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Resonant vibrational excitation of CO, by electron impact: Nuclear dynamics
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We report the results of a fullgb initio study of resonant vibrational excitation of €®y electron impact
via the 3.8 eV2I1, shape resonance. First, we solve the fixed-nuclei, electronic scattering problem using the
complex Kohn variational method to produce resonance parameters for batA ttamd 2B; components of
the resonance for a variety of symmetric-stretch geometries and for a range of bending angles. The nuclear
dynamics associated with the two components of the resonance are coupled by Renner-Teller coupling. We
carry out a two-mode treatment of the nuclear dynamics in a complex local potential model using the complex
resonance energy surfaces derived from our calculated fixed-nuclei cross sections with Renner-Teller coupling.
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[. INTRODUCTION sections brings us to a second major problem, one which
probes the fundamentally polyatomic nature of the collision
Resonance enhancement of electron,@0llision cross dynamics and constitutes the major focus of this paper. The
sections near 4-eV incident energy has been known and stufesonance enhancement of the excitation cross sections is
ied since the early work of Bake [1]. Detailed studies of due to the formation of a temporary (GO negative ion
resonant vibrational excitation have been carried out bywhich, in linear geometry, haéll, symmetry. Upon bend-
among others, @dézet al.[2], Johnstone, Akther, and New- ing, this 21, state splits into nondegenerzta, (lower) and
ell [3] and, most recently, by Allaj4,5]. While much of our ~ “B; (uppe) components, the latter of which we ignored in
thinking about resonant vibrational excitation is influencedour earlier treatment. Kazanskill], who has performed
by local complex potential theories, most notably the oneseveral calculations on the electron-C@roblem using
dimensional boomerang models of Birtwistle and Herzen-model potentials, has recently given a description of the es-
berg[6] and Dubeand Herzenber{7], there are aspects of sential physics involved in treating the two-component reso-
electron-CQ scattering, as Currell and ComégB] first  nance collision problem, but lacking substantive information
pointed out, that have a polyatomic origin and cannot beabout the resonance surfaces, he did not pursue the matter
described by a simple one-dimensional model. further. In an ealier study, Currell and Conj&i had specu-
CO, provides a serious challenge and test of theories ofated that nonadiabatic coupling between the two compo-
polyatomic resonant vibrational excitation for a number ofnents of the’Il,, resonance could be responsible for resonant
reasons. First, there is the phenomenon knowrFasni  excitation of odd quanta of nontotally symmetric vibrational
resonancewhich refers to an accidental degeneracy betweeimnodes, which has also been observed. The present treatment,
certain vibrational mode§9]. This, in turn, gives rise to Which includes both théA; and 2B, surfaces, shows this
strong mixing among various zeroth-order vibrational statesnot to be the case but does reveal that the weak interference
Consequently, it is necessary to adopt a multidimensionagtructure which Allan observed is a manifestation of this
treatment of the nuclear motion just to be able to describe theoupling.
physical vibrational states of the target. This fact was illus- This study takes a completefpb initio approach to reso-
trated in our previousb initio study of electron-C@scat-  nant vibrational excitation of COand provides a more com-
tering[10], in which we carried out a three-dimensional boo- plete treatment of the nuclear dynamics than that presented
merang treatment of vibrational excitation using the complexn our earlier study 10]. The fixed-nuclei variational calcu-
2A, potential surface derived from a series of fixed-nucleilations[12] are extended t®; symmetry and used to con-
variational scattering calculations. While those earlier calcustruct a complex potential surface for thB, state of CQ™~ .
lations clearly showed the importance of treating both sym-The nuclear dynamics problem is then solved by extending
metric stretch and bending motion in the nuclear dynamicshe time-dependent Boomerang mo{lE8] to treat multidi-
and were successful in reproducing the envelope of the resorensional motion on two resonance surfaces coupled by
nant vibrational excitation cross sections for both membersonadiabati¢Renner-Teller coupling. In the spirit of a com-
of the lowest Fermi dyad, they failed to reveal the detailedplete first-principles approach, the target vibrational states,
structure in the cross sections that is evident in Alldds  which were computed using degenerate perturbation theory
recent measurements. in our earlier treatmer|tl4], are numerically computed here
The question of the origin of that structure in the crossusing the calculated CQOpotential surface. To complete the
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treatment, we extend the analyses of Danel Herzenberg In Eq.(2) ®, is the Hartree-Fock, self-consistent fi¢BICH

[7] and Estradeet al. [15] to derive an expression for the ground state of C§, A antisymmetrizes the coordinates of
differential cross section within the coupled-channel boomerthe incident electron with those of the target electrons and
ang model which permits a comparison of the initio re-  the sum contains square-integrabl®&+1)-electron terms
sults with Allan’s absolute measurements. that describe correlation and polarization effects. The scatter-

The organization of this paper is as follows. The follow- jng functionF(ry. ,) is further expanded in a combined ba-

ing section gives a brief summary of_ the complex Kohngjg of Gaussiand;) and continuum(Ricatti-Besselj,, and
methodology used to carry out the fixed-nuclei electronysnkel h) basis functions

scattering calculations and to calculate the resonance sur-

faces. In Sec. lll we outline the extension of the multidimen-

sional boomerang model to the case of coupled resonance F(N=2> cidi(r)+>, [ji(kr)s, Omm,

states. Our treatment follows closely that of Estrada, Ceder- i Im °

baum, and Domcké§l5], with extensions appropriate for a

molecule belonging to a non-Abelian point group. The angu- +T,,Ommuhfr(kr)]Y|m(F)/ r. (3)
lar dependence of the excitation cross sections within the

coupled-channel boomerang model is also derived. In Sec. . . o .
IV we briefly review the Renner-Teller effect in linear tri- f i_AppIylng th? stat;on?rr]y prmcf:;_pl_éEq. (lé] resugsTln a set
atomic molecules and show how this nonadiabatic coupling 2" e‘?”a lons for the coefficients, d,,, andTy mm, .
scheme applies to the present case of electron-scatterind'e T-matrix elementsl, nn are the fundamental dynami-
resonances. This section also presents the working equational quantities from which all fixed-nuclei cross sections are
used in the present study. In Sec. V, we discuss the numericéderived.

