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Subthreshold optical parametric oscillator with nonorthogonal polarization eigenmodes
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We study the behavior of a type-ll degenerate parametric amplifier in a cavity with nonorthogonal polariza-
tion eigenmodes. The mode nonorthogonality is achieved by introducing circular birefringence and linear
dichroism. We use a scattering matrix formalism to investigate the role of excess quantum noise in such a
device. Since only two modes are involved we are able to derive an analytical expression for the twin-photon
generation rate measured outside the cavity as a function of the degree of mode nonorthogonality. Contrary to
recent claims we conclude that there is no evidence of excess quantum noise for a parametric amplifier working
so far below threshold that spontaneous processes dominate. Using the same scattering matrix formalism we
also investigate the output spectrum of the amplifier near the threshold of parametric oscillation. We find
optical band structures very similar to those known for passive ring cavities. These optical band structures are
studied as a function of mode nonorthogonality and mirror reflectivity.
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[. INTRODUCTION enhanced generation of twin photons in spontaneous para-
metric down conversionSPDQ, by placing a nonlinear
A linear amplifier is a device that takes an input signalcrystal in an unstable cavityvhich has nonorthogonal trans-
and produces an output signal linearly related to the inpuverse eigenmode$16].
signal. Under this definition fall frequency-conserving ampli- ~ The most common experimental realization of mode non-
fiers, as laser amplifiers, and frequency-converting amplifiorthogonality concerns the transverse modes of an unstable
ers, as parametric amplifiers. Quantum mechanics sets aavity. However, this case is intrinsically difficult to treat:
lower limit on noise in linear amplifier§l] which corre- one deals with an infinite manifold of transverse modes
sponds, in a laser amplifier, to having “one noise photon” inwhich cannot be truncated since there is no sharp distinction
the laser modéRef. [2], p. 72 and, in a parametric ampli- between system modeé=cavity modes and reservoir
fier, to having “one noise photon” in each of the input modesmodes(=free space modg§21]. This unavoidable difficulty
[3]. This limit is easily reached in small devices, particularly has motivated us to study the effect of excess noise on
in semiconductor lasefg]. If the linear amplifier is part of cavity-enhanced SPDC, for a case where one can construct
an optical cavity the quantum limit on its performances isan exactly solvable quantum theory of mode nonorthogonal-
strongly affected by the optical characteristics of the cavityity. This is possible for a cavity with nonorthogonadlar-
itself which offers the possibility to control and to manipu- ization eigenmodes(instead of transverse eigenmodes
late the quantum noise. This opens a wide range of possiblMhich has a nonlinear crystal inside.

studies which spans from cavity QEBee, e.g.[5] and ref- In fact, SPDC constitutes a natural framework in which to
erences therejrto the phenomenon of excess quantum noisestudy polarization excess noise in a quantum-mechanical
[6-13. context. Specifically, in a type-Il SPDC process, two or-

Recently there has been a large body of work pointing athogonally polarized photons are generated. Because of crys-
the fact that the quantum noise may be enhanced by thil anisotropy, for a fixed frequency only a restricted set of
so-called excess noise factor or Petermidrfactor[6]. From  spatial directions is allowed to the emitted photons. In the
a physical point of view th& factor can be interpreted as if degenerate case one can achieve a single allowed direction
there areK noise photons in the lasing mode instead of thefor a collinear emissiorf22] thus, assuming perfect phase
usual “one noise photon.” Semiclassically the noise en-matching, single transverse mode operation can be realized.
hancement is due to nonorthogonality of the eigenmodeglthough an optical cavity allows, in principle, several reso-
[7,14]. The existence of the Petermaknfactor has been nant longitudinal modes, the double resonance condition
experimentally verified in lasers with non-orthogonal eigen-(signal and idler for SPDC restricts this number. It can be
modes, either longitudindlLO], transversg¢11], or polariza- shown [23] that, because of crystal birefringence, for a
tion [9,12] modes, showing that a noise enhancement reallyype-1l process the double resonance condition can only be
occurs. However, the physical origin of this enhancement isatisfied at degenerate frequency so that the number of al-
under debate; the two main points of view are that it stem$owed longitudinal modes is reduced to one.
from a cavity-enhanced single atom decay Hdt&-18 or In this paper we report a detailed study of an optical para-
from an amplification by the gain medium of the spontane-metric oscillator with nonorthogonal polarization eigen-
ously emitted photon§13,19,2Q. If the single-atom decay modes, extending our previous results of R@#]. Our ap-
rate were enhanced, excess noise would also be a valid coproach is simple and straightforward: using a scattering
cept(far) below the oscillations threshold of the device undermatrix formalism we calculate the rate of emitted photons in
consideration. In this case excess noise could be very usefud; SPDC process generated by a type-Il degenerate parametric
for instance, it has been claimed that it could lead to aramplifier (DPA) inside a cavity with two nonorthogonal po-
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larization modes, both far below and near the threshold fOWhereF is a given diagona| X 2 matrix. We arrangél and
parametric oscnlatlorﬁoptlcal_ parametric QSC'”atOGOPO)]' X, in a two-dimensional vectot (and its adjoiniX) defined
We use and expand two existing theoretical models, one fo,

the DPA and the other for the cavity, both of which have

been experimentally verified. Our conclusion is that there is X
no enhancement in spontaneous parametric down conver- 5(E< 1 )“(TE()“(I %) )
sion. Xz

In the second part of this paper we discuss the behavior of

the spectrum of a parametric oscillator working close toand define the inner product-(—) between two vectorX

threshold. We first discuss the definition of spectral resoL,qv as

nance within our scattering formalism, then we analyze the
OPO spectrum for different cavity realizations. We find a
quite unexpected behavior: the OPO spectrum exhibits band

structures very similar to those known in passive ring CaVlyhere summation over repeated indices is understood. The

ties. In fact, we find that because of the mode coupling Nihree Pauli matrices together with the identity matrix form a

.dUCEd by passive and active optical elements inside the_ C@%asis in the vectorial space ox2 matrices; we write them
ity, four resonant peaks per free spectral range appear in tr}% '
OPO spectrum.

