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Ballistic matter waves with angular momentum: Exact solutions and applications
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An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the
Schrödinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite
angular momentum, and introduce pointlike multipole sources as their limiting case. We obtain results for
ballistic scattering in an external uniform force field, where we provide analytical solutions for both the
scattering waves and the integrated particle flux. Our theory directly applies top-wave photodetachment in an
electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-
bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.
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I. INTRODUCTION

The customary approach to elastic quantum scatte
phenomena employs a superposition of an incoming pl
wave and an outbound scattering wave that emerges fro
localized scattering potential. It is sometimes advisable
reduce the complexity of this process by dividing the sc
tering event into subsequent ‘‘absorption’’ and ‘‘emissio
stages. The evolution of the emerging wave is then con
ered separately. Obviously, in this description a ‘‘reservo
of particles in the interaction region is required that contin
ously feeds the stationary scattering wave. Since the par
number is a conserved quantity in the standard quantum
ture, we devise a modified approach: In analogy to elec
dynamics and other field theories, an inhomogene
‘‘source term’’ added to the Schro¨dinger equation allows for
particle generation in a finite volume. It was Schwinger w
introduced the idea of particle sources in field theory in or
to avoid the use of operator fields. Interestingly enough,
also presented the nonrelativistic limit of such a parti
source@1#. Recent examples illustrating the use of the sou
formalism are presented in Refs.@2–4#.

In our contribution, we inquire into quantum sources th
give rise to scattering waves carrying nonvanishing ang
momentum, which we will denote as multipole waves. In t
long-wave~or low-energy! limit, apart from its angular de-
pendence the actual structure of the source becomes i
nificant, and the scattering process may be properly mod
using an idealized pointlike source of suitable orbital sy
metry. Technically, these ‘‘multipole sources’’ are obtain
from the Diracd distribution~that itself pertains to isotropic
or s-wave emission, see Ref.@4#! by a simple differentiation
procedure outlined in Sec. II that grants immediate acces
the corresponding multipole wave and currents.

For scattering waves propagating freely~or in a central
potential!, multipole sources generate the spherical wa
familiar from partial-wave theory. Nontrivial results emerg
however, when the scattered particles are subject to acce
tion in a homogeneous force field@4,5#. We present analyti-
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cal expressions for the ensuing ballistic multipole waves a
currents, and discuss some of their intriguing features in S
III. These developments are directly applicable towards ne
threshold photodetachment microscopy, an experime
technique recently introduced by Blondelet al. @6,7# that al-
lows to observe interference of electron waves on a ma
scopic scale. Here, we predict the photoelectron distribu
in p-wave detachment~Sec. IV!.

In general, the multipole formalism breaks down wh
the spatial extension of the source becomes comparab
the particle wavelength. In the ballistic environment, Gau
ian sources provide an important exception since the sca
ing waves generated by them apparently converge on
displaced pointlike ‘‘virtual source’’@4#. Actually, this situa-
tion is encountered for an atom laser beam outcoupled f
an ideal Bose-Einstein condensate~BEC! that is subse-
quently accelerated in the earth’s gravitational field@8,9#.
Angular-momentum transfer to the superfluid condens
leads to the formation of vortices that in turn act as sour
for higher modes of the resulting atom laser. The effects
vortices on the beam profile are the topic of Sec. V. Ex
solutions are presented for a single vortex in an otherw
spherically symmetric ideal BEC. Furthermore, we inves
gate the structures imprinted on the atomic beam by the
tating vortex lattices recently realized experimenta
@10–12#.

II. QUANTUM SOURCES

Following a brief overview of the source formalism an
its basic results, emphasizing its kinship to conventio
scattering theory, this section is mainly concerned with
properties of idealized ‘‘multipole sources’’ for particles wit
definite angular momentum that emerge in the long-wa
limit. For freely propagating particles, the connection to t
partial-wave formalism is straightforward. For simplicit
here we investigate elastic potential scattering@13#. How-
ever, the source approach is readily extended to more sop
ticated problems such as the atom laser~Sec. V!, as illus-
trated in Ref.@4#.
©2003 The American Physical Society01-1
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A. Currents generated by a quantum source

In the customary treatment of scattering, the total wa
function c(r ) in the potentialV(r ) is decomposed into an
incoming wavec in(r ), and a scattered wavecsc(r ) that may
be written as a sum of partial wavesc lm(r ) of definite
spherical symmetry: c(r )5c in(r )1csc(r ). Obviously,
c in(r ) is not an eigenfunction to the full HamiltonianH
5T1V, but rather to a simpler ‘‘unperturbed’’ Hamiltonia
H05T1U: H0c in(r )5Ec in(r ). ~Often, one setsU50.
When long-range forces are present, like in Coulomb sca
ing @13#, this choice is poor, andU(r ) should account for the
interaction potential. See also Sec. III.! Consequently, this
procedure leads to the introduction of the scattering poten
W(r )5V(r )2U(r ), and the stationary Schro¨dinger equation
reads, as usual,@E2H#c(r )50 or

@E2H0#@c in~r !1csc~r !#5W~r !@c in~r !1csc~r !#. ~1!

Sincec in(r ) is an eigenfunction toH0, we may state Eq.~1!
in the equivalent form

@E2H02W~r !#csc~r !5W~r !c in~r !. ~2!

We infer that the scattering wavecsc(r ) solves a Schro¨dinger
equation for the full HamiltonianH5H01W(r ), albeit with
an additional inhomogeneous terms(r )5W(r )c in(r )
present.

In view of other inhomogeneous field equations, e
Maxwell’s equations, the right-hand terms(r ) in Eq. ~2! is
identified as a source for the scattering wavecsc(r ). This
observation motivates a simple picture for the scattering p
cess: The incoming wavec in(r ), via the perturbationW(r ),
feeds particles into the scattering wavecsc(r ) governed by
the HamiltonianH. Thus, the decomposition of the wav
function into an incoming and a scattered part naturally le
to the notion of a quantum source.

We now turn to the mathematical aspects of Eq.~2!. In-
troducing the energy Green functionG(r ,r 8;E) for the
HamiltonianH defined via@14#

@E2H02W~r !#G~r ,r 8;E!5d~r2r 8!, ~3!

a solution to Eq.~2! in terms of a convolution integral read

csc~r !5E d3r 8G~r ,r 8;E!s~r 8!. ~4!

In general, this result is not unique, since any eigenfunc
chom(r ) of H may be added. The ambiguity incsc(r ) is
resolved by the demand thatG(r ,r 8;E) presents a retarde
solution characterized by outgoing-wave behavior asr→`.
Formally, this enforces the choiceG5 limh→01@E2H
1 ih#21 which is equivalent to~Ref. @15#!:

G~r ,r 8;E!5 K rUPS 1

E2H D2 ipd~E2H !Ur 8L , ~5!

where P(•••) denotes the Cauchy principal value of the e
ergy integration.
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Defining the current density in the scattering wave in t
usual fashion byj (r )5\ Im@csc(r )*“csc(r )#/M ~where for
simplicity we omitted the vector potentialA(r ), see Ref.
@3#!, the inhomogeneous Schro¨dinger equation~2! gives rise
to a modified equation of continuity@2,4#:

“• j ~r !52
2

\
Im@s~r !* csc~r !#. ~6!

Thus, the inhomogeneitys(r ) also acts as a source for th
particle currentj (r ). By integration over the source volume
and inserting Eq.~4!, we obtain a bilinear expression for th
total particle currentJ(E), i.e., the total scattering rate

J~E!52
2

\
ImF E d3r E d3r 8s~r !* G~r ,r 8;E!s~r 8!G .

~7!

Some important identities concerning the total curre
J(E) are most easily recognized in a formal Dirac bra-k
representation. In view of Eq.~5!, we may expressJ(E) by

J~E!52
2

\
Im@^suGus&#5

2p

\
^sud~E2H !us&, ~8!

from which the sum rule immediately follows@4#:

E
2`

`

dEJ~E!5
2p

\
^sus&5

2p

\ E d3r us~r !u2, ~9!

~provided this integral exists!. In order to connect Eq.~7! to
the findings of conventional scattering theory, we disp
J(E) in an entirely different, yet wholly equivalent fashion
Employing a complete orthonormal set of eigenfunctio
ucfi& of the HamiltonianH, d(E2H)ucfi&5d(E2Efi)ucfi&
follows, and replacingus&5Wuc in& ~5!, we may formally
decompose Eq.~8! into a sum over eigenfunctions:

J~E!5
2p

\ (
fi

d~E2Efi!u^cfiuWuc in&u2. ~10!

Thus, Fermi’s golden rule is recovered. Another notewor
consequence of Eqs.~7! and ~8! emerges in the limit of
pointlike sources,s(r );Cd(r2R). We then find@2#

J~E!52
2

\
uCu2Im@G~R,R;E!#5

2p

\
uCu2n~R;E!,

~11!

wheren(R;E)5(fid(E2Efi)ucfi(R)u2 is the local density of
states ofH at the source positionR. Equation~11! forms the
theoretical basis of the Tersoff-Hamann description of sc
ning tunneling microscopy@2,16#.

B. Multipole sources, waves, and currents

The theory of quantum sources becomes particula
simple for pointlike sources, since the otherwise botherso
integrations involved in the determination of the scatter
wavecsc(r ) ~4! and the total currentJ(E) ~7! then become
1-2
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trivial. For the naive choice of a point source,s(r )5Cd(r
2R), csc(r ) is simply proportional to the Green functio
G(r ,R;E) itself, andJ(E) follows from the Tersoff-Hamann
rule ~11!. The approximation of a pointlike source is obv
ously well justified in near-threshold scattering (E→0),
where the long wavelength of the emerging wave effectiv
obliterates the internal structure of the source. This st
ment, however, must be takencum grano salis, for it does
not take into account the orbital structure of the scatter
wave.

In fact, the point sources(r );d(r2r 8) invariably leads
to locally isotropic emission, i.e., describes scattering into
s-wave. Despite often being appropriate in practice@3,6,7#,
conservation of angular momentum may enforce selec
rules that restrict scattering to higher multipole waves. F
these, we must suitably modify the idealized point-sou
approach. We proceed by analogy with the multipole form
ism commonly used in potential theory, the simplest inhom
geneous field equation.

