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Hyperspherical partial-wave theory applied to electron–hydrogen-atom
ionization calculation for equal-energy-sharing kinematics

J. N. Das* and S. Paul
Department of Applied Mathematics, University College of Science, 92, Acharya Prafulla Chandra Road, Calcutta 700 009, In

K. Chakrabarti
Department of Mathematics, Scottish Church College, 1 & 3 Urquhart Square, Calcutta 700 006, India
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Hyperspherical partial-wave theory has been applied here in a new way in the calculation of the triple
differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various
equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute
measurements of@J. Röder, M. Baertschy, and I. Bray, Phys. Rev. A45, 2951 ~2002!# and with the latest
theoretical results of the ECS and CCC calculations@J. Röder, M. Baertschy, and I. Bray, Phys. Rev. A~to be
published!# for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for
relatively higher energies, are also generally satisfactory, particularly for largeQab geometries. In view of the
present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics@J. N.
Das, J. Phys. B35, 1165~2002!#, it may be said that the hyperspherical partial-wave theory is quite appropriate
for the description of ionization events of electron–hydrogen-type systems. It is also clear that the present
approach in the implementation of the hyperspherical partial-wave theory is very appropriate.

DOI: 10.1103/PhysRevA.67.042717 PACS number~s!: 34.80.Dp, 34.50.Fa
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I. INTRODUCTION

In the study of electron–hydrogen-atom ionization co
sion, the simplest three-body ionization problem in atom
physics, there are many attempts for a complete solution
all of these face tremendous difficulties and have only li
ited success. Except for one or two attempts all use tim
independent framework. For accurate information regard
scattering events, one may solve accurately the Schro¨dinger
equation for the scattering statesC i

(1) or C f
(2) ~see Newton

@1# for their definition! given by

HC i , f
(6)5EC i , f

(6) , ~1!

taking account of the appropriate boundary conditions.
Ionization amplitudes may then be obtained either fr

the flux condition at infinity or from appropriate projection
In the literature bothC i

(1) andC f
(2) have been widely used

There are a large number of attempts which strives to so
for C i

(1) . Among these the most successful attempts are
various close-coupling calculations@2–4#. In these calcula-
tions C i

(1) are expanded in terms of basis functions a
ionization information are extracted from a solution of t
unknown expansion functions. Another possibility is to e
pand C i

(1) in terms of a complete set of functions in th
angular variables. In these regards the attempts of Kato
Watanabe@5,6# are remarkable. They used hyperspherical
ordinates and expandedC i

(1) in terms of hyper-radius de
pendent angular functions. Matching with a wave functio
which satisfies an approximately correct boundary conditi
they obtained with remarkable success, the total ioniza
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cross sections down to the threshold. However, differen
cross-section results of this theory are not known. Very
cently Rescigno and associates made@7,8# a breakthrough
calculation and reproduced for equal-energy sharing
constant angular separationQab of the outgoing electrons
the cross-section results, at low energies, with surprising s
cess. In these calculations they expandedC i

(1) in terms of
spherical harmonics in four angular variables. Then th
converted the resultant differential equations for the rad
functions, in two radial variables, into a set of differen
equations over a large network in the radial variables pla
They used a different technique. Using a complex scal
procedure they converted the scattering problem as if in
bound-state problem. Then they solved a huge set~several
million! of linear equations using very special techniqu
Ultimately they obtained ionization amplitudes using the fl
condition. Later@9# they confirmed their results using pro
jection technique. Although the ECS approach reprodu
the equal-energy sharing, constant-Qab results perfectly well,
results of this approach for unequal-energy-sharing kinem
ics are not known. There are also large number of attempt
using C f

(2) in extracting ionization information. In such
cases projection approach has been generally used. Ther
ionization amplitudes are calculated from

Tf i
s 5^C f s

(2)uVi uF i&. ~2!