The paper is organized as follows. In Sec. Il we introduce (1 0) (O 1)
Oo= y 01— ’

(X, =xly; (i=1,2), ®3)

a group-theoretical formalism for describing and analyzing

the two-mode optical elements which are present in our 01 10

model in terms of scattering matrices. In Sec. Il such for- _ (4)
malism is applied to set up the cavity model. We also show (0 i (10

explicitly the occurrence of the “geometrical” Petermalin 2=\ o) 9% \o -1/

factor in our cavity model. The results obtained in Sec. IlI

are collected and analyzed in Sec. IV where the absence ofl@dsing the Pauli matrices we can construct four Hermitian
K-enhancedpontaneouslown-conversion rate is proven. In operators defined as

Sec. V we exploit the scattering matrix formalism to inves-

tigate the occurrence of band structures in the OPO spectrum éaz(x,gax) (a=0,...,3. (5)
in a cavity with nonorthogonal polarization eigenmodes. Fi-
nally, we draw conclusions in Sec. VI. These operators satisfy the following commutation rules:
[Sa,S]=(X,00X) (a,b=0,...,3), ()
Il. TWO-MODE OPTICAL ELEMENTS AND GROUP
THEORY where
The optical devices we consider in this paper are com- ow=0lo,—o oy (a,b=0,...,3. (7)

posed of linear and lossless optical elements, and have two

input ports(say 1 and 2) and two corresponding outputBecause of completeness of the set of Pauli matrices/4Eq.
ports. When the elements are passive, no photons are crealgg can always write, choosing adequately the constants
or destroyed, so that the number of photons entering the twe,

input ports is equal to the number of photons leaving the two

output ports. Such devices can be described by a unitary oap=I1fapco. (a,b,c=0,...,3. (8)
matrix belonging to the group(2) [25]. Active optical de-

vices can create and annihilate photons but when the diffeldsing Eqs.(8) we can then write Eq(6) as

ence between the number of photons entering port 1 and that o R

entering port 2 is conserved, the device can be described by [S2,Sp]=if apcSe, 9

a unitary matrix belonging to the groug(1,1) [26,27]. In

this section we review briefly the matrix representation ofwhich shows that the four operatdsg satisfy the same com-
lossless passive and active optical devices, characterizingutation relations as the generators of a symmetry group.
them in terms ofU(2) and U(1,1) group properties. We The numbersf,,. are calledstructure constantsnd com-
show how, introducing the so-called commutator mdi2&],  pletely determine the group multiplication 14&9]. The op-

the Schwinger model for angular momentum can be eXgratorsS, generate transformation of the vector operator

tended to build the generators 0i(1,1) group. in the form
Let us consider a pair of operataxg, X, which satisfy
the following commutation rules: exp(zS) Xexp —z5,) =exp( —z[ o) X, (10)

L L which follows after differentiation with respect & while
[ .%1=0, [x X 1=y (i,j=12), (1) using the identity[ S, ,X]= —To,X. From Eqgs.(6) and (7)

043803-2



SUBTHRESHOLD OPTICAL PARAMETRIC OSCILLAT®.. .. PHYSICAL REVIEW A 67, 043803 (2003

one notices thatS,,S,]=0 whenI'= oy, and thaf S;,5,] A cogal2) —isinal/2)\[a
=0 whenI'=03. These two cases are realized when one el e'“JXI( o ) ~ |
chooses b —isin(a/l2) coqal2) b
(16)
|2 | 2 ) & (Bl2) —sinpl2)) [ a
X=| .| or X=| ../, 11 . la - co —si a
b bT ( elBly R e 1By — ) B B 1, (17)
b sin(B/2)  cogBl2) |\ p

wherea, b are independent harmonic oscillator operators _ . . . . '
which satisfy the boson commutation relations: while the scattering matrix accounting for free-field propaga-

tion is generated by operatag,
(a (18)
o - 1
b

Case 1:F200. In this case the operatoﬁ belong to the Case 2:[‘:0-3_ Using Eq(S) it is easy to see that the

Lie algebra of the group)(2) and we recover the Schwinger operatorsS, belong to the Lie algebra of the grolf(1,1),
representation of two modes, @

[a,b]=0=[a,b"],

12 . é . e—i'y/Z 0
(3,37 1=[b,b"] " e'VJZ(A)e T
1 1 . b

0 ei vI2

N.—N,—1=S;=a'a—bb",

S S
g3 1 =2 (atht
l=7=5(ab+b"), Ri=% = 5(a'b'+ba),

(13 R (19

jy:%:_l_(éTB_BTé), Ky:?:_z(aTbT_ba),

S S, 1
J 1 oa aip ‘_E__“r“ ApT
Jz:%zz(aTa_bTb). Kz_ 2 2(a a+bb )

In this case thdlifferencein photon number is conserved,
that is the operatd, — Ny, commutes witK, K, K, which
are generators of the groi§J(1,1). The commutation rules

The operators, ,J, ,J, obey the usual commutation rules of
angular momenturpJ,,J,]=iJ,, etc. The conserved quan-
tity associated witS, isAthetAotaI number of photons repre- for these operators are[F(X,f(y]: —iR,, [Ryﬁz]

sented by the operatdd,+ Ny which commutes with the =iRX, [kzaRx]:iRy- The scattering matrices generated

three angular momentum operat&ggjy jz by theSU(1,1) operators follow by Eq.10). They take the
In order to see explicitly the connection between losslesgxplicit form

passive optical devices and the elements of the gtd(®)

we denote withx, andX, the annihilation operators for the . a o [ coshal2)  —isinf(al2) a
field entering the two input ports and wity andy, the e Bt € " lisinha2)  costal2) bt/
annihilation operators for the field leaving the two output (20)
ports. These four operators are connected by a scattering
matrix M whose form is - a sk coshBl2) sinhp/2)\ [ a

~ A e y A~ e y= . ~ il

- = - (14 21

Yo Mo Mg/ x, 1)

. e . [ a ) gl 72 0 a
Conservation of probability in a scattering process demands el 7K, e i7K— . (22)
that output operators satisfy the same commutation relations bt 0 e "2\pr)”
as the input operators. This requirement leads to the unitarity
condition forM, Using the last two equations we can construct the scattering
matrix representing the nonlinear crystal, as shown in

MM T=1. (15  Ref.[26].

Here we write explicitly some scattering matrices and the
associate transformations that will be used in the next sec-
tion. The operators, andf]y generate two possible scatter-  We now apply the formalism developed in Sec. Il to de-
ing matrices for a beam splitter and/or a rotdtd@], scribe a cavity with nonorthogonal polarization modes. Our

Ill. THE CAVITY MODEL
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ization modes is to use linear birefringence and linear dichro-

R=-1 .t Jrpu R, T ism at 45° as in Ref[12]. Although these two alternative
5L dag a3 dor, dir Gin ways are implemented using physically different devices,
‘ both lead to basically the same expressions for the Peter-
. - F. G| . o I, . mannK factor, as we shall see in Sec. Il B.
bz baz, 7H® byy bar bir | _bn The canonical quantization scheme requires us to express

the electromagnetic field inside the cavity in terms of a con-
. tinuous or discrete complete set of functiduos} (the eigen-
r,t frin modes of the cavifyand associating with them a correspond-

ing set of field operator&,}. A serious problem arises when

dsp G4p\!_G3R Gsp aip | _Qow e .
the set of cavity eigenmoddsi,} is not orthogonal. In fact,
F 1 é as shown in Refs[8,13], a set of nonorthogonal modes
bsr bar” " bar bor bir | bout cannot be turned into a set of noncommuting operators. In
order to avoid this problem our calculations are based on
o= —L 1%?:132’ Absorber  Crystal ~ Rotator the orthogonal sets of operatofa;, ,fain}, {&out,f%u} (a

