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Hyperspherical partial-wave theory applied to electron-hydrogen-atom
ionization calculation for equal-energy-sharing kinematics
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Hyperspherical partial-wave theory has been applied here in a new way in the calculation of the triple
differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various
equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute
measurements dfl. Raler, M. Baertschy, and I. Bray, Phys. Rev.48, 2951 (2002] and with the latest
theoretical results of the ECS and CCC calculatighsRader, M. Baertschy, and I. Bray, Phys. Rev(ta be
published] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for
relatively higher energies, are also generally satisfactory, particularly for @ggeeometries. In view of the
present results, together with the fact that it is capable of describing unequal-energy-sharing kirjdmistics
Das, J. Phys. B5, 1165(2002], it may be said that the hyperspherical partial-wave theory is quite appropriate
for the description of ionization events of electron—hydrogen-type systems. It is also clear that the present
approach in the implementation of the hyperspherical partial-wave theory is very appropriate.
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[. INTRODUCTION cross sections down to the threshold. However, differential
cross-section results of this theory are not known. Very re-
In the study of electron—hydrogen-atom ionization colli- cently Rescigno and associates ma@e8] a breakthrough
sion, the simplest three-body ionization problem in atomiccalculation and reproduced for equal-energy sharing and
physics, there are many attempts for a complete solution butonstant angular separatid,,, of the outgoing electrons,
all of these face tremendous difficulties and have only lim-the cross-section results, at low energies, with surprising suc-
ited success. Except for one or two attempts all use timeeess. In these calculations they expanﬂeﬁ) in terms of
independent framework. For accurate information regardingpherical harmonics in four angular variables. Then they
scattering events, one may solve accurately the S@hger  converted the resultant differential equations for the radial
equation for the scattering staté$ ") or w{") (see Newton functions, in two radial variables, into a set of difference

[1] for their definition given by equations over a large network in the radial variables plane.
They used a different technique. Using a complex scaling
HY () =Ew() (1)  procedure they converted the scattering problem as if into a

bound-state problem. Then they solved a huge(seteral

: : - million) of linear equations using very special techniques.
taking account of the appropriate boundary conditions. . ! SR . )

Iogization amplitudespmary)/ then be obtgined either fromUIt'm.a.tely they obtained lonization amplltudes using the flux
the flux condition at infinity or from appropriate projections. _con_dltlon. La.ter[g] they confirmed their results using pro-
In the literature bothp(*+) and\lf%’) have been widely used jection technique. Although the ECS approach reproduced

i .

. : the equal-energy sharing, const&y results perfectly well,
There are a large number of attempts which strives to solve . " ¢ i approach for unequal-energy-sharing kinemat-

for q’ ‘(+) - Among th_ese the mo?‘ successful atempts are th%s are not known. There are also large number of attempts of

v_arlous(cil)ose-couplmg calgulatlorﬁz—él]. n 'Fhese C".’IICUIa' using \If§_) in extracting ionization information. In such

.“OrTS \I.r‘ are expanded in terms of basis fun(;t|ons andcases projection approach has been generally used. There the

ionization mformgﬂon are_extracted from a s_o_ll_Jtlo_n of theionization amplitudes are calculated from

unknown expansion functions. Another possibility is to ex-

pand \Ifi“) in terms of a complete set of functions in the s )

angular variables. In these regards the attempts of Kato and i =(Vis Vil ®). 2

Watanabé¢5,6] are remarkable. They used hyperspherical co-

ordinates and expandeﬂi(+) in terms of hyper-radius de- Brauner, Briggs, and Klarl0] and later Berakdalf11] and

pendent angular functions. Matching with a wave function,Berakdar and co-workefd 2,13 made use of this approach.

which satisfies an approximately correct boundary conditionThey used\If§_) which are asymptotically correcbr nearly

they obtained with remarkable success, the total ionizatiosg but are unlikely to be correct at finite distances. As a
consequence results of these calculations are only moder-
ately accurate. Moreover there are no systematic tractable

