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We calculate the cross sections that characterize the frequency shift and broadening of the resonance mag-
netic hyperfine transition in atomic hydrogen due to collisions with hydrogen atoms in a masing cavity. We
consider collision energies that correspond to the temperature range, £0rmK000 K, and introduce and
apply a fully quantal, multichannel collision theory for the entire temperature range under consideration. Our
results for the spin-exchange induced cross sections at room temperature, are in harmony with previous
calculated values and experimental measurements. For the hyperfine-induced cross sections, our predicted
values are in fair agreement with measurements at cryogenic temperatures with the exception of the hyperfine
frequency shift at 0.5 K and 323 K for which we obtain a different sign. A study of possible resonance
structures shows that they cannot be invoked to resolve the discrepancy and nor can any plausible modification
of the X'X ; andb®3 ] interaction potentials.
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I. INTRODUCTION and line broadening of the observed atomic hyperfine transi-
tion lines in a hydrogen maser. Crampfdd,,23 introduced
Collisions that alter the spin angular momentum of atomsa novel technique, called spin-exchange tuning, that exploits
play an important role in a wide range of applications andthe frequency shift and broadening due to spin-changing col-
environments, including the interstellar medifiin-3], plan-  lisions in order to increase the stability, and enhance the
etary atmospherggt—6|, medical imagind7,8], and in the  performance of the hydrogen maser. The assumption of de-
operation of the hydrogen mag@-11]. In the latter system, generate hyperfine levels is justified at room temperature but
spin-changing collisions among hydrogen atoms in the mascrampton and WanfR4] pointed out the deficiencies of this
ing cavity result in a shiff12] and broadening13] of the  approximation at extremely low temperatures. They argued
observed magnetic-resonance line. that the hyperfine interaction introduces additional shifts and
In the elastic approximatioji4], hyperfine transitions oc- broadening terms that were not accounted for in the previous
cur when atoms with nearly degenerate states of differentheoried10,11,23. They called this théayperfine-inducedr
spin evolve along separate, nondegenerate molecular curves spin-exchange effect, and suggested that these terms may
during a close encounter. Interference between the accumiimit the utility of spin-exchange tuning at low temperatures.
lated molecular phase historigkb] result in a spin-changing Verhaaret al.[25] analyzed the evolution equation for the
atomic transition. The success of the elastic approximatiogpin-density matrix, assuming conditions present in a hydro-
[5,16—-27 derives from the fact that the hyperfine interac-gen masing cavity, that included the hyperfine interaction.
tion, which lifts the degeneracy of atomic levels of different They derived expressions for the HI effect frequency shift
spin, is weak and for collision energies above 10 K may beand broadening cross sections and, in a series of pf@@«s
neglected. 27], calculated their values for a range of temperatures in-
The assumption of degenerate hyperfine levels was useguding the sub-Kelvin region. Using the University of Brit-
by Balling et al.[10] and Cramptotil1,23 to derive expres- ish Columbia(UBC) cryogenic hydrogen maser, Hayden,
sions for the cross sections that determine the frequency shiflurlimann, and Hardy28—-31 found evidence for the HI
effect at a maser operation temperature of 0.5 K. An earlier
study by the Harvard group of Walswortt al. [32] also
*Also at MIT-Harvard Center for Ultra-Cold Atoms, Cambridge, found evidence for an HI effect at room temperature. Though

MA 02139. Electronic address: bernard@physics.unlv.edu the measurements of the UBC group confirmed the reality of
"Electronic address: adalgarno@cfa.harvard.edu an HI effect, the measured shift and broadening cross sec-
*Electronic address: mjj@dcs.gla.ac.uk tions are only in fair agreement with the calculated values of
$Electronic address: stancil@physast.uga.edu Verhaaret al. [25].
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The hydrogen-hydrogen complex is a fundamental atomiorder to derive a set of configuration space scattering equa-
collision system and its theoretical analysis is a useful temtions for the time-independent Schlinger equation,
plate for application to more complex atomic systems. The
interaction potential between a pair of hydrogen atoms is (Hyr—E)|¥)=E|¥), 2
known to a high degree of accurag$3—-35, and so it is . . . .
significant that there exists a major discrepancy betweel'® prOJeC_tHN_R onto a ‘JaCOb'_ coordinate system. There IS
theory and experiment for this system. The major goal of thi$OMe arbitrariness in the choice of a Jacobi coordinate sys-
paper is to present an independent calculation of the desird§™M: Put the one convenient for molecular calculations is
collision parameters using a theory and collision code devel-

calculation. We represent the multichannel interaction poten- -

oped in our group. We present a full theoretical treatment of Rem= MRy MRoH mx; +mxp ,
the collision dynamics, and we discuss possible extensions of o 2(M+m)
the present theoretical approach. Because of the continued
discrepancy between theory and experiment, we give an ex- R=R;—Ry,
plicit expression for the multichannel potential used in this (Ry+R,)
1 2

()

tial in terms of two parameters, and e; which are the b 2
potential energy functions for the Born-Oppenheinid©)
groundX!s  andb3 ! states, respectively. We solve, using
the full quantal multichannel formalism, for the frequency
shift and broadening cross section for temperatures in the
range 10 mK<T<1000 K, and compare our results with ex- 1
periment and previous calculations. In order to assess the Hom =
influence of nonadiabatic effects, not rigorously included
here, we investigate the behavior and the sensitivity of the
calculated cross sections to the value adopted for the reduced
mass of the collision system.