=a,b) associated with a corresponding set of plane-wave
FIG. 1. Schematic representation of the degenerate-cavity paranodes[31]. We assume that the input and output operators

metric amplifier. Modes andb have orthogonal polarizations. The satisfy the usualdiscret¢ commutation relations
boxes indicated withp, G, and @ represent the rotator, the nonlin-

ear crystal, and the delay line, respectively. In the dotted box we [éx,ﬁx]zoz[éxﬁll

show the absorber modeled as a beam splitter acting only on mode

a. For right-traveling modes we have pBt=1 to indicate the pas- [é ét] _ 1=[6 tA)T] (23)
X 12X X1 MX

sive crystal behavior when there is no phase matching.
i . (x=in, out),
model of a degenerate parametric amplifier inside a Fabry-
Peot cavity is, in fact, an extension of the model of Gardinerand similarly for the noise operators.
et al. [31] to the case of a cavity with nonorthogonal polar-  The optical elements inside the cavity are as follows: an
ization modes. absorber modeled as a beam splitter acting only on ra¢ge
polarization, a crystal with nonlinear gai, and a rotator
which rotates the polarization axes by an anglalong thex
] ] . . _axis. The propagation of the modes over a cavity with length
We consider a cavity having one perfectly reflecting mir-| s modeled by a delay line in front of the left mirror which
ror at positionx=—L, and a partially reflecting mirror & jntroduces a phase shift= wL/c. We assume that all optical
=0, as shown in Fig. 1. S o elements are infinitesimally thin and that the operator phases
We decompose the electric field inside the cavity into lefty; e positiorx=0 are equal to zero. The scattering matri-
(subscriptl) and right(subscriptR) propagating waves. In - ces for the various optical elements inside the cavity are
degenerate type-Il down-conversion two orthogonally polaryiyen below. On the output mirror the input annihilation op-
ized modes are excited at the same frequency(}/2,  grators belonging to tha mode are related to the input op-

where() is the frequency of the pump field. Let us denoteerators on the same mode, by the transformation
with a and b these two field modes and assume that their

A. Scattering matrix for a cavity round-trip

polarization is parallel to thg andz axis, respectively. An- agu=Tair+ Ray,, (249
other modd (also decomposed if andfg partg, is intro-
duced in order to assure the unitarity of the model; we call A, =Rap+ T4, (24b)

this mode the noise mode. We assume that nfodas the

same polarization as mode The role of this noise mode whereR=—+R, 7=i\1—R, and 0<R<1. For the modé

will be soon made clear; for the moment we describe, as ithe above relations hold if we make everywhere the substi-
Ref. [8], the DPA cavity using a scattering matrix which is tution a—b. The effect of the rotator on left-traveling mode
unitary only when it accounts both for field and noise modesoperators can be represented 3]

We shall see that nonorthogonality of the cavity modes natu-

rally appears as a consequence of restricting the scattering a, =C0S¢ay, +singby, , (253
matrix to the set of field modesandb. However, truncating
the scattering matrix to the field modes is not enough to b, = —sin¢a, +cosgb,, . (25b)

achieve mode nonorthogonality; it is necessary to introduce a

non-Hermitian coupling between them. In our model theThe corresponding matrix for right-traveling modes is ob-
mode nonorthogonality is achieved by inserting in the cavitytained substituting in the above formula=2 andL—R.

a phase anisotropy due to circular birefringefe@arization  Note that we have chosen as a rotator, a deaitésymmet-
rotaton and a loss anisotropy generated by linear dichroisnrtic with respect to temporal inversid32] (e.g., a Faraday
(polarization-dependent absorherfollowing the scheme rotatop; then the total rotation angle is doubled after a round
given in[9]. Another way to produce nonorthogonal polar- trip. For completeness we note that in case of a device which
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is symmetricwith respect to temporal inversiofe.g., a a t 0\[as
quartz crystal which displays optical activitythe light beam ( f”‘) :( ( R - ) (29
inside the cavity would retrieve its original polarization after by 0 1/\bs

one round trip. Polarization rotation can be also achieved ) ) )
using a half wave plate which introducesmaphase differ- Since as the absorber we have chosen a linear dichroic ele-
ence between fast and slow &nds) axes[33]. This device Ment with its axes parallel to theandb polarization direc-

has been used jointly with a linear dichroic element with itstions; it introduces only anisotropic losses but no phase an-
axes at=45° with respect td ands in Refs.[12,34. How- isotropy and therefore the matrlx- E@9) is d|agonal.

ever, we have preferred to use a Faraday rotator, jointly with 11€ delay line with phase shift can be simply repre-

a linear dichroic element with its axes parallel to thandb ~ Sented as

polarization directions, since this configuration leads to a

more clear separation between the phase anisotropy and the a5 = explif)aa (29
loss anisotropy inside the cavity. . o
The scattering matrix for the parametric crystal, in the asr=exp(if)asg, (30

depleted imati¢81,35, is gi b
nondepleted pump approximati 8 is given by where 6= wlL/c. It allows us to evaluate the effects of the
A A ) ot cavity lengthL. The same relations hold for motteFinally,
agL=Gay +(G"—1)"hy, (263 o the left mirror the boundary condition requires

Bl =(G2—1)"%, +Gbj, , (26b) asr=—asL , (31)

. e ; d similarly for modeb.
where the real-valued gai@ satisfiesG>1. For the right- an : .
traveling modes the crystal is transparent due to the absence Equathni(tZtS)—(CBI;) can ze stralgr;tforvv_ardtly solve;j ltoﬂ
of phase matching and in this case the operator transform _xprel_ss ng d- rave Intg mode operators in terms ot left-
tions can be obtained from Eg6) after the substitutions raveling mode operators,

3+—2,L—R, andG=1. Since Eqs(26) preserve bosonic - _ B _ .
commutation rules it is not necessary, for a parametric am- | 1R} _ ( Y+C042¢) =7 7+SiN(2¢)
plifier with a classical nondepleted pump, to add noise from BlR v.SiN(2¢) —y.C042¢)+ y_

an external batll] to account for pump fluctuations. In our R
model only the down-converted field is confined by the cav- ag
ity, not the pump field, therefore the cavity mode structure X( +(G2-1)'”
cannot affect the pump beam fluctuations. Incidentally, we

note that when using this scattering matrix formalism, the ( y_sin(2¢)

b1L

difference between a linear and a nonlinear amplifier is
rooted only in the choice of the operators which are coupled

—7_cos(2¢)—7+)
Y-COS2¢)— v, y-sin(2¢)

by the matrix, but not in the matrix itself, which is the same af ;

in both cases. In fact, in a linear amplifier the nondiagonal % L a (32)

matrix elements couple a field annihilation operator with a bl fo)

noise creation operator, while in a nonlinear amplifier the

coupling is between two different field modes, as in Eqswherey. =exp(26)(t>+1)/2 and

