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Multichannel study of spin-exchange and hyperfine-induced frequency shift and line broadening
in cold collisions of hydrogen atoms
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We calculate the cross sections that characterize the frequency shift and broadening of the resonance mag-
netic hyperfine transition in atomic hydrogen due to collisions with hydrogen atoms in a masing cavity. We
consider collision energies that correspond to the temperature range, 10 mK,T,1000 K, and introduce and
apply a fully quantal, multichannel collision theory for the entire temperature range under consideration. Our
results for the spin-exchange induced cross sections at room temperature, are in harmony with previous
calculated values and experimental measurements. For the hyperfine-induced cross sections, our predicted
values are in fair agreement with measurements at cryogenic temperatures with the exception of the hyperfine
frequency shift at 0.5 K and 323 K for which we obtain a different sign. A study of possible resonance
structures shows that they cannot be invoked to resolve the discrepancy and nor can any plausible modification
of the X1Sg

1 andb3Su
1 interaction potentials.

DOI: 10.1103/PhysRevA.67.042715 PACS number~s!: 34.10.1x, 34.50.2s, 84.40.Ik
m
n

,
a

-
re
rv
m

tio
c-
n
b

s

sh

nsi-

oits
col-
the
de-
but

s
ed
nd

ous

may
s.
e
ro-

on.
ift

in-
t-
n,

lier

gh
of

sec-
of

e,
I. INTRODUCTION

Collisions that alter the spin angular momentum of ato
play an important role in a wide range of applications a
environments, including the interstellar medium@1–3#, plan-
etary atmospheres@4–6#, medical imaging@7,8#, and in the
operation of the hydrogen maser@9–11#. In the latter system
spin-changing collisions among hydrogen atoms in the m
ing cavity result in a shift@12# and broadening@13# of the
observed magnetic-resonance line.

In the elastic approximation@14#, hyperfine transitions oc
cur when atoms with nearly degenerate states of diffe
spin evolve along separate, nondegenerate molecular cu
during a close encounter. Interference between the accu
lated molecular phase histories@15# result in a spin-changing
atomic transition. The success of the elastic approxima
@5,16–22# derives from the fact that the hyperfine intera
tion, which lifts the degeneracy of atomic levels of differe
spin, is weak and for collision energies above 10 K may
neglected.

The assumption of degenerate hyperfine levels was u
by Balling et al. @10# and Crampton@11,23# to derive expres-
sions for the cross sections that determine the frequency
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and line broadening of the observed atomic hyperfine tra
tion lines in a hydrogen maser. Crampton@11,23# introduced
a novel technique, called spin-exchange tuning, that expl
the frequency shift and broadening due to spin-changing
lisions in order to increase the stability, and enhance
performance of the hydrogen maser. The assumption of
generate hyperfine levels is justified at room temperature
Crampton and Wang@24# pointed out the deficiencies of thi
approximation at extremely low temperatures. They argu
that the hyperfine interaction introduces additional shifts a
broadening terms that were not accounted for in the previ
theories@10,11,23#. They called this thehyperfine-inducedor
HI spin-exchange effect, and suggested that these terms
limit the utility of spin-exchange tuning at low temperature

Verhaaret al. @25# analyzed the evolution equation for th
spin-density matrix, assuming conditions present in a hyd
gen masing cavity, that included the hyperfine interacti
They derived expressions for the HI effect frequency sh
and broadening cross sections and, in a series of papers@25–
27#, calculated their values for a range of temperatures
cluding the sub-Kelvin region. Using the University of Bri
ish Columbia ~UBC! cryogenic hydrogen maser, Hayde
Hurlimann, and Hardy@28–31# found evidence for the HI
effect at a maser operation temperature of 0.5 K. An ear
study by the Harvard group of Walsworthet al. @32# also
found evidence for an HI effect at room temperature. Thou
the measurements of the UBC group confirmed the reality
an HI effect, the measured shift and broadening cross
tions are only in fair agreement with the calculated values
Verhaaret al. @25#.
©2003 The American Physical Society15-1
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The hydrogen-hydrogen complex is a fundamental ato
collision system and its theoretical analysis is a useful te
plate for application to more complex atomic systems. T
interaction potential between a pair of hydrogen atoms
known to a high degree of accuracy@33–35#, and so it is
significant that there exists a major discrepancy betw
theory and experiment for this system. The major goal of t
paper is to present an independent calculation of the des
collision parameters using a theory and collision code de
oped in our group. We present a full theoretical treatmen
the collision dynamics, and we discuss possible extension
the present theoretical approach. Because of the contin
discrepancy between theory and experiment, we give an
plicit expression for the multichannel potential used in t
calculation. We represent the multichannel interaction pot
tial in terms of two parameterse0 and e1 which are the
potential energy functions for the Born-Oppenheimer~BO!
groundX1Sg

1 andb3Su
1 states, respectively. We solve, usin

the full quantal multichannel formalism, for the frequen
shift and broadening cross section for temperatures in
range 10 mK,T,1000 K, and compare our results with e
periment and previous calculations. In order to assess
influence of nonadiabatic effects, not rigorously includ
here, we investigate the behavior and the sensitivity of
calculated cross sections to the value adopted for the red
mass of the collision system.

In Sec. I, we develop our multichannel scattering eq
tions using a close coupling expansion, including all s
components, for the colliding ground-state hydrogen at
pair. In Sec. II, we give a brief review of spin-exchan
tuning and the HI effect@24# in the hydrogen maser. In Se
III, we present the calculated values for the frequency s
and broadening cross sections, and compare them with t
obtained in previous calculations@25# and measurement
@30,32#. Atomic units are used throughout, unless otherw
stated.

II. THEORY

A. Molecular close coupling equations

We assume that the interaction of two hydrogen atom
described by the following Hamiltonian:

H5HNR1Hspin ,

HNR5
1

2M (
i 51

2

Pi
21

1

2m (
i 51

2

pi
21

1

ux12x2u

1
1

uR12R2u
2 (

i , j 51,2

1

uRi2xj u
. ~1!

Ri andPi are, respectively, the proton position and conjug
momentum vectors,xi and pi are the corresponding elec
tronic operators; and all coordinates are defined with res
to a common origin in an inertial frame.M is the mass of the
proton andm51 is the mass of the electron.Hspin includes
all spin and magnetic couplings amongst electrons and
clei, but in this section, we restrict our attention toHNR . In
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order to derive a set of configuration space scattering eq
tions for the time-independent Schro¨dinger equation,

~HNR2E!uC&5EuC&, ~2!

we projectHNR onto a Jacobi coordinate system. There
some arbitrariness in the choice of a Jacobi coordinate
tem, but the one convenient for molecular calculations is

Rc.m.[
MR11MR21mx11mx2

2~M1m!
,

R[R22R1 ,

r i[xi2
~R11R2!

