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Formation of a molecular Bose-Einstein condensate and an entangled atomic gas
by Feshbach resonance

V. A. Yurovsky and A. Ben-Reuven
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
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Association in an atomic Bose-Einstein condensate, and dissociation of the resulting molecular condensate,
due to a Feshbach resonance in a time-dependent magnetic field, are analyzed incorporating non-mean-field
quantum corrections and inelastic collisions. Calculations for the Na atomic condensate demonstrate that there
exist optimal conditions under which about 80% of the atomic population can be converted to a relatively
long-lived molecular condensate~with lifetimes of 100 ms and more!. Entangled atoms in two-mode squeezed
states~with noise reduction of about 30 dB! may also be formed by molecular dissociation.
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INTRODUCTION

The recently discovered Bose-Einstein condensa
~BEC!, or matter waves, resemble in certain ways coher
electromagnetic radiation. This similarity stimulated the d
velopment of atom optics@1#, involving nonclassical state
of the atomic fields, such as squeezed and entangled s
@2#. Squeezed states are characterized by noise reduction
can be applied in communications and measurements.
tangled states of a decomposable system cannot be expr
as a product of the component states, and can be use
quantum computing and communications. Squeezed ato
states can be formed in four-wave mixing@3#, in arrays of
atomic traps@4#, in multimode condensates@5,6#, in the de-
cay of unstable BEC@7#, in collisions of BEC wavepacket
@7#, and as the outcome of Bogoliubov fluctuations subjec
stimulated light scattering@8# or Beliaev damping@9#. The
squeezing can be measured experimentally by using ho
dyne detection, analogous to the one used in quantum o
~see, Ref.@2#!. The key component of this method—a bea
splitter—already exists~see, Ref.@10#!.

The present work suggests the dissociation of molec
BEC as a source of atom pairs in two-mode squeezed s
that are entangled. The formation of single-mode squee
states by the same mechanism has been discussed in
@11–13#. The formation of entangled atomic pairs in the d
sociation of individual diatomic molecules has been cons
ered in Ref.@14#. Other mechanisms of formation of en
tangled gases have been discussed in Refs.@5,7,8#.

The molecular BEC required as the source of the
tangled gas is interesting in its own right, although its effe
tive production has not been achieved yet. The formation
a molecular BEC by direct cooling of molecular gases
obstructed by the rotational degrees of freedom. An alter
tive method is the association of atomic BEC@15,16#. A
Raman process of photoassociation@15#, realized experimen-
tally @17#, was not sufficiently productive because of spon
neous emission@18#. We consider here the association
atoms in a BEC by Feshbach resonance@16# in a time-
dependent magnetic field. Such a process is associated
the large condensate loss observed in experiments@19#. This
loss follows from the deactivation of resonant molecules
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excited states by inelastic collisions@20,21,16#, as well as
from the formation of noncondensate atoms by molecu
dissociation.

Reference@22# treats the condensate loss as a dissocia
of single molecules. Many-body effects have been incor
rated in Ref.@21# by introducing a width to the molecula
condensate state. A more rigorous analysis has been
formed in Refs.@23,24#. In that analysis, equations for th
atomic and molecular mean fields were complemented
equations for the normal and anomalous densities of ato
fluctuations, allowing the study of quantum properties of t
atomic states formed by molecular dissociation. These pr
erties have been analyzed numerically by using a positivP
representation in Refs.@11,25#. Some qualitative results re
lated to the quantum properties have been also presente
Ref. @26#. An exact solution for the case of a single atom
mode has been obtained in Ref.@27#. The approaches o
Refs. @11,23–27# did not take into account the deactivatin
collisions, unlike the present analysis and Refs.@20,21#. We
generalize here the parametric approximation used in R
@12,13#. Preliminary results of the present paper have be
reported in Ref.@28#.

