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Effective-mass analysis of Bose-Einstein condensates in optical lattices: Stabilization and levitation
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We investigate the time evolution of a Bose-Einstein condensate in a periodic optical potential. Using an
effective mass formalism, we study the equation of motion for the envelope function modulating the Bloch
states of the lattice potential. In particular, we show how the negative effective-mass affects the dynamics of
the condensate.
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[. INTRODUCTION situations, where the Bloch state is either associated with a

positive or a negative effective mass. We show that in situa-

The dynamics of classical and quantum systems in peritions where the dynamics of the condensate is well approxi-

odic potentials is a central paradigm of physics, finding apmated by a negative effective mass, the periodic potential

p|icati0n5 from condensed matter physics to OptiCS, and frongan lead to the stabilization of an otherwise unstable conden-

nonlinear dynamics to atomic and to plasma physics. In resate. We also demonstrate theoretically the levitation of con-
cent years, the experimental and theoretical study oflensates of negative effective masses. These studies further

quantum-degenerate atomic systems in periodic potentia@llow us to determine the impact of self-interactions and of
has opened up new avenues of investigation. In particulafinite condensate widths on the general usefulness of the ef-
Bose-Einstein condensates are a macroscopic quantum sygctive mass concept.
tem, that is amenable to exquisite experimental control. As a The paper is organized as follows. Section Il gives a brief
result, many phenomena studied in solid-state systems can beview of the linear problem of a particle inside a periodic
reexamined in a more direct and dramatic fashion. Eversinusoidal potential and introduces the concept of effective
more importantly perhaps, it is now possible to realize exmass. Section Ill applies and extends these ideas to the dy-
perimentally model systems that had previously been the olamics of a BEC in an optical lattice. We discuss the equa-
ject of considerable theoretical studies, but were all but imtion of motion for the slowly varying condensate envelope
possible to test experimentally. One particularly beautifulfunction, from which we can gain useful physical insights
example is the experimental realization of the Hubbardnto the dynamics of the system. A full numerical solution is
model leading to the demonstration of the superfluid to MottPresented in Sec. IV, which demonstrates in particular the
insulator transition in a Bose condensate®@Rb atomg1]. stabilization and the levitation of a condensate of negative

The first experiments involving the dynamics of Bose-€ffective mass, in agreement with the prediction of Sec. Il
Einstein condensat¢BECS in periodic potentials were car- Finally, Sec. V presents concluding remarks on the useful-
ried out by Anderson and Kasevich, who used this approachess of the effective mass concept and an outlook.
to demonstrate a mode-locked atom lag& and observe
atomic Josephson oscillatiofig,3]. The list of phenomena II. LINEAR PROPERTIES OF INFINITE PERIODIC
that were subsequently experimentally demonstrated and/or POTENTIAL
theoretically investigated includes the generation of atomic ) . ) o
number squeezingt], the observation of the superfluid-Mott In this section, we brlefly review |mporta_1nt_aspects of the
insulator phase transition, the generation of discféjeor ~ linear problem of a particle of masm inside a one-
gap solitong 6], the prediction of modulational instabilities dimensional infinite periodic potential of the form
[7] and superfluid flow8], the observation of Bloch oscilla-
tions[9], the analysis and observation of coherent accelera- V(x)=Vyco(koX), 1)
tion [10], studies of magnetisifill], etc. ) ) ) ) L )

It is well known that a particle confined to an infinite With corresponding time-independent Satirger equation
periodic potential and acted upon by an external force be- p2 g2
haves as if possessing an effective mass that can be substan- B
tially different from its true mass, and may even take nega-  2m &+VOCOS’Z(|(OX) P(X)=E¢(X). @
tive values. In particular, it is this property that is at the core

of proposals to generate bright matter-wave solitons iRye proceed by introducing the dimensionless quantities
BECs, with repulsive interactionf6]. The purpose of the

present paper is to extend these studies by analyzing the omE omV.
temporal evolution of a condensate in the periodic potential 6=Kkox, b= . h?2= 0, (3
provided by an optical lattice. The initial state of the conden- h2K§ h2K3

