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Effective-mass analysis of Bose-Einstein condensates in optical lattices: Stabilization and levitatio
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We investigate the time evolution of a Bose-Einstein condensate in a periodic optical potential. Using an
effective mass formalism, we study the equation of motion for the envelope function modulating the Bloch
states of the lattice potential. In particular, we show how the negative effective-mass affects the dynamics of
the condensate.
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I. INTRODUCTION

The dynamics of classical and quantum systems in p
odic potentials is a central paradigm of physics, finding
plications from condensed matter physics to optics, and fr
nonlinear dynamics to atomic and to plasma physics. In
cent years, the experimental and theoretical study
quantum-degenerate atomic systems in periodic poten
has opened up new avenues of investigation. In particu
Bose-Einstein condensates are a macroscopic quantum
tem, that is amenable to exquisite experimental control. A
result, many phenomena studied in solid-state systems ca
reexamined in a more direct and dramatic fashion. E
more importantly perhaps, it is now possible to realize
perimentally model systems that had previously been the
ject of considerable theoretical studies, but were all but
possible to test experimentally. One particularly beaut
example is the experimental realization of the Hubb
model leading to the demonstration of the superfluid to M
insulator transition in a Bose condensate of87Rb atoms@1#.

The first experiments involving the dynamics of Bos
Einstein condensates~BECs! in periodic potentials were car
ried out by Anderson and Kasevich, who used this appro
to demonstrate a mode-locked atom laser@2#, and observe
atomic Josephson oscillations@2,3#. The list of phenomena
that were subsequently experimentally demonstrated an
theoretically investigated includes the generation of ato
number squeezing@4#, the observation of the superfluid-Mo
insulator phase transition, the generation of discrete@5# or
gap solitons@6#, the prediction of modulational instabilitie
@7# and superfluid flow@8#, the observation of Bloch oscilla
tions @9#, the analysis and observation of coherent accele
tion @10#, studies of magnetism@11#, etc.

It is well known that a particle confined to an infinit
periodic potential and acted upon by an external force
haves as if possessing an effective mass that can be sub
tially different from its true mass, and may even take ne
tive values. In particular, it is this property that is at the co
of proposals to generate bright matter-wave solitons
BECs, with repulsive interactions@6#. The purpose of the
present paper is to extend these studies by analyzing
temporal evolution of a condensate in the periodic poten
provided by an optical lattice. The initial state of the conde
sate is chosen to be a~approximate! Bloch state modulated
by a slow-varying Gaussian envelope, and we compare
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situations, where the Bloch state is either associated wi
positive or a negative effective mass. We show that in sit
tions where the dynamics of the condensate is well appr
mated by a negative effective mass, the periodic poten
can lead to the stabilization of an otherwise unstable cond
sate. We also demonstrate theoretically the levitation of c
densates of negative effective masses. These studies fu
allow us to determine the impact of self-interactions and
finite condensate widths on the general usefulness of the
fective mass concept.

The paper is organized as follows. Section II gives a br
review of the linear problem of a particle inside a period
sinusoidal potential and introduces the concept of effec
mass. Section III applies and extends these ideas to the
namics of a BEC in an optical lattice. We discuss the eq
tion of motion for the slowly varying condensate envelo
function, from which we can gain useful physical insigh
into the dynamics of the system. A full numerical solution
presented in Sec. IV, which demonstrates in particular
stabilization and the levitation of a condensate of nega
effective mass, in agreement with the prediction of Sec.
Finally, Sec. V presents concluding remarks on the use
ness of the effective mass concept and an outlook.

II. LINEAR PROPERTIES OF INFINITE PERIODIC
POTENTIAL

In this section, we briefly review important aspects of t
linear problem of a particle of massm inside a one-
dimensional infinite periodic potential of the form

V~x!5V0cos2~k0x!, ~1!

with corresponding time-independent Schro¨dinger equation

F2
\2

2m

d2

dx2
1V0cos2~k0x!Gf~x!5Ef~x!. ~2!

We proceed by introducing the dimensionless quantities

u5k0x, b5
2mE

\2k0
2

, h25
2mV0

\2k0
2

, ~3!

in terms of which Eq.~2! becomes
©2003 The American Physical Society05-1
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d2f

du2
1~b2h2cos2u!f50. ~4!