In Sec. |, we develop our multichannel scattering equa-
tions using a close coupling expansion, including all spin 1
components, for the colliding ground-state hydrogen atom HADZZ_
pair. In Sec. Il, we give a brief review of spin-exchange
tuning and the HI effecf24] in the hydrogen maser. In Sec. 1
[ll, we present the calculated values for the frequency shift —2 [F—R2] + Ir
and broadening cross sections, and compare them with those v

obtained in previous calculation®5] and measurements where=M/2 is the reduced mass of the “bare nuclei.” We

[30.33- Atomic units are used throughout, unless otherwis&y or oyt the center-of-mass motion and express the eigen-
stated. state of Eq.(2) by the expansion

We then obtain

Hyr=Hem THketHap,

g2
4(M+m) VRC-m-'

1 2
HKE:_ﬂV y

2 1 1
YR TR

2 1
> pi+ m(|21 Pi

mi=1

1

1= o

4

Il. THEORY W(R,1=2 F,(R)$,R,), 5
Y

A. Molecular close coupling equations

We assume that the interaction of two hydrogen atoms isvhere¢ (R,r) is an eigenstate of the adiabatic Hamiltonian
described by the following Hamiltonian:

HAD¢‘y(R=r):E'y(R)¢‘y(RIr)' (6)
H:HNR'I'Hspina
€,(R) is the Born-Oppenheimer eigenvallg$] for statey,
1 2 1 2 1 andr is a collective label for all electronic coordinates. Index
HyrR= 5 2 pi2+ S 2 pi2+ —_ v identifies the quantum numbers that specify a complete set
2M =1 2m =1 | X1 of BO states, both discrete and continuous, so that
+ —1 —1 1

IR1—Ry| i=12|Ri—x|" @ ZV 5 (RI)PRr)=(r—r"). )

R; andP; are, respectively, the proton position and conjugatenserting Eq.(5) into Eq.(2), we obtain[37],
momentum vectorsy; and p; are the corresponding elec-
tronic operators; and all coordinates are defined with respect
to a common origin in an inertial fram# is the mass of the
proton andm=1 is the mass of the electrohl;, includes

all spin and magnetic couplings amongst electrons and nuvhere the elements of the matrix potentiads,andV, are
clei, but in this section, we restrict our attentionHr. In  defined by

- %(I_VR_ iA)’F(R)+V(RF(R)=EF(R), (8)
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A p(R)=i(a|Vg|b), TABLE I: Quantum numbe.rs associated with the various basis
representations. The channel index labels the states that correspond
Vap(R)=(a|Hap|b) = apea(R), (9) to the listed quantum numbers in each representation. The last col-

umn identifies the states that correspond to the channel index item-

and the bracket notation implies integration over all elec:28d under thelF,M,F,My) basis, using the notation given in

tronic coordinateskF(R) is a column vector whose entries Fig- 1

are the channel aﬁplitude'sy(R). Equation(8) is a repre-
. . . = . . Ch | FMF,F S IM F.M,F,M Level
sentation, in the basis of adiabatic states, of the eigenvalug | o) [SSIM) [FaMaFuMy)  Leve

equation given in Eq2), and therefore, describes an infinite 1 0000 0000 0000 aa
set of coupled equations. To obtain a working theory fromp 0011 0010 1010 cc
this “exact” form, we impose the perturbed stationary statesz 1001 1000 0010 ac
(PSS approximation, in which, the summation indexis 4 1010 1010 1000 ca
truncated to a finite value, usually chosen so that all opem 1011 1-111 1-111 bd
channels are included in E¢p) at a given collision energy. g 2011 111-1 111-1 db
For collisions at cryogenic temperatures, we retain, in expan, 1101 0011 0011 ad
sion (5), those adiabatic states that correlate to the groungd 1110 1100 1100 da
states of the separated hydrogen atoms, i.e.bﬁiqf and g 1111 1110 1011 cd
X3 5 BO states of the himolecule. With this approxima- 1 2111 1011 1110 de
tion, Eq.(8) reduces to 1 1-101 0011 001-1 ab
1 12 1-110 1-100 1-100 ba
——IVéF(R)-I—[V(R)-I—U]F(R):EF(R), 13 1-111 1-110 1-110 bc
2u- "= - - - 14 2-111 101-1 101-1 ch
1 15 2211 1111 1111 dd
Eabzz_ 2 Au-Aups (10) 16 2-211 1-11-1 1-11-1 bb
M k% (a,b)
whereF is a finite dimensional column vector, and we used Hag(ROS,1)=R(06)Hgo(R,1R(64)", 1y
the fact that the nonadiabatic vector coupling matibbe- )
tween theb®s, ) andX'S  electronic states vanishl is an W€ €qUI'®
adiabatic correction to the BO potentid! In Eq. (10), the ba(R,1)=R(6¢)|S3) (12)
notation=y_. () implies that the sum does not include any e '
member of the set in the close coupling expansion. where

In order to include the effects of nuclear spin, we gener-

alize this procedure and introduce channel basis states that R(0¢)=exp —igL)exp—idLy)expiol,) (13

are direct products of the electronic adiabatic states, defined . ) ]

above, and nuclear-spin states. andL is the electronic orbital angular-momentum operator
The adiabatic Hamiltoniati 5, and its eigenfunctions, defined with respect to the molecular center.

are parametrized by the internuclear separation veRtor ~ We introduce the direct product

={R,6,¢}. We define Born-Oppenheimer states as those _

adiabatic states wheig=0 and¢ =0 i.e., the nuclear vector [IM,S2)=[IM))®[SZ), (14

IR isl a:i}gned along the ﬁXii of ”re Iat;orﬁtory frlamle. We \where|IM,) is an eigenstate with total nuclear angular mo-
abel the BO states with the value of the total electronicygnym) and its projectionrM, along thez axis. The adia-

orbital angular momentum along 4w axis; the discrete hatic eigenstates are constructed using the prescription
guantum numbers that characterize parity, reflection, an

nuclear inversion symmetries, as well ﬁsandE., the total ¢(R,1)=R(64)|IM,S3). (15)
electronic spin and its component along thexis, respec-

tively. We identify theb®s. [ andX*X; BO states of the i~ Employing this basis in the close coupling expansion, Eq.
molecule with the ket notatiof8X #), wherer=+1 are the (5), we obtain coupled Schdinger equations of the form
guantum numbers that characterizes the electronic parity afiven by Eq.(8). In this picture, the scattering amplitude
the ground BO states dfi,, and S are the spin quantum F.(R) is labeled by the quantum numbes={IM SX}.
numbers defined above. If we enforce the Pauli principle ofThe quantum numbers associated with this basis are itemized
these states thew=1 whenS=0, and w=—1 whenS in Table I. In the first column of Table I, we list the channel
=1, and thewr quantum number becomes redundant. In thenumbersn that range in value from 1 to 16 and identify the
discussion below, and in our tables, we will, therefore, supfow of the columnF(R). In the column headedM,S%) in
press, unless otherwise stated, the electronic inversion quamable |, we associate a member of the &8 ,S3}, to a
tum number in labeling the adiabatic electronic states. Adiaparticular channel. For example, channel 2, or row 2 of
batic eigenstates are constructed by rotating the B (R), is associated with quantum numbdrs1, M;=0,
eigenstates into the directid¢}; i.e., since[37] S=0, andX =0.
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sentations. Therefore, we can further simplify EtQ) via a