Like the scattering wave for a simple point source, t
Green function of potential theory equals the field created
a source of unit strength located atr 8, G(r ,r 8)521/4pur
2r 8u. Additional solutions that likewise show a singulari
at r 8 can be constructed via differentiation with respect to
source positionr 85(x8,y8,z8). Of special significance are
the multipole potentialsF lm(r ,r 8),

F lm~r ,r 8!5
Ylm~ êr2r8!

ur2r 8u l 11
5

Klm~r2r 8!

ur2r 8u2l 11
, ~12!

as they clearly show (l ,m) spherical symmetry. Here, w
introduced the harmonic polynomialsKlm(r )5r lYlm( r̂ ), ho-
mogeneous polynomials of orderl in the coordinatesx,y,z
that are eigenfunctions of the angular-momentum oper
@17–19#. Interestingly, the same polynomial in momentu
space, known as the spherical tensor gradientKlm(“8)
5Klm(]x8 ,]y8 ,]z8) @20–22#, extracts the multipole poten
tials from the Green functionG(r ,r 8),

Klm~“8!G~r ,r 8!52
~2l 21!!!

4p
F lm~r ,r 8!. ~13!

Thus, the spherical tensor gradient imprints the orbital str
ture ontoG(r ,r 8). SinceDG(r ,r 8)5d(r2r 8) holds, we for-
mally obtain from Eq.~13!

DF lm~r ,r 8!52
4p

~2l 21!!!
Klm~“8!d~r2r 8!. ~14!

~Note that the differentiation proceeds with respect tor 8.!
Apart from prefactors, the multipole potentialsF lm(r ,r 8) are
thus generated by the spherical tensor gradients of thd
distribution.

Accordingly, for the purpose of the quantum source pro
lem, we define multipole point sourcesd lm(r2r 8) via
@20,21#

d lm~r2r 8!5Klm~“8!d~r2r 8!. ~15!
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Since Klm(“8) and the Hamilton operatorH(r ,p) always
commute, the inhomogeneous Schro¨dinger equation

@E2H#Glm~r ,r 8;E!5d lm~r2r 8! ~16!

is formally solved by the multipole Green function
Glm(r ,r 8;E) available fromG(r ,r 8;E) by differentiation

Glm~r ,r 8;E!5Klm~“8!G~r ,r 8;E!. ~17!

@We remark in passing thatG(r ,r 8;E) differs from the
s-wave multipole Green functionG00(r ,r 8;E) only by a fac-
tor A4p.# The multipole point sourcesd lm(r2r 8) ~15! and
Green functions~17! provide idealized pointlike sources wit
internal orbital structure.

For illustration, we briefly consider the case of fre
particle propagation@U(r )50#. Here, the Green function
reduces to an outgoing spherical wave@14#: G(free)(r ,r 8;E)
52MeikR/2p\2R, where E5\2k2/2M and R5r2r 8.
Starting from Eq.~17!, a short calculation yields the free
particle multipole Green functions@23#,

Glm
(free)~r ,r 8;E!52

Mkl 11

2p\2
hl

(1)~kR!Ylm~R̂!, ~18!

where hl
(1)(u) denotes a spherical Hankel function@13#.

Evidently, the multipole approach reproduces the par
spherical waves employed in conventional scattering the
We point out that the multipole waves~18! bear close kinship
to the multipole potentialsF lm(r ,r 8) ~12!. In the vicinity of
the sourcer→r 8, Glm

(free)(r ,r 8;E) asymptotically behaves
like

Glm~r ,r 8;E!;2
M

2p\2
~2l 21!!!

Ylm~ êr2r8!

ur2r 8u l 11
. ~19!

Indeed, it can be shown that Eq.~19! is a universal property
of multipole Green functions, provided only that the extern
potentialU(r ) is analytic at the source locationr 8 @23#: Even
in a symmetry-breaking environment, the desired (l ,m) or-
bital symmetry locally prevails.

Next, we turn our attention to the currents generated
multipole point sources. Assuming a superposition of seve
of these sources at a fixed locationr 8, s(r )5( lml lmd lm(r
2r 8), the resulting scattering wave reads

csc~r !5(
lm

l lmGlm~r ,r 8;E!. ~20!

The current densityj (r ) due to this wave function may b
expressed as a bilinear form in the amplitudesl lm :

j ~r !5(
lm

(
l 8m8

l lm* j lm,l 8m8~r !l l 8m8 , ~21!

where the~vector! elements of the Hermitian current-densi
matrix j lm,l 8m8(r ) are given by
1-3
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j lm,l 8m8~r !52
i\

2M
$Glm* ~r ,r 8;E!“Gl 8m8~r ,r 8;E!

2Gl 8m8~r ,r 8;E!“Glm* ~r ,r 8;E!%. ~22!

Of particular interest is the total currentJ(E) carried by
the scattering wave~20!, i.e., the integrated current densi
j (r ) ~21!. It is available from Eq.~7! through integration by
parts. A slight rearrangement yields again a bilinear exp
sion for J(E),

J~E!5(
lm

(
l 8m8

l lm* Jlm,l 8m8~E!l l 8m8 . ~23!

The components of the Hermitian total multipole current m
trix Jlm,l 8m8(E) can be extracted from the Green functio
G(r ,r 8;E) through differentiation operations and a subs
quent limiting procedure:

Jlm,l 8m8~E!5 i
\

lim
r→r8

Klm* ~“ !Kl 8m8~“8!$G~r ,r 8;E!

2G~r 8,r ;E!* %. ~24!

For simplicity, we will denote the~real and positive! diago-
nal elements of this matrix as the (l ,m) multipole currents
Jlm(E): Jlm(E)5Jlm,lm(E). For free propagation, these cu
rents are readily evaluated@23#:

Jlm
(free)~E!5

M

4p2\3
k2l 11. ~25!

The characteristic power-law dependence of the scatte
rate near the threshold is known as Wigner’s law@24#.

In the case U(r )50, all off-diagonal elements
Jlm,l 8m8

(free) (E) are zero, and the total current in Eq.~23! be-
comes a simple sumJ(free)(E)5( lmul lmu2Jlm

(free)(E). This is
due to the angular symmetry of the HamiltonianH: Assume
that the generator of a rotationL commutes withH; then, it
will also commute with the resolvent operatorG5@E2H
1 ih#21. Consequently, if the source statesus& andus8& are
eigenstates ofL with different eigenvalues, the mixed matr
element^suGus8&, and hence its contribution to the tot
currentJ(E) in Eq. ~8!, is bound to vanish. If the potentia
U(r ) is invariant merely with respect to rotations around t
z axis ~such as in the ballistic problem discussed in detai
Sec. III!, orthogonality with respect to different values ofm
prevails:Jlm,l 8m8(E)50 for mÞm8.

Finally, we set out to extend the Tersoff-Hamann desc
tion ~11! of the current to cover the case of multipole po
sources. According to Eq.~7!, the currentJlm(E) for a source
located at R is formally given by Jlm(E)
52p^RuKlm* (p)d(E2H)Klm(p)uR&/\. Expanding this ex-
pression again into a complete orthonormal set of eigenfu
tions ucfi& of H, we find

Jlm~E!5
2p

\ (
fi

d~E2Efi!uKlm~“ !cfi~R!u2. ~26!
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Therefore, the multipole currentsJlm(E) ~26! are propor-
tional to the local density of the respective spherical ten
gradients of the eigenstates of the HamiltonianH at energyE
and positionR.

III. BALLISTIC MULTIPOLE WAVES AND CURRENTS

So far, we applied the multipole wave approach to fre
propagating particles, where it merely reproduces the w
known results of partial-wave decomposition@13#. In this
section, we will tackle a less trivial problem, the propagati
of a multipole scattering wave accelerated by a homo
neous force fieldF5Fêz , i.e., in the presence of a linea
potential U(r )52Fz. ~Subsequently, we will refer to the
dynamics in this environment as quantum ballistic motio!
As an analytical expression for the corresponding Gre
function G(r ,r 8;E) ~3! is available, the developments o
Sec. II B allow us to present the solution to the ballis
multipole problem in closed form. Applications of the theo
to physical phenomena under current study are presente
Secs. IV and V.

A. The ballistic Green function

As an extension of the method of Green functio
G(r ,r 8;E), the multipole source approach requires know
edge of the latter for a given background potentialU(r ).
However, only for a scarce number of realistic, thre
dimensional potentials the Green function is known in clos
form. Besides free propagation, this selection comprises
Coulomb potentialU(r )5a/ur2Ru @25,26#, the isotropic
harmonic oscillator@27#, the homogeneous magnetic fie
@28,29#, and parallel electric and magnetic fields@3,30#. For
the ballistic problem, an analytic expression for the Gre
function was derived independently by several auth
@31–33#:

G~r ,r 8;E!5
M

2\2

1

ur2r 8u
@Ci~a1!Ai 8~a2!

2Ci8~a1!Ai ~a2!#, ~27!

where the argumentsa6 of the Airy functions Ai(u),
Ci(u)5Bi(u)1 iAi( u) @34# are given by

a652b@2E1F~z1z8!6Fur2r 8u#. ~28!

~A rather elementary derivation of this result is presented
Ref. @5#.! Here, b denotes an inverse energy scale of t
system that varies with the force strengthF:

b5~M /4\2F2!1/3. ~29!

It is convenient to introduce dimensionless quantities for
energy, time, position, and momentum variables,

r5bFr , e522bE,

k5k/bF, t5t/2\b. ~30!
1-4
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@The components ofr will be denoted byr5(j,y,z)T.# We
state two helpful integral representations of the Green fu
tion ~27! in this notation. The first follows from a Laplac
transform of the time-dependent ballistic propaga
K(r ,tur 8,t8) @4#:

G~r,r8;e!522ib~bF !3E
0

` dt

~ ipt!3/2

3ei [( r2r8)2/t] 1 i t(z1z82e)2 i t3/12, ~31!

while the second form features the propagator in momen
space:

G~r,r8;e!52
ib~bF !3

4p3 E
0

`

dte2 i et2 i t3/12E d3kE d3k8

3e2 i (k•r1k8•r8)2 i (k2k8)2/16d~k1k812têz!.

~32!

Finally, we point out a useful internal symmetry of th
ballistic problem. From Eqs.~27! and ~28!, we infer that
G(r ,r 8;E) is a functional of the variablesr2r 8 and E
1Fz8 only. This combined translational symmetry resu
from the uniformity of the force field, where a shift of th
source position merely alters the potential energy of
emitted particles. We may take advantage of this invaria
to relocate the source to the origin@4#:

G~r ,r 8;E!5G~r2r 8,o;E1Fz8!. ~33!

Furthermore, the exclusive dependence on these varia
allows us to replace derivatives ofG(r ,r 8;E) with respect to
the source locationr 8 by derivatives with respect tor and the
energyE. One easily verifies that

“8G~r,r8;e!52S ]

]j
,

]

]y
,

]

]z
12

]

]e D T

G~r,r8;e!.

~34!

We will summarizingly refer to the exchange of derivativ
in Eq. ~34! as the substitution rule for the ballistic Gree
function.

B. Multipole Green functions

We now characterize the multipole Green functio
Glm(r ,r 8;E) ~17! of the ballistic problem. In view of the
translational symmetry~33!, we remark in advance that
suffices to discuss the caser 8→o; the general expression fo
Glm(r ,r 8;E) then follows by properly adjusting the position
r , r 8, and the particle energyE.