solution of the coupled-channel boomerang model using a To perform nuclear dynamics studies using the extension
time-dependent wave-packet approach. We also summarizé the boomerang model to coupled resonances, we require
our implementation using the multiconfiguration time- the complex local potential surfaces formed by the resonance
dependent HartreEMCTDH) method[16]. Our results are positions and widths as a function of nuclear geometry. Cal-
presented in Sec. VI along with comparisons to experimentculating accurate resonance parameters requires a proper de-
We conclude, in Sec. VII, with a brief summary as well as ascription of the dynamic response of the target to the incident
discussion of some of the open questions that remain, incluctlectron, and that effect is described by including asymptoti-
ing the possible interaction of the resonance dynamics witlzally decaying closed channels in the trial wave function
the virtual state that may be responsible for producing strucysing the®M(F1, ... Fns1) terms in Eq.(2).

ture in the vibrational excitation cross sections near thresh- For the molecular symmetries in which the resonances
old, as well as the mechanisms that may be responsible fafppear, we have found that the dominant physics of relax-
exciting “forbidden” (odd-quanta bending levels. Unless ation of the target in the presence of an extra electron trapped

Specified otherwise, we use atomic units throughout. in a Shape resonance is Captured by a “relaxed self-
consistent field” procedure that includes only configurations
II. FIXED-NUCLEI ELECTRON-SCATTERING involving symmetry- and spin-conserving single excitations
CALCULATIONS of the target. This procedure and the other parameters of the
A. Calculating the complex potential surfaces calculation are described in R¢fL2].
for the 2A, and 2B, components of the resonance The 211, resonance state splits into two nondegenerate

, _ , _ _ states of symmetr$A; and °B; when the molecule is bent.
The fixed-nuclei calculations were carried out using theg; earlier study[10] reported the behavior of the fixed-
complex Kohn variational method. The details of calcula-p, ,cjei cross sections for the lower of these two stafés )
tions using this method for electron-G@ollisions were de- 55 5 function of stretching and bending. For a bend angle of
scribgd in our first paper on the fixed-nuclei cross sectionQero’ the degenerat®ll, state decreases in energy as the
for this problem[12], which showed variations in the cross ygjecyle is stretched, crossing the neutral ground state and
sections with the symmetric stretch coordinate. To ””derbecoming electronically bound at a CO distance~02.6
stand the physical description of the resonance states, it ISohr. Upon bending, the width of th#A, component of the
useful to recall the form of the trial wave function in these oqqnance increases dramatically as it decreases in energy.
v_arlatlona_l cglculanons. In the Kohn method, we use a stap,, {he 2B, (uppe) state, however, the behavior with in-
tionary principle for theT matrix creasing bend angle is entirely different. Its width increases
little as the molecule bends while maintaining the equilib-
Tstat= Ttrial —ZJ V(H-E)V, (1)  rium CO distance, and it increases in energy. That behavior
can be seen in the fixed-nuclei results in Fig. 1. These cross
which is evaluated with a trial wave function for th& ( sections show the energy dependence of the resonance rela-
+1)-electron system of the form tive to the neutral ground state. The total electronic energy is
the resonance energyéplus the £@ound-state energy. The
by ~ b b - absolute energy of théB, state rises as a function of in-
=AlDo(ry 'rN)F(rN”)H% 0uOu(re, - Fsn): creasing bendggngle althlough it is seen to decrease slightly
(2)  relative to the elastic threshold.

042708-2



RESONANT VIBRATIONAL EXCITATION OF CG, BY ... PHYSICAL REVIEW A 67, 042708 (2003

O —— T T T ] In another study20] we provided a model for how this
E N ] puzzle about the topology of the resonant, virtual and bound
S0r ] states of CQ~ might be resolved. That interpretation in-

volves tracking the poles of te@matrix for a model for this

403_ §E — 0.1 degrees ] . i
. i - 5degrees | system in the complex momentum plane and showing that
- ? :zg;:zs ] there can be a conical intersection of the virtual and reso-

nance states on a nonphysical Riemann sheet in the complex
k plane of theSmatrix. As a result, it is possible to show that
transporting such a system around a closed loop in the con-
figuration space of nuclear geometries can bring the system
to a different state, and that two circuits of the loop are
b required to return the system to the same electronic phase
1 2 gnergy(e\f') 5 6 with the accumulation of a Berry phase.
That complicated picture suggests that for large bending
FIG. 1. e” + CO, fixed-nuclei integrated cross section, in units angles the simple two-component resonance picture gf CO
of a3, in *B; symmetry showing bend-angle dependence at equimay break down. However, in the present calculations, we
librium C—O bond distance. have considered dynamiéseginning with the ground vibra-
tional state and ending with the molecule in the lowest Fermi
It is well known [17,18) that the A, state of CQ is a  dyad or triad statdsthat does not probe that region. In the
stable negative ion, i.e., electronically bound, when the molealculations presented here, we have used the same complex
ecule is either stretched or bent sufficiently. Stretching thepotential surface for théA; resonance that we used in our
molecule in linear geometry causes the width to decreasearlier study[10] that included only one component of the
monotonically and the corresponding resonance parameterssonance, and which is constructed from the fits of the
are straight forward to obtain by fitting the calculated eigen<ixed-nuclei cross sections to have a width that goes to zero
phase sums to a Breit-Wigner form with a smooth back-continuously for bending angles where the anion is bound.
ground. Calculating resonance parameters for large bending
angles for the?A; state, however, presents something of a
problem, as we discussed earlj@g]. B. Parametrization of the complex resonance surfaces
__To understand why the width of théA, resonance state o 4 series of fixed-nuclei scattering calculations in
increases with increasing ben_d angle, one should first noteAl and 2B, symmetries we have constructed fits to both
that the symmetric-stretch motion with zero bend angle doeéomplex potential surfaces appropriate for dynamics calcula-
not C.haf.‘ge the symmetry of the molecule, and hence do ns involving the symmetric stretch and bending modes of
not significantly change the angular-momentum character 0,. The real and imaginary parts of those surfade€®
the resonance, whose lowéstomponent at equilibrium ip —Epea—il/2, wherel is the width, are shown in Fig., 2,
wave. Bendzmg the molecule, ho_wever, breaks the degenénd the different characters of tifé\; and 2B, states are
eracy szthe 11, resonance anq mixes afwave component immediately apparent. While the bending motion on fidg
Into the Ay resonance. There is no angu'ar'mome.“t“m baréurface is down hill in energy toward the equilibrium con-
rier associated with as wave, so it is not surprising that fi tion of CO~ . the bendina motion on théB. is con-
such an admixture causes the width, which is the inverse gura Q- hding . 1
ined by a shallow potential well. Just as important for the

the resonance lifetime, to increase. 18, symmetry, how- dynamics is the dramatic difference in the behavior of the

ever, thes wave is not present and the resonance lifetime is . . AR . X
relatively insensitive to bending. It is also important to noteW'dth' The increase in width of théA, with bending con-

that upon bending COacquires a dipole moment. gﬁgi with the insensitivity of the width ofB; to bending
At sufficiently large bending angles, GO becomes a Fof the fits we defin®Rco as the C—O bond lengttin
bound state, and at first glance it is natural to expect that it i?)ohr) and the angl® aSWCrginus the O—C—O bond angle
the ?A; resonance state that should become bound. Howeve degrees. It is clear that fé =0 the two surfaces must be

the picture is likely to be more complicated than that. As we ; : .
discussed earligf10], the origin of the bound state of the degenerate and have the same imaginary part as two compo