B>
:‘3‘0 d partial wave expansion. We write
83}
c
7 F(R)=2 RFim(R)Yin(06), (17)
b
whereF(R) is a radial column vector. Inserting E€L7)
E into Eq. (10), we obtain
 TTi—
1 d®> 1(+1)
- “aalae e Em(RHIVRIFUR)IEm(R)
=EFm(R). (18)

FIG. 1. Hyperfine level structure of ground-state atomic hydro-
gen in a magnetic field. The labeds b, ¢, andd correspond to the
hyperfine magnetic quantum numbens=0, —1, 0, and 1, respec- F, (R) is a column matrix whoseth row entry identifies
tively. F is the total hyperfine quantum number. the partial wave radial amplitude for channelThe channel,

or row, index identifies the quantum numbers in the repre-

We may also construct a close coupling expansion usingentation considered. In the discussion below, we will sup-
basis state$FM¢F,Fp,), whereF is the eigenvalue for the press the azimuthal quantum number latvebn the radial
total angular momenturir=1+S, and Mg is its z compo-  amplitude.
nent.F, andF, are the quantum numbers corresponding to The column vector§,(R) in each of the three represen-
the total hyperfine operatofs,=S,+1, andF,=S,+ 1, for  tations are related, as shown below, by unitary transforma-

hydrogen atoma andb, respectively. Introducing tions. The potential matri¥ is representation dependent. In
the | M, S representationy is diagonal with entries that
$,(R,1)=R(0¢)|FMeFF), (16)  are the BO eigenvalues. In the other two representatigns,

contains off-diagonal elements.

into the close coupling ansatz, E¢), we arrive at Eq(8) According to the previous paragraphs

for amplitudeF (R) in this representation. The row numbers
for F(R) are also denoted with the channels numbers given
in Table I, but they are now associated with a new set of
quantum numberd Mg F,_F,, itemized by the column
headed FMgF,Fp).

Finally, we introduce a third representation characterized®’
by the ket§F,M,Fy,M,), whereM , andM,, are thez com-
ponents(in the laboratory frameof the hyperfine states of
atoma andb, respectively, in the separated atom limit. The W(R,1)=_ > Fe y g m (R) R(0¢)|FaMaFuMy).
channel numbers in this representation identify the quantum FaMaFpMp (20)
numbers listed in the column of Table | headed by
|FaManM b>- . . .

In the last column of Table I, we itemize each channelComparing Eq(19) with Eq. (20), we find
with a notation commonly found in the literature. This label-
ing is isomorphic to the quantum number listing given in the
column labeled by quantum numbdfgM ;FyMy,, and it is Fimss(R)= > Fewm Fbe(R)(IM,SE|FaManMb>.
illustrated in Fig. 1 that shows the energy level diagrams of FMp 278
theF=0 andF=1 hyperfine states, for a hydrogen atom in (21)
a constant magnetic field along tkedirection, in order of
increasing energy. In Table I, we have grouped the channeéle express the transition amplitudéM S |F .M ,FyM )
states in terms of the total azimuthal angular momentum fom terms of an intermediate representation,
the pair of atoms. The channels labeled 1-6 have tdtal
=0, etc. This grouping proves to be convenient in the sub-
sequent analysis. In each representation, we must conS|der<ﬁv| S3|FaM FpMp) = E (IM|SE|FMeF,F,)
set of 16 coupled equations of the form given by EL).

Since our close coupling expansion involves electronic wave
functions with null orbital angular momentum along the

axis, the potential matri¥ is isotropic and does not depend

on the orientation angleg and ¢ in any of the three repre- Now,

V(RN= 2 Fuss(RIR(0H)[IMSS), (19
|

X(FMgFaFalFaMaFoMy). (22
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(IM|S2|FMgFF)=[F,F,,Fp ,S,1TY3(—1)FMe and we used the notation where the superscript label identi-
fies the the column entry fo¥ and the subscript the row
» S F | entry. In deriving Eq(26), we made use of the fact that the
S —Mg M, V matrix is diagonal in théM,S% representation, and the
eigenvaluesg(R) depend only on the electron spi
12 12 F, The angular coefficients appearing in Eg6) are evalu-
x{ 12 12 Fy}, (23 ated and the results are summarized in Tables II-IV. In these

tables, the potential matrix, for each of the three representa-

S I F tions, is tabulated with the rows and columns designating the
and channel index for a particular representation. According to
the channel classification outlined in Table I, the potential
(FMgF aF | FaM aF M) = (— 1)Fo~ Fa~Me[ 1112 matrix has the following block diagonal structure:
Fo. Fy F
« .
M, My —M)’ Vi
V
(24 v=l T, (27)
- 3
heref -
therefore, v,
(IM|SE|FaMaFpMp)= 2, (—1)%0 FaF[F]
FMg

whereV, is a 6X 6 matrix ranging channels 1-¥,, is a 4
F, F, F ) X4 matrix ranging channels 7—10; is a 4X 4 matrix rang-

X ing channels 11-14, and, is a 2<2 matrix ranging chan-
Ma My —M nels 15-16. The block diagonal structure is invariant in each
X[Fa,Fp,S, 1142 representation, but the individual submatridgsdepend, as
is shown in Tables II-1V, on the representation.
S F I Equation(18) is the starting point for the numerical solu-
X S —Me M, tion of the scattering amplitudes. As discussed above, this
equation may be expressed in three different representations,
12 112 F, the simplest of which is the molecular picture where the
{12 12 Fpy. (25 potential matrixV is _diagonal. The leading contributipn to
the molecular potentials are the Born-Oppenheimer eigenval-
S | F ues eg(R), followed by much smaller nuclear mass-

dependent correction33,34,38. These corrections arise
from several sources, primarily the mass polarization term in
Eqg. (4) and the nuclear kinetic-energy correction given by