By definition ~17!, the multipole Green function is th
spherical tensor gradientKlm(“8) of the ballistic Green
function G(r ,r 8;E) ~27!. Since this differential operator re
duces to a polynomial in momentum space, it is advan
geous to employ the integral representation~32! in perform-
ing the differentiation. In the limitr 8→o, this procedure
yields after a suitable shift in the remaining momentum
04360
c-

r

m

e
e

les

-

-

tegration variableq5k1têz12r/t:

Glm~r,o;E!5
b~ ibF ! l 13

4p3 E
0

`

dtei (r2/t)2 i (e2z)t2 i t3/12

3E d3qKlm~q1têz22r/t!e2 i tq2/4.

~35!

The latter integral involves the product of a Gaussian wit
polynomial expression and hence allows for evaluation
closed form. To this end, we first expand the shifted h
monic polynomialKlm(q1têz22r/t) into a spherical series
with respect toq, as demonstrated in Appendix A. Since th
Gaussian part is isotropic, the only contribution to the in
gral stems from the term withl5m50 in the series~A1!,
rendering the calculation trivial. Furthermore, by a repea
application of the translation theorem for harmonic polyn
mials ~A3!, we may separate the spatial and temporal dep
dence in the argument of the remaining functionKlm(têz
22r/t). We then finally obtain a spherical series inr for the
momentum integral in Eq.~35!:

E d3qKlm~q1têz22r/t!e2 i tq2/4

5
8p3/2

~ i t!3/2
~2 i ! l (

j 5umu

l

2 jTjlm~ i t! l 22 jK jm~r!,

~36!

where the translation coefficientsTjlm are given by Eq.~A4!.
At this point, it proves convenient to introduce a set of au
iliary functionsQk(r,z;e) via

Qk~r,z;e!5
i

2pAp
E

0

` dt

~ i t!k11/2

3expH i Fr2

t
1t~z2e!2

t3

12G J . ~37!

Despite their rather involved appearance, for integerk these
integrals can be systematically evaluated in closed fo
yielding sums over products of Airy functions, as detailed
Appendix B 1.†Incidentally, apart from a constant prefacto
the functionQk(r,z;e) equals the ballistic Green function i
2k11 spatial dimensions@5#. E.g., a comparison with Eq
~31! reveals thatG(r,o;e)524b(bF)3Q1(r,z;e).‡ From
Eqs. ~35!–~37!, we then infer that the ballistic multipole
Green functionGlm(r ,o;E) in the original coordinates is
given by

Glm~r ,o;E!524b~bF ! l 13 (
j 5umu

l

~2bF ! jTjlmK jm~r !

3Q2 j 2 l 11~bFr ,bFz;22bE!. ~38!
1-5
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The explicit expressions obtained from Eq.~38! quickly be-
come cumbersome with increasing multipole orderl. While
the s-wave function G00(r ,o;E)5G(r ,o;E)/A4p is dis-
played already in Eq.~27!, here we merely state formulas fo
the p waves in ballistic scattering@23#:

G10~r ,o;E!5A3

p

b3F2

r 3
$z@Ci~a1!Ai 8~a2!

2Ci8~a1!Ai ~a2!#12bFr †b@z~2E1Fz!

2Fr 2#Ci~a1!Ai ~a2!1zCi8~a1!Ai 8~a2!‡%,

~39!

G1,61~r ,o;E!5A 3

2p
b3F2

x6 iy

r 3
$Ci8~a1!Ai ~a2!

2Ci~a1!Ai 8~a2!22bFr

3†Ci8~a1!Ai 8~a2!

1b@2E1Fz#Ci~a1!Ai ~a2!‡%. ~40!

@The argumentsa6 of the Airy functions have been define
in Eq. ~28!.# The expressions for higher multipole order a
however, quickly calculated by means of Eq.~38!.

Despite being exact for all values of the parameters,
complicated structure of the explicit solutions~38! to the
ballistic multipole problem limits their practical use. Fort
nately, comparatively simple asymptotic approximations
the vicinity of the source as well as for the far-field limit a
available. In the caser→o, we may invoke the asymptoti
form of Qk(r,z;e), Eq.~B6! together with Eq.~A4!, to show
that Glm(r ,o;E) indeed conforms to the universally vali
local behavior of multipole Green functions displayed in E
~19!.

The presence of the uniform force fieldF breaks the or-
bital symmetry of the multipole waves~38! in the far-field
regionz→`. While the invariance for rotations around thez
axis is retained, and the Green functionsGlm(r ,o;E) are
eigenfunctions ofLz , the external potential bends the sca
tering waves in the direction of force, where they form
particle beam centered around thez axis that continues to
spread in the lateral directions, while its density profi
settles into an invariant shape that reflects the orbital st
ture of the source.~Images of the spatial emission pattern a
depicted in Sec. IV.! We are thus interested in the asympto
behavior of Eq.~38! in the vicinity of thez axis, i.e., in the
limit a1→2` ~28!, while a2 remains finite. Its systemati
evaluation by a saddle-point technique is covered in R
@23# and will not be repeated here; we merely cite its rat
simple result

Glm~r ,o;E!;2
b

2
~2ibF ! l 13

Ci~a1!

A2a1

~21!mZlm~a2!

~41!

that involves again a harmonic polynomial operator throu
Zlm(a2),
04360
,

e

r

.

-

c-

f.
r

h

Zlm~a2!5KlmS bFx

A2a1

,
bFy

A2a1

,i
]

]a2
D Ai ~a2!. ~42!

Note that all multipole waves share a common propaga
factor, whereas the asymptotic beam profile is contained
the derivativeZlm(a2). Explicit expressions fors and p
waves are tabulated in Sec. IV B.

C. The ballistic multipole current density

In a second step, we continue our analysis of ballis
scattering with the associated current-density distribut
j (r ) ~21!. We find this quantity fromGlm(r ,o;E) ~38!
through differentiation, and the calculation of the exact m
trix elementsj lm,l 8m8(r ,o;E) is tedious yet straightforward
~A formula for thes-wave componentj 00,00

(z) (r ,o;E) is stated
in Ref. @4#.! Here, we confine our attention to the curren
density profile in the asymptotic sectorz→` that has been
recorded experimentally@6,7#. In this limit, the current dis-
tribution j (z)(r );r(r )v(z) is proportional to the probability
densityr(r )5ucsc(r )u2 in the scattering wave, wherev(z)
5A2Fz/M is the classical velocity of the accelerated pa
ticles. Using Eqs.~41! and~42!, we find the far-field current
distribution, valid fora1→2`, while a2 ~28! is bound:

j lm,l 8m8
(z)

~r ,o;E!;2
b~2bF ! l 1 l 815

4p\a1
i l 82 l~21!m1m8

3Zlm~a2!* Zl 8m8~a2!. ~43!

The resulting expressions forl 50,1 are employed in Sec
IV B. Several semiclassical approximations to this res
have appeared in the literature@6,35–38#, generally based on
the Hamilton-Jacobi theory of uniformly accelerated moti
@5#. Here, we briefly examine the current-density profile on
detector screen placed at large distancez→` as a function of
the lateral deviationR5Ar 22z2. ForE.0, within the range
of classically allowed motiona2,0, a circular disk of
asymptotic radiusRcl

2 54Ez/F, particles of energyE may
travel along two different parabolic trajectories from th
sourcer 85o to their end pointr : Classical paths leaving th
source under opposite angles (u,f), (p2u,f) will asymp-
totically share the same destination (R5Rcl sinu,f) on the
screen. Thus, the uniform force field maps the orbital ch
acteristics of the multipole source onto an enlarged den
distribution at the detector~see Fig. 1!.

As in the traditional double-slit setup@39,40#, the pres-
ence of two alternative classical paths in the uniform fo
field environment causes interference between the co
sponding particle waves and imposes a circular fringe pat
in the current profile first recorded experimentally b
Blondelet al. @6,7#. Its details depend on the quantum phas
s6(R,f;E) accumulated along the trajectories (1) and
(2). Three different terms contribute tos6(R,f;E) ~Fig.
1!: First, the trajectories will ‘‘inherit’’ atomic phases
g(u,f), g(p2u,f) reflecting the orbital structure of th
point source; second, particles traveling along the class
1-6
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paths will gather dynamical phases which semiclassically
determined by the respective reduced actionsWcl

(6)(r ,o;E)
52\@(2a1)3/26(2a2)3/2#/3 @5#; and finally, the ‘‘slow’’
trajectory (1) undergoes an additional ‘‘phase jump’’ o
2p/2 due to reflection at the turning surfacea250 @41#.
Denoting the angular amplitude distribution at the source
A(u,f)5uA(u,f)uexp@ig(u,f)#, the semiclassical current
density distributionj z

(sc)(R,f;E) on the screen is given b
the classical differential cross section]scl /]V(R;E)
5Rcl

2 cosu, accounting for the projection properties of th
force field, modulated by an oscillating term representing
combined effects of orbital source structure and dynam
phase (sinu5R/Rcl):

j z
(sc)~R,f;E!5

]V

]scl
~R;E!uuA~u,f!ueis2(R,f;E)

1uA~p2u,f!ueis1(R,f;E)u2. ~44!

For uA(p2u,f)u5uA(u,f)u, i.e., reflection symmetry o
the emission rate with regard to thex-y plane@36#, a sharp
interference pattern emerges. This condition is always me
pure multipole sourcesd lm(r ) ~15!. In the semiclassical ap
proximation ~44!, the multipole currentj lm,lm

(z) (r ,o;E) ~43!
for z→` reads accordingly@23#,

FIG. 1. Semiclassical ballistic motion in the far-field limi
Within the disk R,Rcl , the two parabolic paths~bold! emitted
under opposite anglesu, p2u will join the point source with the
destination. Unlike the fast path (2), the slow path (1) undergoes
a reflection at the parabolic turning surfacea250. The accumu-
lated phases, together with their initial ‘‘atomic’’ phases inherit
from the source, determine the exact shape of the interference
tern on the screen.
04360
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j lm,lm
(sc) ~r ,o;E!5

Mk2l 11

4p3\3

2l 11

RclARcl
2 2R2

~ l 2m!!

~ l 1m!!

3Pl
mSA12

R2

Rcl
2 D 2

3sinH 2

3 F2bES 12
R2

Rcl
2 D G 3/2

6
p

4 J 2

.

~45!

Here, Pl
m(z) denotes the associated Legendre polynom

@34#, and the upper sign in the interference term applies
even parity, i.e., for evenl 2umu, whereas the lower sign is
valid for odd l 2umu. Under change of parity, the circula
interference ring pattern will reverse.