(26). R R R

The scattering matrix representing the absorber, which in- fa=r(tf in+ frin)COSP, (33

troduces losses only for the modgis written as[36]
. . . fb:_r(thin+fRin)Sin¢. (34)
ay =tag +rf i, 27 _

L 3L Lin 279 The effect of the noise on modeappears as a consequence

~ A of introducing the rotatorf,=0 when ¢=0. At the same
DL =b3, (27b 9 ; ¢

time the noise disappears on both modds=flL. This means
that the full effect of the noise on the system becomes mani-
flou=ras +tfiin, (2709  fest only for >0 andt<1, that is when the cavity modes
are nonorthogonal. Assuming that noise operators belonging
wherer =i1—t? and the real parametef0<t<1) repre- 0 left- and right-traveling modes do commute,
sents the ratio between field amplitudes algrandz polar-

ization directions. For right-traveling modes we obtain es-
sentially the same equations by substituting:@ and L

—R, that is we consider a device insensitive with respect to
the direction of the impinging light. We note that truncating

[fLin aflin]:l:[%Rin aféin]v
L L (35
[Fiin, Fhind=0=[Frin. T,

the transformation equation@7) to the field modes only ~We find that, in the general cage#0 andt#1, the noise

leads to the following nonunitary transformation:
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[fa. Fll=(1-t*)cosg, 60 & ¢=0 (b= n/ed
[Fo. 1= (1-t9sire, (36D @ /4 Q n/4
fa.f11=—(1—t%sin¢ cose.
[fa.fo]= = (1=tsiné cos¢ 06 0.250.50.75 1 6 0.250.50.75 1
(360 N .
This noise correlation disappears when the modes becomt _ a
orthogonal =0, 7/2, and/ort=1). n/2 () ¢ -t /10 /2 (Do = 3n/10
B. Nonorthogonal modes and the Petermann Q /4 }* Q /4
excess noise factor
Having found the relations between operators belonging 05 0 750.50 75 1 05 025050 95 1
to right-traveling and left-traveling modes after one round t t
trip, we now show that our model effectively describes a
cavity with nonorthogonal modes and can therefore show, in (e) ¢ = 2n/5 (f) ¢ = n/2
principle, excess quantum noi$8,37]. Although Eq.(32) /2 /2
has been written in a quantum context, it is equally valid in a Q /4 @ /4
classical context if one substitutes for the various operators 7/ n/
ajr, bir, etc. the corresponding classical complex ampli- o
tudes.A;r, Bir, etc. and disregards the noise operafiys 0 0'25°é5°'75 1 0 0'2501;'50'75 1

andf,. The remaining homogeneous equation describes the
round trip variation of a classical field inside the cavity. Fur-  FIG. 2. (8—(f) Angle 8 between the cavity eigenmodas ver-
thermore, if one put&=1 then the classical counterpart of sus the absorber parametdor different values of the rotator angle

Eg. (32) reduces to ¢. Fort=1 the eigenmodes are always parallg 7/2) irrespec-
tive of the value of¢. Fort=t.(¢) the eigenmodes become paral-
Air Al lel: B=0. In (c) the dotted line gives the Petermatt factor
B = B |’ (37) (X 1/50) as calculated from Eq&t7)—(48); the divergence appears
1R L for t=t.(¢= m/10)~0.51 when the cavity eigenmodes are parallel.
where .
Depending on the values assumed #oandt we may have
( y.coq42¢)+y_ y.sin(2¢) ) eitherZ real or purely imaginary. In the latter case it is con-
M=— . , (38 venient to define
—v+SiN(2¢)  y,c042¢)— y-

= — 2\2qi _ __$2\271/2
which coincides, apart from a multiplicative factor, with the Z=ig, (SLAH)ISi2¢— (1= (43

classical cold cavity round-trip matri¥ g. Now, following
Ref.[8], we find the eigenvalues and the eigenvectors of th
matrix M and show that the latter ones form a nonorthogona

where/( is real. The critical value of for which Z becomes
urely imaginary is given by

two-dimensional basis. 1—|sin 24| 1Y
First we note that whegp=0 ort=1, Mgt reduces to te(p)= m (44
t2 0 _ L
d=0=M=— (39 Fort<t.(¢) both eigenvalues are real and the cavity eigen-
0 1 modes are degenerate; this regime is usually referred to as
the locked regim§9,38]. Conversely, fot>1t.(¢) the eigen-
or ; ; .
values Eq(41) acquire an imaginary part and the degeneracy
cos2p  sin2¢p between eigenmodes is removethlocked regimg Let u..
t=1:>M=—< i ) (40 be the non-normalized eigenvectors corresponding tq
—sin2¢ cos2p respectively,
It is clear that in both these cases the eigenvectors are or- (1—t?)cos 2+ Z
thogonal. In the general case the eigenvalugsare .= ] ) (45)
- —(1+1t?)sin2¢
-1
?\:27[(1“2)003 2p*27], (41)  For arbitrary values of and ¢ these eigenvectors are not
orthogonal. This is shown in Fig. 2 where the anglée-
where tweenu, andu_ is plotted as a function of for several
values of¢. Fort=1 we haveB= 7/2 (orthogonal modes
Z=[(1-t?)?—(1+t?)?sir2¢]"2 (42)  for all values of¢, while for the criticalt=t.(¢) we see that
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B=0 and the modes become parallel. In Fi¢c)2he “geo- Y :<&T o Svee (@=a,b) (51)
metrical” PetermanrK factor for the cold cavity is plotted @\ ToulToubvac o
together withB. As Siegman remarked years agg14], the e
geometrical Petermark factor, as given below, is an intrin- Wh_ere the subscrlpt vac” indicates 'that the quantum expec-

tation value is calculated for the incoming vacuum field.

sic property of the cavity eigenmodes which has nothing tc{Nhen both the absorber and rotator are switched off
do with the gain medium inside the cavity. It can be calcu-

lated using the well known recif@] (orthogonal-mode cageve findn,=n,=n, where
1 [(us w2 - 1-R ’
— =1 — 2_
S TRTR TR (40 n=(G*-1) (52

1-2GyRcog2wl/c)+R
obtaining This result is in agreement with EL6) in Ref.[31]. The
(1—12)2 term inside the square brackets, when calculatedSferl,

= 55 55 , (47 coincides with the spontaneous emission modification factor

(1-t3)2=(1+1)?si’2¢ F [39], but in our case it is quadratic because of nonlinearity
[40]. At resonance l(=mc/w, with m intege), a diver-

gence appears fon when G=(1+R)/(2/R)>1, corre-
(1+12)2 sirf2¢) sponding to the thrgshold of oscillatid1]. However, we N
_= , (4g)  are interested only in the subthreshold case where a privi-
(1+t?)2sirf2¢p— (1—12)2 leged lasing mode is not selected. The average photon num-
bers emitted on modesandb, evaluated at resonance, in the
for t>1t.(¢). Apart from notation these results agree with general case)+ 0 andt# 1, are shown in Fig. 3. The values
earlier works[9,12]. In the limit of small rotator anglep  of the nonlinear gain and the mirror reflectivity are
<1 we havet,(¢)=1—2¢ which is very close to 1. fwe =1.01 andR=0.2, respectively, corresponding to a sub-
define the dissipative coupling ast=exp(—27)(7=0) one threshold OPO. The behavior with respect to the variable
simply notices that in the limit of smalp and 7, the behav- o n_ andn,, is quite similar fort~1. Whent—0, modea

lor of K near the critical valug is given by is increasingly suppressed amj—O0. In the same limit
modeb does not disappear but is reduced by a faet@.