Brauner, Briggs, and Klar@10# and later Berakdar@11# and
Berakdar and co-workers@12,13# made use of this approach
They usedC f

(2) which are asymptotically correct~or nearly
so! but are unlikely to be correct at finite distances. As
consequence results of these calculations are only mo
ately accurate. Moreover there are no systematic tract
way of improving the results.
©2003 The American Physical Society17-1
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An alternative approach for determining the electron at
collision cross sections is to solve a coupled set of integ
equations for the off-shellT-matrix elements. Das and ass
ciates@14–16# have used this approach in the study of va
ous electron-hydrogen-atom and electron-helium-atom s
tering problems by solving the resultant equations in a ra
crude manner. However, they always obtained modera
good results. There are also attempts@17–24# to improve the
calculations. Along these lines the most successful calc
tions are the convergent close coupling~CCC! calculations
of Bray et al. @25–30#. In many contexts they applied th
CCC method with surprising success. Their latest res
@29,30# claim accuracies comparable with the ECS results
low energies. However, this approach also has some w
nesses@31,32#.

Another promising approach for the electron–hydrog
atom ionization problem is the hyperspherical partial-wa
approach@33,34#. Details of this approach are given in Re
@34#. In Sec. II we also present important features of t
approach. Earlier with an additional approximation of n
glecting the coupling effects, some results were obtai
@35,36# which are qualitatively not very bad. Recently, th
approach has been used@37,38# retaining fully the coupling
effects. In solving the relevant coupled set of radial wa
equations over an initial interval@0,D#, R-matrix @39# ap-
proach had been used. Although the results were alw
found to be of the correct magnitude, pseudo resonance-
behavior gave much troubles in extracting correct cro
section results. To avoid this problem we use a different
proach. This appears to be very successful and leads to
interesting results both for equal-energy-sharing const
Qab kinematics, equal-energy-sharing asymmetric kinem
ics, and also for unequal-energy-sharing kinematics@38#.
Thus it appears that hyperspherical partial-wave theory
quite appropriate for the study of ionization problems
electron–hydrogen-type systems.

Most recently, two very broad-based theories have b
proposed. One of these is the time-dependent close-coup
theory @40# and the other is the hypersphericalR-matrix
theory@41#. Positions of these theories are not yet very cle

II. HYPERSPHERICAL PARTIAL-WAVE THEORY

In the hyperspherical partial-wave theory one uses
time-independent framework. In the time-independ
framework theT-matrix element is given by expression~2!
or alternatively by

Tf i5^F f uVf uC i
(1)&. ~3!

In these expressionsF i and F f are the unperturbed initia
and final channel wave functions, satisfying certain ex
boundary condition at infinity and thatVi and Vf are the
corresponding perturbation potentials. For the case of ion
tion of hydrogen atoms expression~2! is more appropriate
for use, since in this case asymptotically correctF i is easily
available. Many use expression~3!, including ECS@9# by
projection method, but inappropriately, since the correspo
ing F f ’s they use do not satisfy the correct boundary con
04271
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tion. In the hyperspherical partial-wave theoryC f
(2) is ex-

panded in terms of hyperspherical harmonics, which
functions of five angular variables. The corresponding rad
waves are functions of one radial variable, the hyperradiuR
only. This proves to be advantageous in numerical comp
tions, since then the five angular variables range ove
bounded compact domain, while only one variableR ranges
over a semi-infinite domain@0,̀ ). It may be noted here tha
so far nobody could take account of the exact boundary c
dition in the asymptotic domain for the accurate solution
C f

(2) . Here we aspire to take account the exact bound
condition at infinity, in the limit. This is the most novel fea
ture in the hyperspherical partial-wave theory. Here we m
note that the two plane waves exp(ipWa•rW1)/(2p)3/2 and
exp(ipWb•rW2)/(2p)3/2 may be decomposed in partial waves
usual and then these may be combined~using a formula in
Erdélyi @42#! to obtain an expansion in terms of hypersphe
cal harmonics fl(v), in five angular variablesv
5(a,u1 ,f1 ,u2 ,f2). A symmetrized two-particle plane
wave has the expansion~Das @34#!