An advantage of the use of Feshbach association is
possibility of reducing the negative effect of collisions b
lowering the condensate density. We show here that the
lecular condensate produced by this method can survive,
der favorable conditions, over extended time intervals. Ot
impressive outcomes of the present approach are the e
of ~near-total! conversion to entangled atoms or a molecu
condensate, as well as the extreme degree of squeezing
the relatively long molecular BEC lifetimes achievable.

I. THE MODEL

Our model is based on the Hamiltonian used in Re
@20,21# in a mean-field description of the coupled atomic a
molecular fields. This treatment is improved here by the
of a generalized parametric approximation in order to inc
porate various effects. The word ‘‘parametric’’ refers to t
treatment of the atomic field in a fully second-quantiz
form. The word ‘‘generalized’’ refers to an improvement on
version of the parametric approximation@7,13# in which the
time dependence of the molecular field and the effect of
©2003 The American Physical Society11-1
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activating collisions were not incorporated.
The Hamiltonian of Refs.@20,21# can be expressed in th

momentum representation in terms of the annihilation ope

tors of the atomic and molecular fields involved,Ĉa(p,t)

and Ĉa(p,t), respectively. Using units with\51, the
Hamiltonian is

Ĥ5E d3pH F p2

2m
1ea~ t !GĈa

†~p,t !Ĉa~p,t !

1 (
a5m,u,d

F p2

4m
2EaGĈa

†~p,t !Ĉa~p,t !J 1V̂h1V̂h
†

1(
d

~V̂d1V̂d
†!1(

u,d
~V̂ud1V̂ud

† !, ~1!

wherem is the atomic mass,ea(t)52 1
2 m@B(t)2B0# is the

time-dependent Zeeman shift of the atom in an external m
netic field B(t) relative to half the energy of the molecula
state~which is fixed as the zero energy point!, m is the dif-
ference between the magnetic momenta of an atomic
and a molecule, andB0 is the resonance value ofB. The
subscripta describes the various molecular states, witha
5m denoting the resonance state anda5u,d denoting the
‘‘dump’’ states above and below the resonance state, res
tively. The Zeeman shift of the dump states is negligib
small compared to the energies of transitionsEa from the
resonance state~i.e., Em50, Eu,0, Ed.0).

The Feshbach coupling of the atomic and molecu
fields, described by

V̂h5~2p!23/2E d3pd3p8Vh~p2p8!

3Ĉm
† ~p1p8,t !Ĉa~p,t !Ĉa~p8,t !, ~2!

contains a product of two atomic creation operators a
therefore, describes the formation of entangled atomic pa
in analogy with parametric down-conversion in quantum o
tics ~see, Ref.@2#!. The momentum dependence ofVh is nec-
essary to avoid divergences in subsequent calculations~see,
also Ref. @23#!. Only its maximal valueVh(0)5g has a
physical meaning, being related to the phenomenolog
resonance strengthD as

ugu252puaaumD/m, ~3!

whereaa is the elastic-scattering length. The terms

V̂d5~2p!23/2E d3p8d3pdd3pmdd~pd22p8!Ĉa
†~p8,t !

3Ĉd
†~pd ,t !Ĉm~pm ,t !Ĉa~p81pd2pm ,t ! ~4!

describe the deactivating collisions of the resonant molec
with atoms

A2~m!1A~cold!→A2~d!1A~hot!. ~5!

The inelastic collisions between the resonant molecules
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A2~m!1A2~m!→A2~d!1A2~u! ~6!

are described by

V̂ud5~2p!23/2E d3pmd3pdd3pudud~pu2pd!Ĉu
†~pu ,t !

3Ĉd
†~pd ,t !Ĉm~pm ,t !Ĉm~pu1pd2pm ,t !. ~7!

Spatial inhomogeneity due to the trapping potential and e
tic collisions can be neglected here~see discussion below in
Sec. III!.