sate is chosen to be (@pproximatg¢ Bloch state modulated
by a slow-varying Gaussian envelope, and we compare twim terms of which Eq(2) becomes
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b1s-1( 0)=n§0 Agn1Sin(2n+1)0 (5
and
$25-1(0)= 2, Baysc092n+1)0, 6)
where
4 ;\(b) A 1
T ] Gonr1=kon-1— g N>1,
zé\ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 2n—1
= O \‘ 'I
£ Vo k= (4b—2h%—4n2)/h2,
—4t ":I :': g Gon+1=Aon+1/Azn-1 OF Bony1/Boy-1,
X L * andA3=k1+l, Bgzkl_l.
-1.0 -05 0:90 05 1.0 The effective mass* that characterizes the response of

the particle to external perturbations, is defined as
FIG. 1. (a) Dimensionless energgw=b—h?/2 and(b) scaled
reciprocal effective mass/m* for the first two bands as a function %2 2m
of the normalized quasimomentusn In (b) the solid and dashed m* = 5 = 5 (7
lines refer to the first and second bands, respectively. For this cal- d°Elok®  9°blds
culation,h?=3.2,

Figure Xb) shows the variation of the effective mass of the
first two bands with the quasimomentum. One observes that
S b h2co2e)d—0 @ it is near infinite (i.e., 1m*=0) for certain .vall.Jes of t_he
d6? ( cos'0)¢=0. quasimomentuns, and even becomes negative in certain re-
gions of the zone. In more than one dimensior, acquires

_ _ _ a tensorial character with elements given by
Equation(4) has the form of Mathieu’s equation, whose so-

lutions are well knowri12]. As a warm up, we sketch out the #2

main features of its solutions which, according to Bloch’s m,=——".
KV 9%El(dk ok,

theorem, must be of the form u

2

‘ In the following section, we apply the effective mass for-
Pns(0)=€F (), malism to the case of a self-interacting Salinger field
described by the Gross-Pitaevskii equation. Specifically, we
show that a BEC prepared in a Bloch state with negative
effective mass behaves as if the signs of its self-interaction
and of the external confining potential had been reversed.

wheres is real and arbitraryin standard textbook language,
s=k/ky where fik is the quasimomentum In our scaled
units, the periodic functions,(6) have a period ofr. The
energy spectrum associated with the periodic poteit{al)
exhibits a band structure familiar from solid-state physics. lll. EFFECTIVE-MASS EQUATION

Each value of gives a discrete spectrum whose structure is  \we consider a BEC in a sinusoidal optical lattice poten-
periodic with respect te. This property allows one to restrict tjal. Near zero temperature, the system is described to an
the discussion to the first Brillouin zone,1<s<1. Ass is excellent degree of approximation by a time-dependent
increased within that zone, the energy levels trace out curvegross-Pitaevskii equation for the normalized condensate

that are restricted to a small energy band. We restrict oUfyave functiony(r,t), generalized to include the effects of
discussion to the first two bandS, as depicted in F(@)l three_body C0||isionS,
Note that although the probability distributio|? is a pe-
riodic function of 8, ¢ itself is not periodic unless takes o d(r,t)
integer values—e.g., at the center or the edges of the Bril- | o
louin zone. For a detailed discussion of the solutions to Eq.
(4), see, e.g., Refl12].

For s=0 or 1, the eigenstates of the Mathieu’s equation
are periodic and take the form of standing waves. In particu-
lar, at the edges=1 of the first Brillouin zone, the wave Here,V(r) is the periodic lattice potential)(r) is an addi-
functions ¢, 4 for the first two energy bands=1,2, can be tional external potential that is taken to be slowly varying on
expressed as the Fourier series the scale of the lattice perio@.g., a confining potentiglN

hZ
_ " 2 2
2mV +V(r)+U(r)+Ng| |

—iINZKglyl* (1 1), ®
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is the total number of atomg, is the strength of the nonlin- 1 .
ear interatomic interaction, arid; gives the rate of three- nga<¢nko|p|¢nko> 13
body recombination losgL3].