2 -
anion seems to depend on the path of the nuclei. If the molr_1ents of the“Il,, resonance state. Therefore, our representa

S ) tions of the two surfaces contain terms depending only on
ecule is first stretched until thd1, resonance state becomes Rco added to terms that depend on b&b, and®.

bourld, and the_” bent to the equilibrium geometry of the The real parts of the surfaces are described by
CO,” bound anion, one concludes that it is tha, reso-
nance state which becomes bound. However, the electron- Vv, (Rcg,0)=M(Rco)—F(Rco)(1.97676<10 4
CO, system also has a virtual stdtE9]. If one begins with !

that virtual state, and bends the molecule, it too can become —1.2152% 10 '0?)0? (4)
bound. Then upon stretching the C—O bond distance one

can arrive at the same equilibrium geometry for the,CO

bound anion state, but conclude that it is a different state. for the ?A; state and
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FIG. 2. Complex potential surfaces for both components of the resonance. Top row, real part of resonance energies; bottom row, widths.
Energies are in hartrees and the bend angle, definedragus the O—C—O bond angle, is in degrees.

Ve, (Reo,0)=M(Rgo) +(2.8988< 1074~ 8.9627 7.8608- 11.929R o
%10 5R00)©2 ® R +6.803R§O, 4 Rco<2.56
25, component —1.728R3 o+ 0.165 00R:
foth'Ez Wiéths are given by 0, RCO;Z'S(%)
s (Rco,®)=G(Rco) +0.002 exp—A(Rco)©%]02 the latter function fixing the width at zero in the region

(6) where the anion is bound. The functioR®ndA involved in
the terms that couple stretching and bending are defined as

and
F(Rco):exp[*o.&Rcofz.?)S)], (10)
FBl(RCO ,0)=G(R¢p) +{45.559 exp— 6.4625RCO]}®2.
1
@) A(Rco)—0.005+2.5{1— TreTR2T|

The functionsM (Rcp) and G(Rcp), describing purely (11)

symmetric-stretching behavior, are ) _ ) o
Equipped with these representations of #feinitio reso-

M(Rco)=0.117 358-0.409 0351 — exq — 1.37QR¢o nance parameters we have all the requirements to perform
local complex potential or boomerang calculations for the
—2.33718]}2 (8)  resonant vibrational excitation cross sections. However, we
must first formulate the local complex potential model for
and two resonances with the appropriate coupling.
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lIl. THE BOOMERANG MODEL FOR COUPLED proportional to the modulus squared of the amplitude in Eqg.
ELECTRON-SCATTERING RESONANCES (15). However in the polyatomic case there are some subtle-
IN POLYATOMIC MOLECULES ties, particularly, with respect to constructing the differential

andintegral cross sections from tifematrices of this theory,
that are obscured by these formulations. Estraedal. [15]
have discussed this point with considerable care in the con-
t8xt of coupled resonances in polyatomic systems.

The local complex potential, or boomerafj, model is
derived using Feshbach partitionii@1] to first separate
resonant and nonresonant scattering and then applying

number of simplifying assumptions to obtain an effective Our formulation follows theirs in most respects and spe-

Schralinger equation for nuclear motion in the body-fixed cializes it to the case at hand, in which the symmetries of the

frame. The key approximations are the assumption that thgom onents of the resonance neaate the assuMpLons
energetically open vibrational states of the target form P o 9 p

complete set, at least over the region of space spanned by ey used to formula_te the model problem V.V'th Wh!Ch they
explored these questions. The goal is to obtain working equa-

initial target vibrational level, and that the electronic cou- ; . !
pling element between the resonance state and the bac(z}i(—)ns that have the form of Eq€12)—(15) in the body-fixed

ground continuum be approximately independent of th rame, but also obtain the (.:orrect.connection of those ampli-
ejected electron energy. These approximations require thé‘fdes to the integral and differential cross sections.

the incident electron energy be much larger than the target

vibrational energy spacing. The limits of validity of these A. The case of two-coupled overlapping resonances

approximations are well understod@2], and have been  we take up the formulation at the point of expressing the
tested in a few calculations using more rigorous nonlocahuclear wave equation, after some of the usual assumptions
formulations[23—25. The boomerang model will obviously of the local complex potential theory have been mpti.
break down near the thresholds for vibrational excitation| abeling the two resonances “1” and “2” we first define a
and we have not attempted to apply it near the elastic thresector of nuclear wave functions in a notation that preserves
old where other effects are expected to be operative. For he dependence on the direction of the incoming electron,
diatomic molecule there is only a single vibrational degree ofyhose incident momentum we denote ky

freedom, and in the case of an isolated resonance the work-

ing expressions of the theory are quite simple. The equation . &(R)
that determines the nuclear dynamics is kv R)=(§2ky( R))’ (16)

[E-Kr=E(R)+IT(R)Z]E,(R1=¢,(R). (12 These are the components of the nuclear wave function on

dhe two resonance surfaces. We similarly define the driving

In Eq. (12), the negative-ion energy surface is characterize . .
vector of the nuclear wave equation according to

by a real part,(R) and an imaginary partil’(R)/2. The

nuclear kinetic-energy operator is denoted Ky, and the X1(R)
“entry amplitude,” ¢,,, is defined as )ZKV(R):< L ) (17)
Xakn(R)
¢, (R)=[T(R)/2w]"?(R), (13

Later we will make an assumption characteristic of the boo-

where y,, is the initial vibrational wave function of neutral merang model below in which the dependence?gf(R) on
target. _ o o the wave vector of the incident electrok, will be made
_The resonanfl matrix for vibrational excitation is ob-  eypjicit. Here and elsewhere, we UR¢o denote collectively
tained by projecting the solution of E¢L2) onto the “exit  the nuclear coordinates.
amplitude,” ¢, The nuclear wave equation is then a vector equation, with
T, (E)=(d,|£) (14) a 2X2 Hamiltonian matrix that acts on the components of
v A= TAP ISV the nuclear wave function on each of the two coupled reso-