We now turn to the case of ballistic tunneling (E,0) that
is of considerable theoretical interest, being a rare exam
of a tunneling process in three spatial dimensions yielding
an analytic solution. For the sake of brevity, however,
omit a systematic study here@23#. Rather, we adopt a simpl
heuristic approach that might be dubbed ‘‘analytic continu
tion.’’ ~The case ofs-wave ballistic tunneling has been ex
amined in Ref.@5#.! We formally take over the former resu
of Eq. ~45! valid for E.0, and replace the negative ‘‘clas
sical radius’’Rcl

2 by its absolute valueRtun
2 54uEuz/F; quan-

tities derived from it change accordingly, and the geometri
interpretation is lost. Moreover, the tunneling action fun
tional, and hence the phase along the ‘‘trajectories,’’ becom
complex@5#. Since the wave function must decay expone
tially, the dynamical phases(R,f;E) is uniquely specified
in the tunneling regime, and interference is absent. Fo
pure multipole sourced lm(r ) ~15!, we finally obtain with the
evanescent momentum\k5A2M uEu:

j lm,lm
(tun) ~r ,o;E!5

Mk2l 11

16p3\3

2l 11

RtunARtun
2 1R2

~ l 2m!!

~ l 1m!!

3UPl
mSA11

R2

Rtun
2 D U2

3expH 2
4

3 F22bES 11
R2

Rtun
2 D G 3/2J .

~46!

@Unlike the Legendre polynomialPl
m(z) itself, its modulus

uPl
m(z)u2 remains single valued for realz.1.#
It is instructive to examine the paraxial limitR→0 of Eq.

~46!. This yields the following approximation to
j lm,lm
(tun) (r ,o;E), valid for small lateral distancesR @5#:

j lm,lm
(tun) ~r ,o;E!;

Mk2l 11

16p3\3

~2l 11!~ l 1umu!!

22umu~ umu! !2~ l 2umu!!

R2umu

Rtun
2umu12

3expS 2
kR2

2z
2

k3

6~bF !3D . ~47!

at-
1-7
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For a simple interpretation, we note that the exponential te
exp@2k3/6(bF)3# equals the WKB penetration factor for
one-dimensional linear potential ramp, while the prefac
(R/Rtun)

2umu covers the effect of centrifugal repulsion. It
worth noting that the tunneling current distribution posses
approximately Gaussian form,Jz

tun(R,f;E)}exp(2kR2/2z):
Remarkably, the shape of the lateral current profile is larg
independent of the force strengthF. This prediction is ex-
perimentally confirmed in field emission from ultrasharp ti
@42#.

D. Total ballistic multipole currents

Finally, we derive the total currentJ(E) ~23! carried by a
ballistic scattering wave. Its matrix elementsJlm,l 8m8(E)
~24! follow from the Green functionG(r ,r 8;E) ~27! by dif-
ferentiation and a subsequent limiting process, as discu
in Sec. II B. Ahead, we note that due to the rotational sy
metry of the force field, the total current matrix is diagon
with respect to the quantum numberm, Jlm,l 8m8(E)50 for
mÞm8.

As the multipole formalism invokes spherical tensor g
dients Klm(“) ~24!, it is again favorable to use th
momentum-space representation of the ballistic Green fu
tion G(r ,r 8;E) ~32! in the actual calculation. Then, the di
ferentiation and limit operation are trivial, and the matr
elements of the total current read in integral form

Jlm,l 8m8~E!5
b~bF ! l 1 l 813

2p3\
ImF i l 2 l 811E

0

`

dte2 i et2 i t3/12

3E d3qKlm~q2têz!*

3Kl 8m8~q1têz!e
2 i tq2/4G . ~48!

Next, the momentum and temporal contributions in the ar
ments of the harmonic polynomials appearing here are
entangled by means of the translation theorem~A3! ~see Ap-
pendix A!. This renders the angular integration in Eq.~48!
straightforward, and the remaining momentum integral is
Gaussian type, leaving only the temporal integral to
evaluated. We may display it as a sum over the auxili
functions Qik(e)5 limr,z→0 Im@Qk(r,z;e)# closely related
to the expression~37! introduced in Sec. III B:

Qik~e!5ImF i

2pAp
E

0

` dt

~ i t!k11/2
e2 i et2 i t3/12G . ~49!

~A similar set of functions is discussed in Ref.@43#.! Their
properties, in particular, their resolution into products of A
functions, are discussed in Appendix B 2. With the definiti
~49!, the total ballistic multipole currentsJlm,l 8m8(E) ~24!
finally read
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Jlm,l 8m8~E!5dmm8

M

2p\3
~bF ! l 1 l 811~21! l 1 l 8

3 (
j 5umu

min(l ,l 8)

2 j~2 j 11!!! TjlmTjl 8m

3Qi3 j 2 l 2 l 811~22bE!. ~50!

For l 50,1, these currents are listed in Sec. IV C.
It is instructive to examine the behavior of the curren

Jlm(E) for large values of the energy parametere5
22bE. ~We treat diagonal matrix elements only.! We have
to distinguish between two mathematically and physica
rather different cases. First, we consider the limite@1, i.e.,
large negative energies. This corresponds to ballistic tun
ing from a point source, a phenomenon without classi
counterpart. Using the asymptotic series for the auxilia
function Qik(e) ~B12!, the total multipole currentJlm(E)
reads

Jlm~E!;
Mk2l 11

4p2\3

~2l 11!~ l 1umu!!
umu! ~ l 2umu!! S bF

k D 3umu13

3expS 2
k3

6~bF !3D . ~51!

Here,k52bFAe denotes the evanescent particle moment
at the source. As expected, the emission rate drops expo
tially with e. We also note that for fixedl, the current
strength declines with increasing quantum numberumu. This
is evidence for the centrifugal suppression of tunneling~see
above!.

In the classical limit of ballistic motion,k→` ~wherek
52bFA2e, e!21), two terms contribute to the multipol
current Jlm(E) ~see Appendix B 2!: The dominant secula
term is independent of the field strengthF and just repro-
duces the total current for freely propagating partial wav
given by Wigner’s law~25!. The free-particle expression i
modified by an oscillating contribution akin to Eq.~51!:

Jlm~E!;
Mk2l 11

4p2\3 H 12~21! l
2~2l 11!~ l 1umu!!

umu! ~ l 2umu!!

3S bF

k D 3umu13

cosF1

6 S k

bF D 3

1
umup

2 G J . ~52!

The modulation is most effective for linear polarization (m
50). While being suppressed with respect to the secular
by a factork23, its rapidly oscillating behavior still imprints
a conspicuous pattern onto the general trend ofJl0(E): The
current becomes stationary at a series of energy valuesEn l
5@3p(4n12l 21)#2/3/8b (n integer,n.2 l /2), rendering a
‘‘staircase’’ structure in plots ofJl0(E) versus the energyE
~see Fig. 3!. We note that these stationary values coinc
with the appearance of each new dark interference fring
the center of the corresponding current-density profiles~43!
and ~45! as predicted by ‘‘closed orbit theory’’@44#.
1-8
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IV. APPLICATION TO PHOTODETACHMENT PROCESSES

Transcending merely mathematical interest, the multip
wave functions and currents characterizing quantum balli
motion have been assessed recently in experiment, u
electrons accelerated in a homogeneous electric field an
tracold atoms subject to the gravitational force, respectiv
In this section, we briefly describe near-threshold photo
tachment of negative ions in the presence of an external
form field. This problem has been studied extensively th
retically ~see Refs.@35–38,43–50# and references therein! as
well as experimentally@6,7,51–54#. In our opinion, the mul-
tipole source model presents the most coherent, and by
the simplest, description of the photodetachment eff
Here, we direct our attention to near-threshold detachm
into p waves.~The source model fors-wave photodetach
ment in an electric-field environment has been addresse
our previous paper@4#.!

A. Photodetachment as a source problem

In the photodetachment setup, a beam of negativ
charged ions traverses the focus of a laser beam whose
quencyv closely matches the electron affinityE0 of the ion.
Some ions absorb a laser photon and subsequently em
electron of energyE5\v2E0 into a continuum state to
become a neutral atom. In the presence of a homogen
electric field F52eE, these electrons are accelerated
wards either a counter, allowing measurement of the t
photocurrentJ(E) @52–54#, or a spatially resolving detecto
plate that records an image of the photoelectron distribu
j z(r ,o;E) @6,7#. ~We assume that the ion and laser beams
the electric field are oriented mutually perpendicular, a
choose them as thex, y, andz directions of our coordinate
system, respectively.!

In the source formalism~Sec. II!, the photodetachmen
phenomenon is interpreted as the scattering of the ionic e
trons at the quantized electromagnetic laser fieldA, and the
coupling termW52e\2(p•A)/Mc is treated as the interac
tion potential. Assuming that the external electric field a
the laser field do not appreciably disturb the electronic c
figurations of the initial ionic ground stateuc ion& and the
emerging ground-state neutral atomucatom&, we proceed to
project these states, leading to an effective inhomogene
Schrödinger equation for the detached electron~2!

FE2
p2

2M
2Uatom~r !1FzGc~r !5^catomuWuc ion&, ~53!

where p5p1eA/c, and Uatom(r ) denotes the short-rang
interaction between the emitted electron and the remain
neutral atom which can be neglected in leading approxim
tion. ~In the related photoionization effect@38,55#, a long-
range Coulomb attraction between the emitted electron
the emerging ion prevails which must be included in t
external potential:Uext(r )5Fz2e2/r . The additional term
renders the treatment of near-threshold photoionization c
siderably more difficult.! In strong electric fields, the effect
of Uatom(r ) may become important and must be included i
perturbative rescattering series. Similarly, the influence
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the oscillating laser field on the electronic motion may
taken into account by a Floquet series expansion.~The elec-
tron dynamics in the laser field becomes dominant only
extreme intensities where it causes a wealth of new phen
ena, e.g., high-harmonic generation@56,57#.! A comprehen-
sive study of these corrections is performed in Ref.@43#.
However, for moderate fields and laser intensities, and
quencies close to the detachment threshold, they may
safely ignored.

In order to fit the problem to the ballistic multipole for
malism ~Sec. III!, we approximate the source terms(r )
5^catomuWuc ion& in Eq. ~53! by a properly chosen multipole
point source~15!. To this end, we first note thats(r ) is
limited in extension to the size of the parent ion and thus
small compared to the initial wavelength of the photoele
tron. The details of the source structure then may be c
densed into a single parameter, the source strengthC. ~Oth-
erwise, finite-size effects have to be taken into considerat
For Gaussian sources, the deviation from the point sou
behavior has been studied in detail@4#. See also Sec. V.! This
leaves only the multipole character of the source to be de
mined, which in turn is fixed by the selection rules for dipo
radiation. Since emission into channels of higher angu
momentum at energies close to threshold is strongly s
pressed~as exemplified by the Wigner law~25! for freely
propagating particles!, only the lowest permissible multipole
order is appreciably populated. Usually, this effect leads
isotropic emission of the photoelectron (l 50) from the point
source@4,6,7,54#. However, if both the parent ion and th
emerging neutral atom possessS ground states, the photo
electron must carry the spin of the absorbed laser photon
is therefore emitted into ap wave, where the distribution
onto the variousm sublevels is determined by the laser p
larization vectore:

FE2
p2

2M
1FzGc~r !5C~e•“ !d~r !5 (

m521

1

l1md1m~r !.

