PHYSICAL REVIEW A 67, 043601 (2003
Ballistic matter waves with angular momentum: Exact solutions and applications
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An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the
Schralinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite
angular momentum, and introduce pointlike multipole sources as their limiting case. We obtain results for
ballistic scattering in an external uniform force field, where we provide analytical solutions for both the
scattering waves and the integrated particle flux. Our theory directly applipsveve photodetachment in an
electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-
bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.
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[. INTRODUCTION cal expressions for the ensuing ballistic multipole waves and
currents, and discuss some of their intriguing features in Sec.
The customary approach to elastic quantum scatteringl. These developments are directly applicable towards near-
phenomena employs a superposition of an incoming planthreshold photodetachment microscopy, an experimental
wave and an outbound scattering wave that emerges fromtachnique recently introduced by Blondsilal.[6,7] that al-
localized scattering potential. It is sometimes advisable tdows to observe interference of electron waves on a macro-
reduce the complexity of this process by dividing the scatscopic scale. Here, we predict the photoelectron distribution
tering event into subsequent “absorption” and “emission” jn p-wave detachmer(iSec. I\).
stages. The evolution of the emerging wave is then consid- |n general, the multipole formalism breaks down when
ered separately. Obviously, in this description a “reservoir” e spatial extension of the source becomes comparable to
of particles in the interaction region is required that continu-e particle wavelength. In the ballistic environment, Gauss-

ously feeds the stationary scattering wave. Since the particle, sources provide an important exception since the scatter-

number is a_conserved_quantity in the standard quantum piqhg waves generated by them apparently converge onto a
ture, we devise a modified approach: In analogy to electroEiisplaced pointlike “virtual source[4]. Actually, this situa-

9323?;0;”?1?(1 dgggietro Ilr?eldsgpjbc;”?e %gtignnhgmc\)/\?g?;ouﬁon is encountered for an atom laser beam outcoupled from
ger eq an ideal Bose-Einstein condensaBEC) that is subse-

particle generation in a finite volume. It was Schwinger who

introduced the idea of particle sources in field theory in ordelquently accelerated in the earth's graV|tat|0naI figed].
@ngular-momentum transfer to the superfluid condensate

also presented the nonrelativistic limit of such a particle'eads_ to the formation of vortic_es that in turn act as sources

sourcd 1]. Recent examples illustrating the use of the sourcd®r higher modes of the resulting atom laser. The effects of

formalism are presented in Ref@—4]. vortices on the beam profile are the topic of Sec. V. Exact
In our contribution, we inquire into quantum sources thatsolutions are presented for a single vortex in an otherwise

give rise to scattering waves carrying nonvanishing angulagpherically symmetric ideal BEC. Furthermore, we investi-

momentum, which we will denote as multipole waves. In thegate the structures imprinted on the atomic beam by the ro-

long-wave(or low-energy limit, apart from its angular de- tating vortex lattices recently realized experimentally

pendence the actual structure of the source becomes insigt0—12.

nificant, and the scattering process may be properly modeled

using an idealized pointlike source of suitable orbital sym-

metry. Technically, these “multipole sources” are obtained Il. QUANTUM SOURCES

from the Diracé distribution(that itself pertains to isotropic

or swave emission, see Rd#]) by a simple differentiation Following a brief overview of the source formalism and

procedure outlined in Sec. Il that grants immediate access t¢s basic results, emphasizing its kinship to conventional

the corresponding multipole wave and currents. scattering theory, this section is mainly concerned with the
For scattering waves propagating freébyr in a central properties of idealized “multipole sources” for particles with

potentia), multipole sources generate the spherical waveslefinite angular momentum that emerge in the long-wave

familiar from partial-wave theory. Nontrivial results emerge, limit. For freely propagating particles, the connection to the

however, when the scattered particles are subject to accelerpartial-wave formalism is straightforward. For simplicity,

tion in a homogeneous force field,5]. We present analyti- here we investigate elastic potential scatterng]. How-

ever, the source approach is readily extended to more sophis-
ticated problems such as the atom laggec. Vj, as illus-
*Electronic address: cbracher@fizz.phys.dal.ca trated in Ref[4].
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A. Currents generated by a quantum source Defining the current density in the scattering wave in the

In the customary treatment of scattering, the total wave!Sual fashion by(r)=7 Im[4:s{r)* V¢;s{r)]/M (where for
function ¢(r) in the potentialV(r) is decomposed into an Simplicity we omitted the vector potentidl(r), see Ref.
incoming wavey, (r), and a scattered wav,(r) that may [3]), the m_homogengous Schhqggr equatior(2) gives rise
be written as a sum of partial waves(r) of definite 0 @ modified equation of continuif,4]:
spherical symmetry: (r) = iin(r) + ¢{r). Obviously, >
in(r) is not an eigenfunction to the full Hamiltoniaid V.j(r):—#m[g(r)* PsdN]. (6)
=T+V, but rather to a simpler “unperturbed” Hamiltonian
Ho=T+U: Hoii(r)=E¢in(r). (Often, one setsU=0. ; ;
When long-range forces are present, like in Coulomb scatter-—rhus’ the inhomogeneity(r) also acts as a source for the

. . Co particle currenj(r). By integration over the source volume,
Ing [13]'. this ch0|c_e is poor, antd (r) should account for the and inserting Eq(4), we obtain a bilinear expression for the
interaction potential. See also Sec.)lIConsequently, this

procedure leads to the introduction of the scattering potentiatiOtal particle currend(E), i.e., the total scattering rate

W(r)=V(r)—U(r), and the stationary Schulimger equation 2
reads, as usualE—H]y(r)=0 or J(E):—%ImU d?’rf A3’ o (r)*G(r,r";E)a(r")|.
[E~Hol[#in(r) + ¢hed 1) ]=W(N) [in(1) + trsd 1)]. (D) @)

Some important identities concerning the total current
J(E) are most easily recognized in a formal Dirac bra-ket
representation. In view of Eq5), we may expresd(E) by

Sinces;y(r) is an eigenfunction tél,, we may state Eq1)
in the equivalent form

[E—Ho=W(r)]ihed 1) =W(r) in(1). 2 2 .
_ | - J(E)= - Him[(a]G|o)]= —=(alSE-H)lo), (®)
We infer that the scattering wavi,(r) solves a Schidinger
equation for the full Hamiltoniad = Hy+W(r), albeit with
an additional inhomogeneous ternar(r)=W(r) ¢;,(r)
present. o 2 o
In view of other inhomogeneous field equations, e.g., f dEJ(E)=7<U|0'>=7J drla(r)?, (9
Maxwell’'s equations, the right-hand tera(r) in Eq. (2) is o

identified as a source for the scattering wayg(r). This . . :
observation motivates a simple picture for the scattering progprOVIded this integral exisisin order to connect Eq(/) to

cess: The incoming wave,,(r), via the perturbatioW(r), the findings of conventional scattering theory, we display

e e o e W, e by E)1 an e G, vl emsrt
the HamiltonianH. Thus, the decomposition of the ane# ploying p g

from which the sum rule immediately followg]:

function into an incoming and a scattered part naturally lead ) of the Hamllto_manHL S(E = H)|¢r) = 5(E—Eq)l )
to the notion of a quantum source. ollows, and replacindo)=W|;,) (5), we may formally

We now turn to the mathematical aspects of E). In- decompose Eq(8) into a sum over eigenfunctions:
troducing the energy Green functio@(r,r’';E) for the 20
HamiltonianH defined via[14] JE)=— ; S(E—Eg) || W| ¢hin)| 2. (10)
[E-Ho—=W(r)]G(r,r;E)=0o(r—r"), () . :
Thus, Fermi’s golden rule is recovered. Another noteworthy

a solution to Eq(2) in terms of a convolution integral reads consequence of Eqs7) and (8) emerges in the limit of
pointlike sourcesg(r)~Cd(r—R). We then find 2]

r=| d&*'G(r,r";E)o(r’). 4 2 2

4ok}~ | oGO B @ ae=- LicPmGRRE)= T [CPRE)

In general, this result is not unique, since any eigenfunction (11)
Ynonlr) Of H may be added. The ambiguity ie(r) is wheren(R;E) =48(E—Eyg)| ¥s(R)|? is the local density of

resolved by the demand théi(r,r’;E) presents a retarded s .
solution characterized by outgoing-wave behavior as». states Q'H at th_e source positioR. Equatlon(ll).fo.rms the
theoretical basis of the Tersoff-Hamann description of scan-

Formally, this enforces the choic&=Ilim, ,+[E—H ning tunneling microscopj2,16]
+i7]" ! which is equivalent tdRef. [15]): 9 9 Pz, L0

B. Multipole sources, waves, and currents

1 .
P ﬁ)—l’ﬁ5(E—H)

The theory of quantum sources becomes particularly
simple for pointlike sources, since the otherwise bothersome
where P( - -) denotes the Cauchy principal value of the en-integrations involved in the determination of the scattering
ergy integration. wave s{r) (4) and the total curreni(E) (7) then become

G(r,r’;E)=<r r’>, (5)
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trivial. For the naive choice of a point sourcg(r)=Cds(r ~ SinceK;n(V') and the Hamilton operatori(r,p) always
—R), ¢<{r) is simply proportional to the Green function commute, the inhomogeneous Sdatirger equation
G(r,R;E) itself, andJ(E) follows from the Tersoff-Hamann

rule (11). The approximation of a pointlike source is obvi- [E-H]Gm(r,r";E)=dm(r—r’) (16)
ously well justified in near-threshold scattering—0), ) ) )
where the long wavelength of the emerging wave effectivelys formally solved by the multipole Green functions
obliterates the internal structure of the source. This stateCim(r.r’;E) available fromG(r,r’;E) by differentiation
ment, however, must be takeum grano salisfor it does

not take into account the orbital structure of the scattering Gim(r,r";E)=Kim(V)G(r,r'";E). (17)
wave.