@exp~ ipW a•rW11 ipW b•rW2!1~21!sexp~ ipW b•rW11 ipW a•rW2!#/~2p!3

52A2

p(
l

i l
j nl

~r!

r3/2
fl

s* ~v0!fl
s~v!, ~4!

where nl5l1 3
2 and l5 l 11 l 212n @l also denotes

the multiplet (l 1 ,l 2 ,n,L,M ) depending on the context#.
Here R5Ar 1

21r 2
2, a5arctan(r2 /r1), rW15(r 1 ,u1 ,f1),

TABLE I. Total integrated ionization cross sections~a.u.! and
the spin asymmetry parameter. The experimental values of c
sections are those of Shah, Elliot, and Gilbody@52# ~the starred
numbers are from extrapolation!. ECS results are from Ref.@8# and
the CCC results are from Ref.@4#. In the experimental results of th
asymmetry parameter of Croweet al. @53# and Fletcheret al. @54#
presented here, the numbers with superscript1 or 2 denote the
available result just a little above or below the energy conside
~for the exact energy values the corresponding references are
seen!. For 15.6 eV energy, ECS results of earlier calculation@8# are
not available, so for this energy we present results from Ref.@9# and
indicate it so in the table.

Ei ~eV! 30 25 19. 6 17. 6 15. 6

Total integrated cross sections
Present 2.13 1.82 1.14 0.83 0.49
ECS 1.79 1.62 1.09 0.80 0.36@9#

CCC 1.92 1.57 1.01 0.75 0.38
Expt. 1.81* 1.55* 1.00 0.74 0.39

Spin Asymmetry
Present 0.31 0.41 0.47 0.55 0.48
ECS 0.42 0.45 0.51 0.51 0.52@9#

CCC 0.41 0.43 0.50 0.51 0.53
Expt.
Crowe 0.28 0.392 0.422 0.472 0.502

Fletcher 0.31 0.412 0.401 0.502 0.482
7-2
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FIG. 1. ~a! TDCS in coplanar equal-energy-sharing constant angular separationQab of the outgoing electrons for incident electron energy
Ei515.6 eV vs ejection angleub of the slow outgoing electron. Continuous curves, present results; dashed curves, ECS results@9,50#;
dash-dotted curves, CCC results@26,48#. The experimental results are the absolute measured values of Ro¨der et al. @47,48#. Present results
have been multiplied by a factor of 0.5~see text!. ~b! TDCS in coplanar equal-energy-sharing geometry for incident electron energyEi

515.6 eV for fixedua and variableub of the outgoing electrons. Continuous curves, present results; dashed curves, ECS results@9,50#;
dash-dotted curves, CCC results@26,48#. The experimental results are the absolute measured values of Ro¨der et al. @47,48#. Present results
have been multiplied by a factor of 0.5~see text!. ~c! TDCS in coplanar equal-energy-sharing with two electrons emerging on opposite sides
of the direction of the incident electron with equal angleua and energyEi515.6 eV. Continuous curves, present results; dashed curves, ECS
results@9,50#; dash-dotted curves, CCC results@26,48#. The experimental results are the absolute measured values of Ro¨der et al. @47,48#.
Present results have been multiplied by a factor of 0.5~see text!.
rW25(r 2 ,u2 ,f2). Similarly P5Apa
21pb

2, a0

5arctan(pb /pa), pW a5(pa ,ua ,fa), pW b5(pb ,ub ,fb), and r
5PR, andv05(a0 ,ua ,fa ,ub ,fb),

fl
s~v!5

1

A2
$Pl 1l 2

n ~a!Y l 1l 2
LM ~ r̂ 1 , r̂ 2!1~21! l 11 l 22L1S1n

3Pl 2l 1
n ~a!Y l 2l 1

LM ~ r̂ 1 , r̂ 2!%,l 1Þ l 2

5
1

2
$11~21!2L1S1n%Pll

n ~a!Y l l
LM~ r̂ 1 , r̂ 2!%
04271
for l 15 l 25 l , ~5!

and a corresponding expression forfl
s(v0) ~similar expres-

sions may be easily derived for product of more than t
plane waves!.