*Email address: jndas@cucc.ernet.in way of improving the results.
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An alternative approach for determining the electron atom TABLE I. Total integrated ionization cross sectiofesu) and
collision cross sections is to solve a coupled set of integrathe spin asymmetry parameter. The experimental values of cross
equations for the off-shell-matrix elements. Das and asso- sections are those of Shah, Elliot, and Gilbd®] (the starred
ciates[14—16 have used this approach in the study of vari-numbers are from extrapolatiprECS results are from Rdf8] and
ous electron-hydrogen-atom and electron-helium-atom scatbe CCC results are from Re#]. In the experimental results of the
tering problems by solving the resultant equations in a rathefSymmetry parameter of Crovet al. [53] and Fletcheet al. [54]
crude manner. However, they always obtained moderatel§resented here, the numbers with superscfipor — denote the
good results. There are also attemjiig—24 to improve the available result just a little above or below Fhe energy considered
calculations. Along these lines the most successful calculal®” e exact energy values the corresponding references are to be
tions are the convergent close couplif@CC) calculations ~ Sc&’- FOr 15.6 eV energy, ECS results of earlier calculafighare
of Bray et al. [25—-30. In many contexts they applied the not available, so for this energy we present results from [Réand

- . : indicate it so in the table.
CCC method with surprising success. Their latest resultg’ oo I+ SO 1N the table

[29,3Q claim accuracies comparable with the ECS results at. €V) 30 25 19.6 17.6 15. 6
low energies. However, this approach also has some weak:
nesse$31,32. Total integrated cross sections

Another promising approach for the electron—hydrogen- Present 213 1.82 114 0.83 0.49
atom ionization problem is the hyperspherical partial-wave ECS 179 162 109 0.80 0.38]
approacH 33,34. Details of this approach are given in Ref. ccc 192 157 101 0.75 0.38
[34]. In Sec. Il we also present important features of this Expt. 1.8F% 155 1.00 0.74 0.39
approach. Earlier with an additional approximation of ne-spin Asymmetry
glecting the coupling effects, some results were obtained pregent 031 041 047 055 0.48
[35,36 which are qualitatively not very bad. Recently, this gcg 042 045 051 051 0.52]
approach has been usggl7,3 retaining fully the coupling cce 041 043 050 051 0.53

effects. In solving the relevant coupled set of radial wave

. T ) Expt.
equatg)nk']s gvgr an |n|t|gl letirquDHA]H R—matlrlx [39] ap-I Crowe 028 039 042 047 050"
proach had been used. Although the results were always ... 031 041 040° 050 048

found to be of the correct magnitude, pseudo resonance-type
behavior gave much troubles in extracting correct cross-
section results. To avoid this problem we use a different ap;. - ; -y

. tion. In the hyperspherical partial-wave the is ex-
proach. This appears to be very successful and leads to ve YPersp P OWf

interesting results both for equal-energy-sharing constant: nd_ed in terms of hyperspherical harmonics, WhiCh are
) ) ) 2 unctions of five angular variables. The corresponding radial
®4p kinematics, equal-energy-sharing asymmetric Kinemat;, o5 are functions of one radial variable, the hyperraglius
ICS, af‘d also for unequal-energy-sharmg kinemafies). .only. This proves to be advantageous in numerical computa-
Thus it appears that hyperspherical partial-wave theory Yions, since then the five angular variables range over a
quite appropriate for the study of ionization problems Ofboun’ded compact domain, while only one variaRleanges
electron—hydrogen-type systems. over a semi-infinite domaip0,). It may be noted here that

Most recently, two very broad-based theories have be?@o far nobody could take account of the exact boundary con-

proposed. One of these is the time-dependent cIose—coupImd;,ti . . . .
. : ) on in the asymptotic domain for the accurate solution of
theory [40] and the other is the hypersphericimatrix w{7) | Here we aspire to take account the exact boundary

iti i f
theory[41]. Positions of these theories are not yet very Clear'condition at infinity, in the limit. This is the most novel fea-

ture in the hyperspherical partial-wave theory. Here we may
note that the two plane waves eip(ry)/(2m)¥? and

In the hyperspherical partial-wave theory one uses the@xp(py-r,)/(2m)>? may be decomposed in partial waves as
time-independent framework. In the time-independentusual and then these may be combiriesing a formula in
framework theT-matrix element is given by expressi¢p) Erddyi [42]) to obtain an expansion in terms of hyperspheri-
or alternatively by cal harmonics ¢,(w), in five angular variablesw

=(a,01,¢1,05,¢,). A symmetrized two-particle plane
Tei={(D¢| V| Wy, (3)  wave has the expansidbas[34])