Equation~4! has the form of Mathieu’s equation, whose s
lutions are well known@12#. As a warm up, we sketch out th
main features of its solutions which, according to Bloch
theorem, must be of the form

fn,s~u!5eisuFn~u!,

wheres is real and arbitrary~in standard textbook language
s5k/k0 where \k is the quasimomentum!. In our scaled
units, the periodic functionsFn(u) have a period ofp. The
energy spectrum associated with the periodic potentialV(u)
exhibits a band structure familiar from solid-state physi
Each value ofs gives a discrete spectrum whose structure
periodic with respect tos. This property allows one to restric
the discussion to the first Brillouin zone,21,s<1. As s is
increased within that zone, the energy levels trace out cu
that are restricted to a small energy band. We restrict
discussion to the first two bands, as depicted in Fig. 1~a!.
Note that although the probability distributionufu2 is a pe-
riodic function of u, f itself is not periodic unlesss takes
integer values—e.g., at the center or the edges of the B
louin zone. For a detailed discussion of the solutions to
~4!, see, e.g., Ref.@12#.

For s50 or 1, the eigenstates of the Mathieu’s equat
are periodic and take the form of standing waves. In parti
lar, at the edges51 of the first Brillouin zone, the wave
functionsfn,s for the first two energy bands,n51,2, can be
expressed as the Fourier series

FIG. 1. ~a! Dimensionless energya5b2h2/2 and ~b! scaled
reciprocal effective massm/m* for the first two bands as a functio
of the normalized quasimomentums. In ~b! the solid and dashed
lines refer to the first and second bands, respectively. For this
culation,h253.2.
04360
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f1,s51~u!5 (
n50

`

A2n11sin~2n11!u ~5!

and

f2,s51~u!5 (
n50

`

B2n11cos~2n11!u, ~6!

where

G2n115k2n212
1

G2n21
, n.1,

kn5~4b22h224n2!/h2,

G2n115A2n11 /A2n21 or B2n11 /B2n21 ,

andA35k111, B35k121.
The effective massm* that characterizes the response

the particle to external perturbations, is defined as

m* 5
\2

]2E/]k2
5

2m

]2b/]s2
. ~7!

Figure 1~b! shows the variation of the effective mass of t
first two bands with the quasimomentum. One observes
it is near infinite ~i.e., 1/m* 50) for certain values of the
quasimomentums, and even becomes negative in certain
gions of the zone. In more than one dimension,m* acquires
a tensorial character with elements given by

mmn* 5
\2

]2E/~]km]kn!
.

In the following section, we apply the effective mass fo
malism to the case of a self-interacting Schro¨dinger field
described by the Gross-Pitaevskii equation. Specifically,
show that a BEC prepared in a Bloch state with negat
effective mass behaves as if the signs of its self-interac
and of the external confining potential had been reversed

III. EFFECTIVE-MASS EQUATION

We consider a BEC in a sinusoidal optical lattice pote
tial. Near zero temperature, the system is described to
excellent degree of approximation by a time-depend
Gross-Pitaevskii equation for the normalized condens
wave functionc(r ,t), generalized to include the effects o
three-body collisions,

i\
]c~r ,t !

]t
5F2

\2

2m
¹21V~r !1U~r !1Ngucu2

2 iN2K3ucu4Gc~r ,t !. ~8!

Here,V(r ) is the periodic lattice potential,U(r ) is an addi-
tional external potential that is taken to be slowly varying
the scale of the lattice period~e.g., a confining potential!, N

l-
5-2
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EFFECTIVE-MASS ANALYSIS OF BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 043605 ~2003!
is the total number of atoms,g is the strength of the nonlin
ear interatomic interaction, andK3 gives the rate of three
body recombination loss@13#.

We proceed by expanding the condensate wave func
c(r ,t) on the complete set of Bloch functionsfnk(r ) that
are the stationary solutions of the associated linear Sc¨-
dinger equation

F2
\2

2m
¹21V~r !Gfnk~r !5Enkfnk~r !. ~9!

