencies for an de(S'S—{1)=0, £=0. (CY
arbitrary mirror (see Appendices A and )CUsing high-
frequency transparency, it follows from the Phragme
Lindelof theorem[66] that inequality(B1) holds in the whole
physical domain in the complex plane. This ensures that the o<1, (C6)
closed loop functiorf "E is analytic and, in particular, has no
pole in the domain Re>0. In other words, since the open  Passivity is a property directly related to positivity of dis-
loop gain is smaller than unity, the closed loop cannot reacRipation, but defined more generally for complex frequencies
the oscillation threshold, leading to the stability propertyin the physical domain. In order to discuss it, we extend the
used in the derivation of the Casimir force. matrix S from the sector of ordinary waves through the ana-

Although it seems quite natural, this argument is not validytical continuation already discussed. We exte®idsimi-
in the general case. For metallic mirrors, for example, thaarly, with the complex conjugation cautiously defined, since
condition|r|<1 is violated in the evanescent sector for TM it involves complex frequencies : conjugation corresponds to
modes. The reflection amplitude is even known to reactt— ¢* and k—«* and it preserves the physical domain
large resonant values at the plasmon resonaf@és Of  Reg>0, Rex>0; the derivations performed for an ampli-
course, this does not prevent the stability property to be fultyde in the domain R&>0, Im£<0 are thus translated to
filled: the Fabry-Perot cavity is, in this case, a stable closedimilar derivations for the conjugated amplitude in the quar-
loop built on an open loop exceeding the unit modulus, buter plane R&¢>0, Im¢>0.
with a phase such that the oscillation threshold is not Then, the domain of passivity & is defined by the do-
reached. main of & for which | —S'S is a positive matriEq. (C4)]

We stress again that the stability property is necessary ifhat is also for which the eigenvaluésof S'S are smaller
the derivation of the Casimir force, since it entails that thethan unity[Eq. (C6)]. An important feature of this property is
closed loop function is properly defined in the evanescenhat it is stable under composition: when two netwolNand
sector. When the more stringent propefty<1 is also B are piled up as in Fig. 2, the quadratic forms appearing in
obeyed, it follows from expressiof86) that the Airy func-  (c4) simply add up, so that passivity of the netwol8
tion, which has been defined with the significance of a posifo|lows from passivity of the two networka andB. This is
tive spectral density on ordinary waves, remains positive iy special case of a general theorp#d] which states that
the evanescent sector. When the properfy<1 fails, the  networks built up with passive elements are passive.

Airy function can no longer be thought of as a spectral den-  passivity means that the eigenvalues 4 of the matrix

sity in the whole physical domain, but this does not invali-| — sfs are both positive, which is equivalent to the follow-
date the derivation of the Casimir force. ing inequalities:

These eigenvalues are always real, and positivity of dissipa-
tion is equivalent to the fact that they are smaller than unity,

APPENDIX C: THE DOMAIN OF PASSIVITY Tr(1-5'9)=0, detl-S's)=0. (C7)

In this appendix, we discuss the related but not identicalt may be written in terms of the scattering amplitudes,
properties corresponding to positivity of dissipation and pas- .
sivity. Ir|2+]|r|?+2|t|?<2,
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a slab for example, the passivity conditions take the simple
form |r +=t|2<1. The results of Appendix A thus entail that
Passivity implies that the scattering amplitudes have a mod® domain of passivity always includes the sectors of ordi-
lus smaller than unity nary waves and imaginary frequencies, for arbitrary slabs
' [Eqg. (A5)]. Using the stability of passivity under composi-
tion, we deduce that this is also the case for arbitrary multi-
layers. It follows that the reflection amplitudes always have a
modulus smaller than unity for imaginary frequencies (

lrr —t22=r|2+[r[2+2|t|2— 1. (C8)

Ir|<1, [r[<1, |t|<1. (C9

Conversely, the latter conditions are necessary but not suff

cient for passivity.

For a mirror symmetrical in the exchange of its two ports,

Feab

Irlig]]=1. (C10
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