Il. HYPERSPHERICAL PARTIAL-WAVE THEORY

In these expression®; and ®; are the unperturbed initial [exp(ip,-r1+ipy-ro)+(—1)%eXpipy 1 +ipa-ro)]/(2m)3
and final channel wave functions, satisfying certain exact

boundary condition at infinity and that; and V; are the 2 .)\ij(p) o .
corresponding perturbation potentials. For the case of ioniza- =2 ;; it #x (@) x(w), (4)
tion of hydrogen atoms expressi@®) is more appropriate P

for use, since in this case asymptotically corrégtis easily s

available. Many use expressidB), including ECS[9] by ~ Where »,=\+3 and A=Il;+I,+2n [\ also denotes
projection method, but inappropriately, since the corresponde multiplet (4,15,n,L,M) depending on the context
ing ®¢’s they use do not satisfy the correct boundary condi-Here R= \/r21+ rzz, a=arctanf,/ry), r,=(rq,01,%1),
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FIG. 1. (a) TDCS in coplanar equal-energy-sharing constant angular sepa&tjpof the outgoing electrons for incident electron energy
E;=15.6 eV vs ejection anglé, of the slow outgoing electron. Continuous curves, present results; dashed curves, ECY9¢xlits
dash-dotted curves, CCC resul®6,48. The experimental results are the absolute measured valuesdef &cal. [47,48. Present results
have been multiplied by a factor of 0(See text (b) TDCS in coplanar equal-energy-sharing geometry for incident electron efgrgy
=15.6 eV for fixedd, and variabled, of the outgoing electrons. Continuous curves, present results; dashed curves, ECY9&sillts
dash-dotted curves, CCC resul®6,48. The experimental results are the absolute measured valuesdef &cal. [47,48. Present results
have been multiplied by a factor of 0(5ee text (c) TDCS in coplanar equal-energy-sharing with two electrons emerging on opposite sides
of the direction of the incident electron with equal an@leand energye; =15.6 eV. Continuous curves, present results; dashed curves, ECS
results[9,50]; dash-dotted curves, CCC resul6,48. The experimental results are the absolute measured valuesdef &aal. [47,48.
Present results have been multiplied by a factor of(6e® texk

ro=(rs,0,,65). Similarly P=pZ+pZ ag for 1;=I1,=1, (5)
=arctanpy,/p,), Pa=(Pa,0a:ba), Po=(Pb.0.dp), and . . .
- PR ar?gl (L)a): (p(i fgpad) ? 0¢a)¢ ;)b (Po. . 6v) P and a corresponding expression }(wo) (similar expres-
’ 10 0:7arTar Ty Tl sions may be easily derived for product of more than two
s — _— pn LM, > = _anlg+l,—L+S+n plane wavep
bx(@) \/E{P|1|2(a)yll|2(rl’r2)+( 1tz Now the symmetrized wavé{;) may be expanded in

voa n terms of symmetrized hyperspherical harmonigss as
XPL ()Y (T, ) # 1,

_ 2o F(p)
1 ~A () = - A s
= S{1H (=1 ISP @ VM (T1T2)) Vis (Re) 2\/;2 Pale), ©

5
p2
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FIG. 1 (Continued.

Wherngs) satisfy an infinite coupled set of equations

2 (Vv
2 )\( N ) F(S)(R):O

()

for each symmetns (s=0 for singlet ands=1 for triplet)
and for each total angular-momentum(and its projection
M, and so also for a definite parity). In the above expres-
sion

@ F(S)(R)+2

PHYSICAL REVIEW A 67, 042717 (2003
sy =—(#3Cl 3 )P,
and

1 1 1

- — +— = .
COSa  SINa  |r cosa—r,sing|

Equations(7) have to be solved over the semi-infinite do-

main [0,%). Solution in the asymptotic domain is simple.

The equations have nice asymptotic solutions. One may note

that because of conservation rules E@$are decoupled into

sets for fixedu=(L,S,7) and differentN=(l,,l,,n). So

we setF®=f£ and, for the set with fixegk (and dropping

w from f§) we can write Eqs(7) as

d2 2P AONN/
R

_ PZ* M
dR? R?