The subscriptsn andk represent the band index and qua
momentum, respectively. The Bloch functions satisfy the
thonormality condition

E
cell

drfmk* ~r !fnk8~r !5
V

~2p!3
dmndkk8 ,

where the integral is taken over a single period of the lat
of volumeV. Our use of the resulting expansion,

c~r ,t !5(
n,k

Ank~r ,t !fnk~r !e2 iEnkt/\, ~10!

is motivated by the the fact that the Bloch functions c
capture the rapid oscillations of the condensate wave fu
tion, while the slowly varying envelope functionsAnk will
describe the slow center-of-mass motion of the condens

The equations of motion for the amplitudeAnk are found
by inserting the expansion~10! into the generalized Gross
Pitaevskii equation~8!. The resulting equations are howeve
of little use if a very large number ofAnk is required to
accurately describe the dynamics of the condensate. Here
consider a more specialized situation, where the matter-w
field is characterized by a central wave vectork0 correspond-
ing to the mean velocity of the condensate~this would cor-
respond to the carrier wave in conventional optics!. Hence,
we expandc(r ,t) in a way reminiscent of the slowly varyin
envelope approximation of quantum optics as

c~r ,t !5(
n

f n~r ,t !fnk0
~r !e2 iEnk0

t/\. ~11!

Inserting Eq.~11! into Eq. ~8! and applying the effective
mass@14# or multiple scales@15# methods, yields a set o
equations governing the time evolution of the condens
envelope functionsf n(r ,t) @16#,

i\S ] f n

]t
1vg•“ f nD5F2

\2

2mmn*

]2

]xm]xn
1U~r !1Ng8u f nu2

2 iN2K38u f nu4G f n . ~12!

The derivation of Eq.~12!, the so-called effective-mass equ
tion, is given in Appendix. Herexm and xn are cartesian
components ofr and we use an implicit summation ove
repeated indices. The velocity
04360
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m
^fnk0

up̂ufnk0
& ~13!

is the drift velocity of thenth band contribution to the con
densate envelope. As shown in Appendix, it is equal to
gradient of the energyEnk with respect to the quasimomen
tum k, evaluated atk0. We note thatvg vanishes at the ex
treme points of the band, particularly at the band edges.
coefficientsg8 andK8 give the renormalized nonlinear inte
action strength and three-body loss rate, respectively. T
are given by

g85
~2p!3

V
gE

cell
dr ufnk0

~r !u4 ~14!

and

K385
~2p!3

V
K3E

cell
dr ufnk0

~r !u6. ~15!

The lattice potentialV(r ) does not appear in these expre
sions, its effects being already incorporated into the effec
massm* that appears in the first term on the right-hand s
of Eq. ~12! as well as in the drift term on the left-hand side
that equation.

The effects of a negative mass,m* ,0, can be immedi-
ately inferred from the complex conjugate of Eq.~12!,

i\S ] f n
!

]t
1vg•“ f n

!D 5F2
\2

2ummn* u

]2

]xm]xn
2U~r !2Ng8u f n

!u2

2 iN2K38u f n
!u4G f n* . ~16!

This equation shows that as compared to the case of a p
tive effective mass, the condensate density envelope pr
u f n(t)u2 evolves now under the influence of an inverted e
ternal potential2U(r ) and an inverted nonlinearity2g8. As
expected, though, the three-body recombination rate does
change sign and still represents a loss term. The chang
sign of g8 and U leads to a number of consequences.
particular, past work has shown how this property can
exploited to launch bright matter-wave solitons in conde
sates with positive scattering length@6# and induce modula-
tional instability @7#. The following section explores furthe
consequences of this property.

IV. EFFECTS OF NEGATIVE EFFECTIVE MASS

A. Inverted nonlinearity

We first investigate the effect of an inverted nonlineari
As is well known, this will change the two-body interactio
from being repulsive to attractive, and vice versa. Since c
densates with attractive interactions are normally unsta
against collapse, the sign change ofm* is clearly expected to
have a significant effect.

To reduce the scale of the computation, we restrict o
selves to a two-dimensional system consisting of a tw
5-3
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dimensional droplet pancake-shaped condensate whose
motion is frozen to the trap ground state.~We note that con-
densates with reduced dimensions have already been rea
in the laboratory@17#.! Furthermore, to focus on the effec
of the nonlinearity, we assume that except for the latt
potential

V~x,y!5V0@cos2~k0x!1cos2~k0y!#, ~17!

there is no additional external potential in the transverse
mensions.