In fact, the point source(r)~8(r—r') invariably leads [We remark in passing thaG(r,r’;E) differs from the
to locally isotropic emission, i.e., describes scattering into arf-wave multipole Green functio@o(r,r’;E) only by a fac-
swave. Despite often being appropriate in prac{ie,7],  tor V4] The multipole point sources,(r—r') (15) and
conservation of angular momentum may enforce selectiofereen functiong17) provide idealized pointlike sources with
rules that restrict scattering to higher multipole waves. Fointernal orbital structure.
these, we must suitably modify the idealized point-source For illustration, we briefly consider the case of free-
approach. We proceed by analogy with the multipole formaldarticle propagatiorjU(r)=0]. Here, the Green function
ism commonly used in potential theory, the simplest inhomo+educes to an outgoing spherical wauef]: G(™®)r,r’;E)
geneous field equation. =—-Me*R277%R, where E=#%k?2M and R=r—r’.

Like the scattering wave for a simple point source, theStarting from Eq.(17), a short calculation yields the free-
Green function of potential theory equals the field created byarticle multipole Green functior{23],

a source of unit strength located |&t, G(r,r')= —1/4m|r

—r’|. Additional solutions that likewise show a singularity (free) - 1 Mk!*1 (+) .

atr’ can be constructed via differentiation with respect to the Gy (r,r";E)=~ o2 hi ' (kR)Ym(R), (18
source positiorr’ =(x',y’,z"). Of special significance are T
the multipole potentialsb(r,r'),

where h{*)(u) denotes a spherical Hankel functi¢t3].
Evidently, the multipole approach reproduces the partial

(12) spherical waves employed in conventional scattering theory.
We point out that the multipole wavé8) bear close kinship

_ to the multipole potential®,(r,r’) (12). In the vicinity of

as they clearly showl(m) spherical symmetry. Here, we the sourcer—r’, G{™®(r,r’;E) asymptotically behaves

_ Yin(&-r) _ Kin(r=r")

Dyp(r,r’) |r—r’|'+1 a |r_r/|2|+1’

introduced the harmonic polynomias(r)=r'Y,(r), ho-  like

mogeneous polynomials of ordeiin the coordinatex,y,z

that are eigenfunctions of the angular-momentum operator M Yim(&_)
[17-19. Interestingly, the same polynomial in momentum Gim(r,r';E)~— 2wh2(2|_1)!!m' (19

space, known as the spherical tensor gradikp(V')
=Kim(dxr ,dyr ,d,1) [20-22, extracts the multipole poten-

tials from the Green functios(r,r'), Indeed, it can be shown that EQ.9) is a universal property

of multipole Green functions, provided only that the external
(21— 1)1 potentialU(r) is analytic at the source location [23]: Even
— T(Dm(r,r’). (13 in a symmetry-breaking environment, the desirégnj or-
bital symmetry locally prevails.

. N . Next, we turn our attention to the currents generated by
Thus, the spherical tensor gradient imprints the orbital Strucfnulti ole point sources. Assuming a superposition of several
ture ontoG(r,r’). SinceAG(r,r')=4(r—r") holds, we for- pole p - g perp

. of these sources at a fixed locatioh o(r) ==, A jmSim(r
mally obtain from Eq(13) —r"), the resulting scattering wave reads

Kim(V)G(r,r")=

AD|,(r,r")=~— Kim(VHS(r=r"). (14

a
(21 -1! Vsd 1) = 2 NinGim(1,1'3E)- (20
(Note that the differentiation proceeds with respect to
Apart from prefactors, the multipole potentiabs,(r,r’) are
thus generated by the spherical tensor gradients oféthe

The current density(r) due to this wave function may be
expressed as a bilinear form in the amplitudes:

distribution.

Accordlngly, for the_purpose_of the quantum so,urce_prob— j(r)zz > Nt (DA (21)
lem, we define multipole point source§,(r—r') via m |"m
[20,2]]

where the(vecton elements of the Hermitian current-density
Sm(r=r")=Kn(V")s(r—r"). (15  matrixjjm o (r) are given by
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i% Therefore, the multipole current$,(E) (26) are propor-
Jimprm (N == 5o {Gln(r,r S E) VG iy (1,17 E) tional to the local density of the respective spherical tensor
gradients of the eigenstates of the Hamiltorithat energyE
=Gy (r,r;E)VG](r,r";E)}. (220 and positionR.

Of particular interest is the total curred(E) carried by II. BALLISTIC MULTIPOLE WAVES AND CURRENTS
the scattering wavé20), i.e., the integrated current density

j(r) (21). It is available from Eq(7) through integration by So far, we applied the multipole wave approach to freely

parts. A slight rearrangement yields again a bilinear expresPropagating particles, where it merely reproduces the well-
sion for J(E), known results of partial-wave decompositigh3]. In this

section, we will tackle a less trivial problem, the propagation

. of a multipole scattering wave accelerated by a homoge-
J(E):% I,E, Mt 1 (E)A (23 neous force fieldF=Fe,, i.e., in the presence of a linear
m potential U(r)=—Fz. (Subsequently, we will refer to the

The components of the Hermitian total multipole current ma-dynamics in this environment as quantum ballistic mofion.

trix Jym 1w (E) can be extracted from the Green function As an analytical expression for the corresponding Green

G(r,r';E) through differentiation operations and a subse—f“nCticl’InBG(lrl’rl;E) (3) is avaiIaEIe, tf:e_develoamet:\tﬁ_ of
quent limiting procedure: Sec. allow us to present the solution to the ballistic

multipole problem in closed form. Applications of the theory

P . ) ) to physical phenomena under current study are presented in
Jlm,l’m’(E): % r“_T, Klm(V)Kl’m’(V ){G(r,r E) Secs. IV and V.

—G(r',r;E)*}. (24) - .
A. The ballistic Green function
For simplicity, we will denote théreal and positivediago- As an extension of the method of Green functions
nal elements of this matrix as thé,if1) multipole currents  G(r r’;E), the multipole source approach requires knowl-
Jim(E): Im(E) =Jim,m(E). For free propagation, these cur- edge of the latter for a given background potentigr).
rents are readily evaluat¢@3]: However, only for a scarce number of realistic, three-
dimensional potentials the Green function is known in closed
(free) =y ole1 form. Besides free propagation, this selection comprises the
Jim (E)_mk - (25 coulomb potentialU(r)=a/|r —R| [25,26], the isotropic
T harmonic oscillator{27], the homogeneous magnetic field
28,29, and parallel electric and magnetic fiel®30]. For
e ballistic problem, an analytic expression for the Green
function was derived independently by several authors
[31-33:

The characteristic power-law dependence of the scatterin
rate near the threshold is known as Wigner’s [24].
In the case U(r)=0, all off-diagonal elements

Jl(rfTrfﬁ)m,(E) are zero, and the total current in E@3) be-
comes a simple sumd(™e(E) =3, .|\ |23 E). This is 1 . _
due to the angular symmetry of the HamiltonidnAssume G(r,r';E)=— ——[Ci(a;)Ai"(a-)
: - : 2h% [r—r’|
that the generator of a rotatidncommutes withH; then, it
will also commute with the resolvent operatGr=[E—H —Ci'(ay)Ai(a )], (27)

+in]~ L. Consequently, if the source state9 and|s') are

eigenstates of with different eigenvalues, the mixed matrix \yhere the argumentse. of the Airy functions Ai),
element(a|G|a’), and hence its contribution to the total cj(y)=Bi(u)+iAi(u) [34] are given by

currentJ(E) in Eq. (8), is bound to vanish. If the potential

U(r) is invariant merely with respect to rotations around the a.=—B[2E+F(z+2)=F|r—r']]. (28)
z axis (such as in the ballistic problem discussed in detail in -

Sec. II), orthogonality with respect to different valuesmof (A rather elementary derivation of this result is presented in

prevails:Jiy,jm (E)=0 for m#m’. _ Ref. [5].) Here, B denotes an inverse energy scale of the
Finally, we set out to extend the Tersoff-Hamann desc”p'system that varies with the force strength

tion (11) of the current to cover the case of multipole point
sources. According to Eq7), the current);,(E) for a source B=(M/4h2F2)18, (29)
located at R is formally given by J,,(E)

=2m(R|K{(p) 8(E—~H)K n(p)|R)/%. Expanding this ex- |t is convenient to introduce dimensionless quantities for the
pression again into a complete orthonormal set of eigenfuncanergy, time, position, and momentum variables,
tions | ) of H, we find

p=pBFr, e=—-28E,
J E>=2—”2 S(E—Ep)|Kim(V)¥s(R)|%. (26)
im h 4 TR BRI Kk=KkIBF, T=tI2hp. (30)
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[The components gb will be denoted byp=(&,v,0)".] We tegration variabl@= i+ &, + 2p/ 7:
state two helpful integral representations of the Green func-

tion (27) in this notation. The first follows from a Laplace BBF)*3 (=, L,
transform of the time-dependent ballistic propagator G|m(p,o;E)=—3f drel (P -ilemfriri2
K(r.tr',v) [4] a0

- _d X | d3qKim(q+ 78, 2p/ r)e 1M,
G(P,P'i6)=—2i,3(,8F)3J , 73/2 j aKim(q+ 7€,—2pl 7)
o (im7) -

xei[(p—p/)z/T]+i7‘(§+{’-6)-i7‘3/12’ (31)
The latter integral involves the product of a Gaussian with a
while the second form features the propagator in momenturpolynomial expression and hence allows for evaluation in

space: closed form. To this end, we first expand the shifted har-
monic polynomiakK,,,(q+ Téz— 2pl 7) into a spherical series

L BB s 3, with respect tag, as demonstrated in Appendix A. Since the

Glp.p'ie)=— 472 Jo dre d°x | d°x Gaussian part is isotropic, the only contribution to the inte-

gral stems from the term with= =0 in the seriegAl),
><efi(x-pﬂc’-p’)fi(Kﬂc’)zllﬁg(KJr K +278). rendering the calculation trivial. Furthermore, by a repeated
application of the translation theorem for harmonic polyno-
(32 mials (A3), we may separate the spatial and temporal depen-

Finally, we point out a useful internal symmetry of the dence in the argument of the remaining functiki,(7e,
ballistic problem. From Eqs(27) and (28), we infer that ~—2p/7). We then finally obtain a spherical seriespiffor the
G(r,r’;E) is a functional of the variables—r’ and E ~ Momentum integral in Eq35):
+Fz' only. This combined translational symmetry results

from the uniformity of the force field, where a shift of the 3 - —irq?ia
source position merely alters the potential energy of the d*aKim(a+ e, 2p/ 7)€
emitted particles. We may take advantage of this invariance

to relocate the source to the oridi]: 8m32

|
(i 7.)3/2(_i)|]-:2m| 2jlem(i 7)|72jij(p)y
G(r,r";E)=G(r—r',0;E+Fz'). (33)
(36)
Furthermore, the exclusive dependence on these variables
allows us to replace derivatives Gi(r,r’;E) with respectto  \yhere the translation coefficieriTs,, are given by Eq(A4).

the source location’” by derivatives with respect toand the At this point, it proves convenient to introduce a set of aux-

energyE. One easily verifies that iliary functions Q,(p,¢;€) via
V'G(p,p;e€) (a i a+26)TG( " €) [ d
1 ;6 = _i_!_ o 1 ;6 . I o
oP ag v'ar " “oe] PP Qulp.Cie)= —
(34) 2mmlo (in)kt

We will summarizingly refer to the exchange of derivatives < expl i P_2+ ({—e)— 7_3 37)
in Eq. (34) as the substitution rule for the ballistic Green 77 712
function.