Now the symmetrized waveC f s
(2) may be expanded in

terms of symmetrized hyperspherical harmonicsfl
s ’s as

C f s
(2)~R,v!52A2

p(
l

Fl
s~r!

r
5
2

fl
s~v!, ~6!
7-3
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whereFl
(s) satisfy an infinite coupled set of equations

F d2

dR2
1P22

nl~nl11!

R2 GFl
(s)~R!1(

l8

2Pall8
s

R
Fl8

(s)
~R!50

~7!

for each symmetrys (s50 for singlet ands51 for triplet!
and for each total angular-momentumL ~and its projection
M, and so also for a definite parityp). In the above expres
sion

FIG. 1 ~Continued!.
04271
all8
s

52^fl
s uCufl8

s &/P,

and

C52
1

cosa
2

1

sina
1

1

u r̂ 1cosa2 r̂ 2sinau
.

Equations~7! have to be solved over the semi-infinite d
main @0,̀ ). Solution in the asymptotic domain is simpl
The equations have nice asymptotic solutions. One may n
that because of conservation rules Eqs.~7! are decoupled into
sets for fixedm5(L,S,p) and differentN5( l 1 ,l 2 ,n). So
we setFl

(s)[ f N
m and, for the set with fixedm ~and dropping

m from f N
m) we can write Eqs.~7! as

F d2

dR2
1P22

nN ~nN11!

R2 G f N1(
N8

2P aNN8
R

f N850 ~8!

for a solution over the finite domain and

F d2

dr2
112

nN~nN11!

r2 G f N1(
N8

2aNN8
s

r
f N850 ~9!

for solution over an asymptotic domain, say@R0 ,`). Next
we consider the solution problem first over an asympto
domain@R0 ,`) and then over the finite domain@0,R0#. For
the solutions, the equations and the variables are truncate
someNmx numbers for eachm.

A. Solution in an asymptotic domain

The Eqs. ~9! have two sets of solutions@34# in an
asymptotic domain@R0 ,`) of the form given by

f snN
(k) ~r!5 (

,50

` akN
(,)sinuk

r,
1 (

,50

` bkN
(,)cosuk

r,
, ~10!

f csN
(k) ~r!5 (

,50

` ckN
(,)sinuk

r,
1 (

,50

` d kN
(,)cosuk

r,
, ~11!

whereuk5r1ak ln 2r andak is thekth eigen value of the
charge matrix A5(aNN8) and that the coefficients
akN

( l ) ,bkN
( l ) ,ckN

( l ) , anddkN
( l ) are determined from recurrence rel

tions. Thus the coefficientsakN
( l ) andbkN

( l ) are determined from
the relations

2@~Ak!
21 l 2I #Xk

( l )5@AkLk2 l ~ l 21!Ak2 l ~2l 21!akI #

3Xk
( l 21)2@~2l 21!akAk

1 lLk2 l 2~ l 21!I #Yk
( l 21) ~12!

and

2@~Ak!
21 l 2I #Yk

( l )5@AkLk2 l ~ l 21!Ak2 l ~2l 21!akI #

3Yk
( l 21)1@~2l 21!akAk1 lLk

2 l 2~ l 21!I #Xk
( l 21) , ~13!
7-4
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FIG. 2. ~a! Same as in Fig. 1~a! but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured values
of Röder, Baertschy, and Bray@51# and the CCC results are as in Ref.@29#. Here the present results are free from any multiplicative factor.
~b! Same as in Fig. 1~b! but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured values of Ro¨der,
Baertschy, and Bray@51# and the CCC results are as in Ref.@29#. Here the present results are free from any multiplicative factor.~c! Same
as in Fig. 1~c! but for 17.6-eV incident electron energy. The experimental results are the recent absolute measured values of Ro¨der,
Baertschy, and Bray@51# and the CCC results are as in Ref.@29#. Here the present results are free from any multiplicative factor.
where theNth components of vectorsXk
( l ) andYk

( l ) are given
by

~Xk
( l )!N5akN

( l ) ,~Yk
( l )!N5bkN

( l )

and where

Ak5A2akI ,~Lk!NN85@ak
21nN~nN11!#dNN8 .