~54!

~Most prominently, this occurs in the photodetachment
hydrogen ions H2 first studied experimentally by Bryan
et al. @51#.! The problem then immediately yields to a d
scription in terms of the ballistic multipole wave
G10(r ,o;E) ~39! and G1,61(r ,o;E) ~40!, and results for the
ensuing current distributions are presented below.

B. The far-field current profile

Uniform acceleration as a mechanism for two-path int
ference was first established by Fabrikant@35,45#. Demkov
et al. @36# improved on his results, and also realized that
fringe pattern in quantum ballistic motion~Sec. III C! should
be experimentally observable in near-threshold photodeta
ment. This assertion was finally confirmed by Blondelet al.
@6,7# who recorded the photoelectron distribution genera
by various ion beams in a homogeneous electric field wit
spatially sensitive detector plate and in the course establis
a new method for the precise determination of electron
finities ~‘‘photodetachment microscopy’’!. For electrical
1-9
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BRACHER, KRAMER, AND KLEBER PHYSICAL REVIEW A67, 043601 ~2003!
fieldsE of a few hundred V/m and a source-detector dista
z50.514 m, circular fringes with sizes exceeding 1 m
were observed. These experiments were performed on
that detach electrons intos-waves. Due to the low near
threshold photoabsorption rates, photocurrent profiles
p-wave detachment so far have not been measured.
source theory predicts an interesting dependence~54! of
these patterns on the laser polarizatione that is absent in
isotropic emission. We discuss some examples below.

First, however, we briefly comment ons-wave photode-
tachment. In this case, the electron is effectively emitted
an isotropic point sources(r )5Cd00(r ), and its wave func-
tion is thus proportional to the ballistic Green functio
G(r ,o;E) ~27!. The distribution of electrons collected on th
distant detector hence serves as a measure of the corres
ing current densityj (z)(r ,o;E) ~6! which is stated in exac
form in Ref. @4#, and is in very good agreement with expe
ment. For large separation of source and detector, a sim
fied analysis using the far-field approximations~41! and~43!
for the ballistic Green function and its current density
equally suited. Assuming a unit strength source (C51), we
obtain

G00~r ,o;E!;4ib~bF !3
Ci~a1!

A24pa1

Ai ~a2!, ~55!

@wherea6 is defined in Eq.~28!#, while the ensuing current
density matrix element reads

j 00,00
(z) ~r ,o;E!;2

2b6F5

p2\a1

Ai ~a2!2. ~56!

For largez, the electron density varies with the radial di
tanceR like the square of the Airy function Ai@22bE(1
2R2/Rcl

2 )#2, whereRcl
2 54Ez/F ~see Sec. III C!. This for-

mula was used by Blondelet al. @7# to analyze their experi-
mental results.

Now we turn to the case ofp-wave photodetachment. Ac
cording to Eq.~54!, the electron wave functionc(r ) is a
superposition of the l 51 multipole Green functions
G10(r ,o;E) ~39! and G1,61(r ,o;E) ~40! whose relative
weights depend on the laser polarizatione. For our purposes
again their far-field asymptotics~41! suffice,

G10~r ,o;E!;28A3ib~bF !4
Ci~a1!

A24pa1

Ai 8~a2!,

~57!

G1,61~r ,o;E!;64A3b~bF !5
Ci~a1!

A2pa1

~x6 iy !Ai ~a2!.

~58!

Their associated current-density matrix eleme
j 1m,1m8
(z) (r ,o;E) are easily evaluated from Eq.~43!.

Here, we examine four specific setups of the photodeta
ment experiment in detail. Since the laser beam points al
the y axis, the polarization vectore is confined to thex-z
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plane. Some natural choices for it areep5êz ~parallel orp
polarization with respect to the electric fieldE), es5êx ~per-
pendicular ors orientation!, ecirc5(êz1 i êx)/A2 ~circular
polarization!, andetilt5(êz1êx)/A2 ~linearly polarized under
an angle of 45° toE). The corresponding normalized mult
pole sources in Eq.~54! read

sp~r !5d10~r !, ~59!

ss~r !52
1

A2
@d11~r !2d1,21~r !#, ~60!

scirc~r !5
1

2
@2 id11~r !1A2d10~r !1 id1,21~r !#, ~61!

s tilt~r !5
1

2
@2d11~r !1A2d10~r !1d1,21~r !#. ~62!

@Note that scirc(r ) and s tilt (r ) only differ in the relative
phase of their multipole components.# A brief calculation us-
ing Eq. ~43! yields the asymptotic photocurrent-density pr
files generated by thesep-wave sources:

j p
(z)~r ,o;E!;

24b8F7

p2\~2a1!
Ai 8~a2!2, ~63!

j s
(z)~r ,o;E!;

24b10F9

p2\a1
2

x2Ai ~a2!2, ~64!

j circ
(z) ~r ,o;E!;

12b8F7

p2\~2a1!
S Ai 8~a2!2

bFx

A2a1

Ai ~a2!D 2

,

~65!

j tilt
(z)~r ,o;E!;

12b8F7

p2\~2a1!
S Ai 8~a2!21

~bFx!2

~2a1!
Ai ~a2!2D .

~66!

@In a more involved manner, approximations equivalent
Eqs.~63! and ~64! were also derived by Golovinskii@50#.#

We now highlight some properties of these distribution
They are depicted in Fig. 2 for the set of parameters use
Blondel’s experiment@6#, viz., initial electronic energyE
56.0831025 eV, electric-field strengthE5116 V/m, and
detector distancez50.514 m. A concentric arrangement o
the interference rings only occurs forp ands polarization of
the laser beam, where the nodes and maxima are in
changed in the respective images, as predicted in Eq.~45!.
Hence, the fringe pattern encodes information about the
bital structure of the source, in particular, its phaseg(u,f)
@36#. ~In s polarization, the underlying interference pattern
the same as ins-wave photodetachment@4,7#.! Likewise, a
sharply defined interference structure is observed for circ
polarizationecirc ~65!, as this source conforms to the cond
tion outlined in Sec. III C. However, the mirror symmetr
x→2x, present in the other three plots, is conspicuou
broken, as the number of fringes differs on the left and rig
1-10
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BALLISTIC MATTER WAVES WITH ANGULA R . . . PHYSICAL REVIEW A67, 043601 ~2003!
side of the current-density profile. Finally, due to uneq
weightsuA(u,f)u of the interfering trajectories, no clear-cu
ring pattern is present in the tilted caseetilt . Indeed, Eq.
~63!–~66! show that the corresponding image averages
patterns obtained inp and s polarization: j tilt

(z)(r ,o;E)
5@ j p

(z)(r ,o;E)1 j s
(z)(r ,o;E)#/2.

C. The total photocurrent

The total detachment rateJ(E) of photoelectrons as a
function of the electron excess energyE was first examined
experimentally by Bryantet al. @51#, followed by theoretical
approaches mostly based either on integral representatio
the Green function~27! @46,49# or an analysis using Fermi’
golden rule ~10! @44,47#. The ballistic multipole source
model yields a closed expression for all currentsJlm(E) ~50!,
thus obliterating the need for the rather involved calculatio
in the former approaches.

We again briefly comment on the case of isotropic em
sion of the photocurrent. For a normalized source (C51),
we immediately obtain@4,49,58#

J00~E!5
MbF

2p\3
@Ai 8~e!22eAi ~e!2#, ~67!

wheree522bE ~30!. The near-thresholds-wave photocur-
rent spectrum has been recorded with high precision by G
sonet al. @52,54# and is in virtually perfect agreement wit
Eq. ~67!.

FIG. 2. Photocurrent density profiles inp-wave detachment
Clockwise, from left upper image: photoelectron distribution f
parallel ~63! and perpendicular polarization~64! of the laser beam,
profile for circular ~65! and linear polarization, tilted under 45
from the direction of field~66!. The area displayed in each image
1.231.2 mm2. Parameters: source-screen distancez50.514 m, ini-
tial electronic energyE560.8meV, force strengthF5116 eV/m.
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For detachment into ap wave, the general formula~50!
reduces to the expressions

J10~E!5
M ~bF !3

p\3
@2e2Ai ~e!224Ai~e!Ai 8~e!

22eAi 8~e!2#, ~68!

J1,61~E!5
M ~bF !3

p\3
@2e2Ai ~e!22Ai ~e!Ai 8~e!

22eAi 8~e!2#, ~69!

which differ merely in a single prefactor. These curren
were first obtained via Fermi’s golden rule~10! by Slonim
and Dalidchik @43,59#, while integral representations ar
listed in Refs.@44,47,53#. Within the error margins, both ex
pressions again reproduce the experimentalp-wave detach-
ment spectrum by Gibsonet al. @53#.

Due to the cylindrical symmetry of the potential, the tot
photocurrentJ(E) reduces to a linear combination of Eq
~68! and~69! for arbitrary orientation of the polarization vec
tor e ~see Sec. II B!. In particular, the currentJ10(E) is ob-
served inp polarization (eiE), while J1,61(E) prevails ins
polarization (e'E). In both the tilted and circular polariza
tions of the laser beam stated in Eqs.~61! and ~62!, the
multipole currents contribute equal weight:Jcirc(E)
5Jtilt (E)5@J10(E)1J1,61(E)#/2. For illustration, these cur
rents are plotted in Fig. 3. While generally following the
low-field limit given by thep-wave Wigner lawJ(E)}E3/2

~25!, a strong ‘‘staircase’’ modulation is observed inp po-
larization that is absent for thes case, as predicted in
Sec. III D.

FIG. 3. Total current~in arbitrary units! for p-wave photodetach-
ment vs electron excess energyE ~in meV) for an external fieldF
5116 eV/m. Bold line, currentJ10(E) ~68!, observed inp polar-
ization of the laser beam; light line,J1,61(E) ~69!, valid for s
polarization. Circular and tilted polarizations~61! and~62! yield the
same averaged current~dotted line!.
1-11
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V. ATOM LASER WITH ROTATING SOURCE

In an earlier paper@4#, we devised a source model for a
atom laser supplied by an ideal BEC. Let us first summa
some of the results obtained there before we set out to ex
the theory to higher multipoles: We consider a two-st
model for the atom laser, where one magnetically trap
state ~the BEC, acting as a quantum source! is weakly
coupled to a nontrapped state~the atom laser! by a mono-
chromatic radio-frequency field.~Replenishing the sourc
condensate to maintain a truly stationary flux in the at
laser poses difficult technical problems@60#.! We are inter-
ested in the propagation of atoms coherently released f
the condensate in the surrounding gravitational field. Fo
N-particle BEC of isotropic Gaussian shape,

s~r !5AN\Va23/2p23/4e2r 2/2a2
~70!