Despite their rather involved appearance, for intdgérese
B. Multipole Green functions integrals can be systematically evaluated in closed form,
yielding sums over products of Airy functions, as detailed in
Appendix B 1.[Incidentally, apart from a constant prefactor,
the functionQ(p,¢; €) equals the ballistic Green function in
2k+1 spatial dimension§5]. E.g., a comparison with Eq.
(31) reveals thatG(p,0;€)=—4B(BF)3Q1(p,L;€).] From
Egs. (35—(37), we then infer that the ballistic multipole
Green functionG,,(r,0;E) in the original coordinates is
given by

We now characterize the multipole Green functions
Gim(r,r’;E) (17) of the ballistic problem. In view of the
translational symmetry33), we remark in advance that it
suffices to discuss the case— 0; the general expression for
Gm(r,r’; E) then follows by properly adjusting the positions
r, r’, and the particle energy.

By definition (17), the multipole Green function is the
spherical tensor gradierk,,,(V') of the ballistic Green
function G(r,r'";E) (27). Since this differential operator re-

. . . |
duces to a polynomial in momentum space, it is advanta-

geous to employ the integral representatidg) in perform- Gim(r,0;E)= —4ﬂ(ﬁF)'+3j ;ml (2BF) T jimKjm(r)
ing the differentiation. In the limitr’—o, this procedure
yields after a suitable shift in the remaining momentum in- XQyj-1+1(BFr,BFz,—2BE). (39
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The explicit expressions obtained from Eg8) quickly be- BFx  BFy

come cumbersome with increasing multipole ortléWhile Zim(a_)=Kin , , Ai(a_). (42

the swave function Go(r,0;E)=G(r,0;E)/ 47 is dis- Voay J—ay da-

played already in Eq27), here we merely state formulas for

the p waves in ballistic scattering23]: Note that all multipole waves share a common propagating
3 g2 fﬁctodr, vyherea; the asygpt?tig beam prpfile ifs contgined in

. ., the derivative a_). Explicit expressions fois an
Gidr.0:E)= \/: /3 {ZCi(a)Ai' (a-) waves are tabullgt(ed i)n Sef. IV B. P P

—Ci"(ay)Ai(a_)]+2BFr[Blz(2E+Fz)

—Fr?]Ci(a,)Ai(a-)+2Ci' (a A" (a)]}, In a second step, we continue our analysis of ballistic
(39 scattering with the associated current-density distribution
j(r) (21). We find this quantity fromG,,(r,0;E) (38

C. The ballistic multipole current density

3 X+iy through differentiation, and the calculation of the exact ma-
Gy-1(r,0E)= \/2—,83F2—3{Ci’(a+)Ai(a_) trix elementsj;, | m(r,0;E) is tedious yet straightforward.
7 r (A formula for thes-wave component$3 o{r,0;E) is stated
—Ci(a,)Ai'(a_)—28Fr in Ref. [4].) Here, we confine our attention to the current-
density profile in the asymptotic sectpr-oo that has been
X[Ci"(a;)AI' (a_) recorded experimentall}g,7]. In this limit, the current dis-

tribution j @ (r)~p(r)v(z) is proportional to the probability
density p(r) =|s{r)|? in the scattering wave, wheng(z)

[The arguments. of the Airy functions have been defined = V2FZ/M is the classical velocity of the accelerated par-
in Eq. (28).] The expressions for higher multipole order are't|cles. Using Eqgs(41) and(42), we find the far-field current

+ B[2E+FZ]Ci(as)Ai(a)]}.  (40)

however, quickly calculated by means of Eg9). distribution, valid fora, — —o, while a_ (28) is bound:
Despite being exact for all values of the parameters, the Ll 15

complicated structure of the explicit solutiori88) to the j(z) (r,0E)~— B(2pF) il =l(—qymm’

ballistic multipole problem limits their practical use. Fortu- m, 1" m7 3= Arha,

nately, comparatively simple asymptotic approximations for
the vicinity of the source as well as for the far-field limit are
available. In the casp— o0, we may invoke the asymptotic
form of Qi(p,¢; €), Eq.(B6) together with Eq(A4), to show  The resulting expressions fdr=0,1 are employed in Sec.
that G,,(r,0;E) indeed conforms to the universally valid |v B. Several semiclassical approximations to this result
local behavior of multipole Green functions displayed in Eq.have appeared in the literatUi®35—38, generally based on
(19. the Hamilton-Jacobi theory of uniformly accelerated motion
The presence of the uniform force fiekdbreaks the or- [5]. Here, we briefly examine the current-density profile on a
bital symmetry of the multipole wave@8) in the far-field  detector screen placed at large distanece= as a function of
regionz—o. While the invariance for rotations around the the lateral deviatiofR= \r>—z2. ForE>0, within the range
axis is retained, and the Green functioBs,(r,0;E) are  of classically allowed motiona_<0, a circular disk of
eigenfunctions ol ,, the external potential bends the scat- asymptotic radius?§|=4Ez/F, particles of energyE may
tering waves in the direction of force, where they form atravel along two different parabolic trajectories from the
particle beam centered around theaxis that continues t0  sourcer’ =0 to their end point: Classical paths leaving the
spread in the lateral directions, while its density profileggyrce under opposite angles, &), (7— 6, ) will asymp-

settles into an invariant shape that reflects the orbital struqptically share the same destinatioR= R, sin6,4) on the
ture of the sourceimages of the spatial emission pattern arescreen, Thus, the uniform force field maps the orbital char-
depicted in Sec. IV.We are thus interested in the asymptotic acteristics of the multipole source onto an enlarged density
behavior of Eq(38) in the vicinity of thez axis, i.e., in the  gistribution at the detectdsee Fig. 1

limit . — —o (28), while a_ remains finite. Its systematic  As in the traditional double-slit setuf89,40, the pres-
evaluation by a saddle-point technique is covered in Refence of two alternative classical paths in the uniform force
[23] and will not be repeated here; we merely cite its rathefiie|d environment causes interference between the corre-

XZ|m(0[,)*Z|rm/((1’,). (43)

simple result sponding particle waves and imposes a circular fringe pattern
in the current profile first recorded experimentally by
_ B .. .5Ci(a:) " Blondelet al.[6,7]. Its details depend on the quantum phases
Cim(r,0B)~ = 5 (218F) = @, (=17 Zim(a-) o.(R,¢$;E) accumulated along the trajectories-) and

(42) (—). Three different terms contribute - (R, ¢;E) (Fig.
1): First, the trajectories will “inherit” atomic phases
that involves again a harmonic polynomial operator throughy(6,¢), y(7— 6,¢) reflecting the orbital structure of the
Zim(a), point source; second, particles traveling along the classical
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Mk?1  21+1  (I-m)!
47%4°% RyyRE—R? (I+m)!

r2\?
X P{“( 1- —)

j 59 (r,oE)=

RS

X si 22E1 R 3/2+7T2
sm3ﬁ Rgl 70

(45)

Here, P"(z) denotes the associated Legendre polynomial
[34], and the upper sign in the interference term applies for
even parity, i.e., for eveh—|m|, whereas the lower sign is
valid for odd | —|m|. Under change of parity, the circular
interference ring pattern will reverse.
We now turn to the case of ballistic tunneling<€0) that
is of considerable theoretical interest, being a rare example
of a tunneling process in three spatial dimensions yielding to
an analytic solution. For the sake of brevity, however, we
omit a systematic study hef@3]. Rather, we adopt a simple
FIG. 1. Semiclassical ballistic motion in the far-field limit. heuristic approach that might be dubbed “analytic continua-
Within the disk R<R, the two parabolic path¢bold) emitted  tion.” (The case of-wave ballistic tunneling has been ex-
under opposite angleg, 7— 6 will join the point source with the  amined in Ref[5].) We formally take over the former result
destinatipn. Unlike the fast.path—()., the slow path {) undergoes  of Eq. (45) valid for E>0, and replace the negative “clas-
a reflection at the parabolic turning §ur1:aae =O The accumu-  sjcal radius”R? by its absolute valu®Z, = 4|E|z/F; quan-
lated phases, together v_\nth their initial “atomic ph_ases inheritedities derived from it change accordingly, and the geometrical
from the source, determine the exact shape of the interference p%terpretation is lost. Moreover, the tunneling action func-
tern on the screen. tional, and hence the phase along the “trajectories,” becomes
complex[5]. Since the wave function must decay exponen-
paths will gather dynamical phases which semiclassically aréally, the dynamical phase (R, ¢;E) is uniquely specified
determined by the respective reduced actiwg)(r,o; E) in the tunneling regime, and interference is absent. For a
=2h[(— a.)%?%= (— a_)¥3/3 [5]; and finally, the “slow”  pure multipole sourcé,(r) (15), we finally obtain with the
trajectory (+) undergoes an additional “phase jump’ of €vanescent momentufix=2M|E[:
—a/2 due to reflection at the turning surfaee =0 [41].
Denoting the angular amplitude distribution at the source by j(tun) (r,0.E)=
A(8,0)=|A(6,$)|exdin6,4)], the semiclassical current- i, ma s
density distributionj (R, ¢;E) on the screen is given by
the classical differential cross sectiodoy/dQ(R;E)
=R§, cos6, accounting for the projection properties of the
force field, modulated by an oscillating term representing the

M2t 21+1  (1-m)!
167°4°% Ryn/R2,+R2 (I+m)!