2
. ~3!

We then obtain

HNR5Hc.m.1HKE1HAD ,

Hc.m.52
1

4~M1m!
“Rc.m.

2 ,

HKE52
1

2m
“R

2 ,

HAD5
1

2m (
i 51

2

pi
21

1

4M S (
i 51

pi D 2

1
1

uRu
2(

i

1

ur i1R/2u

2(
i

1

ur i2R/2u
1

1

ur12r2u
, ~4!

wherem5M /2 is the reduced mass of the ‘‘bare nuclei.’’ W
factor out the center-of-mass motion and express the eig
state of Eq.~2! by the expansion

C~R,r !5(
g

Fg~R!fg~R,r !, ~5!

wherefg(R,r ) is an eigenstate of the adiabatic Hamiltoni

HADfg~R,r !5eg~R!fg~R,r !. ~6!

eg(R) is the Born-Oppenheimer eigenvalue@36# for stateg,
andr is a collective label for all electronic coordinates. Ind
g identifies the quantum numbers that specify a complete
of BO states, both discrete and continuous, so that

(
g

fg* ~R,r !fg~R,r 8!5d3~r2r 8!. ~7!

Inserting Eq.~5! into Eq. ~2!, we obtain@37#,

2
1

2m
~ I“R2 iA!2F~R!1V~R!F~R!5EF~R!, ~8!

where the elements of the matrix potentials,A and V, are
defined by
5-2
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Aab~R!5 i ^au“Rub&,

Vab~R!5^auHADub&5dabea~R!, ~9!

and the bracket notation implies integration over all el
tronic coordinates.F(R) is a column vector whose entrie
are the channel amplitudesFg(R). Equation~8! is a repre-
sentation, in the basis of adiabatic states, of the eigenv
equation given in Eq.~2!, and therefore, describes an infini
set of coupled equations. To obtain a working theory fro
this ‘‘exact’’ form, we impose the perturbed stationary sta
~PSS! approximation, in which, the summation indexa is
truncated to a finite value, usually chosen so that all o
channels are included in Eq.~5! at a given collision energy
For collisions at cryogenic temperatures, we retain, in exp
sion ~5!, those adiabatic states that correlate to the gro
states of the separated hydrogen atoms, i.e., theb3Su

1 and
X1Sg

1 BO states of the H2 molecule. With this approxima
tion, Eq. ~8! reduces to

2
1

2m
I“R

2F~R!1@V~R!1U#F~R!5EF~R!,

Uab5
1

2m (
kÞ(a,b)

Aak•Akb , ~10!

whereF is a finite dimensional column vector, and we us
the fact that the nonadiabatic vector coupling matrixA be-
tween theb3Su

1 andX1Sg
1 electronic states vanish.U is an

adiabatic correction to the BO potentialV. In Eq. ~10!, the
notation(kÞ(a,b) implies that the sum does not include a
member of the set in the close coupling expansion.

In order to include the effects of nuclear spin, we gen
alize this procedure and introduce channel basis states
are direct products of the electronic adiabatic states, defi
above, and nuclear-spin states.

The adiabatic HamiltonianHAD , and its eigenfunctions
are parametrized by the internuclear separation vectoR
5$R,u,f%. We define Born-Oppenheimer states as th
adiabatic states whereu50 andf50 i.e., the nuclear vecto
R is aligned along thez axis of the laboratory frame. We
label the BO states with the value of the total electro
orbital angular momentum along thez axis; the discrete
quantum numbers that characterize parity, reflection,
nuclear inversion symmetries, as well asS and S, the total
electronic spin and its component along thez axis, respec-
tively. We identify theb3Su

1 andX1Sg
1 BO states of the H2

molecule with the ket notationuSSp&, wherep561 are the
quantum numbers that characterizes the electronic parit
the ground BO states ofH2, andSS are the spin quantum
numbers defined above. If we enforce the Pauli principle
these states thenp51 when S50, and p521 when S
51, and thep quantum number becomes redundant. In
discussion below, and in our tables, we will, therefore, s
press, unless otherwise stated, the electronic inversion q
tum number in labeling the adiabatic electronic states. Ad
batic eigenstates are constructed by rotating the
eigenstates into the direction$uf%; i.e., since@37#
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Had~Ruf,r !5R~uf!HBO~R,r !R~uf!†, ~11!

we require

fa~R,r !5R~uf!uSS&, ~12!

where

R~uf!5exp~2 ifL z!exp~2 iuL y!exp~ ifL z! ~13!

and L is the electronic orbital angular-momentum opera
defined with respect to the molecular center.

We introduce the direct product

uIM ISS&[uIM I& ^ uSS&, ~14!

whereuIM I& is an eigenstate with total nuclear angular m
mentumI and its projectionMI along thez axis. The adia-
batic eigenstates are constructed using the prescription

fg~R,r !5R~uf!uIM ISS&. ~15!

Employing this basis in the close coupling expansion, E
~5!, we obtain coupled Schro¨dinger equations of the form
given by Eq. ~8!. In this picture, the scattering amplitud
Fg(R) is labeled by the quantum numbersg5$IM ISS%.
The quantum numbers associated with this basis are item
in Table I. In the first column of Table I, we list the chann
numbersn that range in value from 1 to 16 and identify th
row of the columnF(R). In the column headeduIM ISS& in
Table I, we associate a member of the set$IM ISS%, to a
particular channel. For example, channel 2, or row 2
F(R), is associated with quantum numbersI 51, MI50,
S50, andS50.