Nt >

N’

fNr:O (8)

for a solution over the finite domain and

dZ VN(VN+ 1)

dTJZ T 9

ZQEN’
fN+Z TfNr:O

N’

for solution over an asymptotic domain, sgg,~). Next

we consider the solution problem first over an asymptotic
domain[Ry,%) and then over the finite domaji®,Ry]. For

the solutions, the equations and the variables are truncated to
someN,, humbers for eaclu.

A. Solution in an asymptotic domain

The Egs.(9) have two sets of solution§34] in an
asymptotic domaifiRy,*) of the form given by

o0 ( oo
apNsin 6y Ncosak
f<k>N<p>—EO 2 , (10
ot -
* (“sma ” Ocoso
(Wip)=2 Z < an
= = p’

where 6,=p+ «, In 2p and ¢, is thekth eigen value of the
charge matrix A=(ayny) and that the coefficients

al bl ,c{, andd{) are determined from recurrence rela-
tions. Thus the coefficien&}, andb{}, are determined from
the relations

2L (A2 HIPXO =[AA =11 = 1) A= 1(21 = 1)yl ]
X XD —[(21 = 1) ay Ap
FIA 120 =)y (12
and
2[(ADZHIPIY O =[AA (1= DA 1(21 = 1)yl ]
XY D421 - 1) A+ A
—12(1-1)1x{Y, (13
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FIG. 2. (a) Same as in Fig.(®) but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured values
of Roder, Baertschy, and Brg1] and the CCC results are as in REf9]. Here the present results are free from any multiplicative factor.
(b) Same as in Fig. 1b) but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured vatiers of Ro
Baertschy, and Brafs1] and the CCC results are as in REZ9]. Here the present results are free from any multiplicative fa@tpiSame
as in Fig. 1c) but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured valges, of Ro
Baertschy, and Braf51] and the CCC results are as in REZ9]. Here the present results are free from any multiplicative factor.

where theNth components of vectois{’ andY{ are given X, being thekth eigenvector of the charge matdxand| is

by the identity matrix. Solution foc{y’s andd{}’s are similarly
obtained from the above recurrence relations after setting
X@=0andY(?’=X,. In this way we get solution vectors

My —a® (yOy =p®
(XiIn=2agn (Y In= bk 0 andf), of Egs.(10) and (12).

and where B. Solution over a finite domain
Here we consider the solution of Eg®) over a finite
domain[0,R,]. Away from the origin, solution of the equa-
Ac=A—ayl (A an = ag+ vn(vy+1) 18w - LOR,] y 9 q

tions is easy. A Taylors series expansion method suffices for
getting arbitrarily accurate solutions. The main difficulty is
in starting the solution from the origin. Near origin the equa-
tions have analytic solutiond=ock [43]), but these are too
complicated to be useful in numerical computations. In our
earlier calculation$37,38, we usedR-matrix approach for

The initial vectorsx(?) and Y(?) are given by

X=X, V=0,

042717-5
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FIG. 2 (Continued.

getting solutions over an initial interv@D,A] (with A suit-
ably chosen But this approach faces difficulties as
pseudoresonance-type behavior

appears giving much
troubles in determining appropriate solutions. To avoid such

PHYSICAL REVIEW A 67, 042717 (2003

R=A. We divide the interva] 0,A] into m subintervals and
use a five-point difference formdia

le(Rk):

12h2[_fN(Rk72)+16fN(kal)_30fN(Rk)

+ 16f (R4 1) — Fn(Rys2) 1+

h*
__ (i)

(14)

for k=2,3,... m—2, and a formula

1
f(R+h")=2f/(R+2h")— f},(R+3h")+ SR
—4f\(R+h")+6fy(R+2h")— 4f(R+3h")

+fy(R+4h')]+ (15

h4
— —f(vi)
with R=Ry, h’=h for the equation aR=R; andR=R,,,
h’=—h for the equation aR=R,,_4. For continuing solu-
tions from A onward we need first-order derivatives /at
For this we use the simple formula

fU(Rm) =[ — fn(Rm—2) + 24f \(Ry—2) — 128f y(Rpm— 1)

2h
+105f (R 1/(84h) + 7fK.(Rm)

+

4h* )
—1—05fN (&)¢. (16)

The resultant linear set of equations ultimately take the form
SY®=p, (17

whereSis a sparse matrix. We solve these equations by the
biconjugate gradient method4] using routines given in
Ref. [45]. With a suitable choice of a preconditioner, the
iterations smoothly convergavith a few hundred iterations

or even lesgto five or six decimal places for a suitable
choice of error limit(say, 1 in 10 parts. In this way N4
solution vectorsf{ are determined ovef0,A]. The solu-
tions are next continued ovéA,R,] by Taylors expansion
method with stabilizatiof46] after suitable steps, giving so-
lution vectorsf) over[0,R].