Ko~ — (499  We report in Fig. 4 the total average photon numiezn,,

12 +n,, evaluated at resonance, as a function of the absorber
72 transmission coefficierttand of the rotation anglé due to
the rotator. The nonlinear gai@ and the output mirror re-
1 flectivity R have been chosen &=1.01, R=0.2, so that
Ko~—+ (49b) subthreshold operation is achieved.

From Fig. 4 it is clear that the local maxima lf for the
P? t variable, are located on the curde=0 which corresponds
to a cavity with orthogonal modes. This curve constitutes the
in agreement with Ref9]. upper boundary of the gray band shown in Fig. 5. The other

points in the gray band represent all possible valuesl of
IV. RESULTS AND DISCUSSION calculated with the same parameters as in Fig. 4, for cavities
. ) with nonorthogonal modes. All these points are below the
In this section we calculate the SPDC rate of the sub¢yrve corresponding to orthogonal modes; so weddind

threshold OPO shown in Fig. 1 and study how it depends o,y enhancement of the twin-photon rate under these condi-
the “nonorthogonality parameters”and ¢. Equations(24)  tjons.

together with Eqs(32) can be straightforwardly solved to  Thjs may be compared with the behavior of the geometri-

express “out” operators in terms of “in” operators; this is | K factor, as given by Eq¢47) and(48). Figure 5 shows

done explicily in the Appef‘d.'x- The resulting EXPrESSIONSy, o hehavior of thik factor with respect ttN, as a function
are very cumbersome and it is not useful to write them ex- T —
plicitly. Their general form is of the absorber transmissidnBoth K and N are evaluated

for ¢=m/8; furthermore,N is evaluated forG=1.01 and
N - ~t - a1 R=0.2. From a geometrical point of view, whert. the
Aout™ a=2a . (S1a@int S2a@int SzafatSsata), (50 cavity eigenmodes become parallel and the corresporiing
’ factor diverges, as shown in Fig(@. In Fig. 5 this resonant
and similarly for modeb, whereS,,, are complicated func- P€havior ofK, whent approaches,, is evident, but at the
tions oft, ¢, G, R, and wL/c. From the above results we same time there is no signature of a critical behavioNof
calculate the average photon number emitted in medkaw Therefore we conclude that for a subthreshold OPO, the total
b: average photon numb& doesnot depend orK.

<

for t<t.(¢), and
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PHYSICAL REVIEW A 67, 043803 (2003

FIG. 4. Plot of the total average photon numib&en,+ny of
the subthreshold OPO, calculated at resonance, as a function of the
absorber transmissidrand of the rotator anglé. The values of the
other parameters aré&6=1.01, R=0.2. Fort=0 and ¢=0 the
photons in mode are fully absorbed and the residual value\bis
due to contribution of only modb.

shape and position are unchanged. et /2 and all values

of t we obtain the same spectrum as #+=0 but shifted in
the variabled by an amountr/4. This happens becausge

= 1/2 simply corresponds, from a physical point of view, to
an exchange of the role of the two orthogonal polarizations.

modea for a subthreshold OPO at resonance as a function of th¢cor ¢>0 andt>0 each resonant peak is split in two sepa-

rotator angle¢ and the absorber parameterThe values of the
other parameters a@=1.01, R=0.2. Fort=0 and¢=0 the pho-

tons in modea are fully absorbed so thaTaZO. (b) Plot of the

average numbeﬁb of photons emitted in modbk under the same
conditions as ina).

V. OPTICAL BAND STRUCTURE
IN A PARAMETRIC OSCILLATOR

=
In the preceding section we have calculated the total av- >

erage photon numbed=n_+n, of the subthreshold OPO
calculated at resonance, that is #ot/c=ms, wherem is

an integer. In general the numbirvaries as a function of
the phase shifo=wlL/c which plays the role of a reduced
length. It can be varied either by varying the lengtbf the
cavity or by varying the pump frequend€y=2w. Then we
can regard the functioN(#) (calculated for fixed values of
the other OPO parametets G, R, and ¢) as the cavity

spectrum. In Fig. 6 we ploN, calculated forG=1.01 and
R=0.2 (below threshold OPY versus the lengtl® and the

rate bands corresponding to cavity eigenmodes widmd z
polarization. The degeneracy is removed because of the po-
larization mode coupling induced by the rotafsee Egs.

0.3

2]
p 0.25
-—
0.2

- — .
—_— o oy

0.15 |

0.1 / \

0.05 —nl N .

arb.

FIG. 5. Dotted-dashed line: “geometrical” Petermaldrfactor,
given by Eqs(47) and(48) for a cavity without crystal, calculated
for ¢= /8, as a function of the absorber transmisdiofihe value
of K diverges fort—t.(¢=w/8)=0.41. Dashed line: total average

rotator angles, for several values of the absorber parameteiynoton numbeN calculated at resonance agid= /8. The values

t. The functionﬁ(0,¢) has, for¢=0 and all values of, the
expected periodic behavigwith period 7) which is charac-
teristic of the spectrum of a Fabry+®e cavity. For decreas-

of the other parameters af@=1.01, R=0.2, corresponding to a
subthreshold OPO. The gray band represents all possible values

of N for nonorthogonal modes. Note thhlt is not enhanced for

ing t the height of the resonant peaks is lowered but theit=t,.
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FIG. 6. Emission spectrurﬁ(e,d)) for a subthreshold OPO calculated f8=1.01, R=0.2, and different values df (a) For a cavity
with orthogonal modest& 1) we have the periodic behavior characteristic of the spectrum of a Faboydaeity, but only so fokp=0 and
¢=ml2. For other values of two resonant peaks for free spectral range appbaiand (c) For a cavity with nonorthogonal modes (

<1), N(6,¢) decreases with respect to the 1 case but the doubling of the resonant peak remains.

(25)]. Finally, fort=0 there is an abrupt jump in the band de{Mgr—1)=0, (53)
structure for¢p=m/4 because moda is totally suppressed . . .

and only a single linearly polarized mode can exist in theV€ré Mg is the matrix for one round trip along the se-
cavity. Actually this jump is not clearly visible in Fig. 6, but dUéNceMgr=M,---M;M;, andM; M, ... are the indi-

it becomes evident in Fig. 8. vidual optical element matrices.