[ R\
R

tun

X

combined effects of orbital source structure and dynamical R? | %
phase (sim=R/R,): Xexp — 3 —2BE| 1+ E .
(46)
Q) . . . . .
SR, ¢ E) = ﬁ—(R;E)||A(0,¢)|e"’*(R‘¢;E) [Urqllkezthe Legenqlre polynomid®"(z) itself, its modulus
Ocl |P"(2)|* remains single valued for reat>1.]
+|A(m— 0'¢)|eio+(R,¢;E)|2' (44) Itis ins_tructi\_/e to examine the paraxial Iirrmﬁo (_)f Eq.
(46). This vyields the following approximation to
j{m (r,0;E), valid for small lateral distanceR [5]:
For |A(7—0,0)|=|A(0,¢)|, ie., reflection symmetry of 20+1 | 2|m|
the emission rate with regard to tley plane[36], a sharp jl(r‘]l;';zn(r,o;E)N M« (21+ 1)(1+ |m})! IZ T
interference pattern emerges. This condition is always met by 1613 22MI(|m[1)2(1—m|)! R
pure multipole sourcesg,,(r) (15). In the semiclassical ap- ) 3
proximation (44), the multipole currenf fﬁ{,m(r,o; E) (43 e _ﬂ_ K _ (47)
for z— o reads accordingly23], 2z §(BF)3
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For a simple interpretation, we note that the exponential term M , ,
exf — «6(BF)3] equals the WKB penetration factor for a Jimtrm (E)= 8y = (BF)' T (=)™
one-dimensional linear potential ramp, while the prefactor 2mwh

(RIRy) ™ covers the effect of centrifugal repulsion. It is mind.1")

worth noting that the tunneling current distribution possesses % ’ 20(2j + YN Ty T,
approximately Gaussian ford"(R, ¢;E) = exp(— kR?/2z): j;nﬂ J7 27 jim Bt m
Remarkably, the shape of the lateral current profile is largely )

independent of the force strengkh This prediction is ex- XQigj— -1 +1(—2BE).

perimentally confirmed in field emission from ultrasharp tips ) )
[42]. For|=0,1, these currents are listed in Sec. IV C.

It is instructive to examine the behavior of the currents
Jim(E) for large values of the energy parameter
D. Total ballistic multipole currents —2BE. (We treat diagonal matrix elements onlyVe have
Finally, we derive the total curred() (23)caried by a (2o ot "ol e consider the tevts Lo
?;l;'?gﬁojvczg;”?gevé?é; Iftjn(';‘iitrgzril?_”é‘;rgﬁ%'bm’(ﬁ)_ large negative energies. This corresponds to ballistic tunnel-
v y ing from a point source, a phenomenon without classical

ferentiation and a subsequent limiting process, as discussedlnerpart. Using the asymptotic series for the auxiliary
in Sec. Il B. Ahead,.we note that due to the r(_)te}uon_al SYM+unction Qi(e) (B12), the total multipole currend,,(E)
metry of the force field, the total current matrix is diagonal reads

with respect to the quantum numbex J, ;'m/(E)=0 for

(50

m#m’. 20+1 3m|+3

As the multipole formalism invokes spherical tensor gra- Jim(E)~ M 2+ 1)(1+|ml)! (E)
dients K,,(V) (24), it is again favorable to use the 47253 [mt(I=[m)t |«
momentum-space representation of the ballistic Green func- 3
tion G(r,r’;E) (32) in the actual calculation. Then, the dif- kK (51)
ferentiation and limit operation are trivial, and the matrix 6(BF)3)

elements of the total current read in integral form
Here,x=28F \/e denotes the evanescent particle momentum

3 (E)= B(BF)"! +3Im i""”fcd o-ier-iri2 at the source. As expected, the emission rate drops exponen-
Im, 17 m? 2.3 o 7 tially with e. We also note that for fixed, the current
strength declines with increasing quantum nunibgc This
- is evidence for the centrifugal suppression of tunneli
XJ d’qKim(q—7€,)* above. ’ PP "
In the classical limit of ballistic motionk—cc (wherek
XK (Q+ Téz)eifq2/4:|. (48 =2BFV—€, e<—1), two terms contribute to the multipole

current J;,(E) (see Appendix BR2 The dominant secular

term is independent of the field strengthand just repro-

duces the total current for freely propagating partial waves
Next, the momentum and temporal contributions in the argugiven by Wigner’s law(25). The free-particle expression is
ments of the harmonic polynomials appearing here are disnodified by an oscillating contribution akin to E¢1):
entangled by means of the translation theof&®) (see Ap-

pendix A). This renders the angular integration in E48) Mk2 +1 2(21+1)(1+|m))!
straightforward, and the remaining momentum integral is of Jm(E)~ —23( 1 : 1 (1 [m[)!
Gaussian type, leaving only the temporal integral to be 4mh ' '
evaluated. We may display it as a sum over the auxiliary BF 3Am+3 11/ Kk \3 \m|
functions Qj(e)=1im, ..o IM[Qu(p,{;€)] closely related (T) os{g(—F) > ] (52
to the expressioli37) introduced in Sec. Il B: B

The modulation is most effective for linear polarizatiom (
. =0). While being suppressed with respect to the secular part
: fx dr e-ier—ir2 (49) by a factork 3, its rapidly oscillating behavior still imprints
2mmlo (ir)k+12 ' a conspicuous pattern onto the general trend,¢(fE): The
current becomes stationary at a series of energy vates
=[3mw(4v+21—1)]1%%8B (v integer,y>—1/2), rendering a
(A similar set of functions is discussed in R¢43].) Their  “staircase” structure in plots of,o(E) versus the energk
properties, in particular, their resolution into products of Airy (see Fig. 3 We note that these stationary values coincide
functions, are discussed in Appendix B 2. With the definitionwith the appearance of each new dark interference fringe in
(49), the total ballistic multipole currentd,,, ;,v(E) (24)  the center of the corresponding current-density profiess
finally read and (45) as predicted by “closed orbit theonf44].

Qix(e)=Im
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IV. APPLICATION TO PHOTODETACHMENT PROCESSES the oscillating laser field on the electronic motion may be
. L . taken into account by a Floquet series expangidhe elec-
Transcel_’ldlng merely mathematical interest, the mumpo'ﬁron dynamics in the laser field becomes dominant only for

{&xtreme intensities where it causes a wealth of new phenom-

oon e been sssessed recenly 1 Eiberent Usbha g, mathamoni generaf.57) A comprele
electrons ac 9 Sive study of these corrections is performed in RdB].

tracold atoms subject to the gravitational force, respectiveIyHowever for moderate fields and laser intensities, and fre-

In this section, we briefly describe near-threshold photode- uencies close to the detachment threshold, they may be
tachment of negative ions in the presence of an external ungafely ignored '
form field. This problem has been studied extensively theo-= In order to fit the problem to the ballistic multipole for-

retically (see Refs[35—38,43-50and references thergias malism (Sec. 1), we approximate the source tere(r)

well as experimentally6,7,51-54. In our opinion, the mul- N \
tipole source model presents the most coherent, and by ¢ {Watord W ion) in Eq. (53) by a properly chosen multipole

. e oint source(15). To this end, we first note thak(r) is
the simplest, description of the photodetachment effect Nt S ; L . .
Here, we direct our attention to near-threshold detachmen{'t€d in extension o the size of the parent ion and thus is
) small compared to the initial wavelength of the photoelec-
into p waves.(The source model fos-wave photodetach- .
. I : fron. The details of the source structure then may be con-
ment in an electric-field environment has been addressed in : )
our previous papeid].) densed into a single parameter, the source stre@g{th-
P Papers). erwise, finite-size effects have to be taken into consideration.
For Gaussian sources, the deviation from the point source
A. Photodetachment as a source problem behavior has been studied in defdi]. See also Sec. VThis
In the photodetachment setup, a beam of negativelyeaves only the multipole character of the source to be deter-
charged ions traverses the focus of a laser beam whose frgined, which in turn is fixed by the selection rules for dipole
quencyw closely matches the electron affiniB, of the ion.  radiation. Since emission into channels of higher angular
Some ions absorb a laser photon and subsequently emit &Romentum at energies close to threshold is strongly sup-
electron of energyE=%w—E, into a continuum state to Pressedas exemplified by the Wigner la25) for freely
become a neutral atom. In the presence of a homogeneo@sopagating particlgsonly the lowest permissible multipole
electric field F=—eE, these electrons are accelerated to-order is appreciably populated. Usually, this effect leads to
wards either a counter, allowing measurement of the totalSotropic emission of the photoelectran<0) from the point
photocurrent(E) [52-54, or a spatially resolving detector Source[4,6,7,54. However, if both the parent ion and the
plate that records an image of the photoelectron distributio®merging neutral atom posseSgground states, the photo-
j,(r,0:E) [6,7]. (We assume that the ion and laser beams an_@lectron must carry th_e spin of the absorbed Iase_r p_hotpn and
the electric field are oriented mutually perpendicular, ands therefore emitted into @ wave, where the distribution
choose them as the Y, and z directions of our coordinate ©Onto the variousn sublevels is determined by the laser PO-

system, respectively. larization vectore:
In the source formalisn{Sec. I, the photodetachment
phenomenon is interpreted as the scattering of the ionic elec- p? !
trons at the quantized electromagnetic laser fielcand the E- W“L Fz w(r)=C(e'V)5(r)=m;1 NimOim(r).

coupling termW= —e#?(p- A)/Mc is treated as the interac- (54)
tion potential. Assuming that the external electric field and

the laser field do not appreciably disturb the electronic CON{Most prominently, this occurs in the photodetachment of
figurations of the initial ionic ground stateli,,) and the  hygdrogen ions H first studied experimentally by Bryant
emerging ground-state neutral atdfony, we proceed t0 et al. [51].) The problem then immediately yields to a de-
project these states, leading to an effective inhomogeneougyiption in terms of the ballistic multipole waves
Schralinger equation for the detached electf@n Gio(r,0E) (39 and G, . 4(r,0;E) (40), and results for the
ensuing current distributions are presented below.