Let the initial state of the atomic field att5t0 be a coher-
ent state of zero kinetic energy

Ĉa~p,t0!u in&5~2p!3/2w0d~p!u in&, ~8!

whereuw0u25na(t0) is the initial atomic density andu in& is
the time-independent state vector in the Heisenberg repre
tation. A pair of condensate atoms forms a molecule of z
kinetic energy. Therefore, the resonant molecules can be
resented by a mean fieldwm(t) as

^ inuĈm~p,t !u in&5~2p!3/2wm~ t !d~p!, ~9!

whereuwm(t)u25nm(t) is the molecular condensate densi
This approach therefore takes into account the time dep
dence of the molecular mean field, but neglects fluctuati
of the molecular field due to Feshbach coupling of nonc
densate atoms.

The outcome of atom-molecule and molecule-molec
deactivating collisions is introduced, as in Refs.@20,21#, by
adding the molecular dump states. The elimination of th
states in a second-quantized description should, howeve
done in a different way~see Appendix A!. In the Markovian
approximation, the equation of motion for the atomic fie
attains the form

i Ĉ
˙

a~p,t !5F p2

2m
1ea~ t !2 iguwm~ t !u2GĈa~p,t !

12g* wm~ t !Ĉa
†~2p,t !1 i F̂ ~p,t !, ~10!

whereVh(p) is replaced by its maximal valueVh(0)5g @see
Eq. ~3!#. The parameterg describes the width of atomic
states due to deactivating collisions~5! ~see Refs.@20,21#!.
The corresponding shift can be neglected compared to o
energy scales in real physical situations. The quantum n
sourceF̂(p,t) is d-correlated in the Markovian approxima
tion, obeying

^ inu@ F̂~p,t !,F̂†~p8,t8!#u in&52guwm~ t !u2d~ t2t8!d~p2p8!.
~11!

In the generalized parametric approximation, the atomic-fi
operator is represented in the form

Ĉa~p,t !5@Â~p,t !cc~p,t !1Â†~2p,t !cs~p,t !#C~ t !,
~12!

where
1-2
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C~ t !5expS 2E
t0

t

dt1guwm~ t1!u2D . ~13!

The operatorsÂ(p,t) are expressible in terms ofĈa(p,t0),
F̂(p,t), and thec-number solutionscc,s(p,t) of the equa-
tions

i ċc,s~p,t !5F p2

2m
1ea~ t !Gcc,s~p,t !12g* wm~ t !cs,c* ~p,t !,

~14!

given the initial conditionscc(p,t0)51 and cs(p,t0)50
~see Appendix B!.

The atomic density

na~ t !5~2p!23E d3p1d3p2exp@ i ~p22p1!•r #

3^ inuĈa
†~p1 ,t !Ĉa~p2 ,t !u in& ~15!

then appears to ber independent, and comprises the su
na(t)5n0(t)1ns(t) of the densities of condensate atom

n0(t)5u^ inuĈa(0,t)u in&u2 @see Eq.~B6!#, and of nonconden-
sate~entangled! atomsns(t) in a wide spectrum of kinetic
energiesE5p2/(2m),

ns~ t !5E dEñs~E,t !, ~16!

where the energy spectrumñs(E,t) is related to the momen
tum spectrumns(p,t) @see Eq.~B7!# as

ñs~E,t !5
mp

2p2
ns~p,t !. ~17!

The equation of motion for the molecular mean fieldwm(t) is
obtained by a similar elimination of the dump fields from t
corresponding operator equation, followed by a mean-fi
averaging. We thus obtain

i ẇm~ t !5gm0~ t !1
1

2p2E0

`

p2dpVh~p!ms~p,t !2 i ~gna~ t !

1gmuwm~ t !u2!wm~ t !, ~18!

where the parametergm describes molecule-molecule dea
tivation collisions ~see Refs.@20,21#!, and the anomalous
densities of the condensate and noncondensate atomsm0(t)
andms(p,t) are defined by Eq.~B8!. A numerical solution of
Eqs.~14! on a grid of values ofp, combined with Eq.~18!, is
consistently sufficient for elucidating the dynamics of t
system. The atomic energy was renormalized in the sa
manner as in Ref.@23#.