Using relation(21), we find that the potential matrix in the
FaMF,My representation is related ¥(R) in the IMSX

representation, according to the matrixU defined in Eq(4).
There are also nonadiabatic corrections that involve
Viéméié”:ﬂ"é: S (FaMFoMy|I"MIS'S ") nuclear momentum couplings to distant, or closed channel,
ava bMb 1"MI'S"S electronic states. These corrections are not included in the
PSS formalism since the expansion over channel states in
Y L Eq. (6) is truncated. Accurate molecular calculations must
X(2ISMY |FaManMb>V2"S”Mi"” also allow for relativistic correctionf35] [We incorporate
them as a correction to the eigenvalug$R). ]
=33 (—1)FatFoFaFo[F S The molecular expansion described above, without inclu-
FM “Si sion of nonadiabatic couplings to distant closed channels,
does not give solutions that merge, in the asymptotic region,
X[Fa,F;,Fb,F{,]“z( Fa Fp F ) to the wave functions that describ_e two nonin_teractir]g hy-
M, My, —M drogen atoms. The reduced massin the effective Schro
dinger Equatior(4) is that of two bare nuclei, instead of two
F. F. 12 12 F, hydrogen atoms. Also, the potentialst U do not give the
x( , , ) 1/2 12 Fy, correct, asymptotic dissociation energies. However, the intro-
My My — S | E duction of an additional, adiabatic electron kinetic-energy
correction[33,3§ can be included to give more accurate
12 1/2 F} dissociation energies. At first sight these corrections appear
, to be small, however, it is knowf89] that the failure of the
Xy V2 12 Fpre(R), (26) PSS approximation to allow an accurate asymptotic descrip-
S I F tion may lead to its break down at large collision energies.
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TABLE Il. Elements of the potential matrix; for each of the three representations discussed in the text.
The representations are labeled with the corresponding quantum nufib&S}, {FMcF,F,}, and
{FaM FyM}. The rows and columns correspond to channels 1-6 in Table .

IM,S3
€ 0 0 0 0 0
€ 0 0 0 0
€ 0 0 0
€1 0 0
€ 0
€1
FMeFoFy
(€0+3€7) V3(eo—€1) 0 0 0 0
4 4
(3€0t€1) 0 0 0 0
—
(e0t3€y) (€1~ €o) (e0—€1) 0
4 4 2.2
(e0+3€y) (€1~ €0) 0
4 2\/§
(€0t €1) 0
2
€1
F.MpFuMy
(€0t 3e1) (€1~ €0) 0 0 (€0—€1) (e0—€1)
4 4 4 4
(€0t 3€7) 0 0 (€1~ €o) (€1~ €o)
4 4 4
(e0+3€y) (€1~ €o) (€1~ €o) (e0—€1)
4 4 4 4
(e0+3e€1) (e0—€1) (€1~ €o)
4 4 4
(€0t €1) 0
2
(€0t €1)
2
There is evidenc¢19,25 that the replacement of reduced B. Hyperfine interactions

massp with 4y, the reduced mass for two hydrogen atoms, Hspin describes the coupling of the electronic and nuclear-
significantly affects _the calculated values for the SPIN-gnin “angular momenta. The largest contribution HQpin

exchange cross secuon;. The_ results of our calculations Sho&Yises from the interaction between the magnetic fields gen-
that there is a large variation in the calculated values for thg, 4t by the proton and the spin of the electron. For the
frequency shift and broadening cross sections with they ., ng-state hydrogen atom, the leading interaction is given

adopted values for the reduced mass for the system. by the Fermi contact term
In Ref.[25], it was argued thaj, rather thanu, be '
used in the effective radial equation for the atom pair, since Acl-S, (28)

the former may account for nonadiabatic effects not included

in the scattering formalism. Though this assumption is based

on nonrigorous arguments, we calculate the cross sectionghereAr=0.047 38 cm?, | is the spin of the nucleus, and
for both values of reduced mass in order to explore, and the spin of the electron. In previous calculatid2$,27),
assess, the sensitivity of these cross sections to nonadiabatie atom-atom hyperfine interaction was taken to have the
effects. In the Appendix, we provide a rigorous molecularform

framework in which the atom reduced masgs is accounted

for from first principles. We use state-of-the-art BO ground-

state potentials that are discussed in more detail in [R&. Hspin=Aell1-S1+12-S]. (29

042715-6
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TABLE lll. Elements of the potential matri¥, for each of the TABLE IV. Elements of the potential matri¥; for each of the
three representations discussed in the text. The representations dhneee representations discussed in the text. The representations are
labeled with the corresponding quantum numbéis/f S}, labeled with the corresponding quantum numbégis/,S3},
{FMgF Fp}, and {F;M,FyMy}. The rows and columns corre- {FMcF,F,}, and {F,M,F,My}. The rows and columns corre-

spond to channels 7-10 in Table I. spond to channels 11-14 in Table I.
IM S IM,SY
€ 0 0 0 € 0 0 0
€1 O O €1 0 0
€1 0 €1 0
€1 €1
FMeF Fp FFuFaFp
(€0t3e€y) (€1~ €0) (€0—€1) 0 (€0t3e€1) (e1—€p) (€0—€1) 0
4 4 22 4 4 22
(€0t 3€1) (€1~ €0) 0 (€0t 3e€1) (€1~ €o) 0
4 2.2 4 242
(eot€1) 0 (€9t €71) 0
2 2
€1 €1
F.M FeMy F.M.FuM,
eyt 3e €~ € €~ € €y— €
¥ % ( 14 o ( 04 ) (€0t 3e€1) (€1—€g) (€1—€g) (€0—€1)
(+3e) (o)  (a—e) ‘ § ! !
€ € €—€ €,—€
% 04 L 14 0 (€0t 3e€1) (€0—€1) (e1—€)
4 4 4
€yt 3e €~ €
(& 7 ) ( 14 o (€0t 3€7) (€1~ €o)
4 4
+
M (EO+361)
4 —a

This Hamiltonian reproduces the correct asymptotic hyper- . . . ,
fine splitting for each atom since in th& M F,M,) and ?Xr'st'hEXbpre;Z'%m%Zr) pridﬁtsl thelcorrﬁgtc:}])c/rp(rerflfrr\erst:rlic:urg_
|[FMF,F,) representations, the hyperfine interaction poten-o. € bou ydrogen molecule, a ers 1o at ob
tial matrices are given by tained using Eq(29) by termg that are quadratic in the Fermi

constantAr . These small differences do not affect the scat-

tering solution in the molecular region since, in that region,

!