TABLE I. Quantum numbers associated with the various ba
representations. The channel index labels the states that corres
to the listed quantum numbers in each representation. The last
umn identifies the states that correspond to the channel index i
ized under theuFaMaFbMb& basis, using the notation given i
Fig. 1

Channel uFMFaFb& uSSIM I& uFaMaFbMb& Level

1 0 0 0 0 0 0 0 0 0 0 0 0 aa
2 0 0 1 1 0 0 1 0 1 0 1 0 cc
3 1 0 0 1 1 0 0 0 0 0 1 0 ac
4 1 0 1 0 1 0 1 0 1 0 0 0 ca
5 1 0 1 1 121 1 1 121 1 1 bd
6 2 0 1 1 1 1 121 1 1 121 db
7 1 1 0 1 0 0 1 1 0 0 1 1 ad
8 1 1 1 0 1 1 0 0 1 1 0 0 da
9 1 1 1 1 1 1 1 0 1 0 1 1 cd
10 2 1 1 1 1 0 1 1 1 1 1 0 dc
11 1 21 0 1 0 0 121 0 0 121 ab
12 1 21 1 0 121 0 0 121 0 0 ba
13 1 21 1 1 121 1 0 121 1 0 bc
14 2 21 1 1 1 0 121 1 0 121 cb
15 2 2 1 1 1 1 1 1 1 1 1 1 dd
16 2 22 1 1 121 1 21 1 21 1 21 bb
5-3
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We may also construct a close coupling expansion us
basis statesuFMFFaFb&, whereF is the eigenvalue for the
total angular momentumF5I1S, and MF is its z compo-
nent.Fa andFb are the quantum numbers corresponding
the total hyperfine operatorsFa5Sa1Ia andFb5Sb1Ib for
hydrogen atoma andb, respectively. Introducing

fg~R,r !5R~uf!uFMFFaFb&, ~16!

into the close coupling ansatz, Eq.~5!, we arrive at Eq.~8!
for amplitudeF(R) in this representation. The row numbe
for F(R) are also denoted with the channels numbers gi
in Table I, but they are now associated with a new set
quantum numbersF MF Fa Fb , itemized by the column
headeduFMFFaFb&.

Finally, we introduce a third representation characteriz
by the ketsuFaMaFbMb&, whereMa andMb are thez com-
ponents~in the laboratory frame! of the hyperfine states o
atoma andb, respectively, in the separated atom limit. T
channel numbers in this representation identify the quan
numbers listed in the column of Table I headed
uFaMaFbMb&.

In the last column of Table I, we itemize each chann
with a notation commonly found in the literature. This labe
ing is isomorphic to the quantum number listing given in t
column labeled by quantum numbersFaMaFbMb , and it is
illustrated in Fig. 1 that shows the energy level diagrams
the F50 andF51 hyperfine states, for a hydrogen atom
a constant magnetic field along thez direction, in order of
increasing energy. In Table I, we have grouped the chan
states in terms of the total azimuthal angular momentum
the pair of atoms. The channels labeled 1–6 have totaM
50, etc. This grouping proves to be convenient in the s
sequent analysis. In each representation, we must consi
set of 16 coupled equations of the form given by Eq.~10!.
Since our close coupling expansion involves electronic w
functions with null orbital angular momentum along thez
axis, the potential matrixV is isotropic and does not depen
on the orientation anglesf andu in any of the three repre

FIG. 1. Hyperfine level structure of ground-state atomic hyd
gen in a magnetic field. The labelsa, b, c, andd correspond to the
hyperfine magnetic quantum numbersmF50, 21, 0, and 1, respec
tively. F is the total hyperfine quantum number.
04271
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sentations. Therefore, we can further simplify Eq.~10! via a
partial wave expansion. We write

F~R!5(
lm

R21Flm~R!Ylm~uf!, ~17!

whereFlm(R) is a radial column vector. Inserting Eq.~17!
into Eq. ~10!, we obtain

2
1

2m S d2

dR2
2

l ~ l 11!

R2 D Flm~R!1@V~R!1U~R!#Flm~R!

5EFlm~R!. ~18!

Flm(R) is a column matrix whosegth row entry identifies
the partial wave radial amplitude for channelg. The channel,
or row, index identifies the quantum numbers in the rep
sentation considered. In the discussion below, we will s
press the azimuthal quantum number labelm on the radial
amplitude.

The column vectorsFl(R) in each of the three represen
tations are related, as shown below, by unitary transform
tions. The potential matrixV is representation dependent.
the I M I SS representation,V is diagonal with entries tha
are the BO eigenvalues. In the other two representationV
contains off-diagonal elements.

According to the previous paragraphs

C~R,r !5 (
IM ISS

FIM ISS~R!R~uf!uIM ISS&, ~19!

or

C~R,r !5 (
FaMaFbMb

FFaMaFbMb
~R! R~uf!uFaMaFbMb&.

~20!

Comparing Eq.~19! with Eq. ~20!, we find

FIM ISS~R!5 (
FMF

FFaMaFbMb
~R!^IM ISSuFaMaFbMb&.

~21!

We express the transition amplitude^IM ISSuFaMaFbMb&
in terms of an intermediate representation,

^IM ISSuFaMaFbMb&5 (
FMF

^IM ISSuFMFFaFa&

3^FMFFaFauFaMaFbMb&. ~22!

Now,

-

5-4
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^IM ISSuFMFFaFa&5@F,Fa ,Fb ,S,I #1/2~21!F1MF

3S S F I

S 2MF MI
D

3H 1/2 1/2 Fa

1/2 1/2 Fb

S I F
J , ~23!

and

^FMFFaFbuFaMaFbMb&5~21!Fb2Fa2MF@F#1/2

3S Fa Fb F

Ma Mb 2M D ;

~24!

therefore,

^IM ISSuFaMaFbMb&5 (
FMF

~21!Fb2Fa1F@F#

3S Fa Fb F

Ma Mb 2M D
3@Fa ,Fb ,S,I #1/2

3S S F I

S 2MF MI
D

3H 1/2 1/2 Fa

1/2 1/2 Fb

S I F
J . ~25!

Using relation~21!, we find that the potential matrix in th
FaMaFbMb representation is related toV(R) in the IM ISS
representation, according to

V
FaMaFbMb

Fa8Ma8Fb8Mb85 (
I 9MI9S9S9

^FaMaFbMbuI 9MI9S9S9&

3^S9S9MI9I 9uFa8Ma8Fb8Mb8&VS9S9M
I9I 9

S9S9MI9I 9

5(
FM

(
SI

~21!Fa1Fb2Fa82Fb8@F,S,I #

3@Fa ,Fa8 ,Fb ,Fb8#1/2S Fa Fb F

Ma Mb 2M D
3S Fa8 Fb8 F

Ma8 Mb8 2M
D H 1/2 1/2 Fa

1/2 1/2 Fb

S I F
J

3H 1/2 1/2 Fa8

1/2 1/2 Fb8

S I F
J eS~R!, ~26!
04271
and we used the notation where the superscript label ide
fies the the column entry forV and the subscript the row
entry. In deriving Eq.~26!, we made use of the fact that th
V matrix is diagonal in theIM ISS representation, and th
eigenvalueseS(R) depend only on the electron spinS.

The angular coefficients appearing in Eq.~26! are evalu-
ated and the results are summarized in Tables II–IV. In th
tables, the potential matrix, for each of the three represe
tions, is tabulated with the rows and columns designating
channel index for a particular representation. According
the channel classification outlined in Table I, the poten
matrix has the following block diagonal structure:

V5S V1

V2

V3

V4

D , ~27!

whereV1 is a 636 matrix ranging channels 1–6,V2 is a 4
34 matrix ranging channels 7–10,V3 is a 434 matrix rang-
ing channels 11–14, andV4 is a 232 matrix ranging chan-
nels 15–16. The block diagonal structure is invariant in ea
representation, but the individual submatricesVi depend, as
is shown in Tables II–IV, on the representation.