We proceed by expanding the condensate wave functio the drift velocity of thenth band contribution to the con-
#(r,t) on the complete set of Bloch functions,(r) that  densate envelope. As shown in Appendix, it is equal to the
are the stationary solutions of the associated linear Schroyradient of the energg,, with respect to the quasimomen-

dinger equation tum k, evaluated ak,. We note tha, vanishes at the ex-
2 treme points of the band, particularly at the band edges. The
— V24 \(r N=E r. 9 coefficientsg’ andK’ give the renormalized nonlinear inter-
2m (1) @i 1) = Encdu(1) ® action strength and three-body loss rate, respectively. They
. ] _are given by
The subscripts1 andk represent the band index and quasi-
momentum, respectively. The Bloch functions satisfy the or- ) (2m)3 4
thonormality condition 9=—9q QJw”df|¢nko(r)| (14)
Q and
f dr(ﬁ:qk(r)d’nk’(r): —35mn5kk’ )
cell (27) (2 )3
a
’_ 6
where the integral is taken over a single period of the lattice Ka Q K3fce||dr|¢"k0(r)| ' (15

of volume Q2. Our use of the resulting expansion,
The lattice potentiaM(r) does not appear in these expres-
i sions, its effects being already incorporated into the effective
'/’(r't):;k Ank(1,1) (1) e Entt, (10 massm* that appears in the first term on the right-hand side
of Eq.(12) as well as in the drift term on the left-hand side of
is motivated by the the fact that the Bloch functions canthat equation.
capture the rapid oscillations of the condensate wave func- The effects of a negative mass <0, can be immedi-
tion, while the slowly varying envelope functioms, will  ately inferred from the complex conjugate of E¢2),
describe the slow center-of-mass motion of the condensate.

The equations of motion for the amplitudg, are found n .
by inserting the expansiofi0) into the generalized Gross- i WJFVQ'an) =
Pitaevskii equatior8). The resulting equations are however,
of little use if a very large number oA, is required to
accurately describe the dynamics of the condensate. Here, we —iN2K | fr[*
consider a more specialized situation, where the matter-wave
field is characterized by a central wave vedtgicorrespond-
ing to the mean velocity of the condensdtieis would cor-
respond to the carrier wave in conventional opti¢$ence,
we expandy(r,t) in a way reminiscent of the slowly varying
envelope approximation of quantum optics as

*

%2 9?

—U(r)—Ng'|f}|?

2|m:‘w| (9X'u(9X,,

£x (16)

This equation shows that as compared to the case of a posi-
tive effective mass, the condensate density envelope profile
|f.(t)|? evolves now under the influence of an inverted ex-
ternal potentia-U(r) and an inverted nonlinearity g'. As
expected, though, the three-body recombination rate does not
, change sign and still represents a loss term. The change in
Yr,)=2 fr(F,t) i, (1) €™ Enko, (1)  sign of g’ and U leads to a number of consequences. In

" particular, past work has shown how this property can be
exploited to launch bright matter-wave solitons in conden-
sates with positive scattering lendt®] and induce modula-
tional instability [7]. The following section explores further
consequences of this property.

Inserting Eq.(11) into Eq. (8) and applying the effective-
mass[14] or multiple scale§15] methods, yields a set of
equations governing the time evolution of the condensat
envelope functions,(r,t) [16],

#2 5 IV. EFFECTS OF NEGATIVE EFFECTIVE MASS

+U(r)+Ng'|f,[2

in
szw X, 0%, A. Inverted nonlinearity

Jf,
W'Fvg'an =

We first investigate the effect of an inverted nonlinearity.
. (12) As is W(_all known,_this will chgnge the t\(vo-body intgraction
from being repulsive to attractive, and vice versa. Since con-
densates with attractive interactions are normally unstable
The derivation of Eq(12), the so-called effective-mass equa- against collapse, the sign changef is clearly expected to
tion, is given in Appendix. Heres, and x, are cartesian have a significant effect.
components off and we use an implicit summation over  To reduce the scale of the computation, we restrict our-
repeated indices. The velocity selves to a two-dimensional system consisting of a two-

—iN2K | f|*
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dimensional droplet pancake-shaped condensate whose axial
motion is frozen to the trap ground staté/e note that con-
densates with reduced dimensions have already been realized
in the laboratory[17].) Furthermore, to focus on the effects

of the nonlinearity, we assume that except for the lattice
potential

V(x,y) = Vo[ cog(Kkox) +cog(Koy)], (17)

there is no additional external potential in the transverse di-
mensions.

The evolution of the transverse componeéntof the con-
densate wave function is then given by the generalized
Gross-Pitaevskii equation

(9 v + y 3 1L

V2 =521 9x?+ 5% ay>.