The evolution of the transverse componentc' of the con-
densate wave function is then given by the generali
Gross-Pitaevskii equation

i\
]c'

]t
5F2

\2

2m
¹'

2 1V~x,y!1Nguc'u22 iN2K3uc'u4Gc' ,

where

¹'
2 5]2/]x21]2/]y2.

For the initial state of the condensate, we assume a Gaus
transverse wave function of the form

c'~x,y,t50!5Nf ~x,y!fnk~x,y!, ~18!

wheref (x,y)5exp@2(x21y2)/w2# is a slowly varying Gauss
ian envelope function of widthw, fnk is a Bloch wave func-
tion of the linear Hamiltonian, and the constantN normalizes
c' to unity. The time-dependent Gross-Pitaevskii equatio
solved numerically using the standard finite difference s
operator method. Figures 2 and 3 illustrate the dynamic
the condensate for two cases, one corresponding to a n
tive effective mass and the other to a positive one. We cho
the Bloch wave functionfnk associated with a negative e
fective massm* as

fnk;sin~k0x!sin~k0y!. ~19!

This corresponds approximately to the Bloch state at the
of the first energy band, whose full expression is given
f1,s51 of Eq. ~5!. The approximate form~19! retains only the
dominant term in the Fourier series~5!. Its overlap with
f1,s51 is larger than 99% for the parameters of our simu
tions. Similarly, for the state of positive effective massm* ,
we use

fnk;cos~k0x!cos~k0y!, ~20!

which corresponds roughly to the Bloch statef2,s51 at the
bottom of the second band, see Eq.~6!. Both states~19! and
~20! are located at the edge of the first Brillouin zone, w
corresponding drift velocitiesvg50. Hence the center of th
condensate stays atx5y50 during the course of its time
evolution. The two columns in Fig. 2 show snapshots of
density distribution of the condensate for positive~left col-
umn! and negative~right column! effective massesm* . In
both cases, the nonlinear interaction strengthg is negative,
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hence in the absence of the lattice, the condensate woul
unstable and subject to collapse. This however can
changed if the effective mass of the BEC becomes nega
as demonstrated in the right column. In that case, the c
densate behaves as if experiencing a repulsive two-body
teraction, its width increasing in time. This is in sharp co
trast to the situation for a positive effective mass, in whi
case the condensate width quickly implodes@18#. This im-
plosion is characterized by a complex dynamical behav
such as the formation of atomic ‘‘bursts,’’ observed at la
times. ~We remark that while an attractive condensate c
expand if it possesses a sufficiently large kinetic energy,

FIG. 2. Temporal evolution of the density distribution of a BE
in optical lattice. Lighter shades of gray correspond to higher d
sity. The left~right! panel shows the evolution of a positive~nega-
tive! m* state. The dimensionless time ist50, 1, 2, and 3, from the
top to bottom. In the plots, the ranges forx andy are from230 to
30. The condensate parameters areN550 000, g520.004, V0

510, k053, K353.931028, and the width of the initial envelope
function w58. The units for time, length, and energy are 1/v,
A\/(mv), and\v, respectively, wherev is an arbitrary frequency
that can be chosen, in particular, to be the trap frequency in
axial direction.
5-4
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is not the case of Fig. 2, where the two initial states ha
nearly identical kinetic energies.! The collapse dynamics de
picted here is rather similar to that of an attractive cond
sate in a harmonic potential, a system that has gained m
interest recently as a result of the capability of tuning
scattering length from positive to negative via Feshba
resonance@19–21#. We note, however, that the use of th
generalized Gross-Pitaevskii equation becomes question
in the regime of extreme collapse. This point though it
important, is not central to our results. We conclude t
section by observing that the number of condensate at
decreases in time, due to the presence of three-body
This is particularly evident for the state with positive effe
tive mass, as shown in Fig. 3. This is as expected, since
atomic density is higher in that case. Finally, we note tha
a result of the tensorial character of the effective mass, it
readily be positive along some dimensions and nega
along others. For example, in two dimensions, a conden
wave function of the form

fnk;sin~k0x!cos~k0y!

has an effective mass that is negative alongx and positive
along y direction. This leads to a situation, where the co
densate will expand alongx and contract alongy, as has been
numerically confirmed.