The present approach becomes mathematically equiva
to the approach of Ref.@23# if the inelastic collisions are
neglected~justifiably in the case of85Rb experiment@29#!.
At a low-molecular density, the effect of noncondensate
04361
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oms is equivalent to the contribution to the width of th
molecular state made in Ref.@21# for the same process~see
Appendix C!.

II. FORMATION OF A MOLECULAR CONDENSATE

Calculations were performed for two Na Feshbach re
nances using values of parameters presented in Refs.@20,21#.
The strong resonance, at 907 G, has the strengthD
50.98 G, and the weak one, at 853 G, has the strengtD
59.5 mG. The parameter valuesm53.65 ~in Bohr magne-
tons!, aa53.4 nm, g50.8310210 cm3/s, and gm
51029 cm3/s are the same for both resonances. The neg
of elastic collisions is valid whenevern0(t0)!1015 cm23 for
the weak resonance, andn0(t0)!1017 cm23 for the strong
one. The spatial inhomogeneity can be neglected if the
of the condensate substantially exceeds
31022 cm21/2)n0

21/2(t0) and (2.531022 cm21/2)n0
21/2(t0),

respectively, for the two resonances. Even whenn0(t0)
5108 cm23, these estimates set a minimal size of 8mm for
the weak resonance and 2.5mm for the strong one. The
variation of the magnetic field is considered linear in tim
B(t)5B01Ḃt. The results are insensitive to the range of t
magnetic-field variation whenever it exceeds 20gn0

1/2/m.
A relatively long-lived molecular condensate is forme

more effectively in the case of a backward sweep, when
molecular state crosses the atomic one downwards~see Fig.
1!, as proposed in Ref.@22#. ~The resonance should b
crossed upwards in advance, at a much higher ramp spe!
The maximal efficiency of conversion of the atomic conde
sate to a molecular one is 2 max(nm)/n0'0.8 for the weak
resonance@see Fig. 2~a!#. An increase of the atomic density
or a decrease of the ramp speed, should reduce the co
sion efficiency due to inelastic collisions. On increase of
ramp speed, more atoms will be left in the atomic condens
~see Refs.@20,21#!. At low atomic densities, the conversio
becomes less efficient due to a temporary gain of popula
in the noncondensate atomic states. This observation is
culiar to, and emphasizes the importance of, the simu
neous consideration of inelastic collisions and molecular d
sociation within the second-quantized approach.

Figure 3~a! shows that a substantial conversion efficien
is retained in both the weak and strong resonances in a w
range of the condensate density, leaving much freedom in
choice of the ramp speed appropriate for experiments.

FIG. 1. Schematic illustration of transitions between an atom
condensate~AC!, molecular condensate~M!, and noncondensed at
oms ~EA! on forward~FW! and backward~BW! sweeps.
1-3
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lesser the initial density, the longer is the lifetimetm of the
molecular condensate@see Fig. 3~b!#, but the higher is the
precision required for the control of the magnetic field.

The optimal ramp speed is approximately proportiona
the initial density@see Fig. 3~c!#. This dependence minimize
the effect of a variation of parameters determining the c
version of the atomic condensate to the molecular one
the loss of molecular condensate. Indeed, the conversio
the molecular condensate is~in the fast decay approximatio

@20,21#! characterized by the parameterg2n0 /Ḃ. Similarly,
the loss is characterized by the ratio of the deactivation l
time ~which is inversely proportional to the initial density!,
and the crossing time~which is inversely proportional to the
ramp speed!.