Equation~18! is the starting point for the numerical solu
tion of the scattering amplitudes. As discussed above,
equation may be expressed in three different representat
the simplest of which is the molecular picture where t
potential matrixV is diagonal. The leading contribution t
the molecular potentials are the Born-Oppenheimer eigen
ues eS(R), followed by much smaller nuclear mas
dependent corrections@33,34,38#. These corrections aris
from several sources, primarily the mass polarization term
Eq. ~4! and the nuclear kinetic-energy correction given
the matrixU defined in Eq.~4!.

There are also nonadiabatic corrections that invo
nuclear momentum couplings to distant, or closed chan
electronic states. These corrections are not included in
PSS formalism since the expansion over channel state
Eq. ~6! is truncated. Accurate molecular calculations mu
also allow for relativistic corrections@35# @We incorporate
them as a correction to the eigenvalueseS(R).#

The molecular expansion described above, without inc
sion of nonadiabatic couplings to distant closed chann
does not give solutions that merge, in the asymptotic reg
to the wave functions that describe two noninteracting
drogen atoms. The reduced massm, in the effective Schro¨-
dinger Equation~4! is that of two bare nuclei, instead of tw
hydrogen atoms. Also, the potentialsV1U do not give the
correct, asymptotic dissociation energies. However, the in
duction of an additional, adiabatic electron kinetic-ener
correction @33,38# can be included to give more accura
dissociation energies. At first sight these corrections app
to be small, however, it is known@39# that the failure of the
PSS approximation to allow an accurate asymptotic desc
tion may lead to its break down at large collision energi
5-5
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TABLE II. Elements of the potential matrixV1 for each of the three representations discussed in the
The representations are labeled with the corresponding quantum numbers$IM ISS%, $FMFFaFb%, and
$FaMaFbMb%. The rows and columns correspond to channels 1–6 in Table I.

IM ISS

e0 0 0 0 0 0
e0 0 0 0 0

e1 0 0 0
e1 0 0

e1 0
e1

FMFFaFb

(e013e1)
4

A3(e02e1)
4

0 0 0 0

(3e01e1)
4

0 0 0 0

(e013e1)
4

(e12e0)
4

(e02e1)

2A2

0

(e013e1)
4

(e12e0)

2A2

0

(e01e1)
2

0

e1

FaMbFbMb

(e013e1)
4

(e12e0)
4

0 0 (e02e1)
4

(e02e1)
4

(e013e1)
4

0 0 (e12e0)
4

(e12e0)
4

(e013e1)
4

(e12e0)
4

(e12e0)
4

(e02e1)
4

(e013e1)
4

(e02e1)
4

(e12e0)
4

(e01e1)
2

0

(e01e1)
2

d
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There is evidence@19,25# that the replacement of reduce
massm with mH , the reduced mass for two hydrogen atom
significantly affects the calculated values for the sp
exchange cross sections. The results of our calculations s
that there is a large variation in the calculated values for
frequency shift and broadening cross sections with
adopted values for the reduced mass for the system.

In Ref. @25#, it was argued thatmH , rather thanm, be
used in the effective radial equation for the atom pair, sin
the former may account for nonadiabatic effects not includ
in the scattering formalism. Though this assumption is ba
on nonrigorous arguments, we calculate the cross sect
for both values of reduced mass in order to explore, a
assess, the sensitivity of these cross sections to nonadia
effects. In the Appendix, we provide a rigorous molecu
framework in which the atom reduced massmH is accounted
for from first principles. We use state-of-the-art BO groun
state potentials that are discussed in more detail in Ref.@47#.
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B. Hyperfine interactions

Hspin describes the coupling of the electronic and nucle
spin angular momenta. The largest contribution toHspin
arises from the interaction between the magnetic fields g
erated by the proton and the spin of the electron. For
ground-state hydrogen atom, the leading interaction is gi
by the Fermi contact term,

AFI•S, ~28!

whereAF50.047 38 cm21, I is the spin of the nucleus, an
S the spin of the electron. In previous calculations@25,27#,
the atom-atom hyperfine interaction was taken to have
form

Hspin5AF@ I1•S11I2•S2#. ~29!
5-6
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This Hamiltonian reproduces the correct asymptotic hyp
fine splitting for each atom since in theuFaMaFbMb& and
uFMFaFb& representations, the hyperfine interaction pot
tial matrices are given by

V
FaMaFbMb

Fa8Ma8Fb8Mb85dF
a8Fa

dF
b8Fb

dM
a8Ma

dM
b8Mb

AF

2
@Fa~Fa11!

1Fb~Fb11!23# ~30!

and

V
FMFFaFb

F8MF8Fa8Fb85dF8FdMF8MF
dF

a8Fa
dF

b8Fb

AF

2
@Fa~Fa11!

1Fb~Fb11!23#, ~31!

respectively. Though expression~29! is invariant under atom
interchange, it is not symmetric under the interchange
electrons, as well as the interchange of protons, and is th
fore, formally incomplete. Indeed, the phenomenologic
molecular hyperfine contact interaction has the form@41#

He f f5aIz1bI•S1cIzSz , ~32!

whereS5S11S2 is the total electronic spin,I5I11I2 is the
total nuclear spin, anda, b, and c are constants. The sub
script z denotes the vector component along the internuc

TABLE III. Elements of the potential matrixV2 for each of the
three representations discussed in the text. The representation
labeled with the corresponding quantum numbers$IM ISS%,
$FMFFaFb%, and $FaMaFbMb%. The rows and columns corre
spond to channels 7–10 in Table I.

IM ISS

e0 0 0 0
e1 0 0

e1 0
e1

FMFFaFb

(e013e1)
4

(e12e0)
4

(e02e1)

2A2

0

(e013e1)
4

(e12e0)

2A2

0

(e01e1)
2

0

e1

FaMaFbMb

(e013e1)
4

(e12e0)
4

(e12e0)
4

(e02e1)
4

(e013e1)
4

(e02e1)
4

(e12e0)
4

(e013e1)
4

(e12e0)
4

(e013e1)
4
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axis. Expression~32! predicts the correct hyperfine structu
for the bound hydrogen molecule, and differs from that o
tained using Eq.~29! by terms that are quadratic in the Ferm
constantAF . These small differences do not affect the sc
tering solution in the molecular region since, in that regio
the differences in the singlet and triplet molecular potenti
are much larger than the hyperfine interaction. However
regions where the energy defect between the singlet and
let molecular potentials has the same magnitude as the
perfine interaction, the scattering solutions could be sensi
to details in the hyperfine Hamiltonian.