~where \V denotes the interaction strength!, we found an
explicit expression for the resulting beam wave functi
c(r )5*d3r 8G(r ,r 8;E)s(r 8) @4# that is closely related to
the ballistic Green function~27! itself. Remarkably, in the
far-field sector a ballistic Gaussian source may be repla
by a virtual point source at a position displaced from
center in the direction of forceF. With respect to this virtual
source, we introduce a set of shifted variables depending
the scaled condensate widtha5bFa @whereb is defined in
Eq. ~29!#, and F5mgêz now represents the gravitation
force on a BEC atom

z̃5z12a4, r̃25j21y21 z̃2, ẽ5e14a4. ~71!

Using these variables, the wave function of the atomic be
c(r ) ~4! and the total currentJtot(E) ~7! carried by it are
conveniently expressed in terms of the special functi
Qk( r̃,z̃; ẽ) ~37! and Qik( ẽ) ~49! discussed in Appendix B~cf.
Ref. @4#!:

c~r !524b~bF !3L~ẽ!Q1~ r̃,z̃; ẽ !, ~72!

Jtot~E!5
8

\
b~bF !3L~ẽ!2Qi1~ ẽ !. ~73!

We note that the virtual source strengthL( ẽ) is strongly
energy and size dependent,

L~ẽ!5AN\V~2Apa!3/2e2a2( ẽ24a4/3). ~74!

Below, we use the multipole formalism to obtain closed s
lutions for Gaussian sources with angular momentum. Th
states naturally arise in a rotating condensate. For simpli
we assume that the rotating BEC quantum fluid is in
thermodynamical ground state, where it exhibits a set of v
tices ~at least, one! symmetrically arranged in an extende
lattice structure@11#.

A. Ideal atom laser from a single vortex

Here, we examine the atom laser beam arising in the p
ence of a single vortex with fixed direction in a nonintera
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ing boson gas in an isotropic trap. The wave function of
rotating condensate is then given by a first excited rad
harmonic-oscillator state@61# and drops to zero along th
vortex line.~In practice, the vortex line is not stationary, b
may precess slowly in time@62#.! For simplicity, we will first
align the vortex to the direction of forceêz . The source wave
function s11(r ) is then the oscillator eigenstate with angul
momentuml 5m51. In analogy to the multipole source fo
malism ~Sec. II B!, application of the corresponding spher
cal tensor gradientK11(“) ~13! to the vortex-free BEC
ground state~70! yields this source function

s11~r !5N1K11~“ !s~r !5
AN\V

a5/2p3/4
~x1 iy !e2r 2/2a2

,

~75!

with N15aA8p/3. In general, we define Gaussian multipo
sourcess lm(r ) analogous to Eq.~15! via

s lm~r !5NlKlm~“ !s~r !, ~76!

whereNl
252p3/2a2l /G( l 13/2) is obtained from the normal

ization condition*d3r us lm(r )u25N(\V)2. The source func-
tions thus generated turn out to be the lowest-lying oscilla
eigenstates of (l ,m) spherical symmetry@with energy E
5( l 13/2)\2/Ma2]. @In particular,s00(r )5s(r ) covers the
isotropic Gaussian source~70!.# From Eq.~4!, we evaluate
the wave functionc lm(r ) of the corresponding outcouple
state:

c lm~r !5~21! lNlE d3r 8s~r 8!Klm~“8!G~r ,r 8;E!.

~77!

Here, we integrated by parts to shift the spherical ten
operator to the Green function~27!. The substitution rule
~34! then enables us to further evaluate the integral in te
of derivatives of the known atom laser wave function f
zero angular momentumc(r ) ~72!:

c lm~r !5NlKlm@]x ,]y ,]z2F]E#c~r !. ~78!

Via the differentiation rules~B3! and ~B4!, we may reduce
these derivatives to a sum of the auxiliary functio
Qk( r̃,z̃; ẽ) ~B1!, analogous to the case of multipole poi
sourcesd lm(r ) ~38!. For a single vortex, it suffices to con
sider the sourcess1m(r ) with l 51, umu50,1,

c10~r!54A2b~bF !3aL~ẽ !@2z̃Q2~ r̃,z̃; ẽ !24a2Q1~ r̃,z̃; ẽ !

1Q0~ r̃,z̃; ẽ !#, ~79!

c161~r!578b~bF !3aL~ẽ !~ j̃6 i ỹ !Q2~ r̃,z̃; ẽ !. ~80!

@For a→0, point sources are recovered, and Eqs.~79! and
~80! become proportional to thep-wave multipole Green
functions~39! and~40!.# Note thatc161(r) vanishes on the
z axis: For parallel orientation of vortex and force, the vort
line is preserved in the atom laser profile.
1-12
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BALLISTIC MATTER WAVES WITH ANGULA R . . . PHYSICAL REVIEW A67, 043601 ~2003!
In analogy to Sec. III D, we calculate the overall outco
pling rate as a function of the radiation frequency detun
(E5hDn). According to Eq.~8!, the total multipole current
is available fromJlm(E)522 Im@^s lmuGus lm&#/\. In prac-
tice, the calculation is best carried out in momentum spa
where both the Gaussian multipole source~76! and the bal-
listic propagator~32! take on a particularly simple form
Like the point-source currents~50! ~to which they reduce as
a→0), the Gaussian multipole currents are expressed u
the auxiliary functions Qik( ẽ) ~49! covered in Appendix B 2.
Within the l 51 triplet, they explicitly read

J10~ ẽ !5
32

\
b~bF !3a2L~ẽ!2@Qi2~ ẽ !18a4Qi1~ ẽ !

24a2Qi0~ ẽ !1 1
2 Qi21~ ẽ !#, ~81!

J161~ ẽ !5
32

\
b~bF !3a2L~ẽ!2Qi2~ ẽ !. ~82!

Thanks to the preserved rotational symmetry of the syst
all total current matrix elementsJlm,l 8m8( ẽ) with mÞm8
vanish, as indicated in Sec. II B.

For extended condensates (a@1), we may replace the
functions Qik( ẽ) by their asymptotic series~B12!. Further
expanding the currents around their maximum neare50, we
obtain their large-source approximations

J10~ ẽ !;NApb\V2
e2

a3
e2e2/4a2

, ~83!

J161~ ẽ !;2NAp\V2
b

a
e2e2/4a2

. ~84!

As expected from our earlier results for a simple Gauss
source@4#, these currents can be interpreted as the integr
condensate density along a slice through the BEC at a he
z fixed by the ‘‘resonance condition’’E1Fz50 ~Franck-
Condon principle!:

Jlm~E!;
2p

\ E d3r us lm~r !u2d~E1Fz!. ~85!

~A semiclassical derivation of the ‘‘slicing approximation’’ i
presented in Ref.@63#.! Equation~85! evidently fulfils the
sum rule~9! for the total outcoupling rate.

For illustration, we consider two orientations of the vort
with respect to the gravitational forceF. A vortex parallel to
the field is simply represented by the Gaussian conden
wave functions11(r ) Eqs.~75!, and the ensuing laser bea
characteristics are expressed in Eqs.~80! and ~82!. We also
examine the case of a vortex along thex axis, i.e., perpen-
dicular toF. The corresponding BEC source functions1'(r )
is connected to the parallel vortex model by a rotat
exp(2ipL̂y/2). Application of thel 51 rotation matrix for
angular-momentum eigenstates@64# yields the following
source term@cf. Eq. ~61!#:
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s1'~r !5
1

2
@s11~r !1A2s10~r !1s1,21~r !#, ~86!

with a corresponding superposition of Eqs.~79!, and~80! as
beam wave functionc1'(r ) and an associated total curren

J1'~ ẽ !5
1

2
@J10~ ẽ !1J1,61~ ẽ !#. ~87!

Figure 4 depicts atom laser density profiles generated by
ideal 87Rb BEC of widtha52 mm at a distancez51 mm in
the center of the resonance (Dn50 kHz) as well as for posi-
tive and negative detuning (Dn564 kHz). For this choice
of parameters,a'3.33, so the effective energyẽ54a4 ~71!
of the assigned virtual point source indicates tunneling em
sion. According to the results presented in Sec. III C,

FIG. 4. Atom laser density profiles for a rotating87Rb BEC
source sustaining one vortex. Left column: parallel orientation
vortex line and forceF, with sources11(r ) ~75!. Right column:
vortex perpendicular toF, as given bys1'(r ) ~86!. The detuning
frequenciesDn are 24 kHz ~top row!, 0 kHz ~center row!, and
14 kHz ~bottom row!, respectively. The brightest spots of the di
tribution pertain to a density of 2.5 atoms/mm3. Displayed area,
30330 mm2; distance from source,z51 mm: source parameters
a52 mm, V52p3100 Hz, N5106 atoms.
1-13
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expect density profiles of overall Gaussian shape, wit
mean widthD(z)52z̃/k̃ ~47!, wherez̃5(z12a4)/bF and
k̃54bFa2 denote the distance from the virtual source a
the virtual evanescent wave number, respectively.~Alterna-
tively, this result follows from the spreading of a minim
uncertainty wave packet of initial widtha during its time of
flight T5A2Mz/F @5#.! This Gaussian envelope is mod
lated by a factorf (j,y) that depends on the relative orient
tion of the vortex and the gravitational force. A fairly cum
bersome calculation yields for the asymptotic shape of
density profiles generated by the sources~75! and~86! in the
far-field sector, valid fora@1,

r~j,y!;16N~\V!2b5F3a3
f ~j,y!

A2pz~z12a4!2

3expF2S e2

4a2
1

2a2~j21y2!

z12a4 D G , ~88!

where the modulation factorsf 11(j,y) and f 1'(j,y) for par-
allel and perpendicular orientation read, respectively,

f 11~j,y!5j21y2, f 1'~j,y!5
e2

4
1S y2

eAz

2A2a2D 2

.

~89!

@We used the dimensionless coordinates introduced in
~30!.# Clearly, f 11(j,y) effects the propagation of the vorte
in the parallel case. However, the dependence off 1'(j,y) on
the source distancez and the detuningDn52e/2hb renders
the atom laser profiles generated in perpendicular orienta
more intriguing~see Fig. 4!: The detuning-dependent, isotro
pic contributione2/4 competes with a shifted parabolic ter
that grows linearly with the detector distancez. For z
!2a4, detuning blurs the simple vortex image present
center resonance, while forz@2a4 the latter term in Eq.
~89! dominates, causing the appearance of a node line in
profile whose relative position shifts linearly with the detu
ing n. The transition between these markedly different
gimes of the atom laser occurs at considerable distance
the BEC. In our example,z52a4 holds at a separationztr
'150 mm, so the far-field behavior is shown in Fig. 4. How
ever, for larger sources, this characteristic distance quic
reaches macroscopic dimensions: Fora510 mm, we find
ztr'10 cm.