Calculations for the strong Na resonance demonstra
lower conversion efficiency@see Fig. 3~a!#, due to a gain in
the temporary formation of noncondensate atoms@cf. Figs.
2~a! and 2~b!#. The optimal ramp speed is about two orde
of magnitude larger than in the weak resonance, given
same initial density@see Fig. 3~c!#. The use of the85Rb
should be even less promising due to its high resona
strengthD'11 G, in accordance with the low molecula

FIG. 2. Time dependence of the densities of the atomic cond
sate~dot-dashed line!, the molecular condensate~dashed line!, and
the entangled atoms~solid line!, calculated in a backward swee
with initial atomic densityn051011 cm23 for the weak resonance

@the ramp speedḂ520.1 G/s, ~a!# and for the strong one@Ḃ5
220 G/s,~b!#. The dotted line shows the total atomic density~sum
of the atomic densities and twice the molecular one!. The reso-
nances are crossed att50.
04361
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population (,3%) calculated in Ref.@24# pertaining to the
recent JILA experiment@29#.

III. FORMATION OF AN ENTANGLED GAS

The formation of noncondensate atoms due to Feshb
resonance has been recently observed in experiments@29#
analyzed in Ref.@24#. As demonstrated in Ref.@13#, these
atoms are formed in squeezed states, which now turn ou
be two-mode squeezed states, as in Ref.@7#. These states are
similar to the state of electromagnetic radiation formed
parametric down-conversion~see Appendix D!. As in quan-
tum optics~see Ref.@2#!, the amount of squeezing can b
measured by the energy-dependent parameterr (E,t) @see Eq.
~E3! in Appendix E#. A mean-squeezing parameter, weigh
by the spectral density of Eq.~16!,

r̄ ~ t !5E dEñs~E,t !r ~E,t !/ns~ t ! ~19!

n-

FIG. 3. Conversion efficiency~a!, lifetime of the molecular con-

densatetm ~b!, and optimal ramp speedḂopt ~c!, as a function of the
initial atomic density calculated for the weak~solid line! and the
strong~dashed line! resonances in a backward sweep.
1-4
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FIG. 4. ~a! Time dependence of the densities of the atomic condensate~dot-dashed line!, entangled atoms~solid line!, and the total atomic
density~dotted line! calculated for the weak resonance in Na with the initial atomic densityn051014 cm23 and ramp speed 50 G/s in

forward sweep. The dashed line shows the mean squeezing parameterr̄ (t) @see Eq.~19!#. ~b! Energy spectra of the entangled-atom dens

ñs(E,t) ~solid line! and the squeezing parameterr (E,t) ~dashed line! calculated at the peak,t'20.19 ms. The dot-dashed and dotted lin
show their values on the plateau att'4 ms.
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is used to describe the time variation of the squeezing.
A stable gas of entangled atoms is formed by a forw

sweep, in which the molecular state crosses the atomic
upwards~see Fig. 1!. This process, too, is more efficient i
the weak resonance. The molecular density is then very
and persists a shorter time~compared to that in the backwar
sweep! due to fast dissociation. Figure 4~a! demonstrates tha
more than 70% of the atomic condensate can be transfor
into a gas of atoms in two-mode squeezed states with
mean-squeezing parameterr̄'2.6, corresponding to a nois
reduction of about 23 dB. The time dependence of the m
squeezing has a peak ofr̄'3.1 att'20.19 ms. The state o
an entangled gas can be frozen at the peak time by fast
ing off of the magnetic field. The energy spectra of t
entangled-atom density and the squeezing parameter are
sented in Fig. 4~b!. The density spectra are rather narrow, a
the peak energy increases with time. The squeezing pa
eter reaches the value ofr (E,t)'3.5 ~corresponding to noise
reduction of 30 dB! at the energyE'6 nK and the timet
'4 ms.

CONCLUSIONS

Both quantum corrections and deactivating collisions
necessary for the analysis of molecular association in
atomic BEC due to Feshbach resonance in a time-depen
magnetic field. In a backward sweep, over 80% of the ato
population can be converted to a molecular condensate
lifetimes approaching 1 s. Low densities and narrow re
nances are preferable for this purpose. The molecules d
ciate onto atoms in two-mode squeezed states that are
tangled. In a forward sweep, practically all atoms emerge
the entangled state with an unprecedented degree of squ
ing, with the parameterr reaching a value of 3 and more.