Lg
E~ g~ Yatort 1)+ F2| (1) = (atonf Wl ion) (53
B. The far-field current profile

where w=p+eA/c, and Uy {r) denotes the short-range  Uniform acceleration as a mechanism for two-path inter-
interaction between the emitted electron and the remaininéerence was first established by FabrikfB®,45. Demkov
neutral atom which can be neglected in leading approximaet al.[36] improved on his results, and also realized that the
tion. (In the related photoionization effe¢88,55, a long-  fringe pattern in quantum ballistic motidSec. Il § should
range Coulomb attraction between the emitted electron anide experimentally observable in near-threshold photodetach-
the emerging ion prevails which must be included in thement. This assertion was finally confirmed by Blondehl.
external potentialU.(r)=Fz—e?/r. The additional term [6,7] who recorded the photoelectron distribution generated
renders the treatment of near-threshold photoionization corby various ion beams in a homogeneous electric field with a
siderably more difficul}. In strong electric fields, the effects spatially sensitive detector plate and in the course established
of U 4on(r) may become important and must be included in aa new method for the precise determination of electron af-
perturbative rescattering series. Similarly, the influence ofinities (“photodetachment microscopy.” For electrical
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fieldsE of a few hundred V/m and a source-detector diStanC?ﬂane_ Some natural choices for it wﬁ:éz (para||e| orm

z=0.514 m, circular fringes with sizes exceeding 1 MMy 445 ation with respect to the electric field, €, =&, (per-
were observed. These experiments were performed on ions

that detach electrons intswaves. Due to the low near- Pendicular oro orientation, €= (&+18)/V2 (circular
threshold photoabsorption rates, photocurrent profiles irﬁ)0|aflzat|0r)yandfnlt:(eﬁex)/\/z(|Ine?1f|y polarized under
p-wave detachment so far have not been measured. Y&n angle of 45° td&). The corresponding normalized multi-
source theory predicts an interesting dependeffep of  Pole sources in Eq54) read
these patterns on the laser polarizatierthat is absent in

isotropic emission. We discuss some examples below. (1) = 81(1), (59
First, however, we briefly comment awave photode-
tachment. In this case, the electron is effectively emitted by i (60)

ou(r)=— \/5[511“)_ o1-1(N],

an isotropic point source(r)=Cdy(r), and its wave func-

tion is thus proportional to the ballistic Green function

G(r,0;E) (27). The distribution of electrons collected on the 1 )

distant detector hence serves as a measure of the correspond- ~ cire(F) = 5[ =1812(N) + V281(r) +16,-1(r)], (61)

ing current densityj ?(r,0;E) (6) which is stated in exact

form in Ref.[4], and is in very good agreement with experi- 1

ment. For large separation of source and detector, a simpli- aiin(r)= 5[ = 6(r)+ V2811 +81-1(1)]. (62

fied analysis using the far-field approximatiqdd) and(43)

for the ba]listic Green functio'n and its current density iS[Note that o,(r) and oy (r) only differ in the relative

equally suited. Assuming a unit strength sour€e=(1), we  phase of their multipole componerita. brief calculation us-

obtain ing Eq. (43) yields the asymptotic photocurrent-density pro-
files generated by thegewave sources:

. 3 Cl(a+) .
Goo(r,0;E) ~4i B(BF)° ——=Ai(a-), (55 24387
—4ma, @1 o WBE i,
I (r,o,E)~WAI (a-)%, (63
[wherea . is defined in Eq(28)], while the ensuing current- i o
density matrix element reads 109
(2) . 2; 2
jo (r,0,E)~ ———5-X"Ai(a_)%, (64)
. o = ) mhat
mTha . 12B8F7

circ(r'O;E)N
T

(oL miga |
i"(a_)— i(a) |,
For largez, the electron density varies with the radial dis- “ —a, “
tanceR like the square of the Airy function Ai-2BE(1 (65
—R?/R3)1%, whereR4=4EzZ/F (see Sec. Ill . This for-

mula was used by Blondelt al.[7] to analyze their experi- 12B88F7 , (BFx)?
mental results. Jﬁiﬁ)(r,o;E)~W2ﬁ(_a : Al (a)?+ (_a+)A'(‘L)2 :
Now we turn to the case gFwave photodetachment. Ac- * (66)

cording to Eq.(54), the electron wave functios(r) is a
superposition of thel=1 multipole Green functions [In a more involved manner, approximations equivalent to
Gi(r,0;E) (39) and G;.4(r,0;E) (40) whose relative Eqs.(63) and (64) were also derived by Golovinski50].]

weights depend on the laser polarizatrFor our purposes, We now highlight some properties of these distributions.
again their far-field asymptotiagll) suffice, They are depicted in Fig. 2 for the set of parameters used in
Blondel's experimen{6], viz., initial electronic energye
: 4 Cilay) =6.08x10 ° eV, electric-field strengtE=116 V/m, and
Gao(r,0;E)~ —81/3i B(BF) \/ﬁp" (@), detector distance=0.514 m. A concentric arrangement of
N (57) the interference rings only occurs ferando polarization of
the laser beam, where the nodes and maxima are inter-
Ci(e.) changed in the respective images,'as pred_icted in(4E5).
Gy.4(r,0.E)~ = 4\3B( BF)5 = (x=iy)Ai(a.). Hence, the fringe pattern encodes information about the or-
"~ 2ma. bital structure of the source, in particular, its phag®, ¢)

(58  [36]. (In o polarization, the underlying interference pattern is
the same as is-wave photodetachmef#,7].) Likewise, a
Their  associated current-density ~matrix  elementssharply defined interference structure is observed for circular
j(lz%’lm,(r,o; E) are easily evaluated from E@3). polarizationeg. (65), as this source conforms to the condi-
Here, we examine four specific setups of the photodetachion outlined in Sec. Il C. However, the mirror symmetry
ment experiment in detail. Since the laser beam points along— —x, present in the other three plots, is conspicuously

the y axis, the polarization vectoe is confined to thex-z ~ broken, as the number of fringes differs on the left and right
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Photocurrent J(E) [arb. units]
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FIG. 3. Total currentin arbitrary unit$ for p-wave photodetach-
ment vs electron excess energyin weV) for an external field~
=116 eV/m. Bold line, currend;(E) (68), observed inm polar-
ization of the laser beam; light linel; .,(E) (69), valid for o
polarization. Circular and tilted polarizatiof®l) and(62) yield the
same averaged currefdotted ling.

FIG. 2. Photocurrent density profiles jpmwave detachment.
Clockwise, from left upper image: photoelectron distribution for For detachment into @ wave, the general formulés0)
parallel (63) and perpendicular polarizatidie4) of the laser beam, reduces to the expressions
profile for circular (65) and linear polarization, tilted under 45°
from the direction of field66). The area displayed in each image is
1.2x 1.2 mnt. Parameters: source-screen distare®.514 m, ini-

3

tial electronic energye=60.8 ueV, force strengtl-=116 eV/m. J1(E)= wmezAi(e)z—4Ai(e)Ai "(€)

h
side of the current-density profile. Finally, due to unequal _26Ai’(6)?] 69)
weights|A( 6, ¢)| of the interfering trajectories, no clear-cut eatterd
ring pattern is present in the tilted cagg,. Indeed, Eq.
(63)—(66) show that the corresponding image averages the M(BF)3
patterns obtained inm and o polarization: j & (r,0;E) Jl+1(E)=L[zezAi(e)Z_Ai(e)Air(f)
=[j?(r,0;E)+]2(r,0:E) /2. a wh3

—2€Ai’(€)?], (69)

C. The total photocurrent

The total detachment rat® E) of photoelectrons as a
function of the electron excess energywas first examined ' . : 5 .
) . were first obtained via Fermi’'s golden ru(@0) by Slonim
experimentally by Bryanet a_l.[51], fqllowed by theoreucgl and Dalidchik [43,59, while integral representations are
approaches mostly based either on integral representations I?Eted in Refs[44,47,53. Within the error margins, both ex-
the Green function27) [46,49 or an analysis using Fermi's pressions agéin ’rep1roo.luce the experimeptmave’ detach-
golden rule (10) [44,47. The ballistic multipole source ment spectrum by Gibsoet al. [53]
model yields a closed expression for all currehg E) (50), P y : '

thus obliterating the need for the rather involved Ca|CU|ati0n5phthg§J?r;2% (C é/l)lnr(jerézzilessyrtrémaeﬁ:%/eogrtr;ir?w%tiﬁg?iilr,] tgf éOt:I
in the former approaches. as-

We again briefly comment on the case of isotropic emis_(68) and(69) for arbitrary orientation of the polarization vec-

sion of the photocurrent. For a normalized sour@-=(1), ;()ernfe(oT?rwa%ﬁé:ilzitilgnpé|1|r|t=_I;: uﬂ;”?? cur(rEe)m 1%5;": iﬁt();_
we immediately obtairf4,49,59 p , 1+1(E) p

polarization €L E). In both the tilted and circular polariza-
M tions of the laser beam stated in Ed61) and (62), the
BF . . : . .
[Ai’(e)%— €Ai(€)?], (67) multipole currents contribute equal weightd..(E)
2mh3 =Jit(E)=[J10(E) + I =1(E)]/2. For illustration, these cur-
rents are plotted in Fig. 3. While generally following their
wheree= —2BE (30). The near-thresholg-wave photocur-  low-field limit given by thep-wave Wigner lawd(E) = E®?
rent spectrum has been recorded with high precision by Gib(25), a strong “staircase” modulation is observed inpo-

sonet al. [52,54] and is in virtually perfect agreement with larization that is absent for the case, as predicted in
Eq. (67). Sec. llI D.