We now turn to the frequency dependence of the to
outcoupling rate. Sincea@1, use of the asymptotic descrip
tion ~85! is in order. In Fig. 5, we show the resulting curre
characteristics for both condensate orientations. While
parallel orientation the current distribution is simply Gau
ian, it features a dip in the total current atDn50 for a vortex
line perpendicular to the gravitational field. This behavior
easily understood from Eq.~85!: Due to the presence of th
vortex line in the slicing plane, atz50 the condensate den
sity adopts a minimum. We note that the slicing approxim
tion fails for small condensates~with a;1) and it becomes
necessary to use the exact results~81! and ~82!. The transi-
tion between both regimes is studied in detail in Ref.@4#.
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B. Vortex lattices

Using the tools developed in the preceding section,
proceed to give an example of a multipole source wh
larger values of the angular momentum are present. Rota
Bose-Einstein condensates show superfluid behavior and
spond to an externally induced rotation by formation of
vortex lattice@10–12,65#. ~For a review on vortices in BECs
see Ref.@61#.! No attempt at a description of the formatio
and parameters of this lattice will be made. Rather,
present a theoretical model for a stationary atom laser s
plied by an already formed vortex lattice, with vortex line
oriented parallel to the gravitational fieldF. The wave func-
tion of the lattice state~the laser source! is most conveniently
modeled in the rotating reference frame~RF!, where it be-
comes time independent; we denote it bys latt,rf(r ). However,
the laser is observed in the laboratory frame~LF! and hence
we first discuss the transformation between both frames.

In the lab frame, the RF source functions latt,rf(r ) be-
comes explicitly time dependent. The transformation b
tween both frames of reference involves a uniform rotat
around thez axis with frequencyV rot , which is generated by
the unitary operator exp(2iLzVrott/\). The full time-
dependent LF source term consequently readss latt,lf(r ,t)
5e2 iEt/\e2 iL zVrott/\s latt,rf(r ). Here, decomposition of the
sources latt,rf(r ) into a superposition of eigenstatessm,rf(r )
of Lz makes sense:

s latt,rf~r !5(
m

sm,rf~r !. ~90!

Thus, in the laboratory frame, the rotating source funct
appears split into stationary componentssm,rf(r ) shifted in
energy. WithEm5E1m\V rot , we obtain

s latt,lf~r ,t !5(
m

e2 iEmt/\sm,rf~r !. ~91!

The laser wave function resulting from a time-depend
source in the presence of the gravitational field is genera
by the ballistic propagator~31!:

FIG. 5. Total current generated per atom in a87Rb BEC with
one vortex as a function of the detuning frequencyDn. Solid line:
vortex line parallel to the gravitational fieldF. Dashed line: vortex
line perpendicular toF. Parameters:a52 mm, V52p3100 Hz.
1-14
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c latt,lf~r ,t !52
i

\E d3r 8E
2`

t

dt8K~r ,tur 8,t8!s latt,lf~r 8,t8!.

~92!

The propagator representation of the ballistic Green func
~31! then finally yields the beam wave function

c latt,lf~r ,t !5(
m

e2 iEmt/\cm,rf~r !, ~93!

wherecm,rf(r )5*d3r 8G(r ,r 8;Em)sm,rf(r 8) ~4!. The rotating
source function thus allows a description in terms
G(r ,r 8;E) ~Sec. III!. We note that bothcm,rf(r ) and its
sourcesm, lf(r ) are eigenfunctions ofLz : Like the BEC, the
atomic beam profile rotates uniformly with frequencyV rot .

Next, we characterize the source functions latt,rf(r ) for the
vortex lattice. This state of the BEC is commonly describ
as a superposition of angular-momentum eigenstates o
harmonic oscillator@66,67#. The number of vortices and the
positions are available from minimizing the energy fun
tional in the rotating frame. For a parallel arrangement
vortices and fieldF, we may model the vortex state as
product of a two-dimensional ‘‘lattice function’’s2D(x,y)
detailing the vortex positions (xk ,yk) with a Gaussian enve
lope enforced by the harmonic trap potential. Introduc
complex coefficientsvk5xk1 iyk , the lattice function is ob-
tained as a product involving all vortex positions that alt
natively may be expressed as a polynomial in (x1 iy),

s2D~x,y!5)
k51

n

@~x1 iy !2vk#5 (
k50

n

wk
(n)~x1 iy !k.

~94!

The coefficientsvk andwk are linked via the recursion rela
tion wk

(n)5wk21
(n21)2vk11wk

(n21) (w0
(0)51). ~Usually, these

lattices possess elements of symmetry which enforce se
tion rules on thewk , leaving only few nonvanishing coeffi
cients.! The complete three-dimensional source function
the rotating frame then reads

s latt,rf~r !5Nn expS 2
x21y2

2ax
2

2
z2

2az
2D s2D~x,y!. ~95!

The constantNn is determined by the normalization cond
tion *d3r us(r ) latt,rfu25N(\V)2:

Nn5
AN\V

p3/4Aaz(
k50

n

k! uwk
(n)u2ax

2k12

. ~96!

Equation~94! then yields the decomposition ofs latt,rf(r ) into
eigenstatessm,rf(r ) of Lz ~90!:

sm,rf~r !5Nnwm
(n)~x1 iy !m expS 2

x21y2

2ax
2

2
z2

2az
2D .

~97!
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Thus, alln11 source components are eigenstates of the
monic trap potential, and the highest quantum numberm
equals the number of vortices present in the BEC.

For the special case of an isotropic trap (ax5az5a), the
theory outlined in the preceding section provides both o
coupling rate and beam profile in analytic form. Since t
componentssm,rf(r ) ~97! then simultaneously present eige
states ofLz and the total angular momentumL2 with quan-
tum numberl 5m, the source is entirely made up of circula
Gaussian multipole statessmm(r )5NmKmm(“)s(r ) ~70!
and ~76!:

sm,rf~r !5CnAm!wm
(n)amsmm~r !. ~98!

~Here, we setCn
25@(k50

n k! uwk
(n)u2a2k#21.! According to Eq.

~93!, the rotating beam is thus produced by a weighed su
position of stationary sourcessmm(r ) with effective energy
Em5E1m\V rot . As explained in the introduction to Sec. V
outside the source region each Gaussian multipole so
s lm(r ) ~76! may be mapped onto a corresponding displac
virtual point source of adjusted strengthL( ẽ). This allows to
calculate the wave functioncmm(r ) generated bysmm(r )
along the lines presented in Sec. III B, and the final res
closely resembles the corresponding ballistic multip
Green functionGmm(r ,o;E) ~38!:

cmm~r !52
4b~bF !3

Am!
L~ẽm!@2a~j1 i y!#mQm11~ r̃,z̃; ẽm!,

~99!

where ẽm522bEm14a4 ~71!. Similarly, the total current
Jmm(Em) generated bysmm(r ) is available from a calcula-
tion in the spirit of Sec. III D:

Jmm~Em!5
8

\
b~bF !3~2a!2mL~ẽm!2Qim11~ ẽm!.

~100!

@For m50,1, these expressions reduce to the results~72! and
~73! and ~80! and ~82! presented above.# Substituting Eqs.
~98! and ~99! in Eq. ~93!, the wave function of the rotating
atom laser beam ultimately reads

c latt,lf~r ,t !5Cn (
m50

n

e2 iEmt/\Am!wm
(n)amcmm~r !.

~101!

Due to cylindrical symmetry, all elements of the total curre
matrix Jlm,l 8m8(E) ~24! with mÞm8 vanish~see Sec. II B!.
Therefore, the~stationary! outcoupling rateJlatt(E) reduces
to a properly weighed sum of the ballistic multipole curren
Jmm(Em) ~100!:

Jlatt~E!5Cn
2 (

m50

n

m! uwm
(n)u2a2mJmm~Em!. ~102!

We illustrate these results using a model condensate
turing a symmetrical triangular lattice of 37 vortices 10mm
apart, embedded into a Gaussian source of widtha
1-15
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55 mm. While the frequency dependence of the outcoupl
rate merely shows the familiar Gaussian character~compare
Figs. 5 and 6!, plots of the resulting atom laser profile exhib
rich detail ~Fig. 7!: Tracing the rotation of the source, th
vortex pattern, which is fully transferred from the BEC in
the laser beam, forms an intertwined braidlike struct
along thez axis. It modulates the lateral beam profile whi
now strongly depends on the detuning frequencyDn. The
outcoupling rate varies between the different angu
momentum componentssm,rf(r ) ~98! that make up the
source, as explained in Sec. III C~47!. A negative shift in the
frequency suppresses states with highumu, leading to an ap-
proximate Gaussian shape of the laser profile, whereas p
tive detuning (Dn.0) emphasizes these contributions. T
centrifugal barrier effective for them then produces a ringl
‘‘crown’’ emission pattern.

FIG. 6. Total current per atom in a87Rb BEC with 37 vortices
as a function of detuning frequencyDn. The vortex structure of the
BEC is not visible in the integrated current. Vortex separation in
BEC: 10mm, rotation frequencyV rot52p3250 Hz, outcoupling
strengthV52p3100 Hz, size parametera55 mm.
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VI. CONCLUSION

In our study, we established a systematic approach to s
tering processes that involve nonisotropic emission of qu
tum particles. Starting from the stationary Schro¨dinger equa-
tion ~2! that incorporates a source terms(r ) responsible for
a steady particle flow, we proceeded by analogy with pot
tial theory and introduced pointlike ‘‘multipole sources
d lm(r ) as limiting cases of sources with (l ,m) orbital sym-
metry. These sources, and the scattering waves and cur
generated by them, are available from the conventional D
d singularity and its assigned Green functionG(r ,r 8;E) ~3!
by application of a differentiation operator of suitable sphe
cal symmetry, the spherical tensor gradientKlm(“8) ~Sec.
II B !. The scattering waves emitted by multipole sources
cally show pure (l ,m) angular symmetry, and in the absen
of an external potential, they reduce to the spherical par
waves familiar from conventional scattering theory.