C. Matching of the solutions: Determination of ¥{~

For finding the physical solution vectofg, and the scat-
tering state¥{, ), we first define solution matriceg f s,
and {, b;/ putting side by side the corresponding solution
vectorsf, {0 fork=1,2, ... Nmy. Then the physi-
cal solution vectof,, may be defined oveiO,R,] by

N

fph<R>=k§1 9 (R), (18)

difficulties we consider here a different approach. For the

interval[0,A] we consider a boundary value problem . The i1pe results improve considerably,

particularly around the peaks

solution vectorf{?(R) is assumed to have a value 0 at thepeyond®,,/2, when a seven-point difference scheme is used in

origin and thekth column of theN,,, X N,,,x identity matrix at

place of the five-point scheme used here.
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FIG. 3. Same as in Fig.(8) but for 19.6-eV incident electron energy. The relative measured resultsdefrRad co-workerf47—-49 are
normalized as in Ref9].

and ovel| Ry,%) by determined by matching values and first-order derivatives of
the two sides of Eq(20). Then in the asymptotic domain one
Nmx Nmx haS
f(R)= 2 adfl(p)+ 2 dddp). (9
=1 =1 fon=(fsnt feK)C=fsc+feod, (21

2N, of the 3N, unknown coefficients are now determined \where

by matching valuesand first-order derivativesof the two

sets of solutions at a poirRy where all the solutions are d=Kec. (22
valid. The remainind\,,,, unknown coefficients are then de-

termined from the demand thalr%;) actually satisfies the Finally f,, is completely determined once the vectiis
appropriate boundary condition. To facilitate the computa-determined. Nove is determined from the consideration that

tions we first define th& matrix through the relation w{) is asymptotically a distorted plane waipresenting
the two outgoing electronglus incoming waves only. So we
foB="fg t+ K, (20 equate coefficients of the outgoing wave egp(of both