We propose the following atom-atom Fermi contact int
action:

Hh f5A@d3~r11R/2!I1•S11d3~r12R/2!I2•S1

1d3~r22R/2!I1•S21d3~r21R/2!I2•S2#, ~33!

where r1 and r2 are electronic coordinates andA is a con-
stant. Expression~33! satisfies the required symmetry pro
erty, under identical particle interchange, and has the cor
separated atom limit. However, its representation with
spect to the Born-Oppenheimer ground-state wave funct
introduces molecular screening and exchange effects tha
not evident in expressions~30! and ~31! for the effective
hyperfine interaction. We hope to explore the sensitivity
the cross sections on the choice for the effective spin Ham

TABLE IV. Elements of the potential matrixV3 for each of the
three representations discussed in the text. The representation
labeled with the corresponding quantum numbers$IM ISS%,
$FMFFaFb%, and $FaMaFbMb%. The rows and columns corre
spond to channels 11–14 in Table I.

IM ISS

e0 0 0 0
e1 0 0

e1 0
e1

FFMFaFb

(e013e1)
4

(e12e0)
4

(e02e1)

2A2

0

(e013e1)
4

(e12e0)

2A2

0

(e01e1)
2

0

e1

FaMaFbMb

(e013e1)
4

(e12e0)
4

(e12e0)
4

(e02e1)
4

(e013e1)
4

(e02e1)
4

(e12e0)
4

(e013e1)
4

(e12e0)
4

(e013e1)
4

are
5-7
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tonian in future studies. In addition to the contact interacti
we must also include the long-range magnetic Breit@40#, or
dipolar, interactions between atoms. These terms are
pected to provide a small correction to the elastic cross
tions @27#, and a full accounting of these effects will be d
ferred to future studies.

C. Asymptotic boundary conditions

In the FaMaFbMb representation, the hyperfine intera
tion given in Eq.~30! is a constant diagonal matrix, and
the asymptotic region, it represents the energy shift indu
by the Fermi contact interaction in each atom. We num
cally solve coupled equations~18!, including the hyperfine
potential given in Eq.~30!, for the radial amplitudes. Ther
exist n516 independent solutions and we reexpress the
tial wave amplitudeFl(R) as a square matrix@42#. Each
column of then3n matrix represents a linearly independe
solution of Eq.~18!, and then vectors are chosen in orde
that Fl(R) satisfies the asymptotic boundary condition

lim
R→`

Fl~R!5Jl~kR!2Nl~kR!Kl , ~34!

where

Jl~kR! i j 5d i j j l~kiR!/Aki ,

Nl~kR! i j 5d i j nl~kiR!/Aki . ~35!

Hered i j is the Kronecker delta function,j l(kR) andnl(kR)
are, respectively, the regular and irregular Bessel-Ric
functions; and

ki5A2m@E2Vi~`!# ~36!

is the wave number for the relative kinetic energy of t
system in channeli. Relation~35! is used to calculate theK
matrix K, from which, theS matrix is obtained,

S5~ I 1 i K !21~ I 2 i K !. ~37!

For channels that are closed, we use the method of Joh
@43# to construct theS matrix. Once theS matrix is calcu-
lated, we can describe the various cross sections that ch
terize the collision induced frequency shift and line broad
ing. We carry out the calculations using theFaMaFbMb
basis since that is the representation in which the labelin
atomic states, shown in Fig. 1, is made and the cross sec
@25# are defined. However, since each representation is
lated by a unitary transformation so is theS matrix. If the
$IMSS% basis is used, including the hyperfine interactio
then the asymptotic solution no longer has the form given
Eq. ~34! since the hyperfine interaction contains asympto
off-diagonal terms in this representation. If the hyperfine
teraction is not included, the multichannel equations in
$IMSS% picture reduce to diagonal form and the solutio
are simply expressed in terms of the elastic phase shifts
the triplet and singlet ground state potentials. Transform
the diagonalS matrix into the$FaMaFbMb% representation,
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gives the spin-changing cross section in terms of the ela
scattering phase shifts, this is the essence of the elastic
proximation@14#.

III. SPIN-EXCHANGE TUNING IN THE HYDROGEN
MASER

A. Introduction

The high stability of the hydrogen maser operating
room temperature is due, in part, to a method calledspin-
exchange tuning. Developed by Crampton@11,12,23# spin-
exchange tuning exploits a relationship between the ope
ing frequency of the maser and the parameters that define
collision properties of the atoms at the microscopic lev
According to the classical theory of Crampton, the frequen
offset dv due to the combined effects of collisions and ca
ity detuning is given by

dv5@D1bl0~11D2!#G, ~38!

wheredv is the difference between the cavity operating fr
quencyv, and the density independent atomic transition f
quencyv0 . D is the cavity detuning

D5QS vc

v
2

v

vc
D , ~39!

where Q is the quality factor of the cavity andvc is the
resonant frequency for the cavity.G is the full atomic line-
width andl0 is a frequency shift cross section that is deriv
from spin-exchange collision theory.b is a parameter that is
proportional to the thermally averaged velocities of the co
stituent atoms, as well as other constants that characteriz
physical properties of the maser. Atomic collisions shift t
resonance frequency and fluctuations in the density of at
in the maser could, presumably, limit the stability of the m
ser. Spin-exchange tuning exploits relationship~38!, so that
by a judicious choice for the cavity pulling,D5D8
[2bl0 and if D8 is small, one can tune to a near null valu
for dv. When this equality is satisfied, the maser is said
be spin-exchange tuned and the operation frequency of
maser is independent of fluctuations in the hydrogen gas d
sity. At room temperature, the measured@12# value for l0
54.160.1310216 cm2 is in good agreement with the theo
retical calculations by Allison@13#, and Berlinsky and Shiz-
gal @19#.