The initial vectorsXk
(0) andYk

(0) are given by

Xk
(0)5Xk ,Yk

(0)50,
04271
Xk being thekth eigenvector of the charge matrixA and I is
the identity matrix. Solution forckN

( l ) ’s anddkN
( l ) ’s are similarly

obtained from the above recurrence relations after set
Xk

(0)50 and Yk
(0)5Xk . In this way we get solution vector

fsnN
(k) and fcsN

(k) of Eqs.~10! and ~11!.

B. Solution over a finite domain

Here we consider the solution of Eqs.~8! over a finite
domain@0,R0#. Away from the origin, solution of the equa
tions is easy. A Taylors series expansion method suffices
getting arbitrarily accurate solutions. The main difficulty
in starting the solution from the origin. Near origin the equ
tions have analytic solutions~Fock @43#!, but these are too
complicated to be useful in numerical computations. In o
earlier calculations@37,38#, we usedR-matrix approach for
7-5
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getting solutions over an initial interval@0,D# ~with D suit-
ably chosen!. But this approach faces difficulties a
pseudoresonance-type behavior appears giving m
troubles in determining appropriate solutions. To avoid su
difficulties we consider here a different approach. For
interval @0,D# we consider a boundary value problem . T
solution vectorf0

(k)(R) is assumed to have a value 0 at t
origin and thekth column of theNmx3Nmx identity matrix at

FIG. 2 ~Continued!.
04271
ch
h
e

R5D. We divide the interval@0,D# into m subintervals and
use a five-point difference formula1

f N9 ~Rk!5
1

12h2
@2 f N~Rk22!116f N~Rk21!230f N~Rk!

116f N~Rk11!2 f N~Rk12!#1H h4

90
f N

(v i )~j!J
~14!

for k52,3, . . . ,m22, and a formula

f N9 ~R1h8!52 f N9 ~R12h8!2 f N9 ~R13h8!1
1

h2
@ f N~R!

24 f N~R1h8!16 f N~R12h8!24 f N~R13h8!

1 f N~R14h8!#1H 2
h4

12
f (v i )~j!J , ~15!

with R5R0 , h85h for the equation atR5R1 andR5Rm ,
h852h for the equation atR5Rm21. For continuing solu-
tions from D onward we need first-order derivatives atD.
For this we use the simple formula

f N8 ~Rm!5@2 f N~Rm24!124f N~Rm22!2128f N~Rm21!

1105f N~Rm!#/~84h!1
2h

7
f N9 ~Rm!

1H 2
4h4

105
f N

(v)~j!J . ~16!

The resultant linear set of equations ultimately take the fo

SY(k)5b, ~17!

whereS is a sparse matrix. We solve these equations by
biconjugate gradient method@44# using routines given in
Ref. @45#. With a suitable choice of a preconditioner, th
iterations smoothly converge~with a few hundred iterations
or even less! to five or six decimal places for a suitab
choice of error limit~say, 1 in 107 parts!. In this wayNmx
solution vectorsf0

(k) are determined over@0,D#. The solu-
tions are next continued over@D,R0# by Taylors expansion
method with stabilization@46# after suitable steps, giving so
lution vectorsf0

(k) over @0,R0#.

C. Matching of the solutions: Determination of C f
„À…

For finding the physical solution vectorsfph and the scat-
tering stateC fs

(2) , we first define solution matrices f0 , fsn,
and fcs, by putting side by side the corresponding soluti
vectorsf0

(k) , fsn
(k) , fcs

(k) , for k51,2, . . . ,Nmx . Then the physi-
cal solution vectorfph may be defined over@0,R0# by

fph~R!5 (
k51

Nmx

gkf0
„k…~R!, ~18!