which differ merely in a single prefactor. These currents

Joo(E) =
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V. ATOM LASER WITH ROTATING SOURCE ing boson gas in an isotropic trap. The wave function of the

rotating condensate is then given by a first excited radial

atolrr:l ?gsgﬁgfr F:iae%e[r:ﬂ’avr\ﬁ ddeZ\I”SB(IEEdCa Ifgtulrjcsefirrg?iﬁlrrzcr;:a?inz harmonic-oscillator stat€61] and drops to zero along the
PP Y38 : Sortex line.(In practice, the vortex line is not stationary, but
some of the results obtained there before we set out to extenré)

the theory to higher multipoles: We consider a two-state _ay precess slowly in ti_m[eﬁ_z].) For sirpplicity, we willfirst
model for the atom laser, where one magnetically trappe@!ign the vortex to the direction of foreg. The source wave
state (the BEC, acting as a quantum sourde weakly function o14(r) is then the oscillator elgens_tate with angular
coupled to a nontrapped stafthe atom laserby a mono- momentum =m=1.1In gna_logy to the multipole source for.—
chromatic radio-frequency fieldReplenishing the source Malism(Sec. Il B, application of the corresponding spheri-
condensate to maintain a truly stationary flux in the atomf@l tensor gradienky(V) (13) to the vortex-free BEC
laser poses difficult technical problerf0].) We are inter- 9round state70) yields this source function

ested in the propagation of atoms coherently released from

the condensate in the surrounding gravitational field. For a —N.K _ NAQ Liv)eria?
N-particle BEC of isotropic Gaussian shape, 711(1)=N:K1(V)o (1) a5’2773’4(x ly)e ’
(79

a-(r)=\/NhQa’?’/Zw*"‘e”z’zaz (70)

with N;=ay8m/3. In general, we define Gaussian multipole
(where Q) denotes the interaction strengthve found an sourceso|,(r) analogous to Eq(15) via
explicit expression for the resulting beam wave function
W(r)=Jd3"G(r,r":E)o(r’) [4] that is closely related to oim(N)=NK(V)o(r), (76)
the ballistic Green functiori27) itself. Remarkably, in the
far-field sector a ballistic Gaussian source may be replacedhereN?=27%22/T (I +3/2) is obtained from the normal-
by a virtual point source at a position displaced from itsization conditionf d3r| o (r)|?=N(%Q)2. The source func-
center in the direction of forc. With respect to this virtual tions thus generated turn out to be the lowest-lying oscillator
source, we introduce a set of shifted variables depending oeigenstates of [(m) spherical symmetrywith energy E

the scaled condensate widih= BFa [whereg is defined in = (1+3/2)22/Ma?]. [In particular,ooyr) = o(r) covers the

Eq. (29)], and F=mge, now represents the gravitational iSotropic Gaussian sourd&0).] From Eq.(4), we evaluate

force on a BEC atom the wave functiony,,,(r) of the corresponding outcoupled
state:

I=(+20" =8+ P+7% e=etdat. (7D

—(_ 1! 3,7 ’ ’ ’.
Using these variables, the wave function of the atomic beam Yim(1)=(=1) N'J d*r o (r)Kim(V)G(r.IE).
#(r) (4) and the total currend,,(E) (7) carried by it are (77
conveniently expressed in terms of the special functions

~ 2 L : ; ; Here, we integrated by parts to shift the spherical tensor
Sg(fp[’f]’;) (37) and Qi) (49) discussed in Appendix Bf. operator to the Green functiof27). The substitution rule

(34) then enables us to further evaluate the integral in terms
—_4 F)3A (& ey 72 of derivatives of the known atom laser wave function for
vn BBF)"A(€)Qulp.Li€) (72 zero angular momentumi(r) (72):

Jio(E) = 23(393/\(&)2@1@). (73 Pim(1) =NKin[dx,dy 3, — Faglip(r). (78

_ - Via the differentiation rulegB3) and (B4), we may reduce
We note that the virtual source strengi(e) is strongly  these derivatives to a sum of the auxiliary functions

energy and size dependent, Qu(p.&;€) (B1), analogous to the case of multipole point

~ 312, 202(x 4a13) sourcesdn(r) (38). For a single vortex, it suffices to con-
A(e)=NQ(2V7a)*%e : (74 sider the sources,(r) with =1, |m|=0,1,

Below, we use the multipole formalism to obtain closed so- —42 3 ~ o~ PO

lutions for Gaussian sources with angular momentum. Thes#10(P) =4V2B(BF) aA(€)[2{Q4(p,{1€) —4aQu(p,{1€)
states naturally arise in a rotating condensate. For simplicity, ~ o~

we assume that the rotating BEC quantum fluid is in its +Qolp. & )], (79
thermodynamical ground state, where it exhibits a set of vor- _ 3 ~
tices (at least, ongsymmetrically arranged in an extended P1-1(p)=F8B(BF) aA(€)(§xiv)Qa(p,Li€). (80)

lattice structurd 11].
411l [For «—0, point sources are recovered, and E@®9) and

(80) become proportional to the-wave multipole Green
functions(39) and (40).] Note thaty;.1(p) vanishes on the

Here, we examine the atom laser beam arising in the presaxis: For parallel orientation of vortex and force, the vortex
ence of a single vortex with fixed direction in a noninteract-line is preserved in the atom laser profile.

A. Ideal atom laser from a single vortex
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In analogy to Sec. Il D, we calculate the overall outcou-
pling rate as a function of the radiation frequency detuning
(E=hAv). According to Eq.(8), the total multipole current
is available fromJ,,(E) = — 2 Im[{o\n| G| o) /7. In prac-
tice, the calculation is best carried out in momentum space
where both the Gaussian multipole souf@é) and the bal-
listic propagator(32) take on a particularly simple form.
Like the point-source current§0) (to which they reduce as
a—0), the Gaussian multipole currents are expressed usin

the auxiliary functions Q(€) (49) covered in Appendix B 2.
Within the | =1 triplet, they explicitly read

- 32 ~ .~ .o~
Jio€)= — B(BF)*a®A ()’ Qi(€) +8a’Qiy(e)
—4a*Qig(€)+3Qi_1(e)], (81)

~ 32 ~ o~
Jlil(e):?B(BF)sazA(G)ZQb(G)- (82

Thanks to the preserved rotational symmetry of the system

all total current matrix elements]|my|,m,("é) with m#m’
vanish, as indicated in Sec. Il B.
For extended condensateasf1), we may replace the

functions Qi(e) by their asymptotic serie€B12). Further
expanding the currents around their maximum neabd, we
obtain their large-source approximations

2
~ €
1€~ N ph Q2 — e~ <He, (83)
o

- 2,3 22 FIG. 4. Atom laser density profiles for a rotatiffRb BEC
Ji+1(€)~2N \/;ﬁQ ;e . (84) source sustaining one vortex. Left column: parallel orientation of
vortex line and forceF, with sourceo;(r) (75). Right column:

As expected from our earlier results for a simple Gaussiarf®" pgrpsazndlcula_rfl;Has (?'Ven 5\3"78%_)' (?6)' Ihe d\?;””'ndg
source[4], these currents can be interpreted as the integrateéequenCIe v are z (fop row, Z (center roy, an

: . . 1.4 kHz (bottom row, respectively. The brightest spots of the dis-
condensate density along a slice through the BEC at a height, .. . . 3
7 fixed by the “resonance conditionE +Fz=0 (Franck- tribution pertain to a density of 2.5 atomah®. Displayed area,

Cond inciol 30x 30 um?; distance from sourcg=1 mm: source parameters,
ondon principlé a=2 um, Q=27x100 Hz, N=10° atoms.

2T 2 1
In(E)~ 7|l HEFD. @ 01 (=3l +\2osn) T oy (1)), (89

(A semiclassical derivation of the “slicing approximation” is
presented in Ref[63].) Equation(85) evidently fulfils the
sum rule(9) for the total outcoupling rate.

For illustration, we consider two orientations of the vortex 1
with respect to the gravitational forée A vortex parallel to ~N_ ~ ~
the field is simply represented by the Gaussian condensate ()= 5[l €) +J12a(€)] (&7
wave functiono14(r) Egs.(75), and the ensuing laser beam
characteristics are expressed in E@Q) and(82). We also  Figure 4 depicts atom laser density profiles generated by an
examine the case of a vortex along thexis, i.e., perpen- ideal 8’Rb BEC of widtha=2 um at a distancg=1 mm in
dicular toF. The corresponding BEC source functien, (r) the center of the resonanc& =0 kHz) as well as for posi-
is connected to the parallel vortex model by a rotationtive and negative detuning\(’= =4 kHz). For this choice
exp(—iwI:yIZ). Application of thel =1 rotation matrix for of parametersg~3.33, so the effective energy=4a* (71)

angular-momentum eigenstat¢64] yields the following of the assigned virtual point source indicates tunneling emis-
source termcf. Eq. (61)]: sion. According to the results presented in Sec. Il C, we

with a corresponding superposition of E§89), and(80) as
beam wave functions,, (r) and an associated total current,
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expect density profiles of overall Gaussian shape, with a 60 —T—T—

mean widthD(z) =22/« (47), wherez=({+2a*)/BF and s
«k=4BFa? denote the distance from the virtual source and
the virtual evanescent wave number, respectivi@iterna- T: 40} ]
tively, this result follows from the spreading of a minimal
uncertainty wave packet of initial width during its time of @ 30} .
flight T=y2Mz/F [5].) This Gaussian envelope is modu- g
lated by a factorf (¢, v) that depends on the relative orienta- — 201 i
tion of the vortex and the gravitational force. A fairly cum- é 0l i
bersome calculation yields for the asymptotic shape of the
density profiles generated by the sour€&s) and(86) in the 0
far-field sector, valid fora>1, “12-10 -8 6 4 2 0 2 4 6 8 10 12
F(£) Detuning Frequency Av = E/h [kHz]
2523, 3 '
p(£0)~1BN(R Q) B F e 27mE(L+2a%)2 FIG. 5. Total current generated per atom if®b BEC with
one vortex as a function of the detuning frequedcy. Solid line:
;{ ( € 2a%(E+ UZ)) 1 vortex line parallel to the gravitational fiele. Dashed line: vortex
xXexg —| —+—m—m1 |, (88 line perpendicular td=. Parametersa=2 um, Q=27Xx100 Hz.
4a? [+2a

B. Vortex lattices
where the modulation factorfs;(£,v) andfq, (¢,v) for par-

allel and perpendicular orientation read, respectively, Using the tools developed in the preceding section, we

proceed to give an example of a multipole source where
eV )2 larger values of the angular momentum are present. Rotating
. Bose-Einstein condensates show superfluid behavior and re-
2\2a? spond to an externally induced rotation by formation of a
(89  vortex lattice[10—12,69. (For a review on vortices in BECs,
ee Ref[61].) No attempt at a description of the formation
ind parameters of this lattice will be made. Rather, we
present a theoretical model for a stationary atom laser sup-