Combining Eqgs(12) and(14) allows us to writeT,, (E) as ~ Nance surfaces,

the matrix element of a nuclear Green’s function between

entry and exit amplitudes, (E=H) &k (R) =X (R). (18

The Hamiltonian for this equation can be written in the form

TW’(E):<¢V’ E—Kr— Er(R)+iF(R)/2¢">' (13

H KrtVi(R) Wi s(R)+U14R)
Because the majority of applications of this theory have W, i(R)+ U5 4(R) Kr+V,y(R) ’

been to diatomics, it has become conventional to write the

working equations of the local complex potential theory inin which Kr denotes the nuclear kinetic energy;, i

this manner, and avoid the more rigorous discussion, ir=1,2, denotes the complex potential surface of each of the

which the entry and exit amplitudes have an implicit depentwo resonances; and/; ;(R) and U; ;(R) denote two pos-

dence on the angles specifying the orientation of moleculasible types of couplings between the resonance states.

frame with respect to the incident momentum of the electron Estradaet al. [15] make an important observation about

in the laboratory frame. The integral cross sections are thethe question of the vibronic couplings. One kind of coupling,

(19
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which we call hereW; ;(R), is a coupling through the con- The axis of quantization for the angular functions is in the
tinuum to which the resonances can de¢ag,27. In es- laboratory-fixed frame and will be chosen below to coincide
sence, the electron can escape from one resonance state avith the direction of the incident electron momentum. De-
be recaptured into the other. However, in the present case thending on the symmetries of the resonances, the angular
two resonances have different molecular symmetries, anflinction can be a linear combination of spherical harmonics
therefore are coupled to continua of different symmetriesof the same but differentm. We will use the notatiorY;

This mechanism, therefore, cannot couple g and °B;  below to denote such functions.

resonances of CQ The other coupling, denoted here by  Under the usual assumptions of effective degeneracy of
U; ;. is nonadiabatic coupling originating in the nuclear ki- molecular rotational levels, the differential cross section is
netic energy and the breakdown of the Born-Oppenheimerelated to thisT matrix by an average over molecular orien-
approximation for nearly degenerate states. The componentations,

of the 211, resonance in CD are coupled by a classic form

of nonadiabatic coupling familiar from molecular spectros- doyry i (E)  (2m)*
copy, called the Renner-Teller effect, in which the angular dQ K2
momentum associated with the degenerate bending modes of

the molecule couples to the electronic angular momentum afyhere the average over the orientations of the molecule is

the resonance state. However, before we discuss the expligienoted by the bar. The integral cross section for vibrational
form of the coupling, we must confront the question of howexcitation is then given by

to extract the cross sections from the solutions of the two-
dimensional nuclear wave equation. (2
We can solve Eq(18) formally, ok k(E)=

ITk’V’,k,V(E)|2! (25)

)4 —_—

- flkaVf,k,v(En d0. (26
k

£, (R)=(E—H+in) X

S R)=( 17)” Kl R), 20 We now have the task of explicitly evaluating, for ex-

and use the result in an expression analogous toqEf.to ~ ample, the expression for the differential cross section
obtain a matrix equation for th& matrix like that in Eq. 4
(15), dUk’V’,k,V(E) _(277) |

dQ K2 !

Tt Tt T+ To% (27

Tk/yf,k,xE):f f X (R)T(E—H+in) . j . .
and writing the result in terms of amplitudes that arise from

solving the equation analogous to E@QQ), in which the
entry and exit amplitudes have the form
{Ti(R)/2m)x,(R), i.e., do not contain a dependence on
_ the direction of the momentum of the incident or exiting
I electron. Then we will have reduced the nuclear wave equa-
tion to a form that can be solved entirely in the molecule-
Tij Zf f Xikr, (R TI(E=H+i7) " 1;jX;,(R)AR'dR, fixed frame of reference. The connection with the laboratory
(22) frame is made through the average over molecular orienta-
tions.
so that With the factorization in Eq(24) the contributions to the
T matrix can be written in the form

X X (RNAR dR. (21)

There are four contributions to this amplitude that we ca
denote byT;

2

Tk’v’,k,v(E):i’Jz:l TIJ . (23) le:YI(k)*tle](k) (28)

Each term in this sum can have a different angular depenlhe amplitudes;; originate from the effective nuclear wave

dence that arises from the entry and exit amplitudgs . equation, now expressed entirely in the body-fixed frame,
To get the contributions from which the integral and dif- . .

ferential cross sections are to be constructed we need to in- £,(R)=(E-H+in) 'X,(R), (29)

voke the further approximation, intrinsic to the boomerang

model and familiar from the original literatufg,7,23 on  and are defined according to

the subject, that these amplitudes factor because the entry

and exit amplitudes factor according to the formula L , ,
P 9 tij:f in,,,(R)T[(E—H-Hn) 1,X,(RdR'dR
1/2

XioR=[ A | R Ym0, (24) 30
with entry and exit amplitudes defined by
where x,(R) is a vibrational state of the neutral molecule,
andY|imi(k) is an angular function withl(,m;) denoting the X (R)= (m) 12 - an
angular-momentum quantum numbers of itteinitial state. v 2 XA
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Equations(29)—(31) are the working expressions of the Expressed in terms of these amplitudes, &8) now reads
local complex potential theory for coupled resonances in a

olyatomic system. They have no reference to the direction ,
o y Y e il E)= 2 YIO* (K)o YT(K).  (35)
f

of the incident and exiting momentum of the scattered elec- mym
tron, as one expects from the familiar boomerang theory for
isolated resonances. The explicit form of the Hamiltontan, The average over molecular orientations in E2j7) can

for the case of Renner-Teller coupling will be discussed inbe written in terms of the Euler angles relating the molecular
the following sections. At this point, however, the question isand laboratory frames as
how to evaluate the cross sections once we have solved these
equations. -1

Inserting Eqgs.(28) and (23) into the equations for the |Tk’v/,kv(E)|2:_2f Tk ko E)[Pdo, (36)
cross sections, Eq&25) and(26), provides the starting point 87

for deriving the explicit connections of thg amplitudes to . -
those cross sections. We will show in the following section'/€"€d®=sinBdadpdy. The explicit dependence on these
Euler angles of the molecule-fixed spherical harmonics,

that the integral cross section takes a simple form in thig o =2 . .
case, somewhat different from the case considered by E (1m(K), is given by the familiar relatiofi28],
tradaet al.[15]:
Vi) =2 YER(K)D}, m(a.B,7), (37)
473 473 "
Ty (E) = —— (o [tod ®+ [tad *+ [tz ) = —-tr (t"). N _ _ . o
k k whereD;, («,B,7) is a Wigner rotation matrix. With these
(32)  substitutions, Eq(35) now reads

To derive this equation, and the corresponding one for the lab 1. 1~ 1
differential cross sections, we must explicitly perform the Trvr jo(BE)= 2 . Yiu (K )Du,mf(“'ﬁ’w Tmg,m;
average over molecular orientations in E@5) and(26) for MMkt
the particular case of théA; and 231 symmetries ari;ing XYIab,(k)Dl, (. B,7). (39)
from the 2I1, resonance, and that is the task to which we Lu p
now turn.