For the initial state of the condensate, we assume a Gaussian
transverse wave function of the form

¥ (%,Y,t=0) =N (X,Y) ri(X,Y), (18)

wheref (x,y) =exd — (*+y?)/M?] is a slowly varying Gauss-

ian envelope function of widtkv, ¢, is a Bloch wave func-

tion of the linear Hamiltonian, and the constavinormalizes

¢, to unity. The time-dependent Gross-Pitaevskii equation is
solved numerically using the standard finite difference split
operator method. Figures 2 and 3 illustrate the dynamics of
the condensate for two cases, one corresponding to a nega-
tive effective mass and the other to a positive one. We choose
the Bloch wave functionp,,, associated with a negative ef-  FIG. 2. Temporal evolution of the density distribution of a BEC

fective massn* as in optical lattice. Lighter shades of gray correspond to higher den-
sity. The left(right) panel shows the evolution of a positieega-
&~ Sin(kox)sin(koy ). (19)  tive) m* state. The dimensionless timetis 0, 1, 2, and 3, from the

top to bottom. In the plots, the ranges foendy are from—30 to
This corresponds approximately to the Bloch state at the tog0. The condensate parameters &re 50 000, g=—0.004, V,
of the first energy band, whose full expression is given by= 10, ko=3, K3=3.9x10"?, and the width of the initial envelope
é1s—1 Of Eq. (5). The approximate forniL9) retains only the function w=8. The units for time, length, and energy arev]1/
dominant term in the Fourier serid8). Its overlap with  V#/(mw), andf o, respectively, where is an arbitrary frequency
¢1s—1 is larger than 99% for the parameters of our simula-th"’_‘t can bt_e chosen, in particular, to be the trap frequency in the
tions. Similarly, for the state of positive effective mags, ~ 2ial direction.
we use

hence in the absence of the lattice, the condensate would be

bnk~ cog Kox)cog koY), (20)  unstable and subject to collapse. This however can be

changed if the effective mass of the BEC becomes negative,
which corresponds roughly to the Bloch state,_, at the as demonstrated in the right column. In that case, the con-
bottom of the second band, see E§). Both stateg19) and  densate behaves as if experiencing a repulsive two-body in-
(20) are located at the edge of the first Brillouin zone, withteraction, its width increasing in time. This is in sharp con-
corresponding drift velocitieg;= 0. Hence the center of the trast to the situation for a positive effective mass, in which
condensate stays at=y=0 during the course of its time case the condensate width quickly implodé&s]. This im-
evolution. The two columns in Fig. 2 show snapshots of theplosion is characterized by a complex dynamical behavior,
density distribution of the condensate for positi¥eft col-  such as the formation of atomic “bursts,” observed at later
umn) and negativegright column effective masses*. In times. (We remark that while an attractive condensate can
both cases, the nonlinear interaction strengtis negative, expand if it possesses a sufficiently large kinetic energy, this
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FIG. 3. Temporal evolution of the number of atoms in the con- 015} ® [ ]
densate. The soliddashed line is for the positive(negative m* 2 [
state. Same parameters and units as in Fig. 2. % 010k / | i
- /
is not the case of Fig. 2, where the two initial states have 0.05¢ 1
nearly identical kinetic energigsThe collapse dynamics de- 0.00 ‘
picted here is rather similar to that of an attractive conden- “20 10 0 10 20 30
sate in a harmonic potential, a system that has gained much z

interest recently as a result of the capability of tuning the
fgggﬁ;:g e[lle;_gzt?] f\r/(\)/;n n%?esItlxgwtgver]req[ﬁg;/e,[h;Iisl:eez?t:ﬁghl'he solid(dashedl line is for the negativépositive effective mass

. T i L . ?tate.(b) Solid line: density distribution of the state with negative
.generallze.d Gross-Pitaevskil equation t_)ecomes quesuqnabeﬁective mass at the dimensional tirtve 7.53, when the center of
in the regime of extreme collapse. This point though it is '

. . —mass of the condensate reaches maximum height. The dashed line
important, is not central to our results. We conclude this

. ) shows the initial Gaussian envelope function for reference. The pa-
section by _obs_ervmg that the number of condensate atomseters used al, =15, w=8, k=5, G=0.65, andNg=10, in
decreases in time, due to the presence of three-body 10Sge same dimensionless units as in Fig. 2 is used.