These local-orbital characteristics remain preserved in
external potential that breaks rotational symmetry. The m
tipole waves then describe the propagation of particles
tially emitted in the (l ,m) eigenstate of angular momentum
and thus generalize the notion of a partial wave. We p
formed a detailed study of the linear potential environm
U(r )52r•F, i.e., scattering in the presence of a unifor
force fieldF. This problem allows for an analytical solution
and closed-form expressions for the ballistic multipole wav
Glm(r ,o;E) ~38! and currentsJlm,l 8m8(E) ~50! are assembled
in Sec. III. Uniformly accelerated scattering waves displa
characteristic set of features, including a prominent frin
structure and a modulation of the cross section, that se
classically are attributed to two-path interference in the fo
field, as well as ballistic tunneling.

The theory of ballistic multipole waves directly applies
near-threshold photodetachment processes in an electric-
environment, a topic that recently attracted considerable
terest. The source model directly yields analytical expr

e

we vary
three
nces.
FIG. 7. Beam profiles of an atom laser generated by a rotating BEC sustaining a triangular 37-vortex lattice. From left to right,
the detuning frequency:Dn5210 kHz, 5 kHz, 20 kHz, as marked by dotted lines in Fig. 6. The density in the beam is plotted at
different distancesz5177 mm, 239mm, 300mm from the center of the BEC. The vortex cores are indicated by small tubes at all dista
BEC parameters same as Fig. 6.
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sions for the photocurrent spectrum and the spatial elec
distribution that are in excellent agreement with the availa
experimental data. Our attention was mainly dedicated
p-wave photodetachment, where we discussed the influe
of the laser polarization on the photoelectron current pro
~Sec. IV!.

Somewhat akin to the situation in potential theory, in t
ballistic environment extended sources of Gaussian sh
may be replaced by ‘‘virtual’’ point sources that are shift
from the center of the actual distribution. This mapping
mains feasible for ‘‘Gaussian multipole sources’’s lm(r )
~76!, harmonic-oscillator eigenstates of (l ,m) orbital sym-
metry that are generated by the same differentiation form
ism as the multipole point sourcesd lm(r ). Depending on
their size, these Gaussian multipoles may act as effec
ballistic tunneling sources that display unusual properties
practice, Gaussian wave functions are shared by the atom
an ideal Bose-Einstein condensate trapped in a harmonic
tential. A ballistic tunneling source is then realized by co
tinuous outcoupling of atoms under the influence of grav
leading to the formation of an ‘‘atom laser’’ beam. While
BEC in its ground state simply leads to isotropic emissi
vortices embedded in the condensate will create hig
angular-momentum modes in the laser profile. In particula
BEC bearing a single vortex provides ap-wave ballistic tun-
neling source~Sec. V A!. The particle distribution generate
by it depends strongly on the relative orientation of vort
and gravitational force: In parallel alignment, the vortex
simply preserved in the profile, while the perpendicular se
features a conspicuous detuning-dependent node structu
the atom distribution. Finally, we also discussed the prop
ties of an atom laser outcoupled from a rapidly rotating B
sustaining a vortex lattice~Sec. V B!. The rotating beam
wave function thus created is a coherent superposition
ballistic multipole waves with various angular momenta, a
the resulting laser profile starkly depends on the detun
from resonance, while the total outcoupling rate shows li
variation.
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APPENDIX A: TRANSLATION THEOREM
FOR HARMONIC POLYNOMIALS

In this appendix, we present a formula that allows to e
pand a harmonic polynomialKlm(r1a) with shifted center
into a spherical power series with respect to the origin, i
in the variabler . Since the position variablesr anda in the
argument are interchangeable, the same series will also
nish the expansion ofKlm(r1a) arounda. Hence, we expec
the general form for this series
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Klm~r1a!5 (
l50

l

(
m52l

l

Clm
lm Klm~r !Kl 2l,m2m~a!,

~A1!

where Clm
lm 5Cl 2l,m2m

lm must hold. ~Note that Klm(r ) is a
homogeneous polynomial of orderl, so the orders in the
right-hand side products of harmonic polynomials in E
~A1! must add up tol. Similarly, the sum of their magnetic
quantum numbers must bem.! The coefficientsClm

lm in Eq.
~A1! have been determined in Refs.@23,68,69#:

Clm
lm 5A 4p~2l 11!

~2l11!~2l 22l11! S l 1m

l1m D S l 2m

l2m D .

~A2!

In particular,C00
lm5A4p. ~For um2mu. l 2l, the coefficient

vanishes.!
The general series~A1! simplifies if the shift in the argu-

ment ofKlm(r1a) takes place along the axis of quantizatio
i.e., a5aêz . Then, rotational symmetry around thez axis is
preserved, and the quantum numberm is unaffected by the
translation. Hence, only terms withm5m survive in Eq.
~A1!. Inserting the explicit value Kl0(aêz)
5A(2l11)/4pal @13#, we obtain@17,18#

Klm~r1aêz!5 (
j 5umu

l

Tjlmal 2 jK jm~r !, ~A3!

where the translation coefficientTjlm is given by Eq.~A2!:

Tjlm5A2l 11

2 j 11 S l 1m

j 1mD S l 2m

j 2mD . ~A4!

APPENDIX B: SOME INTEGRALS INVOLVING AIRY
FUNCTIONS

1. The functionsQk„r,z; e…

In the course of our investigation into ballistic multipo
matter waves, integral expressions of the type

Qk~r,z;e!5
i

2pAp
E

0

` dt

~ i t!k11/2
expH i Fr2

t
1t~z2e!2

t3

12G J
~B1!

are frequently encountered. For integer indicesk, this set of
integrals permits explicit evaluation in terms of products
Airy functions. Introducing the Airy Hankel function Ci(u)
5Bi(u)1 iAi( u) @34#, the basic member of this class read

Q0~r,z;e!5Ai ~e2z1r!Ci~e2z2r!. ~B2!

~A proof of this identity using physical arguments is found
Ref. @5#.! From the definition~B1!, two recurrence formulas
for increasing and decreasing value of the indexk are imme-
diately available:

Qk11~r,z;e!52
1

2r

]

]r
Qk~r,z;e!, ~B3!
1-17
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Qk21~r,z;e!5
]

]z
Qk~r,z;e!. ~B4!

From a practical point of view, the expressions thus obtai
become rather unwieldy with growinguku. The following
five-point recursion relation, again easily verified using t
integral representation~B1!, presents a favorable alternativ

r2Qk12~r,z;e!2S k1
1

2DQk11~r,z;e!1~z2e!Qk~r,z;e!

1
1

4
Qk22~r,z;e!50. ~B5!

Finally, we inquire into the asymptotic behavior of Eq.~B1!
in the limit r→0. For k>1, small values oft provide the
bulk contribution to the integral, which allows us to negle
the linear and cubic terms in the exponent of Eq.~B1!. In this
approximation, the integral evaluates to aG function of half-
integer argument@34#:

Qk~r,z;e!;
G~k21/2!

2p3/2r2k21
5

~2k23!!!

2kpr2k21
. ~B6!

The divergence forr→0, however, affects only the real pa
of Qk(r,z;e).

2. The functions Qik„e…

Another important class of functions that regularly a
pears when calculating ballistic total currents is contained
Eq. ~B1! as a limiting case

Qik~e!5 lim
r→0

lim
z→0

Im$Qk~r,z;e!%. ~B7!

Unlike the functionsQk(r,z;e) that are divergent in this
limit for k.0 ~reflecting the multipole source singularity!,
their imaginary parts Qik(e) remain well defined. Obviously
Qi0(e)5Ai( e)2, and all other expressions are available fro
suitably modified recurrences~B3! and ~B4!:

Qik~e!5 lim
z→0

F2
1

2z

]

]zG
k

Ai ~e1z!Ai ~e2z!, ~B8!

Qi2k~e!5 lim
z→0

]k

]zk
Ai ~e2z!2 ~B9!

(k>0). Thus, Ai(e1z)Ai( e2z) and Ai(e2z)2 are generat-
ing functions for Qik(e). In practice, we prefer a recursio
relation adapted from Eq.~B5!,

S k1
1

2DQik11~e!1eQik~e!2
1

4
Qik22~e!50. ~B10!
04360
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Next, we aim to establish the asymptotic behavior of t
functions Qik(e) in the limit ueu→`. We observe that the
integral representation of these functions in Eqs.~B1! and
~B7! may be rewritten as a complex contour integral

Qik~e!5
1

4ipAp
E

C

du

uk11/2
e2eu1u3/12. ~B11!

Here, the pathsC leads along the imaginary axis, avoidin
the singularity at the origin and the cut in the complex pla
which we choose to place onto the negative real axis~see
Fig. 8!.

For large values ofueu, a saddle-point approximation fo
Eq. ~B11! is in order. This poses no problems fore→1`
~tunneling case!. Then, the relevant stationary point of th
exponentS252Ae is readily identified, and shifting the pat
of integration~see Fig. 8! ultimately yields the asymptotic
series,

Qik~e!;
1

2p
~2Ae!2(k11) expS 2

4

3
e3/2D F12

3k219k15

24e3/2

1OS 1

e3D G . ~B12!

The situation is more involved fore→2` ~classically al-
lowed motion!. Here, the saddle points are located atSI,III

FIG. 8. Evaluation of the integral~B11!. The figure displays the
original contourC and its shifted counterparts for large values ofe.
For e.0, the contour is deformed toC2 and runs through the
saddle pointS252Ae. In the casee,0, the contour is split into
three partsCI , CII , CIII that traverse the saddle pointsSI , SIII at
62iAe, but avoid the cut in the complexu plane~gray! by circling
the singularity atu50. The integrand asymptotically vanishes
the shaded sectors.
1-18
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572iAueu, and the direction of steepest descent cuts
imaginary axis under an angle ofp/4. Hence, the integration
path must be deformed to lead into the sector of asymp
cally vanishing integranduarguu.5p/6. Due to the presenc
of the cut in the complex plane, the partial pathsCI , CIII
cannot be simply connected as Re@u#→2`, but must be
linked by an additional path elementCII that loops back
around the singularity located atu50, as indicated in Fig. 8
The latter contribution is asymptotically evaluated by mea
of Hankel’s integral formula@70# that states*CII

ett2zdt

52p i /G(z):

E
CII

du

uk11/2
e2eu1u3/12;2p i

ueuk21/2

G~k11/2!
. ~B13!

This secular part thus obeys a simple power-law depende
v,

D

d,

ys

n

ys

-

s

-
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reminiscent of the Wigner law~25!, while the saddle points
SI , SIII contribute conjugate complex oscillatory terms sim
lar in structure to Eq.~B12!:

E
CIII

du

uk11/2
e2eu1u3/12;

2iAp expS 4i

3
ueu3/2D

~2iAueu!k11
. ~B14!

Rearranging Eqs.~B13! and ~B14!, the leading asymptotic
form for Qik(e) ase→2` follows:

Qik~e!;
1

2Ap

ueuk21/2

G~k11/2!
1

sinS 4

3
ueu3/22

kp

2 D
2p~2Aueu!k11

.

~B15!
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