We can simplify the integral over Euler angles in E86)
considerably by choosing theaxis of the laboratory frame
B. Angular dependence to coincide with the direction of the incident momentkm

The dominant component of thdl, resonance has an- Then we can use the identitpecause only.=0 contrib-
gular momentumi=1 with m=+1. So in Eq.(28) one  utes
could associate the two components of the resonance,
=1,2 with m==*=1. However, upon bending, the compo- 1 —
nents of [l transform with the molecular symmetriéa, ; Y1l ml @ B.7) =Y B.7) (39
and ?B;, which do not map onto single values wf Since
we have used the electronic basis that transforms with mdo rewrite Eq.(36) as
lecular symmetries in the formulation of the nuclear wave

equation, we must therefore use the combinations of the 1 24
usual spherical harmonicy),, that transform withx andy. a2 T k(E)[*dw
Those “real spherical harmonics” are defined by
(YX N2 —12\ (YT, o, - = 2 T Tmm 2 Vi (K)YEL(K)
= = i M NNt '
Y, V2 iz v ypo! ) mr

1 1 1x *
XFJ DM,‘nf(a,B,y)DM'mf(a,,B,’y)Yl,ni(,B-?’)

where we have emphasized the fact that they are specified in -

the molecule-fixed frame.

These are the angular functions that appear in (28), XY1m(B,y)dw. (40)
with i=1 corresponding tor, andi=2 corresponding to o
Yy, and our task in this section is to evaluate the average \we are still left with integrals of the products of four

over orientations of the molecule-fixed frame in H7)  functions of the Euler angles, but using the relation
using these definitions. To simplify angular-momentum alge-

bra of the average over molecular orientations, we first define 21+1
a set of amplitudesry, . that refer to the usual spherical Yim(B,y)= 25 Pom(a@.B,7), (41)
harmonics withm=*+1,

we can write those as products of four Wigner rotation ma-
=MTtM. (34 trices. Then we can use the product rule
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That is not the case for multiple resonances, and an interfer-

j j : i . -
Dni',ml(w)Dr’r?’ ’mz(w): 2 (2] +1)D}) (@) ence term appears in E45) due to the coupling between
! z m.m-.] the resonances. This fact was pointed out by Estetdal.
ii do i\i1 d2 [15], but the case they considered involved resonances hav-
x( ) , , , ing different parities under inversion, and their final result
mg m, m/\mg m; m

does not involve all four contributions for tiflematrix in Eq.
42 (27).
It is interesting to note that E@45) can be specialized to

and the formula for the integral of three rotation matrices the case of a doubly degeneratHl, resonance by setting
T11=7-1-1 and setting the coupling to zere, _;=71_, ;.

1 _ ) _ The result is
J1 I2 I3
8772J Dmi,ml(a’ﬂ”)/)Dmé’mz(a1B17)Dmé’m3(avﬁr’V)dw
_ ) _ do 3 372 )
:(11 I2 j3>(]1l er 13,) “3 d_Q_l()k2|T| [9+7 cog26)]. (47)
mg m, mg/\m; m; mj

This result has the form of E¢46) and can also be gotten by

to perform all the integrals in Eq40). After some algebra evaluating Eqs(2.65 and(2.66) of Dube and Herzenberg'’s
we obtain the result for the average over molecular orientam original analysis for diatomics withy,;,=1.

tions in terms of spherical harmonics of angles specifying the “,o integral cross section in E(6) is found from Eq.
direction of the ejected electron and Wigner thjegymbols (45 by integrating over the directions of the exiting electron,
and takes the simple form

1 2
_zf |Tk’v’,kv(E)| dw
8 ™ 2 2 2 2
o (E)=— (|7 + |71 |+ |7+ 7-14%)
— 2 * 2 Y kl Y* k! k
- 7-nf ,niTmf ,mij o 1,/.1,( ) 1,;;,( )

m; ,ms N, N¢

473 +
1 1 j )2( 1 1 ]) :?tr(TT)
X
0o - mi Ny m
I I £ 47 ,
1 1 j\3 = th(t t), (48)
X ne mom E(Zj-f-l). (44)

where the last equality arises because the body-fixaddt
amplitudes are related by the unitary transformation defined
explicitly in Egs.(33) and(34). The amplitudest;; , refer to

the four possibilities for entering and exiting, respectively, in
the ?A; and ?B; resonance states. The result expressed in

We can now use Eq44) in Eq. (25 and evaluate the
spherical harmonics and thr¢esymbols explicitly to obtain
the final result for the differential cross section,

do, 372 E i i i ic O
vy _ 2 2 gs.(32) and(49) is that the integral cross section is given
dQ (E) 20(2{[7+C°329)](|71,1| 71 by an incoherent sum of those four contributions to The
matrix.
+r P oA+ With the local complex potential theory formulated for

our case of two-coupled resonances that arise fronfthg
resonance in Cg) we are ready to turn to the question of the

) . ] ] nonadiabatic coupling between them.
This expression differs in a key way from Dube and Herzen-

berg’s[7] result for an isolated resonance in the case of a
diatomic target. For an isolated resonance the factorization of IV. RENNER-TELLER COUPLING

the T matrix in our Eq.(28) leads to only a single term in Eq. IN ELECTRON-SCATTERING RESONANCES
(27). The result is that the differential cross section in this
theory for an isolated resonance takes the form