In the late 1970’s, Crampton, Phillips, and Kleppner@45#
suggested that a hydrogen maser operating at cryogenic
peratures could show improved frequency stability, of two
three orders of magnitude, from that of room temperat
masers. However, at low temperatures the assumptions
went into the derivation of Eq.~38!, and is the basis for
spin-exchange tuning, are no longer valid. At cryogenic te
peratures, the hyperfine structure of the hydrogen atoms m
be accounted for in the collision dynamics. The hyperfi
interaction translates into a shift of about 0.07 K and negle
ing it at room temperature is justified. The latter approxim
tion is sometimes called the degenerate internal state~DIS!
approximation or the elastic approximation@14#. Its adoption
5-8
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greatly simplifies the collision dynamics and leads to relat
~38!. Crampton and Wang@24# considered the effect of hy
perfine interactions, in the context of a semiclassical an
sis, and they generalized relation~38! to

dv5@D1bl0~11D2!#G2VGc , ~40!

whereGc is a density-dependent linewidth andV is a dimen-
sionless atomic collision parameter that is null in the D
approximation. IfD is small and if a cavity detuningD9[
2(bl02V) is chosen, the density-dependent linewidth
the expression fordv is null. However, there still exists a
shift dv52V(G2Gc), and its presence limits the utility o
spin-exchange tuning in a cryogenic hydrogen ma
~CHM!. The term proportional toV in Eq. ~40! has been
dubbed the HI effect by Crampton and, a fully quantum m
chanical theory for the HI effect was proposed@25#. This
theory, which we call the VKSLC theory@32#, can be sum-
marized by an equation that has the form~40!, except that
the parameterV is expressed as a complicated function
two additional frequency shift cross sectionsl1 andl2, and
line broadening cross sectionss0 , s1, ands2, as well as the
populations of the hyperfine levels of the colliding atom
pair.

B. Experimental evidence for the HI effect

Evidence for a small HI effect at room temperature w
suggested in experiments by Crampton and Wang in
1970s. Measurements, carried out in the 1990s, by the U
versity of British Columbia Cryogenic Hydrogen Mas
~UBC-CHM! group confirmed the reality of a significant e
fect at cryogenic temperatures@28–31#. The UBC group of
Hardy, Hayden, and Hurlimann used the UBC-CHM at 0.5
to measure V and l0. They obtained the valuel0
5221.7(2.8)310216 cm2 and for the HI effect paramete
V520.05720.021

10.009. Additional evidence for the HI effect wa
seen in experiments, using the Center for Astrophysics
drogen Maser~CfA-HM !, by Walsworth and co-workers
@32#. The CfA-HM experiments measured theVon2Vo f f pa-
rameter, a quantity that is related toV, and it was found to
have the valueVon2Vo f f55.38(1.06)31024 at 323 K.

C. Theory of the HI effect

The quantum mechanical basis for the HI effect was o
lined within the VKSLC theory@25# that we summarize be
low. In the VKSLC theory, the following cross sections

il02s0[sc→c
ac 2sa→a

ac ,

il12s1[sc→c
ac 1sa→a

ac 2sd→d
ac ,

il22s2[sd→d
ac , ~41!

where

sn→n
ac [

p

k2 (
l

~2l 11!@S$an%,$an%~ l ,E!S$cn%,$cn%* ~ l ,E!21#,

~42!
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are defined. Thel0 , l1, andl2 cross sections determine th
frequency shift, whereass0 , s1, ands2 characterize the line
broadening.

The labelsa,c, and d are shown in Fig. 1,S is the S
matrix and$ % is a symmetrization symbol defined, so tha

S$ac%,$ac%~ l ,E!5
1

2
@Sac,ac~ l ,E!7Sac,ca~ l ,E!7Sca,ac~ l ,E!

1Sca,ca~ l ,E!#, ~43!

etc., and where7 refers tol 5odd andl 5even, respectively,
E is the collision energy andk the wave number for tha
energy.

The S matrix is obtained by solving the set of multicha
nel scattering equations described in the preceding sectio
we impose the elastic, or DIS, approximation, i.e., we ign
the energy defect of the hyperfine levels, considerable s
plification in the expression for theSmatrix follows. Indeed,
in that approximation, theSmatrix can be expressed in term
of elastic scattering phase shifts for the singlete0(R), and
triplet e1(R) molecular potential curves for the ground stat
of the separating hydrogen atoms. If we label the ela
singlet ds( l ) and triplet d t( l ) phase shifts, wherel is the
orbital angular momentum for the colliding pair, the shift a
broadening cross sections reduce to the following simp
expressions:

l05
p

2k2 (
even l

~2l 11!sin„2d t~ l !22ds~ l !…,

s15
p

k2 (
l

~21! l~2l 11!sin2
„d t~ l !2ds~ l !…,

s25
p

k2 (
odd l

~2l 11!sin2
„d t~ l !2ds~ l !…,

l15l25s050. ~44!

The V parameter is defined in terms of these cross sect
and is given by@25#

V52
l̄1~rcc1raa!1l̄2

s̄1~rcc1raa!1s̄2

, ~45!

where the overbar implies an averaging over a thermal
locity distribution of the cross sections.raa andrcc are the
diagonal elements of the hydrogen atom pair density ma
and correspond to the atom populations in thea andc hyper-
fine levels.

IV. RESULTS

We present the results of our calculation for the frequen
shift and broadening cross sections in the figures shown
low. In Figs. 2~a!–2~f!, we plot the cross sections as a fun
tion of collision energy expressed in units ofkT whereT is
the temperature in kelvins. In Figs. 2~a!–2~c!, we compare
the results of the multichannel calculations with those o
5-9



ZYGELMAN et al. PHYSICAL REVIEW A 67, 042715 ~2003!
FIG. 2. Calculated values for the frequency shift and broadening cross sections. The collision energy is expressed in terms ofkT where
T is the temperature in kelvins.~a! s1, ~b! s2, ~c! l0, ~d! s0, ~e! l1, and~f! l2.
te
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tained using the elastic, or DIS, approximation. The lat
approximation gives accuratel0 ,s1, ands2 cross sections
for temperaturesT.3 K. The HI effect cross sections
s0 ,l1, and l2 are shown in Figs. 2~d!–2~f!. In the elastic
approximation, they are identically equal to zero. The res
in Fig. 2 were calculated using the atomic bare reduced m
m , and in Figs. 3~a!–3~f!, we compare them with the one
obtained using the atomic reduced masses. The calcu
cross sections are extremely sensitive to the small chang
04271
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the value of reduced mass. The sharp peaks are due
shape resonance in theJ54 partial wave which vanishe
when m50.503 638 amu is replaced by mH
50.503 913 amu. The double resonance peak structures
parent in the figures, are due to hyperfine energy splitti
that shift the entrance channel collision energy and, the
fore, the location of theJ54 resonance.