1The results improve considerably, particularly around the pe
beyondQab/2, when a seven-point difference scheme is used
place of the five-point scheme used here.
7-6
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FIG. 3. Same as in Fig. 2~a! but for 19.6-eV incident electron energy. The relative measured results of Ro¨der and co-workers@47–49# are
normalized as in Ref.@9#.
d
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and over@R0 ,`) by

fph~R!5 (
k51

Nmx

ckfsn
(k)~r!1 (

k51

Nmx

dkfcs
(k)~r!. ~19!

2Nmx of the 3Nmx unknown coefficients are now determine
by matching values~and first-order derivatives! of the two
sets of solutions at a pointR0 where all the solutions are
valid. The remainingNmx unknown coefficients are then de
termined from the demand thatC f s

(2) actually satisfies the
appropriate boundary condition. To facilitate the compu
tions we first define theK matrix through the relation

f 0B5 f sn1 f csK, ~20!

whereB is some unknown constant matrix.~The K matrix
thus defined is a little different from that usually defined. B
in any case it should be symmetric.! The K matrix is then
04271
-

t

determined by matching values and first-order derivatives
the two sides of Eq.~20!. Then in the asymptotic domain on
has

fph5~ f sn1 f csK !c5 f snc1 f csd, ~21!

where

d5Kc. ~22!

Finally fph is completely determined once the vectorc is
determined. Nowc is determined from the consideration th
C f s

(2) is asymptotically a distorted plane wave~representing
the two outgoing electrons! plus incoming waves only. So we
equate coefficients of the outgoing wave exp(ir) of both
C f s

(2) and the symmetrized plane wave~4! ~except for the
distorting terms exp(iak ln 2r). This gives

c5@ I 1 iK #21P, ~23!
7-7
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DAS, PAUL, AND CHAKRABARTI PHYSICAL REVIEW A 67, 042717 ~2003!
where

P52eip/4X21F(s)* ~v0!,

where X is the matrix consisting of eigenvectors of th
charge matrixA ~and is nonsingular! andF(s)* (v0) is given
by

Fs* ~v0!5S fs* 1~v0!

A

fs* Nmx
~v0!

D . ~24!

In this way the physical radial vectorsfph(R) are determined
for eachm5(L,S,p) and ultimately the full~but approxi-
mate! scattering stateC f s

(2) is obtained.
Substituting this expression in Eq.~2! one obtains the

scattering amplitude in the form

f s~v0!5
1

2p
Tf i

s 5
1

2p (
l,m

Cs~l!fl
s~v0!. ~25!

The triple differential cross section is then given by

d3s

dEadVadVb
5

~2p!4papb

pi
H 1

4
uTf i

(0)u21
3

4
uTf i

(1)u2J .

~26!

By increasing the number of channelsNmx for each m
5(L,S,p) one may expect to obtain converged cross-sec
results.

III. PRESENT CALCULATION

In our present calculation, there are two important para
etersD and R0 which are needed to be judiciously chose
The parameterD of the initial interval@0,D#, for a solution
of the radial equations~8!, has been chosen to be 5 a.u. f
all the energies considered here. The results do not dep
on D for small variations~of a few a.u.! about this value. On
the other hand, the choice of the parameterR0, the
asymptotic range parameter, is very crucial. Without its
propriate choice the asymptotic series solutions~10! and~11!
are unlikely to converge. Here it is found that for converge
asymptotic series solutionsR0 is needed to be such thatR0