B. Inverted external potential

We mentioned that if a condensate of negative effec
mass is subject to an external potentialU(r ) that varies
slowly over the lattice period, then this potential will appe
inverted to the condensate. For example, under the effec
gravity, the center of mass of the condensate will climb
rather than fall down. To demonstrate this effect, we so
the one-dimensional Gross-Pitaevskii equation

i\
]c

]t
5F2

\2

2m

]2

]z2
1V~z!1U~z!1Ngucu2Gc, ~21!

whereV(z)5V0cos2(k0z) is the lattice potential and

U~z!5Gz

FIG. 3. Temporal evolution of the number of atoms in the co
densate. The solid~dashed! line is for the positive~negative! m*
state. Same parameters and units as in Fig. 2.
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represents the gravitational potential, andG being a constant.
We neglect the three-body loss term, which is not essentia
the present discussion.

Again, we assume that the initial condensate wave fu
tion is a broad Gaussian envelope function centered az
50, modulated by a sinusoidal function. Taking that mod
lation of the form sin(k0z) yields a state of negative effectiv
massm* , while cos(k0z) gives a state of positive effectiv
mass. Figure 4~a! illustrates the evolution of the center o
mass of the condensate for these two cases. As expe
from the previous discussion, we see that it initially clim
up for negativem* and falls down for positivem* . As the
center of mass of the condensate of negative effective m
climbs up against the gravitational field, its gravitational p
tential energy increases. This increase must be offset b
decrease in kinetic energy~assuming for the sake of argu
ment that the nonlinear interaction energy is negligibl!.
Since the initial condensate possesses a finite kinetic ene
roughly given by\2k0

2/(2m), conservation of energy, there
fore, sets an upper limit, on how high its center of mass
climb. This is illustrated in Fig. 4~a!. Our numerical calcula-
tions show that a good estimate for the maximum height
be obtained from

\2k0
2

4m
'mGzmax,

where the left-hand side is about half of the initial kine
energy and the right-hand side is the maximum gain in gra
tational energy. For lithium atoms in an optical lattic
formed by laser light of wavelength of 0.5mm, one finds

-

FIG. 4. ~a! Temporal evolution of the condensate center of ma
The solid~dashed! line is for the negative~positive! effective mass
state.~b! Solid line: density distribution of the state with negativ
effective mass at the dimensional timet57.53, when the center o
mass of the condensate reaches maximum height. The dashe
shows the initial Gaussian envelope function for reference. The
rameters used areV0515, w58, k055, G50.65, andNg510, in
the same dimensionless units as in Fig. 2 is used.
5-5
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thatzmax is about 0.4 mm, a rather significant distance in
context of integrated atom optics@22#. Figure 4~b! compares
the condensate density distribution at the maximum heigh
its initial envelope profile.

That a maximum height should exist demonstrates
limit of the effective-mass formalism, since a literal interpr
tation of the effective-mass equation~12! would incorrectly
lead one to conclude that in the case of negative effec
mass, the condensate should move against the gravitat
field without bound. The incorrectness of this reasoning
in the fact that Eq.~12! neglects all terms coupling differen
Bloch modes~see derivation in Appendix!. What happens in
reality is that as the condensate moves under the comb
influence of the external potential and of its intrinsic nonl
ear potential, other Bloch modes with different quasim
menta than those initially excited inevitably become pop
lated. This in turn changes the effective mass of the syst
or even makes this band-specific concept meaningless. In
present example, the effective mass changes its sign to p
tive at the maximum height as successive energy bands
come excited. In the mean time, the oscillations in the d
sity profile have a contrast less than one@see Fig. 4~b!# which
shows that the phase of the wave function at maxim
height becomes spatially continuous~otherwise, the density
would vanish at each phase singularities!, while the initial
wave function possesses a series ofp-phase jumps.

C. Discussion

We conclude this section with some general comments
the generation and robustness of condensate states of
tive effective mass. As one can see from Eq.~19!, the con-
densate wave function suffers ap-phase jump every lattice
period. This immediately suggests that these states ca
prepared by the phase-imprinting method that has been
viously successfully implemented to generate dark solit
as in Ref.@23#. However, due to edge effects and inaccura
in controlling the intensity of the phase imprinting pulse, th
method may not be fully adequate to generate a serie
accuratep-jumps as required by Eq.~19!.