In Figs. 4~a!–4~c!, we plot the non-HI cross sections,l0 ,
s1, and s2, for collision energies ranging up to 1000 K
5-10
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FIG. 3. Comparison of cross sections obtained using the valuesm andmH for the reduced mass of the collision system.~a! s1, ~b! s2,
~c! l0, ~d! s0, ~e! l1, and~f! l2.
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In Fig. 4~c!, we also plot the measured value, atT5308 K,
for l0 ~note:l052l1/4, wherel1 is the notation used in
Refs.@12,17#!, and find excellent agreement with our calc
lated value. The crosses in that figure are the thermal a
aged cross section values of Allison@17#. The calculateds2
cross section, shown in Fig. 4~b!, is in excellent agreemen
with the experimental measurement at room temperature
Figs. 5~a! and 5~b!, we present the results for the HI effe
cross sectionsl1 , l2, and s0, in the energy range up to
1000 K. In Fig. 5~b! we plot thel1 cross sections and com
pare them to an experimental measurement, atT5323 K, by
04271
r-

In

Walsworthet al. @32#. They are only fair agreement betwee
the experimental and theoretical values. However, our res
are in good agreement, in this temperature region, with
theoretical calculations of Koelmanet al. @26#

In Tables VI and VII, we tabulate the thermal averag
cross sections@25#

^s&[
^vs&

^v&
, ~46!

wheres is a cross section and the bracket notation refers
5-11



nd

f t
a

in
o

d-

f the
23
n in
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FIG. 4. Calculated values for the non-HI frequency shift a
broadening cross sections in the collision energy range 1 K',T
,1000 K. The dashed lines represent the thermal average o
cross sections and the crosses denote the calculated thermal
ages given by Allison@13#. ~a! s1 and ~b! s2, the diamond repre-
sents the value quoted in Ref.@32# for the measurements reported
Ref. @46#; ~c! l0, the diamond represents the measurement
Cramptonet al. @12#.
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FIG. 5. Calculated values for the HI frequency shift and broa
ening cross sections in the collision energy range 1 K',T
,1000 K. The dashed lines represent the thermal average o
cross sections.~a! s0, ~b! l1, the cross is the measured value at 3
K @32# and the box is the thermal averaged cross section give
Ref. @25#. ~c! l2.
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MULTICHANNEL STUDY OF SPIN-EXCHANGE AND . . . PHYSICAL REVIEW A67, 042715 ~2003!
averaging over a Boltzmann distribution of collision energ
at temperatureT. In Table VI, we compare cross sections, f
T50.5 K, calculated using the two different valuesm and
mH for the reduced mass. We also compare the cross sec
obtained using the elastic approximation with those cal
lated using the multichannel method. With the exception
the s2 cross section, the values for the thermal avera
cross sections given here are within 50% of the values~for
reduced massmH) reported in Ref.@25#. Presumably, the
discrepancy between the two sets of calculated cross sec
are due to differences in the adopted potential energy fu
tions for theX1Sg

1 and b3Su
1 electronic states. It is note

worthy that the signs of the calculated values for the
effect cross sectionsl1 and l2 given here and those pre
sented in Ref.@25# are the same, though their absolute valu
are somewhat different.

In Table VII, we compare the results of our calculation f
the HI effect frequency shift cross section1

2 l11l2, with the
measured values at 0.5 K. The calculated and measured
ues have different signs. Our calculated value forl0 is about
40% of the measured value, as is our calculated value for
broadening cross section12 s11s2. The l0 ,s1, and s2,
cross sections obtained in the elastic approximation g
somewhat better agreement with experiment. We also
that usingmH appears to give cross sections that are close
the measured values. Walsworthet al. @32# measured the di-
mensionlessVon2Vo f f parameter, atT5323 K, to have the
value 5.38(1.06)31024. According to Ref.@32#, this param-

TABLE V. Elements of the potential matrixV4 for each of the
three representations discussed in the text. The representation
labeled with the corresponding quantum numbers$IM ISS%,
$FMFFaFb%, and $FaMaFbMb%. The rows and columns corre
spond to channels 15–16 in Table I.

IM ISS

e1 0
e1

FMFFaFb

e1 0
e1

FaMaFbMb

e1 0
e1
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eter can be approximated byVon2Vo f f'2l̄1/2s̄2 for the
conditions present in their masing cavity. Using the calc
lated values for the thermal averaged cross sections,l̄1

53.30310219 cm2 and s̄251.14310215 cm2, we obtain,
Von2Vo f f521.4531024. The calculated value has a di
ferent sign than the measured value, and it is about five s
dard deviations from the experimental mean value. It is
good agreement with the theoretical value21.1231024,
quoted in Ref.@32#.

V. SUMMARY AND DISCUSSION

We have calculated the cross sections that characterize
frequency shift and broadening of the resonance magn
hyperfine transition in atomic hydrogen due to collisio
with hydrogen atoms for collision energies that correspond
the temperature range, 10 mK,T,1000 K. We employed a
fully quantal, multichannel collision theory and code for th
entire temperature range under consideration. Our results
the non-HI effect cross sections are in harmony with pre
ous calculated values@13,19,26# and experimental measure
ments @12,46#. However, for the predicted@25# HI effect
cross sections, we find only fair agreement with the result
measurements at both room@32# and cryogenic@30# tem-
peratures. Our predictions are consistent with the result
previous calculations reported in Refs.@25,27#.

There are several possible reasons for the continued
crepancy between theory and experiment. Assuming that
VSKLC theory of the HI effect in the hydrogen maser
correct, we focus here on the deficiencies and proposed
provements in the theoretical description of the collision d
namics. In this study, we did not incorporate a rigorous tre
ment of nonadiabatic effects, but we did explore t
dependence of the calculated cross sections on the choic
the adopted reduced mass of the system. It has been ar
@19,25# that, in lieu of a rigorous treatment, the replaceme
of the bare nuclear reduced mass with that of the atom-a
reduced mass, provides a measure of nonadiabatic eff
Figure 3 and Table VI indicate that a variation in the value
reduced mass accounts for an order 20% variation in
cross sections. Though this effect is considerable, it does
explain the larger discrepancies between theory and exp
ment. It is possible, since the value in reduced mass de
mines the location and width of theJ54 shape resonance
that such an effect may account for part of these discrep
cies. However, our calculations indicate that the resona

are
TABLE VI. Thermal averaged cross sections atT50.5 K. All cross sections are given in units of cm2.

m mH

Multichannel Elastic Multichannel Elastic Ref.@25#

l0 26.54310216 28.80310216 27.81310216 21.06310215 21.19310215

s1 2.46310217 3.16310217 3.42310217 4.47310217 5.24310217

s2 2.48310220 2.65310220 1.52310221 1.80310221 7.48310220

s0 1.78310218 0.0 2.04310218 0.0 4.1310218

l1 25.90310219 0.0 21.31310218 0.0 21.8310218

l2 21.00310218 0.0 29.89310219 0.0 21.2310218
5-13
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TABLE VII. Comparison of results from multichannel calculations with the measured cross sectio
T50.5 K.