w{) and the symmetrized plane wav4) (except for the
where B is some unknown constant matriChe K matrix  distorting terms exp, In 2p). This gives
thus defined is a little different from that usually defined. But
in any case it should be symmetjidhe K matrix is then c=[1+iK] P, (23
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where values ofl upto 5 proved sufficient. For 17.6 eV calculations
L imliy—lan(S) values ofL upto 7 are found to be necessary. For the other
P=—e™X 0™ (w), energies considered here, valueslolup to 9 have been
included. For fixed I(,S,7) the number of channels, the
number of states with different{,l,,n) triplets, which have
been included, were chosen suitably for fairly converged re-
sults. In any case for fixed {,l,) pairs n was varied from O
&% 1(wo) to 9. In this way convergence with respectrtés obtained.
. The number of [;,l,) pairs, which have been included, are
. (24 somewhat less fot =2 compared to those in the ECS cal-
¢ me(“’o) culation . These pairs are chosen more or less in the order as
in ECS calculationga little different from those of hyper-
spherical calculations of Kato and Watandb®. However,
there could be some better choice. For lower-energies con-
vergence with respect to the increase in channel size is rather
smooth. It is not so for relatively higher energies of 25 eV or
30 eV. Nevertheless we have obtained nearly converged re-
1 1 sults in the cases considered. All the results presented here
fS(wg) = > ?izz— 2 C3(\) &3 (wg). (25 are more or less based on 50 channels calculations. Most of
& R the calculations, reported here, were done on Pentium-III
PCs. Calculations for 15.6 eV energy could not be done on
PCs. Thus the results for 15.6 eV and 17.6 eV, which are
d3o (27)*papp [ 1 12, 3112 presented here, have been derived from the calculations on a
dE.d0.d0, ~ p, 2T+ 71T ] SUN server. It may be further added here that for 15.6 eV the
attraltih ! (26)  SDCS results show that for equal energy sharing case the
calculated SDCS value is about twice the expected value,
By increasing the number of channels,, for each x  although the calculated total cross section appears correct
=(L,S,) one may expect to obtain converged cross-sectiofisee Table)L This is unacceptable. In any case the various
results. cross section results for this energy have been multiplied by
a factor of 0.5 before presentation in the figures. For other
Ill. PRESENT CALCULATION energies, however, we have nearly the correct SDCS values
for equal-energy-sharing situations. Calculation on a larger
In our present calculation, there are two important paramscale with larger values d®,, and with more precise solu-
etersA and R, which are needed to be judiciously chosen.tion of Egs.(17), may decide absolutely the normalization
The parameteA of the initial interval[0,A], for a solution  question of the measured results ofdeoet al. [47,48 for
of the radial equationgd), has been chosen to be 5 a.u. for 15.6 eV energy. Cross-section results for 15.6 eV energy
all the energies considered here. The results do not depemrhve been included here for the sake of completeness.
on A for small variationgof a few a.u) about this value. On
the other hand, the choice of the paramety, the
asymptotic range parameter, is very crucial. Without its ap- IV. RESULTS
propriate choice the asymptotic series solutiti® and(11) _ . . )
are unlikely to converge. Here it is found that for convergent A- Triple differential cross section for constant®,, geometry
asymptotic series solutior, is needed to be such thRg The triple differential cross-section results for equal-
~1/\JE, whereE is the energy in the final channel. Thus for energy-sharing constafl;, geometries are presented in
energies of 30 eV, 25 eV, 19.6 eV, 17.6 eV, and 15.6 eV thisig. 1(a) for 15.6 eV energy, in Fig. @) for 17.6 eV energy
range parametd®, may be chosen greater than the values 6Qand in Figs. 3, 4, and 5 for energies of 19.6 eV, 25 eV, and 30
a.u., 70 a.u., 90 a.u., 120 a.u., and 150 a.u., respectively. WeV. In these figures we have presented the theoretical results
have choserR, around these values in our calculations. of CCC calculation$26,28—-30,49and of ECS calculations
However, for the computation of single differential cross sec{8,50]. Here we have also included the absolute measured
tion (SDCS it is necessary for converged results to vy values of Rder et al. [47,48 for 15.6 eV and the most re-
and extrapolate, as in ECS calculati8] for Ry—. Our  cent remeasureéwith necessary internormalizatipwvalues
limited computational resources restrict us to take sife of Roder, Baertschy, and Brdp1] for 17.6 eV energy. For
value for each energy. Moreover, for arbitrary lafgg un-  other energies the measured respdg| are only relative and
wanted errors are likely to make the results erroneous. Sare normalized as in Ref9]. Our results are generally com-
some optimum choice d®, has to be made for each energy parable with the ECS results in magnitude. For 17.6 eV our
with a few trials. In our present computations this has beemresent results appear most interesting. These are even some-
done. Next we consider the choice lofvalues for inclusion  what better compared to the ECS and CCC resultsfgy
in the calculations for different energies. For 15.6 eV energy=150° and 180°. For these values ©f,,, the 15.6 eV

where X is the matrix consisting of eigenvectors of the
charge matriXA (and is nonsingularand®®* (w,) is given
by

P> (wo)=

In this way the physical radial vectofg,(R) are determined
for eachu=(L,S,7) and ultimately the full(but approxi-
mate scattering stata{) is obtained.

Substituting this expression in E@2) one obtains the
scattering amplitude in the form

The triple differential cross section is then given by
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FIG. 4. Same as in Fig. 3 but for 25-eV incident electron energy. The CCC results are froni28e4§)

results also appear good , particularly in shapes, but confir- C. Triple differential cross sections for symmetric geometry

mation by larger scale calculation is necessary. The 1_9.6-eV In Figs. 1c) and 2c) we have presented TDCS results for
results also appear to be very good. For other energies OW mmetric appearance of the two outgoing electrons relative
results appear less satisfactory in comparison with the ECR, the incident electron direction, for 15.6-eV and 17.6-eV