APPENDIX A: DUMP STATE ELIMINATION

Second-quantized description of the atomic field requ
a procedure for eliminating the dump state, different from
one used in Ref.@21#. It is similar to the Heisenberg
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Langevin formalism of quantum optics~see Ref.@2#!, but
takes into account the nonlinearity of the collisional dam
ing.

The Hamiltonian~1! yields the following equations o

motion for the the annihilation operatorsĈa(p,t) of the

atomic field andĈd(p,t) of the molecular dump states:

i Ĉ
˙

a~p,t !5F p2

2m
1ea~ t !GĈa~p,t !12~2p!23/2

3E d3p8Vh~p2p8!Ĉa
†~p8,t !Ĉm~p1p8,t !

1~2p!23/2(
d
E d3p8d3pddd* ~pd22p8!

3Ĉm
† ~p81pd2p,t !Ĉa~p8,t !Ĉd~pd ,t !

1~2p!23/2(
d
E d3pdd3pmdd~pd22p!

3Ĉd
†~pd ,t !Ĉm~pm ,t !Ĉa~p1pd2pm ,t !, ~A1!

i Ĉ
˙

d~pd ,t !5F pd
2

4m
2EdGĈd~pd ,t !1~2p!23/2

3E d3p8d3pmdd~pd22p8!Ĉa
†~p8,t !

3Ĉm~pm ,t !Ĉa~p81pd2pm ,t !

1~2p!23/2(
u
E d3pmd3pudud~pu2pd!

3Ĉu
†~pu ,t !Ĉm~pm ,t !Ĉm~pu1pd2pm ,t !.

~A2!

The atom and molecule emerging from the deactivat
event~5! have momentapd>Pd5A4mEd/3. The deactiva-
1-5
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tion energyEd substantially exceeds characteristic energ
of atoms formed by dissociation of the condensate m
ecules, allowing us to discriminate two groups of atoms w
momenta above and below min(Pd). Equations~A1! and
~A2! give the following equations of motion for the produ
of the field operators@with pd>min(Pd)]:

i
]

]t
@Ĉd~pd ,t !Ĉa~p2pd ,t !#

'F pd
2

4m
1

~pd2p!2

2m
2EdGĈd~pd ,t !Ĉa~p2pd ,t !

1dd~3pd22p!Ĉa~p,t !wm~ t !, ~A3!

where ea is neglected as small compared toEd , and the

molecular field operatorĈm(p,t) is replaced by the mea
field wm(t) @see Eq.~9!#. The source term in Eq.~A3! arises
from the commutation of field operators upon normal ord
ing, while the terms containing the dump field operators
neglected here. Substitution of the solution of Eq.~A3! and
the molecular mean field~9! into Eq. ~A1! gives the follow-
ing integro-differential equation:

i Ĉ
˙

a~p,t !5F p2

2m
1ea~ t !GĈa~p,t !12Vh* ~2p!wm~ t !

3Ĉa
†~2p,t !2 iwm* ~ t !E

t0

t

K~ t2t8!wm~ t8!

3Ĉa~p,t8!1 i F̂ ~p,t !, ~A4!

with a kernel

K~ t2t8!5(
d
E d3pdudd~3pd22p!u2

3expF2 i S pd
2

4m
1

~pd2p!2

2m
2EdD ~ t2t8!G

~A5!

and a quantum noise source

F̂~p,t !52 iwm* ~ t !(
d
E d3pddd* ~3pd22p!Ĉd~pd ,t0!

3Ĉa~p2pd ,t0!expF2 i S pd
2

4m
1

~pd2p!2

2m
2EdD

3~ t2t0!G . ~A6!