m mH Ref. @27# Ref. @30#

l0 26.54310216 27.81310216 21.19310215 22.1760.28310215

1
2 l11l2 21.30310218 21.64310218 22.04310218 2.2310218

1
2 s11s2 1.23310217 1.71310217 2.63310217 3.8310217
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shown in Figs. 3 and 4 does not provide a significant con
bution to the thermal averaged cross sections. Measurem
at several maser operation temperatures would provide s
guidance on this question. Walsworthet al. @32# found evi-
dence for an HI effect at room temperature. Figure 5~b! com-
pares the measured value forl̄1 @32# at T5323 K, with the
results obtained in our calculations. Numerous resona
structures are apparent in that figure. In the calculations,
used an energy grid that covers the entire region with a s
ing that is less than 0.3 K and so it is unlikely that a res
nance of width smaller than this grid spacing could provid
significant contribution to the thermal averaged valuel̄1.
Kokkelman and Verhaar@27# argued that there exists no p
rameterization for the short-range phase shifts that acco
for all discrepancies with the measured cross sectionsT
50.5 K, a conclusion with which we agree. Nevertheless
would be of interest to explain the influence of nonadiaba
effects at larger internuclear separations@47# and to consider
further the influence of a formally exact theory of the hyp
fine interaction.
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APPENDIX

In the molecular coordinate system, introduced in Sec
the scattering coordinate is taken to be the vector that jo
the two nuclei, and the reduced mass for the system is th
the two nuclei. It has been argued@25# that the replacemen
of the nuclear reduced mass with the atomic reduced mas
this coordinate system, accounts for some nonadiabatic
rections. In a rigorous treatment, the scattering coordinate
two asymptotically separated atoms is the vector that jo
the two atom center of masses, and the reduced mass fo
scattering coordinate is that of the two atoms. However,
particular Jacobi coordinate system is not well suited to
Born-Oppenheimer description that is appropriate in the m
lecular region. In this appendix, we provide an alternat
description, in which we use the molecular coordinate s
tem, but by a unitary transformation of the Hamiltonian, w
arrive at a description in which the correct asympto
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Hamiltonian, where the system reduced mass is that of
two atoms, is manifest.

We define the unitary transformation

Ui[exp@2 im/~m1M !Pi•xi #exp~ ipi•Ri !, ~A1!

which has the following properties,

UiRiUi
†5Ri2

m

M1m
xi ,

UixiUi
†5Ri1

M

M1m
xi ,

UiPiUi
†5

M

M1m
Pi2pi ,

UipiUi
†5pi1

m

m1M
Pi . ~A2!

It follows that

H8[U1U2HU1
†U2

†5
1

2~M1m!
P1

21
1

2~M1m!
P2

21
1

2me
p1

2

1
1

2me
p2

21VNe~x1!1VNe~x2!1V8,

V8[U1U2@VNN~ uR22R1u!1VNe~ uR22x1u!

1VNe~ uR12x2u!1Vee~ ux12x2u!#U1
†U2

† . ~A3!

In Eq. ~A3!, me[m M/(m1M ) is the reduced mass of th
bound electron on the proton, and the subscriptsNN, Ne,
and ee denote nuclear-nuclear, nuclear-electron, a
electron-electron electrostatic interactions terms, resp
tively. We simplify the expression forV8 so that

V85W1W2@VNN~ uR12R2u!1VNe~ ux21R22R1u!1VNe~ ux1

2R21R1u!1Vee~ ux12x21R12R2u!#W1
†W2

† ~A4!

and

Wi[exp@2 im/~m1M !Pi•xi #. ~A5!

We introduce the center of mass~c.m.! Rc.m. and relative
position R vectors, along with the corresponding conjuga
momentaPc.m. ,P. Thus,

R5R22R1 ,
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Rc.m.5
1
2 ~R11R2!,

P25P1
Pc.m.

2

P152P1
Pc.m.

2
. ~A6!

We then have

H85H081V8, ~A7!

where

H085
1

4~M1m!
Pc.m.

2 1
1

2mH
P21

1

2me
p1

2

1
1

2me
p2

21VNe~x1!1VNe~x2! ~A8!

andmH[(M1m)/2 is the reduced mass for the pair of h
drogen atoms. Also,

V85W@VNe~ ux21Ru!1VNe~ ux12Ru!

1Vee~ ux12x22Ru!1VNN~ uRu!#W†, ~A9!

where

W[exp@2 im/~m1M !@P•~x22x1!#. ~A10!

In deriving Eqs.~A7!–~A9!, we made use of the fact tha
Pc.m. commutes withV8.

Consider the electronic Hamiltonian

had[
1

2me
p1

21
1

2me
p2

21VNe~x1!1VNe~x2!

1W@VNe~ ux21Ru!1VNe~ ux12Ru!

1Vee~ ux12x22Ru!1VNN~ uRu!#W†, ~A11!
s.

e

s

04271
which can be rewritten as

had5exp~ i @p22p1#•R/2!had8 exp~2 i @p22p1#•R/2!,
~A12!

where

had8 5
1

2me
p1

21
1

2me
p2

21VNe~ ux11R/2u!1VNe~ ux22R/2u!

1W @VNe~ ux12R/2u!1VNe~ ux21R/2u!

1Vee~ ux22x1u!1VNN~ uRu!#W † ~A13!

and

W[exp~2 ipj•R!exp@2 im/~m1M !P•j#exp~ ipj•R!

5exp@2 im/~m1M !~P1pj!•~j2R!#, ~A14!

where we introduced the symmetric coordinates

j[x22x1 , pj[~p22p1!/2. ~A15!

If we are allowed, in the limitm/M→0, to replaceW with
the identity operator we recognize thathad8 is similar to the
Born-Oppenheimer or adiabatic Hamiltonian discussed
Sec. II. It differs fromHAD given in Eq.~4!, in that the mass
of the electron is replaced by reduced mass of the electro
the hydrogen atom, and mass polarization terms are
present.

Using H8 given in Eq.~A7!, the adiabatic Hamiltonian
had8 in Eq. ~A13!, settingW equal to the unity operator, an
repeating the procedure outlined in Sec. II, we obtain sc
tering equations~18!, where the bare nuclear reduced mass
replaced by the reduced mass of the hydrogen atoms. In
picture, the lowest order potentials are, again, the BO po
tials, but the adiabatic corrections differ from those given
Sec. II. A similar result is obtained if we replacexi and pi
appearing in Eq.~A1! with terms in which the indexi is
replaced by indexj, so that wheni 51, j 52, and wheni
52, j 51.
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