Viamaibmbz Or'F 5Fer5M'M 5MrMb—F[Fa(Fa+ 1) the differences in the singlet and triplet molecular potentials
aflafollo Fata ToTb Hata T 2 are much larger than the hyperfine interaction. However, in
+Fp(Fp+1)—3] (30) regions where the energy defect between the singlet and trip-
let molecular potentials has the same magnitude as the hy-
and perfine interaction, the scattering solutions could be sensitive
to details in the hyperfine Hamiltonian.
F'Me FLF, E We propose the following atom-atom Fermi contact inter-
FMF Py 5F’F5MF/MF5F;F35F{)Fb7[Fa(Fa+ 1) action:
+Fp(Fp+1)—3], (3D Hp=A[83(r i+ RI2)1,-S+ 8%(r;—RI2)1,-S;
respectively. Though expressi¢29) is invariant under atom +8%(r,=RI2)11- S+ (1, +RI2)1,-S,], (33

interchange, it is not symmetric under the interchange of . ) )
electrons, as well as the interchange of protons, and is therétherer, andr, are electronic coordinates ardis a con-
fore, formally incomplete. Indeed, the phenomenologicalstant. Expressioii33) satisfies the required symmetry prop-

molecular hyperfine contact interaction has the f¢a)] erty, under identical particle interchange, and has the correct
separated atom limit. However, its representation with re-
Herr=al,+bl-S+cl,S,, (320  spect to the Born-Oppenheimer ground-state wave functions

introduces molecular screening and exchange effects that are
whereS= S, + S, is the total electronic spin=1,+1, isthe  not evident in expression&0) and (31) for the effective
total nuclear spin, and, b, andc are constants. The sub- hyperfine interaction. We hope to explore the sensitivity of
scriptz denotes the vector component along the internucleathe cross sections on the choice for the effective spin Hamil-

042715-7



ZYGELMAN et al. PHYSICAL REVIEW A 67, 042715 (2003

tonian in future studies. In addition to the contact interactiongives the spin-changing cross section in terms of the elastic
we must also include the long-range magnetic B, or ~ scattering phase shifts, this is the essence of the elastic ap-
dipolar, interactions between atoms. These terms are eyroximation[14].

pected to provide a small correction to the elastic cross sec-

tions[27], and a full accounting of these effects will be de- ||| spIN-EXCHANGE TUNING IN THE HYDROGEN
ferred to future studies. MASER

C. Asymptotic boundary conditions A. Introduction

: . The high stability of the hydrogen maser operating at
In the F,MFyM, representation, the hyperfine interac- ) ; ;

: : : : - : .~ room temperature is due, in part, to a method cafipth-
tion given in Eq.(30) is a constant diagonal matrix, and in chhange tuningDeveloped by Cramptofil1,12,23 spin-

the asymptotic region, it represents the energy shift induce . - - X
by theyFeprmi con?act interapction in each ato?T{ We numeri-.eXChalnge tuning exploits a relationship between the operat-

cally solve coupled equatiorid8), including the hyperfine ing frequency of the maser and the parameters that define the

potential given in Eq(30), for the radial amplitudes. There collision properties of the atoms at the microscopic level.

oxsin = 16 ndeperdent sotons and we rcespress e paf I, 1S S ey f i, e Feguerey
tial wave amplitudeF,(R) as a square matrik42]. Each @

column of thenX n matrix represents a linearly independent ity detuning is given by

solution of Eq.(;8), and then veptors are chosen.i'n order Sw=[A+ Bro(1+ AT, (39)
that F|(R) satisfies the asymptotic boundary condition

wheredw is the difference between the cavity operating fre-
quencyw, and the density independent atomic transition fre-
guencywg. A is the cavity detuning

lim Fy(R)=J(kR) — Ny (KR)K|, (34)

R— o

where
3= -2 (39
3(kRy; =851 (kiR) i, 0 o
Nl(kR)ijzgijnl(kiR)/\/E_ (35 WhereQ is the quality factor of the cavity and is the

resonant frequency for the cavitl. is the full atomic line-

Here §;; is the Kronecker delta function,(kR) andn;(kR) width and)\o isa frequen_cy shift cross section that is deri\_/ed
are, respectively, the regular and irregular Bessel-Ricattirom spin-exchange collision theorg.is a parameter that is

functions; and proportional to the thermally averaged velocities of the con-
stituent atoms, as well as other constants that characterize the
ki=\2u[E—V;(*)] (36) physical properties of the maser. Atomic collisions shift the

resonance frequency and fluctuations in the density of atoms
is the wave number for the relative kinetic energy of thein the maser could, presumably, limit the stability of the ma-
system in channel Relation(35) is used to calculate th&  ser. Spin-exchange tuning exploits relationsf88), so that

matrix K, from which, theS matrix is obtained, by a judicious choice for the cavity pullingA=A’
=— B\ andifA’ is small, one can tune to a near null value
S=(1+iK) (I =iK). (37)  for dw. When this equality is satisfied, the maser is said to

be spin-exchange tuned and the operation frequency of the
For channels that are closed, we use the method of Johnsemaser is independent of fluctuations in the hydrogen gas den-
[43] to construct theS matrix. Once theS matrix is calcu-  sity. At room temperature, the measurgd®] value for \
lated, we can describe the various cross sections that charae-4.1+0.1x 10" ¢ cn? is in good agreement with the theo-
terize the collision induced frequency shift and line broadentetical calculations by Allisoi13], and Berlinsky and Shiz-
ing. We carry out the calculations using tkgM FyM, gal[19].
basis since that is the representation in which the labeling of In the late 1970’s, Crampton, Phillips, and Kleppf45]
atomic states, shown in Fig. 1, is made and the cross sectiogsiggested that a hydrogen maser operating at cryogenic tem-
[25] are defined. However, since each representation is reperatures could show improved frequency stability, of two to
lated by a unitary transformation so is t&ematrix. If the  three orders of magnitude, from that of room temperature
{IMSX} basis is used, including the hyperfine interaction,masers. However, at low temperatures the assumptions that
then the asymptotic solution no longer has the form given byvent into the derivation of Eq(38), and is the basis for
Eqg. (34) since the hyperfine interaction contains asymptoticspin-exchange tuning, are no longer valid. At cryogenic tem-
off-diagonal terms in this representation. If the hyperfine in-peratures, the hyperfine structure of the hydrogen atoms must
teraction is not included, the multichannel equations in thebe accounted for in the collision dynamics. The hyperfine
{IMSZX} picture reduce to diagonal form and the solutionsinteraction translates into a shift of about 0.07 K and neglect-
are simply expressed in terms of the elastic phase shifts fdng it at room temperature is justified. The latter approxima-
the triplet and singlet ground state potentials. Transformingdion is sometimes called the degenerate internal $fals)
the diagonalS matrix into the{F ;M FyM} representation, approximation or the elastic approximatigt¥]. Its adoption
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greatly simplifies the collision dynamics and leads to relationare defined. Th&,, A4, and\, cross sections determine the
(38). Crampton and WangR4] considered the effect of hy- frequency shift, whereas,, o, ando, characterize the line
perfine interactions, in the context of a semiclassical analybroadening.