This is particularly evident for the state with positive effec-

tive mass, as shown in Fig. 3. This is as expected, since thepresents the gravitational potential, &teing a constant.
atomic density is higher in that case. Finally, we note that a§Ve neglect the three-body loss term, which is not essential in
a result of the tensorial character of the effective mass, it cathe present discussion.

readily be positive along some dimensions and negative Again, we assume that the initial condensate wave func-

along others. For example, in two dimensions, a condensatéon is a broad Gaussian envelope function centered at

FIG. 4. (a) Temporal evolution of the condensate center of mass.

wave function of the form =0, modulated by a sinusoidal function. Taking that modu-
lation of the form sinky2) yields a state of negative effective
énk~ sin(kox)cogkoy) massm*, while cosky?) gives a state of positive effective

mass. Figure @) illustrates the evolution of the center of

] ) ) - mass of the condensate for these two cases. As expected
has an effective mass that is negative alongnd positive  from the previous discussion, we see that it initially climbs
alongy direction. This leads to a situation, where the CoN-yp for negativem* and falls down for positiven*. As the
densate will expand alongand contract along, as has been  center of mass of the condensate of negative effective mass
numerically confirmed. climbs up against the gravitational field, its gravitational po-

B. Inverted external potential tential energy increases. This increase must be offset by a

decrease in kinetic energyassuming for the sake of argu-
) . . $nent that the nonlinear interaction energy is negligible
mass is subject to an external potentia(r) that varies Since the initial condensate possesses a finite kinetic energy,

;Iowly over the lattice period, then this potential will appear ughly given by 2k2/(2m), conservation of energy, there-
inverted to the condensate. For example, under the effect ?gre sets an upper I?mit or,1 how high its center of r"nass can

gravity, the center of mass of the condensate will climb UPlimb. This is illustrated in Fig. @). Our numerical calcula-

rather tha_n fall _down. To demonstra_t_e this _effect, we SOlvetions show that a good estimate for the maximum height can
the one-dimensional Gross-Pitaevskii equation be obtained from

We mentioned that if a condensate of negative effectiv

L LY +U(2)+Ng| |2 21 h?kg
%= T 2m o (2+U(@)+Ngly*|¢, (2D ——2 MG Zy

where the left-hand side is about half of the initial kinetic

energy and the right-hand side is the maximum gain in gravi-
tational energy. For lithium atoms in an optical lattice,

U(z)=Gz formed by laser light of wavelength of 0&m, one finds

whereV(z) =V,cog(ky2) is the lattice potential and
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thatz,,, is about 0.4 mm, a rather significant distance in thegap will result in interband transitions to a state of positive
context of integrated atom opti¢82]. Figure 4b) compares ~ effective mass. The optimal value of also depends on
the condensate density distribution at the maximum height tether system parameters, and as a result, we foundhthat

its initial envelope profile. ~2 turned out to be optimal for our purpose.
That a maximum height should exist demonstrates the
limit of the effective-mass formalism, since a literal interpre- V. CONCLUSION

tation of the effective-mass equati¢h2) would incorrectly . . .
lead one to conclude that in the case of negative effective N Summary, we have studied the dynamics of an atomic
mass, the condensate should move against the gravitationg@ndensate in a periodic optical lattice, using an effective-
field without bound. The incorrectness of this reasoning liegass methqd. We haye obtameq an effective equation of mo-
in the fact that Eq(12) neglects all terms coupling different 1N governing the time evolution of the envelope of the
Bloch modes(see derivation in AppendixWhat happens in condensate wave function in which the periodic external po-

reality is that as the condensate moves under the combind@ntial appears in the form of an effective mass, which can be
influence of the external potential and of its intrinsic nonlin- €Ither positive or negative, and a global drift. Numerical cal-

ear potential, other Bloch modes with different quasimo_culation confirmed that this envelope function approach pro-

menta than those initially excited inevitably become polou_vides us with useful qualitative insight into the condensate

lated. This in turn changes the effective mass of the systerﬁj,ynahmiﬁs' Our ﬁtUdy focused on rr:egative gfffgctive. masses,
or even makes this band-specific concept meaningless. In tHig Which case the condensate behaves as if it subject to an

present example, the effective mass changes its sign to poép_verted nonlin_earity and an inverted external potential. _
tive at the maximum height as successive energy bands be- We emphasize that caution must be used when applying

come excited. In the mean time, the oscillations in the dentn® effective-mass concept, which neglects the potentially

sity profile have a contrast less than ¢aee Fig. 4b)] which impqrtant coupling between diff_erent Blo_ch modes. This is
shows that the phase of the wave function at maximunParticularly so for a system with negative effective mass
height becomes spatially continuo(atherwise, the density MOVIng in an external potential, as illustrated in Sec. IV B.