. . L plied by an already formed vortex lattice, with vortex lines
the source d|stanc¢_and the detunl_ngv el .ZhB renqlers ._ariented parallel to the gravitational fiekl The wave func-
the atom laser profiles generated in perpendicular orientatio

more intriguing(see Fig. 4 The detuning-dependent, isotro- E?: dce)rézeirl]a:tr:(;erztgtﬁ\herl:fse errezggr?rzsr(glg)Stviﬁz\r/:megg}/
pic contributione?/4 competes with a shifted parabolic term 9 ’

) : . comes time independent; we denote itdyy; «(r). However,
that grows linearly with the detector distange For the laser is observed in the laboratory frath€) and hence

< 4 i i H
<2a”, detuning blurs_the 5|mpltz vortex image present aj o fir«t giscuss the transformation between both frames.
center resonance, while far>2a" the latter term in Eq. In the lab frame, the RF source functiaflyq(r) be-

(89) dominates, causing the appearance of a node line in thc?omes explicitly time dependent. The transformation be-

profile whose relative position shifts linearly with the detun- tween both frames of reference involves a uniform rotation

ing v. The transition between these markedly different re- L .
. . . around thez axis with frequenc which is generated b
gimes of the atom laser occurs at considerable distance fro 9 Wror, 9 y

the BEC. In our example/=2a* holds at a separation, e unitary operator exp(LOrt/A). The full time-

- : oo ST dependent LF source term consequently reaglg (r,t)
~150 um, so the far-field behavior is shown in Fig. 4. How- —iEtA 7ILZQrOttm0'Iatt,rf(r)- Here, decomposition of the

ever, for larger sources, this characteristic distance quickl)ézoirceae (r) into a superposition of eigenstat (r)
reaches macroscopic dimensions: Feor 10 um, we find latt,f perp 9 Ot

of L, makes sense:
z,~10 cm. z

We now turn to the frequency dependence of the total
outcoupling rate. Since>1, use of the asymptotic descrip- Tttt (1) = 2 T i1 (90)
tion (85) is in order. In Fig. 5, we show the resulting current m

characteristics for both condensate orientations. While ifrhys in the laboratory frame, the rotating source function

parallel orientation the current distribution is simply Gauss-gppears split into stationary components, ((r) shifted in
ian, it features a dip in the total current/ar=0 for avortex  energy. WithE,,,= E+ m#Q,,, we obtain

line perpendicular to the gravitational field. This behavior is

easily understood from E@85): Due to the presence of the Bk

vortex line in the slicing plane, &=0 the condensate den- ‘Tlatt,lf(r't):% e mm o u(r). 9D

sity adopts a minimum. We note that the slicing approxima-

tion fails for small condensatdwith «~1) and it becomes The laser wave function resulting from a time-dependent
necessary to use the exact resyfi$) and(82). The transi- source in the presence of the gravitational field is generated
tion between both regimes is studied in detail in Réf. by the ballistic propagatai31):

2
fl(E,0)=E2+17 Ty, (&v)= Z+

v—

[We used the dimensionless coordinates introduced in E
(30).] Clearly, f11(¢,v) effects the propagation of the vortex
in the parallel case. However, the dependench ofé,v) on
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i t Thus, alln+1 source components are eigenstates of the har-
wlatt,lf(ht):_%J d3f'J dt'K(rt[r',t") opaq(r',t"). monic trap potential, and the highest quantum numfer
o 92) equals the number of vortices present in the BEC.
For the special case of an isotropic trag€a,=a), the

The propagator representation of the ballistic Green functiof€ory outlined in the preceding section provides both out-
(31) then finally yields the beam wave function coupling rate and beam profile in analytic form. Since the
componentsr,, (r) (97) then simultaneously present eigen-

CEUh states ofl, and the total angular momentubrf with quan-
t//|an,|f(f,t)=§m: e M Y (1), (93 tum numberd =m, the source is entirely made up of circular
Gaussian multipole states,(r) =N Knn(V)o(r) (70)
whereym (1) =d ' G(r,r";Ep) om(r’) (4). The rotating  and(76):
source function thus allows a description in terms of _ (M) am
G(r,r';E) (Sec. ll). We note that bothy, +«(r) and its O t(1) = CoVmiw(Dao 1) (98)
sourceo, f(r) are eigenfunctions af,: Like the BEC, the

215N o hw(M[242k7—1 ;
atomic beam profile rotates uniformly with frequen@y,,. (Here, we seC=[2j_ok![wj"|"a™]" ") According to Eg.

(93), the rotating beam is thus produced by a weighed super-

Next, we characterize the source functiog «(r) for the e . . .
L : . , : osition of stationary sources,,(r) with effective energy
vortex lattice. This state of the BEC is commonly descrlbeog —E+mhQ,,. As explained in the introduction to Sec. V.

as a superposition of angular-momentum eigenstates of the™ _.

. . ; .~ Outside the source region each Gaussian multipole source
harmonic oscillatof66,67. The number of vortices and their . .
positions are available from minimizing the energy func—a'm(r) (76) may be mapped onto a corresponding displaced

tional in the rotating frame. For a parallel arrangement ofVirtual point source of adjusted strengil{e). This allows to
vortices and fieldF, we may model the vortex state as a c@lculate the wave functiogy(r) generated byomq(r)
product of a two-dimensional “lattice functioné,p(x,y) along the lines presented in Sec. B, and _th_e final r_esult
detailing the vortex positions«(,y,) with a Gaussian enve- closely resgmbles the corresponding ballistic multipole
lope enforced by the harmonic trap potential. Introducing®réen functiorGp(r,0;E) (38):

complex coefficients = x,+ iy, the lattice function is ob-

3
tained as a product involving all vortex positions that alter- Y1) = — 4B(BF) A(e ) [2a(E+T1) Qs 1(p L )
natively may be expressed as a polynomialxr-(y), m Jm! " e
(99
n n
UzD(va)Zkﬂl [(X+iy)_vk]:k20 wi (x+iy)k. where'e,,= — 2BE+4a* (71). Similarly, the total current

(94) Jmm(_Em) gen(_arated byrn(r) is available from a calcula-
tion in the spirit of Sec. Il D:
The coefficients), andw, are linked via the recursion rela- 8
tion wV=w{" Vv, w" D (w¥=1). (Usually, these I Em) = = B(BF)3(20) ™A (,)2Qir. + 1 ().
lattices possess elements of symmetry which enforce selec- h
tion rules on thew,, leaving only few nonvanishing coeffi-
cients) The complete three-dimensional source function in

(100

[Form=0,1, these expressions reduce to the regidRsand

the rotating frame then reads (73) and (80) and (82) presented aboveSubstituting Egs.
Ay’ 72 (98 and (99 in Eq. (93), the wave function of the rotating
Tate(1) = Nnexp( _ - _2) Tan(X,y). (95) atom laser beam ultimately reads
2a; 2a, N
_ —iEmt/f (n)
The constaniN, is determined by the normalization condi- ¢|an,|f(f,t)—Cnm§=:O e/t Jmiwa ol 1).
tion [dr|o(r) ol *=N(%Q)?: (101
\/ﬁﬁg Due to cylindrical symmetry, all elements of the total current
N,= . (96)  matrix Jjm ' (E) (24) with m#m’ vanish(see Sec. Il B
" ) Therefore, thestationary outcoupling ratel,,(E) reduces
74\[ a,>, kl|lw{"|2a2k+2 to a properly weighed sum of the ballistic multipole currents
k=0 ‘]mm(Em) (100)
Equation(94) then yields the decomposition of «(r) into n
eigenstatesry, (r) of L, (90): Jan(E)=C2Y, mi|wM|2a?my (E.). (102
m=0
2 2 2
Tm rf(r)=NnW§{,‘)(x+iy)mex X +;/ _ 2_2 _ We illustrate these results using a model cor_ldensate fea-
’ 2a; 2a; turing a symmetrical triangular lattice of 37 vortices Atn

(97 apart, embedded into a Gaussian source of width
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20 . : — y VI. CONCLUSION
In our study, we established a systematic approach to scat-
15f g tering processes that involve nonisotropic emission of quan-
7 tum particles. Starting from the stationary Satinger equa-
% tion (2) that incorporates a source temnfr) responsible for
§ 10} 1 a steady particle flow, we proceeded by analogy with poten-
3 tial theory and introduced pointlike “multipole sources”
% st i Sim(r) as limiting cases of sources with,(n) orbital sym-
= metry. These sources, and the scattering waves and currents
& generated by them, are available from the conventional Dirac
0 i PR i & singularity and its assigned Green functi@ir,r’;E) (3)
=30 -20 -10 0 10 20 30

by application of a differentiation operator of suitable spheri-
cal symmetry, the spherical tensor gradiéqgt,(V') (Sec.
Il B). The scattering waves emitted by multipole sources lo-

FIG. 6. Total current per atom in ¥Rb BEC with 37 vortices ~ Cally show pure [;m) angular symmetry, and in the absence
as a function of detuning frequendyv. The vortex structure of the Of an external potential, they reduce to the spherical partial
BEC is not visible in the integrated current. Vortex separation in thevaves familiar from conventional scattering theory.