and CCC results. incident electron energies, for which there are again absolute
measured resultf48,51. For 15.6 eV energy our results
B. Triple differential cross sections for fixed @, geometry agree qualitatively with the experimental results. Here a 70-
channel calculation has been found to be necessary. For 17.6
In Figs. 1b) and 2b) we have compared our results for €V our results do not appear very good. For 15.6 eV energy
equa|_energy_sharing asymmetric geometries with abso|utb0th the ECS and CCC theories underestimate the cross-
measured values of Keret al.[48] for 15.6 eV and Rder, section results considerably. For 17.6 eV energy, however,
Baertschy and Bray51] for 17.6 eV, in which one of the both ECS and CCC theories give good overall representa-
outgoing electrons is observed in a fixed direction while thaf!on-
of the other one is varied. In these cases we again compare
our results with the calculated results of ECS and CCC theo- D. Integrated cross sections and the spin
ries. Here our results also appear to be quite good, particu- asymmetry parameter
larly for 17.6 eV in view of the most recent measurements. The parabolic fitted curves to our computed single differ-
For 6,= —30° at 15.6 eV, the peak position of our calculatedential cross-sections data are generally close to the ECS ex-
curves are little shifted to the right. Otherwise all the resultstrapolated curves but our raw data which could be calculated,
of the present calculation appear satisfactory. as in ECS flux method, away from the two ends of the en-
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FIG. 5. Same as in Fig. 3 but for 30-eV incident electron energy.

ergy intervals widely differ from ECS or CCQnherever wrong results for finite values d®, in such cases. Extrapo-
available curves. However, the computed total integratedlation to Ry=< may only lead to reliable results in those
cross sections, with suitable extrapolation from these areases. This may require larger computational resources. An-
generally good. Here in Table | we have presented values dither difficulty to be noted is the appearance of a few large
integrated cross sections,=(os+30,)/4 and the spin eigenvalues of the charge matrix for large-channel calcula-
asymmetry parameteA=(o— 0y)/(os+30y), where oy tions. I'n such cases, compu_tationa] strategies are needed to
and o, are the singlet and the triplet cross sections, togetheP® reviewed. In our calculations this has occurred in a few
with values of ECS theory by flux approaf8] and those of ~€ases. In such cases, we simply cut short in magnitude these
CCC theory and the experimental values . The integrate@n€ OF two large eigenvalues to the neighboring ones. How-
cross sections agree with the experimentally measured valu Jer, a better app.ro.ach.may be necessary to tqck[e such prob-
of Shah, Elliot, and Gilbody52] within about 20% . The ems. No other difficulties appear worth mentioning. For a

spin asymmetry parametek agrees, however, excellently fully converged results inclusion of more channédbout
with the measuremen(§3,54. 100 or a little morg¢ may be required with appropriate choice

Next we note down the shortcomings and difficulties as of (11,12) pairs(say, as in ECS calculatiomnd with further

. i ' X “stabilization. However, these are subjects of further studies
sociated with the present approach. The first point to note IFequiring more computational resources and time.

that it may not be possible in this approach to get reliable
cross-section results for extreme asymmetry, as in ECS flux
approach, for one of the outgoing electrons sharing very
small energy values compared to the other. “Contamination The results of the present calculation fairly display the
with high Rydberg states,” as in ECS calculatif8] gives  capability of the hyperspherical partial-wave theory in repre-

V. CONCLUSIONS
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senting results for equal-energy-sharing kinematical condiwave-function ®; and the interaction potentiaV;. The
tions at low energies. The approach that has been used in thieeory may also be extended for application to the double
implementation of the hyperspherical partial-wave theory apionization of helium atom or heliumlike ions or to other mul-
pears very appropriate. The computed cross-section resul@lectron ionization processes.

are observed to be very satisfactory. If one recalls the capa-
bility of the theory to describe the ionization collisions for
unequal-energy-sharing asymmetric kinematic conditiass
indicated in Ref[38]) also then the capability of the hyper-
spherical partial-wave theory towards a complete description The authors are grateful to Igor Bray for providing them
of the electron—hydrogen-atom ionization problem is wellwith the CCC results, the experimental results ofd&o
demonstrated. Considering the computational facilities usedt al, and e-prints of relevant papers in electronic form.
(Pentium-1Il PCs and a SUN Enterprise 450 sernarccess They are grateful to T. N. Rescigno and M. Baertschy for
of the present calculation is appreciable. For fully convergegending the ECS results electronically. Special thanks are
results, better computational facilities may be required. Thealso due to M. Baertschy for providing Matlab scripts which
theory may easily be applied in the study of ionization ofhelped in drawing the figures. S. P. is grateful to CSIR for
hydrogenlike ions with a little change in the definition of the providing research support.
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