sis, and they generalized relati@®8) to The labelsa,c, andd are shown in Fig. 1Sis the S

matrix and{ } is a symmetrization symbol defined, so that
Swo=[A+BAy(1+A%)T—QT, (40)

wherel’, is a density-dependent linewidth afidis a dimen- Siac faq(1,E) = E[Sac,ac(l E) ¥ Sac.call,E)F Seaac(l E)
sionless atomic collision parameter that is null in the DIS

approximation. IfA is small and if a cavity detunind”= +Scacall,E)], (43
—(BNg— Q) is chosen, the density-dependent linewidth in

the expression fobw is null. However, there still exists a etc., and where- refers tol =odd and =even, respectively,
shift So=—Q(I'—T), and its presence limits the utility of E is the collision energy ané the wave number for that
spin-exchange tuning in a cryogenic hydrogen masegnergy.

(CHM). The term proportional td) in Eq. (40) has been The S matrix is obtained by solving the set of multichan-
dubbed the HI effect by Crampton and, a fully quantum me-nel scattering equations described in the preceding section. If
chanical theory for the HI effect was proposg2b]. This  Wwe impose the elastic, or DIS, approximation, i.e., we ignore
theory, which we call the VKSLC theorj32], can be sum- the energy defect of the hyperfine levels, considerable sim-
marized by an equation that has the fof4®), except that plification in the expression for th&matrix follows. Indeed,
the parametef) is expressed as a complicated function ofin that approximation, th& matrix can be expressed in terms
two additional frequency shift cross sectionsand\,, and  of elastic scattering phase shifts for the singig(R), and

line broadening cross sectiong, o;, ando,, as well as the  triplet €;(R) molecular potential curves for the ground states

populations of the hyperfine levels of the colliding atomic of the separating hydrogen atoms. If we label the elastic
pair. singlet 65(1) and triplet 6,(1) phase shifts, wheré is the

orbital angular momentum for the colliding pair, the shift and
broadening cross sections reduce to the following simpler

. expressions:
Evidence for a small HI effect at room temperature was

suggested in experiments by Crampton and Wang in the T _

1970s. Measurements, carried out in the 1990s, by the Uni- No=5 2 eEen | (21+1)sin26(1) —264(1)),
versity of British Columbia Cryogenic Hydrogen Maser !

(UBC-CHM) group confirmed the reality of a significant ef- o

fect at cryogenic temperatur¢®8-31. The UBC group of o1=% 2 (—D)'21+1)sir?(5,(1)— 84(1)),
Hardy, Hayden, and Hurlimann used the UBC-CHM at 0.5 K k* 4

to measure() and \y,. They obtained the value\,
=—21.7(2.8)x 10 '8 cn? and for the HI effect parameter,
Q=-0.057"3397. Additional evidence for the HI effect was
seen in experiments, using the Center for Astrophysics Hy-
drogen Maser(CfA-HM), by Walsworth and co-workers N1=N,=0y=0. (44

[32]. The CfA-HM experiments measured thg,— Q¢ pa-

rameter, a quantity that is related €, and it was found to The Q) parameter is defined in terms of these cross sections

B. Experimental evidence for the HI effect

az=% > @+ Dsiri(a() - ag1),

have the value),,— Q,;=5.38(1.06)< 10~ * at 323 K. and is given by[25]
C. Theory of the HI effect Q=— il(Pcc"”Paa)Jf)\_z (45)
The quantum mechanical basis for the HI effect was out- 1(pect Paa) T 02

lined within the VKSLC theoryf25] that we summarize be-

low. In the VKSLC theory, the following cross sections where the overbar implies an averaging over a thermal ve-

locity distribution of the cross sectiong,, and p.. are the
diagonal elements of the hydrogen atom pair density matrix
and correspond to the atom populations indrendc hyper-
fine levels.

iNo— UOEU?&C_ Ugia!
iNy— Ulza-?ic"' Ugia_ C"gid )
iNy—0,=0g g, (41) IV. RESULTS

We present the results of our calculation for the frequency

where shift and broadening cross sections in the figures shown be-
low. In Figs. Za)—2(f), we plot the cross sections as a func-
g = > (21+1)[S (1,E)St (1,E)—1] tion of collision energy expressed in units lof whereT is
VKT tavhtavi b=/ Herk{ent ’ the temperature in kelvins. In Figs(a?-2(c), we compare

(42 the results of the multichannel calculations with those ob-
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FIG. 2. Calculated values for the frequency shift and broadening cross sections. The collision energy is expressed ik Tenheref
T is the temperature in kelvinga) o4, (b) o5, (c) Ao, (d) o, (€) N1, and(f) \».

tained using the elastic, or DIS, approximation. The lattetthe value of reduced mass. The sharp peaks are due to a
approximation gives accurate,, o, ando, cross sections shape resonance in the=4 partial wave which vanishes

for temperaturesT>3 K. The HI effect cross sections, when
=0.503913 amu. The double resonance peak structures, ap-
approximation, they are identically equal to zero. The resultparent in the figures, are due to hyperfine energy splittings
in Fig. 2 were calculated using the atomic bare reduced maghkat shift the entrance channel collision energy and, there-
w, and in Figs. 82)—3(f), we compare them with the ones fore, the location of thdd=4 resonance.

obtained using the atomic reduced masses. The calculated In Figs. 4a)—4(c), we plot the non-HI cross sections,

cross sections are extremely sensitive to the small change #,, and o,, for collision energies ranging up to 1000 K.

og,N1, and\, are shown in Figs. @)—2(f). In the elastic
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FIG. 3. Comparison of cross sections obtained using the valuasd ny for the reduced mass of the collision systén).o4, (b) o,
(©) No, (d) oo, (€) N1, and(f) A,.