Th : f optical band . Il K ¢ This approach is inherently classical because it neglects
e existence of optical band structures is well Known fofi, e ¢4y pling between the cavity modes and the world outside

the case of a classicaling resonator, with passive the cavity. Since our OPO is inherently a quantum system
polarization-optical elements32,42. In that case counter- which, moreover, is based upon a Fabrye®eavity instead
propagating polarized waves are coupled by electro-optief a ring cavity, we have to be careful before adopting the
modulators(EOM), Faraday rotators, partial reflectors, etc.,same method. Equatiofb3) implicitly defines what is a
that are arranged in a ring configuration. The polarizationspectral resonance for a classical ring cavity; we need an
mode eigenfrequencies then display band structures as analogous definition in our quantum case. Input-output rela-
function of a tuning parameter, e.g., the voltage across ations for a field inside a cavity with nonorthogonal modes
EOM. A general method for determining the eigenfrequencyvere already discussed from a very general point of view by
band structure in a ring cavity containing various passivearangier and PoizgdB7]; however, their analysis concerned
optical elements, has been developed in Rgf2,42. Opti- only a cavity with a linear medium inside. In our case we
cal elements are represented by 4 matrices which couple shall find that the classical equati@B) remains valid in the
two polarization degrees of freedom: and y polarized —duantum context but acquires a different meaning.

waves, and two momentum degrees of freedom: clockwise
(cw) and counterclockwiséccw) waves. The spectrum of a
ring cavity is determined by solving the secular equation for Now we extend to the quantum regime the treatment that
eigenvalue unity, leads to Eq(53). The theory we have formulated in Sec. Il

A. Resonance conditions: Quantum theory

043803-9
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FIG. 7. Generalized one-output-mirror cavity. A miridris put J ¢

in front of a bulk materiaB. The sets of annihilation field operators
inside and outside the cavity are written ag,a, and a,,a,,
respectively. AnalogouslyF (G) represents the set of annihilation
input (outpud noise operators.

FIG. 8. Frequency band structures corresponding to the three-
dimensional spectra shown in Fig. 6. We have plotteddRg(ver-
sus the rotator angle for different values ot.

can be generalized to an arbitrary linear amplifier the Now we are ready to reexamine the definition of a spec-
sense of Caveid]) inside a cavity. A generalized one-output- tral resonance. From the general equatidd it is clear, by
mirror cavity is formed by a mirroM put in front of a bulk ~ inspection, that allSmatrix elements have a common de-
material B as shown in Fig. 7. Horizontal arrows representnominatorD(6) (#=wL/c) equal toD(6)=det(1—RM).
field modes, that is modes of the electromagnetic both insidé natural definition of the resonant valué@gsis then given
and outside the cavity. Vertical arrows represemdise by the complex zeros dd () [43]. From a physical point of
modes, that is modes introduced to account for the loss chawiew, sincew andL are real variables, we consider RgQ
nels. We denote the set of left-traveling field modesby as the true resonant frequency. With this definition
and the set of right-traveling field modes bR and D(Re(6,.9)#0 and our previous calculations apply. As an
assume dim() =dim(R)=N. The set of annihilation opera- example of this definition we show in Fig. 8 the frequency
tors associated with the input and output field modes isand structure corresponding to the spectra already shown in
denoted byai,=[(ai);- - - (am)n(ah)1 - (@h)n]" andagy  Fig. 6. Re@,.) is plotted versus the rotator angt for
=[(Aouw) 1" (Aoudn(@bw)1- - - (ahn]", respectively. The different values of. Whené=0 the two modes correspond-
set of annihilation operators associated with the input nois¢hg to polarizationsa andb are degenerate in frequency for
modes is denoted by=[(F)1---(FN(F1---(FONI".  all values oft. This degeneracy is removed by the rotator
All operators belonging to the inpubutput field modes \yhich induces a coupling between the two polarization
commute with all operatorgand their corresponding ad- yodes. Wheng= /2 mod(2r) the two modes exchange

joints) belonging to the input(outpu) noise modes. AS qir (ole and the spectrum is simply shifted by2. Fort
shown with more details in the Appendix, if we indicate with =0 the polarization mode is completely suppressed and
R, T, and M three 2N X 2N matrices which represent the the spectrum is again degenerate.

reflectivity and transmittivity of the output mirror and the We now return to our discussion of the resonance condi-

whole cavity, respectively, we find tion to notice that, when In{.d =0, the determinant is zero
ag=(R+TGT)a,+ T(1+GR)f (549 for real frequencies and our calculations break down. How-
ever, the real solutions of the equatiDrf#) =0 constitute a
set of functionsé,(R,G,¢,t) (i=1,2,...), which fix the
boundary of the domain, in the space of the param&e&
¢, andt, within which solutions of Eq(543 exist. In fact it
whereG=M(1—RM)~*. Equation(548 can be straightfor- s clear that, beingdw=k, the solutions, in general com-
wardly interpreted in term of transmitted ang reflected fieldp|exes, of the equatioB (6)=0 are the analog of the circle
amplitudes, exactly as in the classical Fabryd?em_terfer- of convergence of the geometrical ser#g) in the Fabry-
ometer theory. Looking at E¢54a we see that the first term  pigot transmission function. In the classical theory of the
Ra;, corresponds to the first reflected wave while thg secon¢tabry_p'eot interferometer a plane wave impinging on one
term (TGTay) is the product of the wave coupled into the of the mirrors of the interferometer is partially transmitted
cavity which interacts with the optical elements representeging partially reflected. The amplitude of both the transmitted
by G and finally is coupled out of the cavity. In a similar and reflected wave is proportional to the sum of a geometri-

=8g,t+F, (54b

manner we can interpret the noise term. Note that the solucg| series s(z)=1+z+z°+--- whose argument isz
tion Eq. (54) exists only if =re'2L"9 for normal incidence. This series can be
summed only if|z|<1. In our casdz|=re 2%t which is
de(1-RM)#0. (55 less than 1 only iki>l<ith were
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FIG. 9. lllustrating the doubling mechanism for an OPO in a  FIG. 10. lllustrating the bifurcation appearing around a single
cavity with orthogonal eigenmodes=1) and mirror reflectivity — resonant peak in the OPO spectrum in a FabmpPeavity with
R=0.5. For increasing values @ the gap between bands is also orthogonal eigenmodesj(=0 andt=1). When increasing the mir-
increasing. Higher values @ are not considered here because ourfor reflectivity R the system approaches the threshold of oscillation

model is limited by the nondepleted pump approximation. for smaller values of5.
" 1 1 “momentum” degrees of freedom. Instead in our case the
ki=—5rInl+ (56)  doubling is due to the coupling between annihilation and

creation operators belonging to differgrdlarizationmodes.