A better choice may, therefore, consist in first preparin
condensate with uniform phase in a specific electronic st
Taking advantage of the internal degrees of freedom of
atoms, one can then drive the condensate into another i
nal state with an electromagnetic field of appropriate to
logical spatial geometry. The resulting center-of-mass w
function of the condensate having then the correct ph
structure. This method has been proposed in the past, to
ate an array of dark solitary waves with accuratep-phase
jumps in spinor condensates@24,25#.

We conclude this section with a brief discussion of t
robustness of condensate states of negative effective m
As we have mentioned, the state~19! is only an approxima-
tion to the true Bloch state~5!. The overlap between thes
two states decreases ash2 increases. Furthermore,u1/m* u
decreases with increasingh2, as the system approaches t
tight-binding regime. On the other hand,h2 cannot be made
too small, since the size of the gap between the first
second energy band is itself proportional toh2, and a small
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gap will result in interband transitions to a state of positi
effective mass. The optimal value ofh2 also depends on
other system parameters, and as a result, we found thah2

;2 turned out to be optimal for our purpose.

V. CONCLUSION

In summary, we have studied the dynamics of an atom
condensate in a periodic optical lattice, using an effecti
mass method. We have obtained an effective equation of
tion governing the time evolution of the envelope of t
condensate wave function in which the periodic external
tential appears in the form of an effective mass, which can
either positive or negative, and a global drift. Numerical c
culation confirmed that this envelope function approach p
vides us with useful qualitative insight into the condens
dynamics. Our study focused on negative effective mas
in which case the condensate behaves as if it subject to
inverted nonlinearity and an inverted external potential.

We emphasize that caution must be used when apply
the effective-mass concept, which neglects the potenti
important coupling between different Bloch modes. This
particularly so for a system with negative effective ma
moving in an external potential, as illustrated in Sec. IV
An ordinary particle inside an external potential will mov
towards the potential minimum, in the mean time gaini
kinetic energy. A particle with negative effective mass, ho
ever, will move towards the potential maximum and in doi
so, it looses kinetic energy. This process cannot go on
ever, since there is only a finite amount of kinetic energy
the system to loose. In the process, the effective mass
eventually change from negative to positive.

Our study also demonstrates that, as an alternative to
established Feshbach resonance method, changing the e
tive mass of a Bose-Einstein condensate provides us with
additional way to control the nonlinear atom-atom intera
tion in a condensate. This approach should be particul
useful for the systems with no Feshbach resonances at
venient magnetic-field strengths, or when the presence
external magnetic fields is undesirable. Controlling ato
atom interactions via their effective mass, also provides
possibility to induce anisotropic nonlinear interactions, d
to the tensorial character of the effective mass in higher
mensions.

Our study here focused on the dynamics of the system
the future, it will also be interesting to study its static pro
erties. For doing so, one needs to provide an additional c
fining potential. We must keep in mind that a confining p
tential for a negative effective-mass state is anantitrap,
instead of a trap. This suggests the possibility of trapp
strong-field-seeking states using the magnetic traps im
mented in current BEC experiments.
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APPENDIX: DERIVATION OF THE EFFECTIVE-MASS
EQUATION

In this appendix, we give a derivation of the effectiv
mass equation~12!. For the sake of simplicity, we restric
ourselves to a one-dimensional system and neglect the
linear terms, which can be added straightforwardly.

We are concerned with the solution of the Schro¨dinger
equation

i\
]c~z,t !

]t
5@H01U~z!#c~z,t !, ~A1!

whereH05 p̂2/2m1V(z) is the Hamiltonian for periodic po
tential V andU is some additional potential that varies on
spatial scale much larger than the lattice period.

1. The k"p perturbation method

Associated with each quasimomentum\k is a set of
Bloch functionsfnk with energyEnk as defined in Eq.~9!. In
this section, the power expansion around the central w
vectork0 of the energy-band functionEnk is investigated. In
particular, we seek expressions for first and second der
tives ofEnk with respect tok. These expressions will becom
useful in the derivation of Eq.~12!.