In Fig. 4(c), we also plot the measured value, Tat 308 K,  Walsworthet al.[32]. They are only fair agreement between
for A\ (note:\g=—\"/4, wherex ' is the notation used in the experimental and theoretical values. However, our results
Refs.[12,17)), and find excellent agreement with our calcu- are in good agreement, in this temperature region, with the
lated value. The crosses in that figure are the thermal avetheoretical calculations of Koelmaat al. [26]

aged cross section values of Allisphi7]. The calculatedr, In Tables VI and VII, we tabulate the thermal averaged
cross section, shown in Fig(l), is in excellent agreement Cross sectionf25]

with the experimental measurement at room temperature. In

Figs. 5a) and %b), we present the results for the HI effect _ (vo) 46
Cross sections.;, \,, and oy, in the energy range up to <0>_W’ (46)
1000 K. In Fig. %b) we plot the\ ; cross sections and com-

pare them to an experimental measurement,=a823 K, by  whereo is a cross section and the bracket notation refers to
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FIG. 4. Calculated values for the non-HI frequency shift and
broadening cross sections in the collision energy range~I<® )
<1000 K. The dashed lines represent the thermal average of the FIG. 5. Calculated values for the HI frequency shift and broad-
cross sections and the crosses denote the calculated thermal avBing cross sections in the collision energy range 4T
ages given by Allisori13]. (8) o, and(b) o, the diamond repre- <1000 K._The dashed lines represent the thermal average of the
sents the value quoted in Rg82] for the measurements reported in CrOSS sectionga) oy, (b) Xy, the cross is the measured value at 323
Ref. [46]; (c) Ao, the diamond represents the measurement of< [32] and the box is the thermal averaged cross section given in
Cramptonet al. [12]. Ref.[25]. (c) A».
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TABLE V. Elements of the potential matrix, for each of the  ater can be approximated @on_ﬂoff%_rl/zgz for the
three representations discussed in the text. The representations ¥Snditions present in their masing cavity. Using the calcu-

labeled with the corresponding quantum numbéis/1 S}, —
{FMF.Fy}, and {F,M_F,M,}. The rows and Commn's corre- lated values for the thermal averaged cross sectians,

spond to channels 15—16 in Table |I. =3.30x10 ¥ ¢cn? and o,=1.14X10" 15 sz, we obtain,
Qon— Qo= —1.45<10 4. The calculated value has a dif-
IM,S% ferent sign than the measured value, and it is about five stan-
dard deviations from the experimental mean value. It is in
€1 0 good agreement with the theoretical valuel.12x 104,
€1 quoted in Ref[32].
FMeF.Fp
€1 0 V. SUMMARY AND DISCUSSION
€
FMFuM, ' We have calculated the cross sections that characterize the
frequency shift and broadening of the resonance magnetic
€1 0 hyperfine transition in atomic hydrogen due to collisions
€1 with hydrogen atoms for collision energies that correspond to

the temperature range, 10 I <1000 K. We employed a
L _fully quantal, multichannel collision theory and code for the
averaging over a Boltzmann distribution of collision energiesgnptire temperature range under consideration. Our results for
at temperaturd. In Table VI, we compare cross sections, for the non-HI effect cross sections are in harmony with previ-
T=0.5 K, calculated using the two different valugsand  oys calculated valudd.3,19,26 and experimental measure-
uy for the reduced mass. We also compare t_he Cross sectiopsents [12,46. However, for the predicted25] HI effect
obtained using the elastic approximation with those calcuryoss sections, we find only fair agreement with the results of
lated using the multichannel method. With the exception ofjeasurements at both roof2] and cryogenid30] tem-
the o, cross section, the values for the thermal averagegeratures. Our predictions are consistent with the results of
cross sections given here are within 50% of the valiies previous calculations reported in Refg5,27.
reduced masswy) reported in Ref[25]. Presumably, the ~ There are several possible reasons for the continued dis-
discrepancy between the two sets of calculated cross sectioggepancy between theory and experiment. Assuming that the
are due to differences in the adopted potential energy funoyskLC theory of the HI effect in the hydrogen maser is
tions for theX*=; andb3X | electronic states. It is note- correct, we focus here on the deficiencies and proposed im-
worthy that the signs of the calculated values for the Hlprovements in the theoretical description of the collision dy-
effect cross sections; and \, given here and those pre- namics. In this study, we did not incorporate a rigorous treat-
sented in Refl25] are the same, though their absolute valuesment of nonadiabatic effects, but we did explore the
are somewhat different. dependence of the calculated cross sections on the choice for
In Table VII, we compare the results of our calculation for the adopted reduced mass of the system. It has been argued
the HlI effect frequency shift cross sectiéh,+\,, withthe  [19,25 that, in lieu of a rigorous treatment, the replacement
measured values at 0.5 K. The calculated and measured valf the bare nuclear reduced mass with that of the atom-atom
ues have different signs. Our calculated valueNfigis about  reduced mass, provides a measure of nonadiabatic effects.
40% of the measured value, as is our calculated value for theigure 3 and Table VI indicate that a variation in the value of
broadening cross sectioko;+o,. The \y,0;, and o, reduced mass accounts for an order 20% variation in the
cross sections obtained in the elastic approximation giveross sections. Though this effect is considerable, it does not
somewhat better agreement with experiment. We also finéxplain the larger discrepancies between theory and experi-
that usinguy appears to give cross sections that are closer tenent. It is possible, since the value in reduced mass deter-
the measured values. Walswoghal. [32] measured the di- mines the location and width of the=4 shape resonance,
mensionless$),,— Q,¢; parameter, af =323 K, to have the that such an effect may account for part of these discrepan-
value 5.38(1.06% 10~ 4. According to Ref[32], this param-  cies. However, our calculations indicate that the resonance

TABLE VI. Thermal averaged cross sectionsTat 0.5 K. All cross sections are given in units of €m

M MH
Multichannel Elastic Multichannel Elastic RdR5]
\o —6.54x 10716 —8.80x 10716 —7.81x10716 —1.06x10°1® —1.19x10°®
oy 2.46x 10" 3.16x10° Y 3.42x10°Y 4.47x 107 5.24x 10"
oy 2.48x10°%° 2.65x 1020 1.52x10° % 1.80x10° 2 7.48x10° %0
oo 1.78x10° 18 0.0 2.04<10°18 0.0 4.1x10° 18
N —5.90x10°1° 0.0 —1.31x10 8 0.0 —1.8x10°18
\o —1.00x10 18 0.0 —9.89x10 *° 0.0 —1.2x10°18
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TABLE VII. Comparison of results from multichannel calculations with the measured cross sections at