It is clear that the threshold condition corresponds to a valuén other words here we have two polarization degrees of
of z=x-+iy which lies, in the complex planex(y), exactly — freedom coupled in a linear way by passive optical devices,
on the radius of convergence of the geometrical seBis. and the same two polarization degrees of freedom coupled in
Analogously we identify the points lying on the boundary & nonlinear way by the crystal. To see this more clearly, the
functions 6;(R,G, ¢,t) with the set of the values of the pa- band structure for an OPO in a simple linear cavity-{
rameterR, G, ¢, andt for which oscillations startthreshold ~ and¢=0) is shown in Fig. 10, wheréis plotted versu$
valueg and therefore we write the threshold condition asfor different values ofR When G approach the threshold
Im(6,.d =0. In the next section we analyze the distribution Value Gi(R), a bifurcation in the OPO spectrum appears.
of these singular points in the plané, ¢) for different val- This bifurcation should be, in principle, observable ex-
ues ofR, G, andt. Finally it is interesting to note that the Perimentally. However, the well-known instability of a near
“quantum” equationD () =det(1—RM)=0 does not con- thresho]d OoPJd41], whlqh |s.perhaps con_nected Wlt.h.thIS
tain any noise contribution and is, in fact, completely classibifurcation, could make its direct observation very difficult.

cal and therefore fully equivalent to the “classical” equation However, a detailed analysis of the OPO instability and its
(53). connection with the spectrum bifurcation other than with

self-phase-lockingsee, e.g.,44]) goes beyond the scopes of
the present work. We simply recall that in our calculation the
crystal is considered infinitesimally thin so that the bifurca-
We start our analysis of the OPO optical band structure byjon cannot be explained as a refractive index-dependent
considering what happens in a cavity with orthogonal modegropagation effect within the crystal. The true nature of this
(t=1) when the threshold condition Iffitd =0 is satisfied.  phenomenon lies in the nonlinear coupling due to the crystal
In Fig. 9 the frequency band structure of the OPO spectrunpetween annihilation and creation operators belonging to dif-
is plotted for increasing values of the gdinand fixed mirror  ferent polarization modes, as is made clear in Fig. 9. In order
reflectivity R=0.5. For G=1.01 (subthreshold OPDwe  to understand this in detail, we rewrite the scattering matrix
have Im@.9) #0 and the spectrum is the same as Fi@).8 of a parametric amplifier as
For G>Gy(R)=(1+R)/(2\R) each band is doubled and

B. Mode spectra of OPO

shifted and the gap between two near bands is increasing by =coshya; +sinhya}, (579
along with G. In other words a degeneracy between two
eigenmodes is removed when the OPO starts to oscillate. At b,=coshya,+ sinhya{, (57b

first sight these band structures closely resemble the corre-

sponding ones in passive ring cavitiese, e.g., Fig. @) in where G=coshy. Ou [45] has shown that under the trans-
[32]]. In a ring cavity the doubling in the band structure formations

arises from the coupling betweepunterpropagatingnodes

along the ring. In other words, in a ring cavity the four de- B Zis is

grees of freedom of the electromagnetic field that are respon- a-=(aye "*tase )/‘/E’ (583
sible for the presence of four resonant peaks per free spectral . .

range are two “polarization” degrees of freedom and two b.=(b,e 9+ b,e?)/\2, (58b)
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FIG. 11. Frequency band structures of an OPO in a cavity with  FIG. 12. lllustrating the effect of nonunitarity on the frequency
nonorthogonal eigenmodes. The cavity “length= wlL/c is plot- band structure. Two band structures are shown, calculated for an
ted versus the rotator anglg for several values of the absorber OPO with G=2, R=0.5 and(a) t=exp(-1/5) and(b) t=exp
parametert. The values of the other parameters @e-2, R (—i/5). The two band structures have the same shape but they differ
=0.5. by a 7/2 rotation in the plane of the figure.

(V 6eR) Egs.(57) decouple in the equations of two inde- each of these two quadrature phases reaches the threshold for

pendent degenerate parametric amplifiers, a different set of values of the paramet&<G, ¢, andt and
, T two bands appear in the spectrum.
b, =coshya. +sinhya. , (593 Now we consider the more general case of a cavity with
i + nonorthogonal modes<1 and ¢#0. In this case all four
b_=coshya_—sinhya_. (9B  guadrature phases are coupled to each other and four bands

appear. The frequency band structure of the OPO spectrum is
shown in Fig. 11 wher#,.sis plotted versus the rotator angle
0?5 for different values of and fixedG =2 andR=0.5. The
difference between these spectra and the ones usually ob-
tained for lossless ring cavities is both in the shape of the
bands and also in their disposal. In our case the bands are

A degenerate parametric amplifier is, following the definition
of Caved[1], a phase-sensitivamplifier, that is an amplifier
which responds differently to the two quadrature phases
the field defined as

N
q(a)= a+_a, (603 symmetric with respect to a vertical axis while in the
\/E passive-cavity case the symmetry is with respect to a hori-
zontal axis. This is clearly illustrated in Fig. 12 where the
a—a' two pictures differ for a rotation by a/2 angle in the plane
p(a)= 2 (60b)  of the figure. This phenomenon is entirely due to the losses

in our model represented by a nonunitary matrix. However,
gwe stress the fact that this lack of unitarity only appears in
the classical equation det{—RM)=0 but not in the full
guantum equatioii54).
To illustrate this phenomenon we consider, for simplicity,
q.(b)=eqg,(a), p.(b)=e 7p,(a), (61) & two-mode optical system which contains an absorbing el-
ement whose matrix can be written [a6]

These operators are both Hermitian and thus, in principl
observable. From Eq$59), (60) it is easy to see that each
qguadrature phase is amplified with a different gain,

g-(b)=e"7"q_(a), p-(b)=e"p_(a),

(62 (e‘“ 0)
: (63)

and we have four independent observable degrees of free- 0

dom. In fact, from Egs(61), (62), we see that only two

guadrature phases really exhibit different gain. Since thavherea is a real parameter. This matrix is trivially nonuni-

threshold condition Img,.d =0 contains explicitly the gain, tary. Let us now analytically continue the real parametén
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the complex space via the transformatian-a€'”. After  photons; the spontaneous emission process itself is not af-
this transformation the matrid becomes fected. Excess quantum noise becomes effective only very
close to threshold when one of the cavity eigenmodes is

) “selected” as the oscillating mode which dominates over the

g | (64)
0 ga cosytiasing other mode$47].