The ‘‘k•p’’ perturbation approach is a straightforwar
method to relate the energies and wave functions at ne
points in the quasimomentum space. We proceed by wri
the Bloch functionfnk as

fnk~z!5eikzunk~z!,

where unk is the cell periodic function. From Eq.~9!, we
immediately have

F p̂2

2m
1V~z!1

\2k2

2m
1

\k

m
p̂Gunk5Enkunk . ~A2!

We then perform a power expansion aroundk0, up to second
order, such that

k5k01dk,

Enk5Enk0
1~dk!S ]Enk

]k D
0

1
1

2
~dk!2S ]2Enk

]k2 D
0

,

unk5unk0
1~dk! (

mÞn
am

(1)umk0
1~dk!2 (

mÞn
am

(2)umk0
,

where (•••)0 means that the corresponding derivative
evaluated atk5k0. Next we insert these expansions into E
~A2!, and equate the coefficients of different powers ofdk.
For the zeroth order, we find
04360
r

n-

ve

a-

by
g

.

F p̂2

2m
1V~z!1

\2k0
2

2m
1

\k0

m
p̂Gunk0

5Enk0
unk0

,

which is simply the definition ofunk0
. The first-order term

yields

F S ]Enk

]k D
0

2
\2k0

m
2

\

m
p̂Gunk0

5 (
mÞn

am
(1)~Emk0

2Enk0
!umk0

.

~A3!

Taking the dot product of Eq.~A3! with unk0
and integrating

over z in the first Brillouin zone, we find

1

\ S ]Enk

]k D
0

5
\k0

m
1

1

m
pnn~k0!5

1

m
^fnk0

u p̂ufnk0
&5vg ,

where we have used the orthonormality condition of t
Bloch functions and

pnl~k![
2p

V
^unku p̂uulk&.

One can see that the drift velocity, as defined in Eq.~13!, is
just the gradient of the band energy atk0.

Carrying out a similar procedure withumk0
(mÞn), we

get from Eq.~A3! the expression foram
(1) as

am
(1)5

\

m

pmn

Emk0
2Enk0

.

Analogously, by using the second-order equation, we
find the second derivative ofEnk as

S ]2Enk

]k2 D
0

5
\2

m
1

\2

m2 (
mÞn

2pmnpnm

Emk0
2Enk0

.

Since 1/m* 5(]2Enk /]k2)0 /\2, we have

1

m*
5

1

m
1

1

m2 (
mÞn

2pmnpnm

Emk0
2Enk0

. ~A4!

2. Derivation of Eq. „12…

We now proceed to derive Eq.~12!, adapting with slight
modifications from the approach of Ref.@14#. First, we in-
troduce the Fourier expansion of the envelope function a

f n~z,t !5E Ank~ t !ei (k2k0)zdk.

From Eq.~11!, we have

c~z,t !5(
n
E Ank~ t !xnk~z!e2 iEnk0

t/\dk, ~A5!

where

xnk~z!5ei (k2k0)zfnk0
~z!5eikzunk0

~z!.
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After some algebra, one finds the matrix elements ofH0
andU as

^xnkuH0ux lq&5d~q2k!H FElk0
1

\2~q22k0
2!

2m Gdnl

1
\~q2k0!

m
pnl~k0!J ,

^xnkuUux lq&5dnlŨ~k2q!,

where

Ũ~k2q!5
1

2pE U~z!ei (q2k)zdz.

Inserting Eq.~A5! into Eq. ~A1!, we have

i\
]Ank~ t !

]t
5

\2~k22k0
2!

2m
Ank1

\~k2k0!

m (
l

pnl~k0!Alk

1E dqŨ~k2q!Anq . ~A6!
all

04360
The only terms that couple different bands (lÞn) are those
involving the momentum matrix elementspnl . As long as
these interband couplings are weak enough, we can t
them as weak perturbations. To lowest order, we have

Alk5
\~k2k0!

m

pln~k0!

Elk0
2Enk0

Ank .

Inserting this expression into Eq.~A6!, we have

i\
]Ank

]t
5F\2~dk!2

2m*
1\vg~dk!GAnk1E dqŨ~k2q!Anq ,

wheredk5k2k0. Performing an inverse Fourier transfor
from Ank(t) back tof n(z,t) and replacingdk by its configu-
ration space representation2 i ]/]z, we, finally, obtain the
one-dimensional version of Eq.~12!. The nonlinear terms
can be added to this equation in a straightforward way.
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