+3c0420)]4Re 11 17-1-1)}. (45

For linear triatomic molecules, the nonadiabatic coupling
between components @f, A, etc., electronic states whose
degeneracy is lifted upon bending is a phenomenon that is
V"V(E):g(g)ay, JE) (46) vv_eII understood in mqlecular spectroscopy. It was first pre-
dQ ' dicted by Rennef29] in 1934, and has been observed and

analyzed quantitatively in a number of physical systems.
and consists of an energy-independent angular fag{a), These well-understood examples involve states of linear
multiplied by the energy-dependent integral cross sectionmolecules that are electronically bound. Our discussion of

do
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this effect in the context of resonance states, whose finitsVe can identify the operater 9%/ da? with the square of the
lifetimes give rise to a complex potential surface for eachcomponent of rotational angular momentum about the figure
component of the pair of Renner-Teller coupled states, folaxis,N,, and rewrite this equation as

lows the treatments for bound states given in the extensive
reviews of Brown and Jorgensg80] and Jungen and Merer

[31]. Our goal here is to specialize the classic treatment of K== 5— ——o— —
this effect to the case of théll, state of CQ and express 2pq &Sf 212 gp?
the result in terms of diabatic states that correlate properly
with the 2A; and 2B, resonance states. N 1 (Nz_ }) 58)
We begin by focusing on the nuclear kinetic-energy op- 2u,p° Z4)
erator in the Schidinger equation for a linear molecule,
(H—E)¥=0 (49) The Renner-Teller analysis now replad¢sby the differ-
ence between thecomponents of the total angular momen-
with tum J, and the electronic angular momentumto obtain

H=Kp+Heg, (50

where K, denotes the nuclear kinetic-energy operator. We " 2u1 982 2pz gp?
will formulate the coupling between th&\; and 2B, states
using normal coordinates for the nuclear motion. We denote 2

the normal coordinate for symmetric stretch §gyand those 2 an? (J—L)" = 4 (59)
of the degenerate bending modesshy ands,;,. Neglecting

the end-over-end rotations of the molecule we can write the L . .
kinetic energy for nuclear motion in the form With the nuclear kinetic energy in this form, we can proceed

to write the total wave function as a linear combination of
52 52 ) products of the two electronic states and nuclear wave func-

Kn=—5———5—

— . (51 tions associated with each,
2u1 953 2po

—
985,  3S3,

In Eq. (51) the reduced masses are given in terms of the P(r.81.0.X) = b+(1.51,p) 7+ (S1,p.X)

carbon and oxygen atomic masses by +¢_(r,51,0)7_(S1,p.X), (60)
=My/2 52 . . . . :
s © 62 in whichr denotes collectively the electronic coordinates and
and x denotes the angle defining the orientation of xhe plane
for electrons and nuclei. The electronic wave functions are

Mc defined such that the zeroth-order component is eithek the
m2=Mc| 1+ 5. (53  or they component of thdl state(suppressing the symmet-

2Mg ! i

ric stretch coordinate for the moment
The potentials for bending must be functions of only

\s2.+s2,, because they cannot depend on orientation of the (1. p)=¢n (1 +¢\(r)p+---, (61)
plane in which the molecule bends. So we can transform to
the polar coordinateg and «

¢-(1,p)=n (N+" (Np+---. (62)
p= 1S54 S5, (54)

Keeping just the leading terms and using

a=tan 1(s,,/S,,). (55)
Taking out a factor op/?, Lz¢n (r)=—iAdy (r), (63
v=0lp (50 Lo, (N=1Adn, (1), (64
we find
) Lidn, (N=A¢n (1), (65
1 9 1 Xy Xy

—_— _+ _
2
211 9sp e where A=1 is the magnitude of the component of the
electronic angular momentum for A1, state, we get the
-2 - - | (57) Renner-Teller equation for nuclear motion by operating with

the total Hamiltonian in Eq(50) on ® in Eq. (60),

N
J
he)
N
[ee]
he
N
N
he
N
D
R
N
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1 4 1 & . 1 7 A2 1 v il Z)A( , a)
— 5 S t——| —— ——|+ i —i—
21 952 212 9p®  2uap?\ Ix? 4 . TRH2P ax
" Z)A( _ a) 1 ¢ 1 & . 1 9? A2 1 Ly
—H(pzp —l=— B TR e B 7 1,
ax 2p1 982 212 9p®  2uap?\ Ix? 4
7+(S1,p,X) 7+(S1,p,X)
X =E . (66)
7-(S1.p.x) 7-(S1,p,X)
|
In Eq. (66) the electronic potential surfaces of the two reso- ( 77+(31,P,X)) (RK +(51.P)) »
nances are denoted —V s;,p) and depend onl = ' e'" X, (67)
bM_I H ( ! p) P y ﬂ—(slaPaX) RK,*(S]_“D)

on the internal V|brat|onal coordlnates of the molecule.

Now, following Ref.[30], we can associate the operator
J,=—idldx with its eigenvalueK, by assuming the factor- This replacement brings us to the final form of the nuclear
ized form for the wave function, Schralinger equation for the case at hand,

+Vi, iAK/(uop?)

2u1 955 212 9p?  2up?

1
2. 72—
Ke+ A a

—IAK/(2p?) gt
2y ﬁsi 22 ap?  2up?

1
2 2 =
(K +AZ= ]+ Vi

(RK,+(S:L!P))_E( RK,+(Sle)> 69
Rk,-(s1,p) Rk, (s1,p) ]
From Eq.(68) we can read off the Hamiltonian for the nuclear wave equation of the boomerang model(2OEQ.
L7 7 K2+ A2 L +V iAK/(uop?)
- ——|+V, i H2p
o 21 982 212 9p?  2uqp? 4 !
, 1 9 1 & 1 1 '
—iAK/(u2p%) —2——2—2——2+ > K2+A2_Z -|—VB1
M1 gsy M2 dp= 2u,p
(69)

which we now have in the adiabatic representation that isnomentum because of the initial state of the target: k.
directly connected to the molecular symmetries of the resowe therefore seék =1 andA =1 in Eq.(69) that defines the
nance states in owb initio electron-scattering calculations. Hamiltonian for nuclear motion in the negative ion. How-
The complex potential surfaces of the two resonance stateger, for the initial and final vibrational states that appear in
are denoted by, andVp_ , and are functions of; andp.  the entry and exit amplitudes in E@®1), we are dealing with
Equation(69) defines the Hamiltonian that we will use in our vibrational levels of the neutral target in its ground electronic
local complex potential calculations to treat the motion of thestate, which haéig symmetry, and therefore corresponds to
nuclei on the coupled resonance surfaces. A=0. The vibrational levels which we will be considering
We are interested in electron collisions with €@ its  as initial and final states are the ground vibrational state and
ground electronic](Eg) and vibrational state. The projection the first Fermi dyad and triad, respectively, all of which have
of rotational and electronic angular momentum on the mozero angular momentum about the figure axis, and therefore
lecular axis in this initial neutral state is therefore zero. Aftercorrespond td& =0. To compute these vibrational states, we
the resonant capture of the electron into the temporary aniouse the same normal coordinates in a one-channel version of
state, the projection of the electronic angular momentum orfEg. (69) with K=0 and A=0 and employ thdgrea) SCF
this axis, which is also the projection of the total angularpotential surface we calculated for the ground state,
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1