As in the Heisenberg-Langevin formalism, commutators
the quantum noise are related to the kernel, except that
this relation involves averages of the commutators,

^ inu@ F̂~p,t !,F̂†~p8,t8!#u in&

5wm* ~ t !wm~ t8!K~ t2t8!d~p2p8!. ~A7!
04361
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APPENDIX B: GENERALIZED PARAMETRIC
APPROXIMATION

In the generalized the parametric approximation@7,13# the
atomic-field operator is written in the form of Eq.~12!.
Equation~14! as well as the functionscc,s(p,t) are indepen-
dent of thep direction. The condition

ucc~p,t !u22ucs~p,t !u251 ~B1!

also holds. Substitution of Eq.~12! into Eq. ~10! gives

Â~p,t !5Ĉa~p,t0!1E
t0

t dt1
C~ t1!

@cc* ~p,t1!F̂~p,t1!

2cs~p,t1!F̂†~2p,t1!#. ~B2!

The representation of the field operator, given by Eqs.~12!
and ~B2!, differs from the older parametric approximatio
@13# by the factorC(t) in Eq. ~12! and the second term
containing the quantum noise, in Eq.~B2!. The factorC(t)
describes the decay due to deactivating collisions, while
quantum noise provides the correct commutation relation
the atomic-field operators~in the sense of averages! as

^ inu@Ĉa~p,t !,Ĉa
†~p8,t !#u in&5d~p2p8!. ~B3!

Equations~12!, ~B2!, and~11! lead to the following expres-
sions for the two-atom correlation functions:

^ inuĈa
†~p,t !Ĉa~p8,t !u in&5~2p!3n0~ t !d~p!d~p8!

1ns~p,t !d~p2p8!, ~B4!

^ inuĈa~p,t !Ĉa~p8,t !u in&5~2p!3m0~ t !d~p!d~p8!

1ms~p,t !d~p1p8!, ~B5!

where

n0~ t !5ucc~0,t !w01cs~0,t !w0* u2C2~ t ! ~B6!

is the condensate density,

ns~p,t !5$ucs~p,t !u2@11hs~p,t !#1ucc~p,t !u2hs~p,t !

22 Re@cs* ~p,t !cc~p,t !hc~p,t !#% ~B7!

is the momentum spectrum of the noncondensate atoms,

m0~ t !5@w0cc~0,t !1w0* cs~0,t !#2C2~ t !,

ms~p,t !5cs~p,t !cc~p,t !@112hs~p,t !#2cc
2~p,t !hc~p,t !

2cs
2~p,t !hc* ~p,t ! ~B8!

are the anomalous densities of the condensate and non
densate atoms. The functions

hs~p,t !52gC2~ t !E
t0

t dt8

C2~ t8!
uwm~ t8!cs~p,t8!u2,
1-6
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hc~p,t !52gC2~ t !E
t0

t dt8

C2~ t8!
uwm~ t8!u2cs~p,t8!cc* ~p,t8!

describe the contribution of quantum noise.

APPENDIX C: RELATION TO THE MEAN-FIELD
APPROACH

In order to compare the present approach to the tr
ment of the multiple-crossing effect in Ref.@21#, consider the
system in a normalization box of volumeV. Due to the time
variation of the magnetic field, the molecular state cros
nemḂ atomic states per unit time, where

ne5
V

4p2
m3/2e1/2 ~C1!

is the number of atomic states per unit of the energye of
their relative motion. If the depletion of the molecular fie
during each crossing can be neglected, the crossings ca
considered by using the theory of Ref.@13#, according to
which exp(2pl)21 atoms are formed by each crossin
where

l5
8puaauD

muḂu
nm ~C2!

andnm5uwmu2 is the molecular density.
Therefore, the loss rate of the molecular population is

Ṅm52 1
2 ~12e22pl!e2plneumḂu. ~C3!

If the molecular density is small enough, such thatl!1, one
obtains a loss rate of the molecular density

ṅm'22uaamuDAmenm , ~C4!

in full agreement with Eq.~50! in Ref. @21#.
The multiple crossing approach of Ref.@21# is in good

agreement with the more exact approach of the present p
only whenever~a! the variation of the molecular field durin
each crossing is negligible; and~b! l!1 and the quantum
effect of Bose enhancement, described by the posit
exponential factor in Eq.~C3!, is negligible~see Ref.@13#!.
These conditions are obeyed with the parameters used in
calculations of Ref.@21# for the Na resonances, the results
which are confirmed by using the present approach. H
ever, at other conditions, the two methods give different
sults. Moreover, the method of Ref.@21# does not describe
quantum properties of noncondensate atoms, such as
tanglement and squeezing, as well as the formation of n
condensate atoms in a backward sweep.