;1/AE, whereE is the energy in the final channel. Thus f
energies of 30 eV, 25 eV, 19.6 eV, 17.6 eV, and 15.6 eV t
range parameterR0 may be chosen greater than the values
a.u., 70 a.u., 90 a.u., 120 a.u., and 150 a.u., respectively
have chosenR0 around these values in our calculation
However, for the computation of single differential cross s
tion ~SDCS! it is necessary for converged results to varyR0,
and extrapolate, as in ECS calculation@8# for R0→`. Our
limited computational resources restrict us to take singleR0
value for each energy. Moreover, for arbitrary largeR0 un-
wanted errors are likely to make the results erroneous.
some optimum choice ofR0 has to be made for each energ
with a few trials. In our present computations this has be
done. Next we consider the choice ofL values for inclusion
in the calculations for different energies. For 15.6 eV ener
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values ofL upto 5 proved sufficient. For 17.6 eV calculation
values ofL upto 7 are found to be necessary. For the ot
energies considered here, values ofL up to 9 have been
included. For fixed (L,S,p) the number of channels, th
number of states with different (l 1 ,l 2 ,n) triplets, which have
been included, were chosen suitably for fairly converged
sults. In any case for fixed (l 1 ,l 2) pairs n was varied from 0
to 9. In this way convergence with respect ton is obtained.
The number of (l 1 ,l 2) pairs, which have been included, a
somewhat less forL>2 compared to those in the ECS ca
culation . These pairs are chosen more or less in the orde
in ECS calculations~a little different from those of hyper-
spherical calculations of Kato and Watanabe@6#!. However,
there could be some better choice. For lower-energies c
vergence with respect to the increase in channel size is ra
smooth. It is not so for relatively higher energies of 25 eV
30 eV. Nevertheless we have obtained nearly converged
sults in the cases considered. All the results presented
are more or less based on 50 channels calculations. Mo
the calculations, reported here, were done on Pentium
PCs. Calculations for 15.6 eV energy could not be done
PCs. Thus the results for 15.6 eV and 17.6 eV, which
presented here, have been derived from the calculations
SUN server. It may be further added here that for 15.6 eV
SDCS results show that for equal energy sharing case
calculated SDCS value is about twice the expected va
although the calculated total cross section appears co
~see Table I!. This is unacceptable. In any case the vario
cross section results for this energy have been multiplied
a factor of 0.5 before presentation in the figures. For ot
energies, however, we have nearly the correct SDCS va
for equal-energy-sharing situations. Calculation on a lar
scale with larger values ofR0, and with more precise solu
tion of Eqs. ~17!, may decide absolutely the normalizatio
question of the measured results of Ro¨der et al. @47,48# for
15.6 eV energy. Cross-section results for 15.6 eV ene
have been included here for the sake of completeness.

IV. RESULTS

A. Triple differential cross section for constant-Qab geometry

The triple differential cross-section results for equ
energy-sharing constant-Qab geometries are presented
Fig. 1~a! for 15.6 eV energy, in Fig. 2~a! for 17.6 eV energy
and in Figs. 3, 4, and 5 for energies of 19.6 eV, 25 eV, and
eV. In these figures we have presented the theoretical re
of CCC calculations@26,28–30,49# and of ECS calculations
@8,50#. Here we have also included the absolute measu
values of Ro¨der et al. @47,48# for 15.6 eV and the most re
cent remeasured~with necessary internormalization! values
of Röder, Baertschy, and Bray@51# for 17.6 eV energy. For
other energies the measured results@47# are only relative and
are normalized as in Ref.@9#. Our results are generally com
parable with the ECS results in magnitude. For 17.6 eV
present results appear most interesting. These are even s
what better compared to the ECS and CCC results forQab
5150° and 180°. For these values ofQab , the 15.6 eV
7-8
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FIG. 4. Same as in Fig. 3 but for 25-eV incident electron energy. The CCC results are from Refs.@28,49#
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results also appear good , particularly in shapes, but co
mation by larger scale calculation is necessary. The 19.6
results also appear to be very good. For other energies
results appear less satisfactory in comparison with the E
and CCC results.

B. Triple differential cross sections for fixedua geometry

In Figs. 1~b! and 2~b! we have compared our results fo
equal-energy-sharing asymmetric geometries with abso
measured values of Ro¨deret al. @48# for 15.6 eV and Ro¨der,
Baertschy and Bray@51# for 17.6 eV, in which one of the
outgoing electrons is observed in a fixed direction while t
of the other one is varied. In these cases we again com
our results with the calculated results of ECS and CCC th
ries. Here our results also appear to be quite good, par
larly for 17.6 eV in view of the most recent measuremen
For ua5230° at 15.6 eV, the peak position of our calculat
curves are little shifted to the right. Otherwise all the resu
of the present calculation appear satisfactory.
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C. Triple differential cross sections for symmetric geometry