8uop”

+V .
2p1 9s3 2m2 9p? SCR'%y)

(70

We reiterate that the reason that the total angular momentum

PHYSICAL REVIEW A 67, 042708 (2003

1= . 61 O i
ti,j(E)zi—f0 dte'EtJ dR 5, X,/ (R)
1
5.
sl ot O X (R). (73)
0 4"

in the Renner-Teller Hamiltonian for nuclear motion in the ) )
resonance state is different from that in the initial state of thel he fourt;; amplitudes are thus found by starting the wave

system is that the incidertand exiting electron carry non-
zero orbital angular momentum.

packet on one or the other of tHé, or 2B, surfaces, speci-
fied by the indey, and Fourier transforming its overlap with

Now we can turn to the problem of the numerical solution@n exit amplitude on the surface specifiediby

of the equations for nuclear motion in the boomerang mod
given in Egs.(29)—(31) using the Hamiltonian in Eq69).

V. NUMERICAL SOLUTION OF THE EQUATIONS
OF THE LOCAL COMPLEX POTENTIAL MODEL
FOR COUPLED RESONANCE STATES

The first step in our solution of Eq&9)—(31) is to recast

them in a time-dependent form. The time-dependent formu:
lation of the boomerang model, first described by McCurd)p
and Turner[13], starts from the observation that Green'’s

function in Eq.(30) can be written as the Fourier transform
of the corresponding time propagator. Thenatrix for reso-
nant vibrational excitation can then be written as

T, (E)= % f:olte‘Et f dRX, (R)TE,(t,R)

Ilf:dteiE‘f dRX, (R)Te X (R). (72)

This expression has the form of an overlap of a two

component wave packet propagating on the coupled res
nance surfaces, whose initial condition is determined by th

the entry amplitude

[ [Ty(R)2m]"2x(R)
L [Ty(R271 Y2 (R))

-

(72

14

el For systems with more than one vibrational degree of
freedom, the time-dependent formulation provides a compu-
tational advantage, because it does not involve the solution
of large systems of complex linear equations. The propaga-
tion times in this problem are generally short, since the wave
packets survive on the complex surfaces for at most a few
vibrational periods. In these calculations the propagation
times varied from 35 to 50 fs, depending on the initial con-
ditions, at which point the norm of the packets was negligi-
ly small and the;; amplitudes in Eq(73) were converged.
As in our earlier study on this systeffh0], we have chosen
to propagate the wave packets using the multiconfiguration
time-dependent Hartre@dICTDH) method[16,32.

The underlying discretization & andp was made using
a discrete variable representatiddVR) for each degree of
freedom. The “standard” method for solving the time-
dependent Schdinger equation would construct an explicit
solution for the packet propagating on the multidimensional
DVR grid. A serious problem with this approach is that the
computational effort required scales exponentially with the
number of degrees of freedom, making it prohibitively ex-
pensive to implement as the number of degrees of freedom
_grows. The MCTDH method retains the essential rigor of the
é_tandard method while providing extraordinary computa-
gonal efficiency, especially for systems with many degrees
of freedom.

In the MCTDH method, as in the standard method, we
start with a time-independent orthonormal product basis set,

1

P X} =1 N (74

with a stationary vector exit amplitude of the same form, butwhere we have assumed that there fadegrees of freedom

corresponding to the final vibrational staté.

In Eqg. (71) the interval[0,~) of the time integration is
determined by the boundary conditions satisfied by Green
function in Eq.(30). The time-dependent formulation gives

in a problem described by nuclear coordinaf@s . . . Qs.
For computational efficiency, the basis function#?, are

Rhosen as the basis functions of a discrete variable represen-
tation (DVR) [33].

an appealing picture of the physics of a collision, in which The central idea in the MCTDH scherfits,34,3% is that

the resonant attachment of the incident electron creates

éhe can employ a smaller, but now time-dependent, basis for

wave packet on the resonant surfaces that moves while d%’xpanding the wave function. i.e.

caying due to the finite lifetime of the resonance. The famil

iar “boomerang” structure in the vibrational excitation cross

& (Q,,...Q:,1)=
potential surfaces long enough to revisit its original location (Q Qb j

and cause at least one “recurrence” in the time-dependent

sections can arise if the wave packet survives on the compl

overlap in Eq.(71).

f
O e®Q,.b)
k=1 K
(75

ny Nt
> 2 AL

1:1 Jf:l

To construct the integral and differential cross sections wavith n,<N, . The single-particle functions in turn are rep-

need the individuat;; amplitudes. The time-dependent rep-

resentation fot;; , which is apparent from Eq71), is

resented as linear combinations of the primitive basis in Eq.
(74),
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FIG. 3. Vibrational wave functions calculated on the SCF surfsicgees bending normal coordinagé’?). (a) Ground state(b) lower
member of Fermi dyad,c) upper member of dyadd) lowest member of Fermi triadg) middle member of triad(f) highest member of
triad. The normal coordinatgs ands are in atomic units.