APPENDIX D: ENTANGLEMENT

The dissociation of the molecular BEC forms entang
pairs of atoms with opposite momenta, as in the case o
unstable atomic BEC~see Ref.@7#!. In order to clarify the
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nature of this entanglement, let us write out a pseu
Hamiltonian

Ĥa5 (
pz.0

Ĥ~p,t ! ~D1!

that leads to equations of motion for the atomic field~10!,
expressed as a sum of contributions of different momen
modes in a normalization box,

Ĥa~p,t !5F p2

2m
1ea~ t !2 iguwm~ t !u2G@Ĉa

†~p,t !Ĉa~p,t !

1Ĉa
†~2p,t !Ĉa~2p,t !#

1$2Vh~2p!wm* ~ t !Ĉa~p,t !Ĉa~2p,t !1 i F̂ ~p,t !

3@Ĉa
†~p,t !1Ĉa

†~2p,t !#1H.c.%. ~D2!

Although the pseudo-Hamiltonian is not hermitian, it allow
writing the time evolution operator in the form

Û~ t !5 )
pz.0

Û~p,t !, ~D3!

where~using the time-ordering operatorT)

Û~p,t !5T expS 2 i E
t0

t

Ĥa~p,t8!dt8D . ~D4!

The representation of the operatorÛ(t) as a product of
single- mode operatorsÛ(p,t) follows from the commuta-
tivity of the Ĥa(p,t) with different values ofp.

Let us perform a measurement represented by a projec
operatorP̂(p), which selects atoms with the momentump
moving in the positivez direction, and does not affects atom
moving in the negativez direction. This measurement re
duces the state vectorÛ(t)u in& to P̂(p)Û(t)u in&
5Û(p,t)u in&. The distribution of atoms moving in the nega
tive z direction ~the average number of atoms with the m
mentum,p8,pz8,0), after this measurement will be dete
mined by

^ inuÛ†~ t !Ĉa
†~p8,t !Ĉa~p8,t !Û~p,t !u in&}d2pp8 , ~D5!

representing an entanglement of atoms with opposite
menta. This analysis is similar to the one used in the
tanglement of the signal and the idle in the process of deg
erate two-photon down-conversion in quantum optics~see
Ref. @2#!.

APPENDIX E: SQUEEZING

As demonstrated in Ref.@13#, the noncondensate atom
produced by molecular dissociation are formed in squee
states, which now turn out to be two-mode squeezed sta
as in Ref.@7#. As in quantum optics, the squeezing is relat
to the quadrature operators
1-7
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X̂~p,t !5 1
2 $@Ĉa~p,t !6Ĉa~2p,t !#eiu

1@Ĉa
†~p,t !6Ĉa

†~2p,t !#e2 iu%. ~E1!

The uncertainties of the quadratures can be written out a

^ inuX̂~p1 ,t !X̂~p2 ,t !u in&5d~p12p2! 1
2 $112ns~p,t !

62 Re@ms~p,t !e2iu#%, ~E2!

where the momentum spectrans(p,t) and ms(p,t) are de-
fined by Eqs.~B7! and ~B8!.
tt.

re
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The uncertainties attain maximal and minimal values
two orthogonal values of the phase angleu. The amount of
squeezing can be measured by the parameter

r ~e,t !5
1

4
ln

^ inuX̂~p1 ,t !X̂~p2 ,t !u in&max

^ inuX̂~p1 ,t !X̂~p2 ,t !u in&min

5
1

4
ln

112ns~p,t !12ums~p,t !u
u112ns~p,t !22ums~p,t !uu

. ~E3!
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