BEC: 10um, rotation frequency) =27 X 250 Hz, outcoupling These local-orbital characteristics remain preserved in an
strengthQ) =27 X 100 Hz, size parameter=5 um. external potential that breaks rotational symmetry. The mul-
tipole waves then describe the propagation of particles ini-
=5 um. While the frequency dependence of the outcouplindially emitted in the (,m) eigenstate of angular momentum,
rate merely shows the familiar Gaussian chara@empare and thus generalize the notion of a partial wave. We per-
Figs. 5 and § plots of the resulting atom laser profile exhibit formed a detailed study of the linear potential environment
rich detail (Fig. 7): Tracing the rotation of the source, the U(r)=—r-F, i.e., scattering in the presence of a uniform
vortex pattern, which is fully transferred from the BEC into force fieldF. This problem allows for an analytical solution,
the laser beam, forms an intertwined braidlike structureand closed-form expressions for the ballistic multipole waves
along thez axis. It modulates the lateral beam profile which G, (r,0;E) (38) and currentdy, |/ (E) (50) are assembled
now strongly depends on the detuning frequeday. The  in Sec. lll. Uniformly accelerated scattering waves display a
outcoupling rate varies between the different angularcharacteristic set of features, including a prominent fringe
momentum components, «(r) (98) that make up the structure and a modulation of the cross section, that semi-
source, as explained in Sec. 111(@7). A negative shift in the classically are attributed to two-path interference in the force
frequency suppresses states with high, leading to an ap- field, as well as ballistic tunneling.
proximate Gaussian shape of the laser profile, whereas posi- The theory of ballistic multipole waves directly applies to
tive detuning A v>0) emphasizes these contributions. Thenear-threshold photodetachment processes in an electric-field
centrifugal barrier effective for them then produces a ringlikeenvironment, a topic that recently attracted considerable in-
“crown” emission pattern. terest. The source model directly yields analytical expres-

Detuning Frequency Av = E/h [kHz]

FIG. 7. Beam profiles of an atom laser generated by a rotating BEC sustaining a triangular 37-vortex lattice. From left to right, we vary

the detuning frequencyA v=—10 kHz, 5 kHz, 20 kHz, as marked by dotted lines in Fig. 6. The density in the beam is plotted at three
different distanceg=177 um, 239 um, 300 «m from the center of the BEC. The vortex cores are indicated by small tubes at all distances.
BEC parameters same as Fig. 6.
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sions for the photocurrent spectrum and the spatial electron A

distribytion that are in excellent_ agreement yvith the gvailable Kim(r+a)= ZO _E CIATLKM(T)pr,m—M(a):
experimental data. Our attention was mainly dedicated to A=0 p=-2x

p-wave photodetachment, where we discussed the influence (A1)
(();ér(l:ellsser polarization on the photoelectron current profilg, o e Cm:C:Tx,m—M must hold. (Note thatK,(r) is a

S hat akin to the situation i tential th i th homogeneous polynomial of ordér so the orders in the
omewnat akin to the situation in potential theory, in eright—hand side products of harmonic polynomials in Eg.

ballistic environment extended sources of Gaussian shap@d) must add up td. Similarly, the sum of their magnetic
may be replaced by “virtual” point sources that are shifted ' i m in Eq

from the center of the actual distribution. This mapping re-?:%nLuarcenggt:]eésetzﬁ;ngg)iJgee[;%egg 'gg_tscW
mains feasible for “Gaussian multipole sources’(r) T

(76), harmonic-oscillator eigenstates df,f)) orbital sym- 47(21+1) =m\/1—m
metry that are generated by the same differentiation formal- c';‘;— )
ism as the multipole point source%,(r). Depending on (2A+ D) (21 =2 + D) N+ /N = p

their size, these Gaussian multipoles may act as effective (A2)

ballistic tunneling sources that display unusual properties. Irlln particular,C'OrH= Nres (For|m— u|>1—\, the coefficient

practice, Gaussian wave functions are shared by the atoms \')?;mishes)

an ideal Bose-Einstein condensate trapped in a harmonic po- The general serie\1) simplifies if the shift in the argu-

tgnnal. A baII|st|q tunneling source is thgn realized by CON" ment ofK,,(r + @) takes place along the axis of quantization,
tinuous outcoupling of atoms under the influence of gravity,

leading to the formation of an “atom laser” beam. While a -6~ 8= €. Then, rotational symmetry around taexis is
BEC in its ground state simply leads to isotropic emissionPreserved, and the quantum numbeis unaffected by the
vortices embedded in the condensate will create higheff@nslation. Hence, only terms with=m survive in Eq.
angular-momentum modes in the laser profile. In particular, #A1).  Inserting  the  explicit ~ value K,q(ae,)
BEC bearing a single vortex providegpavave ballistic tun- = +/(2\+1)/47a* [13], we obtain[17,1§
neling sourcgSec. V A. The particle distribution generated |

by it depends strongly on the relative orientation of vortex - _i

and gravitational force: In parallel alignment, the vortex is K'm(Han):j;m‘ Tiima' ' Kjm(1),
simply preserved in the profile, while the perpendicular setup

features a conspicuous detuning-dependent node structurewhere the translation coefficieft,,, is given by Eq.(A2):
the atom distribution. Finally, we also discussed the proper-
ties of an atom laser outcoupled from a rapidly rotating BEC \/ZI +1
sustaining a vortex latticéSec. V B. The rotating beam jim= 2j+1
wave function thus created is a coherent superposition of
ballistic multipole waves with various angular momenta, and
the resulting laser profile starkly depends on the detuning
from resonance, while the total outcoupling rate shows little
variation. 1. The functions Q(p.¢; €)

In the course of our investigation into ballistic multipole
matter waves, integral expressions of the type

(A3)

I+m\({l—m

. . . A4

j+m/\j—m (A9

APPENDIX B: SOME INTEGRALS INVOLVING AIRY
FUNCTIONS
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=Bi(u) +iAi(u) [34], the basic member of this class reads

APPENDIX A: TRANSLATION THEOREM . .
FOR HARMONIC POLYNOMIALS Qo(p.Le)=Ai(e—{+p)Ci(e—{—p). (B2

In this appendix, we present a formula that allows to ex-(A proof of this identity using physical arguments is found in
pand a harmonic polynomia&,,(r+a) with shifted center Ref.[5].) From the definition(B1), two recurrence formulas
into a spherical power series with respect to the origin, i.e.for increasing and decreasing value of the indlexe imme-
in the variabler. Since the position variablesanda in the  diately available:
argument are interchangeable, the same series will also fur- w
nish the expansion d{,,(r +a) arounda. Hence, we expect N )
the general form for this series Qura(pfie)= 2p dp Qulp.&ie), (B3)
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J
Qkfl(P,CE):a—ng(P:CG)- (B4)

From a practical point of view, the expressions thus obtained

become rather unwieldy with growingk|. The following

five-point recursion relation, again easily verified using the

integral representatiofB1), presents a favorable alternative:

Qi+1(p, i €)+(L—€)Qu(p. L)

1
PZQk+2(Pa§;€)_(k+ 5

1
+2Qk—2(Py§;6)=0- (B5)

Finally, we inquire into the asymptotic behavior of E&.1)

in the limit p—0. Fork=1, small values ofr provide the
bulk contribution to the integral, which allows us to neglect
the linear and cubic terms in the exponent of B1L). In this
approximation, the integral evaluates td dunction of half-
integer argumenit34]:

[(k-1/2) (2k—3)!!

2773/2p2k_1 2k7Tp2k_1

The divergence fop— 0, however, affects only the real part
of Qx(p,{;€).

2. The functions Qj(¢€)
Another important class of functions that regularly ap-

PHYSICAL REVIEW A67, 043601 (2003

Im[u]

FIG. 8. Evaluation of the integréB11). The figure displays the
original contourC and its shifted counterparts for large valuesof
For €>0, the contour is deformed t€ _ and runs through the
saddle pointS_=2\/e. In the casee<0, the contour is split into
three partsC,, C,, C, that traverse the saddle poirss, S, at
+2i /e, but avoid the cut in the complaxplane(gray) by circling
the singularity atu=0. The integrand asymptotically vanishes in
the shaded sectors.

Next, we aim to establish the asymptotic behavior of the
functions Qj(e) in the limit |e|—. We observe that the

pears when calculating ballistic total currents is contained irf"tegral representation of these functions in E@l) and

Eq. (B1) as a limiting case

Qix(€) = lim lim Im{Qy(p,{; €)}. (B7)

p—0(—0

Unlike the functionsQ,(p,{;€) that are divergent in this
limit for k>0 (reflecting the multipole source singulapity
their imaginary parts Q{e) remain well defined. Obviously,

Qiog(€)=Ai( €)?, and all other expressions are available from

suitably modified recurrenceé83) and (B4):

k
Qik(e)ziﬂ—za Ai(e+z)Ai(e—2z), (B9
ak
Qi_.(e)=Ilim —kAi(e—z)Z (B9)
70 0Z

(k=0). Thus, Ai(e+ 2)Ai( e—2z) and Ai(e—z)? are generat-
ing functions for Qji(e). In practice, we prefer a recursion
relation adapted from EqB5),

1 1
it 5) Qic: 1(€)+ €Qix( )~ 7Qik 2(€)=0. (B10

(B7) may be rewritten as a complex contour integral

1 du

—eu+ud/12
di /7T Cuk+l/2

Qiy(e)= (B11)

Here, the path€ leads along the imaginary axis, avoiding
the singularity at the origin and the cut in the complex plane
which we choose to place onto the negative real ésée
Fig. 8).

For large values ofe|, a saddle-point approximation for
Eqg. (B11) is in order. This poses no problems fer +
(tunneling case Then, the relevant stationary point of the
exponenS_ = 2/¢ is readily identified, and shifting the path
of integration(see Fig. 8 ultimately yields the asymptotic
series,

1 4 3k2+9k+5
H —_ —(k+1) _ .32 - =
Qix(€)~ 5—(2Ve) exp( 3¢ ) 1=
1
+0 —3) . (B12)
€

The situation is more involved foe— — (classically al-
lowed motion. Here, the saddle points are locatedSay,
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=+2iy[€], and the direction of steepest descent cuts théeminiscent of the Wigner lau25), while the saddle points
imaginary axis under an angle ef4. Hence, the integration S, Sy contribute conjugate complex oscillatory terms simi-
path must be deformed to lead into the sector of asymptotilar in structure to Eq(B12):
cally vanishing integranfargu| >5/6. Due to the presence

of the cut in the complex plane, the partial patbg, C, Ai
cannot be simply connected as[Bé&— —«, but must be du 2i \/;eXF{§|€|3/2)
linked by an additional path elemeft, that loops back f eeutu’iz_
around the singularity located at=0, as indicated in Fig. 8. cy ukr12 (2iehk?
The latter contribution is asymptotically evaluated by means

of Hankel's integral formula[70] that statesfc €'t 2dt  Rearranging EqsiB13) and (B14), the leading asymptotic
" form for Qi(€) ase— — follows:

. (B14)

=27l (2):
_ } 4 k
du € k—1/2 (4
j k+1/2e_eu+U3/12~277i r| k|+ 17 (B3 . 1 |ek 12 Sln(3|6| 2 )
o (ke 12 Qiy(e)~ " :
2 /7 I'(k+1/2) 2m(2 /|e|)k 1
This secular part thus obeys a simple power-law dependence (B15)
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