In the second part of this paper we have studied the eigen-
which is in general nonunitary for arbitrary values of the realfrequency spectrum of the same OPO, but now working near

parameterp. When =0 we recover the original matrid,  threshold. In order to find the correct definition of a spectral

e @ cospy—iasiny

A(n)=

while for 7= /2 we obtain resonance within our fully quantum treatment, we have de-
. rived the spectral dependence of this resonance from the

e'* 0 OPO parameters by writing explicitly the scattering matrix

A(W/Z)Z( 0 ei“)’ (65  for the whole cavity. Since a type-ll parametric crystal

couples annihilation operators belonging to a certain polar-

which is unitary. In Fig. 12 we show the effects of the trans-iZation mode with creation operators belonging to the or-
formatione— «e'” on a eigenfrequency band structure: Fig'thogonal polarization mode, we deal with a system which
12(b) is obtained from Fig. 1@) by writing the absorber has four coupled degrees of freedom. Thus we have found
parameter as=exp(—a) and by making the substitution that in the OPO s_pectrum fou.r.resonant peaks per free spec-
“ia in the boundary function®(R,G,d¢,t=e" %) intro- tral range can exist. The' “ppsnlonH:wL/c of these peaks
duced in the preceding section. Looking at Exp) it is clear ~ depends on the transmissiorof the absorber and on the
that the tricka— «€'” can be interpreted as a “Wick rota- rotator anglep yvhlch also fix the “degree of nonorthpgonal-
tion” [29] if one thinks of the parameter as proportional to  1ty" Of the cavity. Because of the) dependence, different
a finite time interval. band structures, whose shapes depend, appear in the

The nonunitary nature of tHd matrix is also responsible ©OPO spectrum. Since we are considering a degenerate para-
for the lack of continuity in the band structure for values of Metric amplifier withw=0/2, in order to experimentally
tless then 1, as shown in Figs.(&Land 11f). The breaking detgct the spectral band structures we can either scan the
of the band structures and the appearance of “islands” is du§aVity lengthL or vary the pump frequenc. These band
to the fact that when< 1 one polarization modénodea in struqtures c]osely resemble those found for a passive classi-
the preceding sections increasingly suppressed because of¢@l fing cavity[32].
the losses introduced by the absorber. Since in Fig. 11 the
assigned value of the gaf® corresponds to a near-threshold ACKNOWLEDGMENTS
value Gy, only for t=1, whent<1 the increasing losses
cause an increasing value Gf, and some eigenmodes can-
not start to oscillate. Particularly, for=0, one mode is com-
pletely suppressed and only two resonant pgakstead of
four) per free spectral range are left. By explicit calculation it APPENDIX

is easy to see tha; when using optical devices repre;ented BY In this appendix we derive explicitly Eq54) utilized in
a unitary matrix this phenomenon does not appear; this modgg: \/ | et us consider the arrangement shown in Fig. 9.

suppression can be achieved only using nonunitary opticgliqyi,ontal arrows represefield modes, that is modes of the

devices. electromagnetic both inside and outside the cavity. Vertical
arrows representoise modes, that is modes introduced to
VI. CONCLUSIONS account for the loss channels. We denote the set of left-
traveling field modes by and the set of right-traveling field

In the first part of this paper we have introduced and o >
analyzed a model for an optical parametric oscillator in amodes byR and assume dirnd)=dim(R)=N. The set of

cavity with nonorthogonal polarization modes. Our modelannihila_tion operators associated with the i”@!“.p“’ﬁ field
comprises(and reduces to those as particular subgatves modes is den'oted bgi” (aou‘.)' The set Of. annlhllatlop op-
theoretical models both of which have beexperimentally erators associated with the lnmmutp.ub noise modes is de-
verified. For the type-1l degenerate parametric amplifier w .oted by (). Al operators belonging to the mp(_mutpub
use the model of Gardiner and Savdgd] whose validity ield modes commute with all operatotand their corre-

. : ding adjoints belonging to the input(outpud noise
has recently been verified experimentally by Ou and 23j. spon . -
For the cavity with two nonorthogonal polarization modes modes. Finally we denote with_ andag, the set of operators

where large polarizatioi factors have been demonstrated ?helongitng to thelf:gld modlef inside the cavity. They satisfy
[9,12], we adopt the model of van der Le al. [9]. By € quite general linear reiation

We acknowledge support from the EU under the IST-
ATESIT contract. This project is also supported by FOM.

using this model we have shown that there is no excess quan- N
tum noise enhancement in type-Il SPDC. On the contrary, as) = M a(a) et L o(al) 1+ F Al
the use of a cavity with nonorthogoné@hstead of orthogo- (@r)a /;2’1 [(Mag(@l)ptLap(@)pltFar (AL)

nal) eigenmodes leads toraductionof the twin photon gen-
eration rate. Excess quantum noise must therefore be exclwhere a=1, ... N. The 2N2 complex numbersv «p and
sively ascribed to amplification of spontaneously emittedL ,; are completely determined by the optical elements in-
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ar R 0)\/a,
{5 205 2 e

side the cavity. Even if each of these elements is represented Aot T O
by a unitary operator, the requirement that the operators in = a T 0 R*
the setsag anda, obey the bosonic commutation relations out LVAL LARVAR

does not need to be satisfied since these operators are asso-
a_ T 0)\/apq R 0)\fagr b
=~ +| . A4
al/ \o 1*/\al/ o R*/\af (Adb)

ciated with intracavity modeg8].
The mirrorM generates a linear coupling between opera-

This is only an intermediate step. We go ahead further intro-

ducing the MN-component vectors ag=(ag ay)’, f

a,

tors belonging to the sets , ag, a,, @y, Which can be
represented as

N =(F FN)7, etc., and the Rx 2N matrices
(Bouwa= 2, [Tas(3R)g+ Rapl@n)gl, (A2 uoL
M=| " A
: (g* m* ) "o
(@)o= 2 [Tep(@npt Replar)gl.  (A20) g
(a=1,... N). Is is easy to solve EqgAl) and (A2) to- T— r o _ R 0 AB
gether in order to express the operatagg as linear combi- “lo T/ “lo R*/” (AB)
nations of the operators;,, and F (and their respective ad- o -
joints), as we have already done in Sec. |. However, in ordeNow we are ready to rewrite Eq6A3) and(A4) as
to illustrate the nature of the solution that we have found and —Ma, +f (A7a)
to show how the resonance condition can be imposed in a ar=Ma T,
quantum theory, we solve again E¢A1) and(A2) introduc- agu=Tar+Ra,, (A7b)
ing a matrix notation. LeM stand forM 5, L forL,z, T
for T,z andR for R, 5. All these areN>X N matrices. With a =Ta,,+ Rag. (A70)

a_,ap, etc., now we indicate théN-component vectors _ _ _ _
a =[(a))1(a)), - (@)n]T, an=[(an)1(ain)2- - - (@n)n]" Inserting E_q.(A?a) in Eq. (A7c), solvmg fora,__ and using
etc., respectively and similarly for the corresponding adjoinithis result in Eqs(A7a) and (A7b) we finally find, for the

operators. Using this notation we rewrite E¢a1) as operators belonging to the output field modes,
(aR ( M L aL) ( j:) o= (R+TGT)ag,+ T(1+GR)f (A8a)
=, + , (A3)
ah) \L* m*)lal) |FT =Sa,+F, (A8b)
and Egs(A2) as whereG=M(1-RM) 1.
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