T=0.5K.

m . Ref.[27] Ref.[30]
No —6.54x10 16 —7.81x10 16 —1.19x10 —2.17+0.28x10 1
TN, —1.30x10° 18 —1.64x10 18 —2.04x10 18 2.2x10 18
foto, 1.23x10° Y 1.71x10° Y7 2.63x10° Y 3.8x10°Y

shown in Figs. 3 and 4 does not provide a significant contriHamiltonian, where the system reduced mass is that of the
bution to the thermal averaged cross sections. Measuremeritgo atoms, is manifest.

at several maser operation temperatures would provide some We define the unitary transformation

guidance on this question. Walsworth al. [32] found evi- . )

dence for an HI effect at room temperature. Figuite) 5om- Ui=exd —im/(m+M)P;-xJexpip;-R;), (A1)

pares the measured value fof [32] at T=323 K, with the  \\hich has the following properties,
results obtained in our calculations. Numerous resonance

structures are apparent in that figure. In the calculations, we

used an energy grid that covers the entire region with a spac- UiRiUiT: Ri— M+mi
ing that is less than 0.3 K and so it is unlikely that a reso-

nance of width smaller than this grid spacing could provide a

significant contribution to the thermal averaged value UixUl =R+ MrmX
Kokkelman and Verhad27] argued that there exists no pa-

rameterization for the short-range phase shifts that accounts

for all discrepancies with the measured cross sectiong at UiPiUiT:mPi—pi,
=0.5 K, a conclusion with which we agree. Nevertheless, it

would be of interest to explain the influence of nonadiabatic

effects at larger internuclear separati¢#g] and to consider UipiUiT: P+
further the influence of a formally exact theory of the hyper-
fine interaction.

It follows that

2 2, & 2
M) 1T o m) P2t 2P
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+ Vel [Ri=%a) + Ved X1 = %[ ) JUU5.  (A3)

1
+ 2_p§+VNe(Xl) +Vne(X2) +V',
Me

APPENDIX In Eq. (A3), ue=m M/(m+M) is the reduced mass of the
bound electron on the proton, and the subscriyté, Ne,

In the molecular coordinate system, introduced in Sec. ”and ee denote nuc|ear-nuc|ear, nuc|ear-e|ectron, and
the scattering coordinate is taken to be the vector that joing|ectron-electron electrostatic interactions terms, respec-
the two nuclei, and the reduced mass for the system is that @fely. We simplify the expression fov’ so that
the two nuclei. It has been argug2b] that the replacement
of the nuclear reduced mass with the atomic reduced mass, M’ =W;W,[ Vyn(|R1—Ra]) + Ve[ X2+ Ro—Ry|) + Vne(| X1
this coordinate system, accounts for some nonadiabatic cor-
rections. In a rigorous treatment, the scattering coordinate for
two asymptotically separated atoms is the vector that joins
the two atom center of masses, and the reduced mass for tﬁ‘gd
scattering coordinate is that of the two atoms. However, this W,=exg —im/(m+M)P,-x] (A5)
particular Jacobi coordinate system is not well suited to the ' b

Born-Oppenheimer description that is appropriate in the mowe introduce the center of mags.m) R., and relative

lecular region. In this appendix, we provide an alternativeposition R vectors, along with the corresponding conjugate
description, in which we use the molecular coordinate sysmomentapP, ,, ,P. Thus,

tem, but by a unitary transformation of the Hamiltonian, we
arrive at a description in which the correct asymptotic R=R,—Ry,

—Ry+R)) +Ved [Xp =X+ Ry — Ry IWIWS (A4
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Rem.= %(R1+ Ry),

_ c.m.
P,=P+—
P
P,=—P+ % (AB)
We then have
H =Hy+V', (A7)
where
1 1 1
I 2 2 2
Ho=gtmem Fom ™t 2,7 2P
1 2
+ ﬂpz—'—VNe(Xl)"'VNe(xz) (A8)
e

and uy=(M +m)/2 is the reduced mass for the pair of hy-

drogen atoms. Also,
V' =W[Vye(| X2+ R|) + Vye(|x1—R])
+Ved[X1— %= R+ Vyn(IRDIWT, (A9)
where

W=exd —im/(m+M)[P-(x,—X;)]. (A10)

In deriving Egs.(A7)—(A9), we made use of the fact that

Pc.m commutes withV'.
Consider the electronic Hamiltonian

1 1
hag= —p%—l— —p§+VNe(X1) +Vie(X2)
2Me 2Me

W[ Vye([X2+R[) + Ve X1~ R|)

+Ved|X1= X2 = RI) + Van([RDIW', - (ALD)

PHYSICAL REVIEW A67, 042715 (2003

which can be rewritten as

hag=exp(i[p2—p1]-R/2)h,4exp(—i[p,—p1]-R/2),
(A12)

where
' 1 2 1 2
adzz_luepl+ Z_Mepz"'VNeUXl"' R/2]) +Vye(|x,— R/2])

+ WIVne(|x1—R/2|) + Vel X2+ RI2))
+Ved [Xa= X))+ Van(IRDIWVT (A13)
and

W=exp —ipg R)exd —im/(m+M)P- £lexpipg- R)

=exd —im/(m+M)(P+p,)-(§—R)], (A14)
where we introduced the symmetric coordinates
E=X— X1,  Pe=(p2—pP1)/2. (A15)

If we are allowed, in the limim/M—0, to replace/V with

the identity operator we recognize thaf, is similar to the
Born-Oppenheimer or adiabatic Hamiltonian discussed in
Sec. Il. It differs fromH 4p given in Eq.(4), in that the mass

of the electron is replaced by reduced mass of the electron in
the hydrogen atom, and mass polarization terms are not
present.

Using H' given in Eq.(A7), the adiabatic Hamiltonian,
h.4in Eqg. (A13), setting)V equal to the unity operator, and
repeating the procedure outlined in Sec. I, we obtain scat-
tering equation$18), where the bare nuclear reduced mass is
replaced by the reduced mass of the hydrogen atoms. In this
picture, the lowest order potentials are, again, the BO poten-
tials, but the adiabatic corrections differ from those given in
Sec. Il. A similar result is obtained if we replagg and p;
appearing in Eq(Al) with terms in which the index is
replaced by indej, so that when=1, j=2, and wheni
=2,j=1.
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