would vanish at each phase singularitieshile the initial AN ordinary particle inside an external potential will move
wave function possesses a seriesrephase jumps towards the potential minimum, in the mean time gaining
' kinetic energy. A particle with negative effective mass, how-

ever, will move towards the potential maximum and in doing
C. Discussion so, it looses kinetic energy. This process cannot go on for-

We conclude this section with some general comments o ver, since there is only a finite amount of k|net|_c energy fo_r
e system to loose. In the process, the effective mass will

the generation and robustness of condensate states of nega- . o
ventually change from negative to positive.

tive effective mass. As one can see from ELp), the con- Our study also demonstrates that, as an alternative to the

densate wave function suffersmphase jump every lattice . :
period. This immediately suggests that these states can egtabllshed Feshbach_reso_nance method, cha_ngmg the_ effec-
Ive mass of a Bose-Einstein condensate provides us with an

prepared by the phase-imprinting method that has been pr dditi ) ;
; : : itional way to control the nonlinear atom-atom interac-
viously SlEccaassfully implemented to generate dark soliton on in a congensate This approach should be particularly
as in Ref[23]. However, due to edge effects and inaccuracy T
. : . ; P —~useful for the systems with no Feshbach resonances at con-
in controlling the intensity of the phase imprinting DUIse’.thlsvfenient magnezc-field strengths, or when the presence of
?C?S;?Q,T_agmn? ;serfeu”li/irggebquzﬁlgg generate a series External magnetic fields is undesirable. Controlling atom-
A betterjcho[?ce ma qtherefo?/e conéist in first preparin aatom interactions via their effective mass, also provides the
X 1ay, > o preparnng ossibility to induce anisotropic nonlinear interactions, due
con_densate with uniform phase in a specific electronic stat 0 the tensorial character of the effective mass in higher di-
Taking advantage of the internal degrees of freedom of th?nensions
atoms, one can then drive the condensate into another inter- our stu.d here focused on the dvnamics of the svstem. In
nal state with an electromagnetic field of appropriate topo- Yy e . > dy . y .
; . : the future, it will also be interesting to study its static prop
Ioglcgl spatial geometry. The regultlng center-of-mass WavE rties. For doing so, one needs to provide an additional con-
function of the condensate having then the correct phas1‘?ning potential. We’must keep in mind that a confining po-
structure. This method hgs been propo;‘ed in the past, to “ential for a negative effective-mass state is amtitrap
ate an array of dark solitary waves with accuratephase instead of a trap. This suggests the possibility of trapping
jumps in spinor condensatg®4,25|.

We conclude this section with a brief discussion of theSi0nd-field-seeking states using the magnetic traps imple-

robustness of condensate states of negative effective masms?nted In current BEC experiments.

As we have mentioned, the stqtE9) is only an approxima-
tion to the true Bloch stat€s). The overlap between these
two states decreases h$ increases. Furthermorgl/m* |
decreases with increasirf, as the system approaches the This work was supported in part by the US Office of
tight-binding regime. On the other hartt. cannot be made Naval Research, by the National Science Foundation, by the
too small, since the size of the gap between the first and)S Army Research Office, by NASA, and by the Joint Ser-
second energy band is itself proportionaliy and a small  vices Optics Program. L. O. B. wishes to thank the Horton

ACKNOWLEDGMENTS

043605-6



EFFECTIVE-MASS ANALYSIS OF BOSE-EINSTEIN. ..

Foundation. We would also like to thank Michael Banks for
invaluable computer support.

APPENDIX: DERIVATION OF THE EFFECTIVE-MASS
EQUATION

In this appendix, we give a derivation of the effective-
mass equatiori12). For the sake of simplicity, we restrict

ourselves to a one-dimensional system and neglect the no

linear terms, which can be added straightforwardly.
We are concerned with the solution of the Salinger
equation

if

dP(z,t)
J

n (A1)

=[Ho+U(2)]¥(z,),

whereH = p2/2m+V(z) is the Hamiltonian for periodic po-
tential V andU is some additional potential that varies on a
spatial scale much larger than the lattice period.