In Figs. 1~c! and 2~c! we have presented TDCS results f
symmetric appearance of the two outgoing electrons rela
to the incident electron direction, for 15.6-eV and 17.6-
incident electron energies, for which there are again abso
measured results@48,51#. For 15.6 eV energy our result
agree qualitatively with the experimental results. Here a
channel calculation has been found to be necessary. For
eV our results do not appear very good. For 15.6 eV ene
both the ECS and CCC theories underestimate the cr
section results considerably. For 17.6 eV energy, howe
both ECS and CCC theories give good overall represe
tion.

D. Integrated cross sections and the spin
asymmetry parameter

The parabolic fitted curves to our computed single diff
ential cross-sections data are generally close to the ECS
trapolated curves but our raw data which could be calcula
as in ECS flux method, away from the two ends of the e
7-9
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FIG. 5. Same as in Fig. 3 but for 30-eV incident electron energy.
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ergy intervals widely differ from ECS or CCC~wherever
available! curves. However, the computed total integrat
cross sections, with suitable extrapolation from these
generally good. Here in Table I we have presented value
integrated cross sectionss I5(ss13s t)/4 and the spin
asymmetry parameterA5(ss2s t)/(ss13s t), where ss
ands t are the singlet and the triplet cross sections, toge
with values of ECS theory by flux approach@8# and those of
CCC theory and the experimental values . The integra
cross sections agree with the experimentally measured va
of Shah, Elliot, and Gilbody@52# within about 20% . The
spin asymmetry parameterA agrees, however, excellentl
with the measurements@53,54#.

Next we note down the shortcomings and difficulties
sociated with the present approach. The first point to not
that it may not be possible in this approach to get relia
cross-section results for extreme asymmetry, as in ECS
approach, for one of the outgoing electrons sharing v
small energy values compared to the other. ‘‘Contaminat
with high Rydberg states,’’ as in ECS calculation@8# gives
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wrong results for finite values ofR0 in such cases. Extrapo
lation to R05` may only lead to reliable results in thos
cases. This may require larger computational resources.
other difficulty to be noted is the appearance of a few la
eigenvalues of the charge matrix for large-channel calcu
tions. In such cases, computational strategies are neede
be reviewed. In our calculations this has occurred in a f
cases. In such cases, we simply cut short in magnitude t
one or two large eigenvalues to the neighboring ones. H
ever, a better approach may be necessary to tackle such p
lems. No other difficulties appear worth mentioning. For
fully converged results inclusion of more channels~about
100 or a little more! may be required with appropriate choic
of ( l 1 ,l 2) pairs~say, as in ECS calculation! and with further
stabilization. However, these are subjects of further stud
requiring more computational resources and time.

V. CONCLUSIONS

The results of the present calculation fairly display t
capability of the hyperspherical partial-wave theory in rep
7-10
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senting results for equal-energy-sharing kinematical con
tions at low energies. The approach that has been used i
implementation of the hyperspherical partial-wave theory
pears very appropriate. The computed cross-section re
are observed to be very satisfactory. If one recalls the ca
bility of the theory to describe the ionization collisions f
unequal-energy-sharing asymmetric kinematic conditions~as
indicated in Ref.@38#! also then the capability of the hype
spherical partial-wave theory towards a complete descrip
of the electron–hydrogen-atom ionization problem is w
demonstrated. Considering the computational facilities u
~Pentium-III PCs and a SUN Enterprise 450 server! success
of the present calculation is appreciable. For fully converg
results, better computational facilities may be required. T
theory may easily be applied in the study of ionization
hydrogenlike ions with a little change in the definition of th
s

M

dy

.

ev

B

04271
i-
the
-
lts
a-

n
l
d

d
e
f

wave-function F i and the interaction potentialVi . The
theory may also be extended for application to the dou
ionization of helium atom or heliumlike ions or to other mu
tielectron ionization processes.
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