1. The k-p perturbation method

Associated with each quasimomentubk is a set of
Bloch functionse,, with energyE, as defined in Eq9). In

vectorkg of the energy-band functioB, is investigated. In
particular, we seek expressions for first and second deriv
tives of E,,, with respect tk. These expressions will become
useful in the derivation of Eq.12).

The “k-p” perturbation approach is a straightforward

method to relate the energies and wave functions at nearb

points in the quasimomentum space. We proceed by writin
the Bloch functiong,, as

bni(2)=€"Un(2),

where u, is the cell periodic function. From Ed9), we
immediately have

E)Z

2m

#%k? -
+V(z)+ W-Fmp

}unk: Enlnk- (A2)

We then perform a power expansion arolgdup to second
order, such that

k=ko+ 5k,
J9°E

nk)
2 1
ak 0

Unic=Uni,  (8K) 25l + (8602 2 aPuny,

m#n m#n

JE
ak

1
Enk= Enk0+(5k)( + 5(5k)2(
0

where (---), means that the corresponding derivative is
evaluated ak=ky. Next we insert these expansions into Eq.

(A2), and equate the coefficients of different powersskf
For the zeroth order, we find
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k2 ko~

+V(Z)+ m'ﬁ‘?p

E)z

2m

Unko= Enkounko,

which is simply the definition OUnkO- The first-order term
yields

il

Taking the dot product of EGA3) with Unk, and integrating

712k,

m

f

ﬁEnk)
ak |,

Unk,= r’r;n aﬁ)(Eka— Enko)uka-
(A3)

over z in the first Brillouin zone, we find
1 [ 9E
h

ak
where we have used the orthonormality condition of the
Bloch functions and

ko

1 1 R
o_ m + Epnn(ko): a<¢nk0|p|¢nko>zvg,

2w “
Pri(k)= E<unk|p|ulk>'

One can see that the drift velocity, as defined in @@), is

) . _ just the gradient of the band energykat
this section, the power expansion around the central wave Carrying out a similar procedure with,,

K (m#n), we

et from Eq.(A3) the expression foal®) as
g q p q

h

- pmn

af P
m Emko_ Enko

nalogously, by using the second-order equation, we can

%nd the second derivative &, as

PPE i

h?  h?
a2 | m e

_m m2

2PmnPnm
Emko_ Enko'

>

m#n

52,

Since 1Mm* = (9°E,,/ 9k?)o /%2, we have

£+ i menpnm

. A4
M m? mzn Emk,~ Enk, )

2. Derivation of Eq. (12)

We now proceed to derive E@12), adapting with slight
modifications from the approach of Réfl4]. First, we in-
troduce the Fourier expansion of the envelope function as

fn(z,t)zfAnk(t)e“k*koﬁdk.

From Eg.(11), we have

w(z,t):; f A xn(2)e” Enktidk,  (A5)

where

ikz

Xnk(2) = ei(k_ko)z¢nk0(z) =e unko(z)-
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After some algebra, one finds the matrix elementsigf
andU as

h2(q>—k3)
2m 5n|

(xnlHolxi1q)= 5(q_k)HE|k0+

h(g—k
n (q—ko)
m

pnl(ko)] )

<Xnk|U|XIq>: é\nIU(k_Q)i
where
Ok—a)= if U(z)€'(@ 2z
2 )

Inserting Eq.(A5) into Eqg. (A1), we have

A1) H2(k2—K)) fi(k—Kko)
h gt 2m Anict m

Zl Pni(Ko) Ak

+ J dqU(k—q)Ang. (AB)
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The only terms that couple different bands#(n) are those
involving the momentum matrix elemengs,. As long as
these interband couplings are weak enough, we can treat
them as weak perturbations. To lowest order, we have

:ﬁ(k_ Ko)  Pin(ko)

Ank.
m  Ey,~Eng ™

1k

Inserting this expression into EGA6), we have

Ank
a

12(6k)?
2m*

+1ivg( 5K) Ank+f dqU(k—a)A,q,

where 6k=k—ky. Performing an inverse Fourier transform
from A, (t) back tof,(z,t) and replacingsk by its configu-
ration space representationid/dz, we, finally, obtain the
one-dimensional version of Eq12). The nonlinear terms
can be added to this equation in a straightforward way.
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