N, The MCTDH approach has been applied to a variety of
Q)= 2 ¢ (Hx"(Q,). (76)  problems ranging from reactive and surface scattering to the
=1 determination of photodissociation and photoabsorption

spectrasee Ref[16] and references thergirThe success of
o _ . this method for systems with a large number of degrees of
Since both the coefficients); ...;, and the single-particle freedom was underlined in a recent application to the spin-
functions are time dependent, the wave-function representdboson model including 80 vibrational modg36]. We used
tion is not unique. Uniqueness can be achieved by imposinthis approach in our earlier calculations on £®hich in-
additional constraints on the single-particle functions whichvolved only the?A; resonance statgl0] and found that it
keep them orthonormal for all timg46]. works very effectively for propagation on complex potential
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1

FIG. 4. Wave-packet propagation beginning?at (lower) resonance surface. All quantities are in atomic units. Left column, component
of packet on?A; surface; right column, component of packet ¥y surface.

surfaces. Applying the MCTDH approach in this case re- The Renner-Teller Hamiltonian in EJ69) presents a
quires that we reexpress our representation of the potentiafgoblem that we did not encounter in our earlier study. Pre-
as sums of separable terms, but that expansion can be accowweusly, we used Cartesian normal coordinates in our repre-
plished without difficulty. MCTDH is particularly useful for sentation of the Hamiltonian for th&A; resonance state. In
solving problems with many degrees of freedom. However, ithat representation, the Hamiltonian is three dimensional. In
can be very convenient to use MCTDH even for rather low-the present case of the two-component Renner-Teller Hamil-
dimensional problems, as the MCTDH pack&82] supplies  tonian, withN, and L, quantized, the representation is two
analysis routinege.g., evaluation of cross correlatipand  dimensional. However, the Renner-Teller Hamiltonian has
visualization routines which work in conjunction with the singularities of the form }? at the origin of the bending
propagation routine. coordinate, both in the diagonal and coupling terms. The
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FIG. 5. Wave-packet propagation beginningBt (uppe) resonance surface. All quantities are in atomic units. Left column, component
of packet on?A, surface; right column, component of packet @y surface.

stretching motion can be treated with any one of several 1 92 1 2 1 1

well-known choices of DVRsin, Hermite, etg, because the H=— 5L 2 .2 + ( K2— 2 +V(s1,p).
potentials cause the packet to vanish benignly at the limits of M1dsy  <H2 9p°  2puop

the grid ins;. On the other hand, the motion requires a (77)

modified DVR to treat the singularity @t=0 properly.

The problem of the singularity ip appears even in the The eigenstates of this Hamiltonian behavep&$'/? at the
Schralinger equation for nuclear motion on tHEg ground  origin and thus their derivatives with respectgaliverge at
state of CQ when the bending motion is expressed in thesep=0. If coupling is neglected in the Renner-Teller matrix
coordinates, Hamiltonian, the behavior at the origin of the wave function
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0.5

Eincident (eV) Eincident(ev)
FIG. 6. Integral cross sections for vibrational excitation. Left panel: Fermi dyad, upper heavy solid line denotes high-energy component
of dyad, lower heavy solid line denotes low-energy component of dyad, light solid lines are the results of earlier calculations frb®h Ref.
Right panel: Fermi triad, heavy solid lines in order of decreasing magnitude denote high-, middle and low-energy members of triad.

is p1/2 "+ A% since we must consider the caseko£ 0 for ~ Multiplied by either [ 5 /27) Y2or (I' /2) "2, becomes the

the initial and final vibrational states, we require a DVR thatinitial wave packet for a time-dependent propagation using
allows the wave function to behave a¥? at the origin, and the techniques previously outlined. Figures 4 and 5 show
thus take on the most singular behavior for its derivative how the wave packets evolve on the two surfaces when they
p~ Y2 that our numerical calculations on the propagatingare initiated on either théA, or B, surface, respectively. In
wave packets can encounter. The problem was solved hife first case, the component of the wave packet orffhe
adopting a Laguerre DVR with underlying basis functiehs surface rapidly vanishes as it spreads because of the dramatic
that satisfy the boundary conditioh(p)~p*2 This La- increase in the width associated with increased bending. As
guerre DVR is described in the Appendix. the 2A, component dissipates, population density on1Be
starts to build up but, because of the relatively constant be-
havior of the width on theé’B, surface, is not rapidly extin-
guished. Figure 5 shows the case when the wave packet is
initiated on the?B, surface. Once again, the population den-
sity on the 2B, surface broadens as the anion bends and
As we emphasized in our earlier single-channel studystretches, but a significant fraction survives after a single
[10], the near degeneracy of the zeroth-order symmetricecurrence time. In contrast, the population fraction that ap-
stretch and bending levelsvdetci~2Vpend. OF “Fermi  pears on the lowefA, surface is rapidly quenched.
resonance” phenomenon, leads to a complete breakdown of
the single-mode description of the excited vibrational states. Is y I ' I
The classic approach to this problem is to describe the vibra-
tional states as linear combinations of the zeroth-order
single-mode levels using degenerate perturbation theory.
This was the procedure we previously employ&€], using
the semiempirically determined values for the mixing coef-
ficients given in Dennison’s classic wofk4]. In the present
work, we have opted for a completedy initio approach and
so the target vibrational states were computed numerically
using the 2D Hamiltonian of Eq70) and our calculated SCF
results potential surface. Figure 3 shows contour plots of the
“radial” wave functions,® [Eq. (56)], for the ground state
and for the various components of the Fermi-coupled dyad < S
and triad. Note that, because of the boundary conditions, 0 5 10 15
these functions vanish at linear geometry; 0, as explained Time [fs]
above. The striking thing to notice here is how the nodal g 7. populations of thdA, and 2B, resonance states during
lines for the upper and lower members of each polyad CUVV(Eropagation of wave packets. For packet beginning/t solid
in opposite directions, the upper levels favoring a “stretcheccurve denotes population 38\, and dashed curve denotes popula-
and bent” target configuration. tion of 2B,. For the packet beginning &B,: solid curve with
All of the calculations we are reporting are for excitation squares denotes population @, and solid curve with circles de-
of CO, starting in its ground vibrational state. This state, notes population ofA;.

VI. CROSS SECTIONS FOR EXCITATION OF LOWEST
FERMI DYAD AND TRIAD VIBRATIONAL STATES
OF CO,
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The integral cross sections for excitation of the Fermi-absolute magnitudes of the integrated cross sections are
coupled dyad and triad levels were computed as describggrobably more accurate than the differential results. The right
above and are shown in Fig. 6. Comparing these cross sepanel of Fig. 8 shows the calculated values at 90°. The cal-
tions with our earlier results for the dy4d0], we find that culations predict that the magnitude of the cross sections at
the inclusion of the’B, component of the resonance gives 90° is roughly half of what it is at 135°, whereas the ratio of
rise to the interference structure in the cross sections, whicthe upper to lower dyad cross sections is about the same.
was entirely absent in the earlier one-channel treatment. In- Our calculated results for the triad at 90° and 135° are
deed, the structure is seen to be most pronounced in thehown in Fig. 9. Here, the importance of the interference
energy ranges where the individual levels of each polyaderm in Eq.(25) for the differential cross section is more
strongly overlap, for example, on the high-energy side of thenoticeable: the relative magnitudes of the individual levels
upper Fermi dyad and the low-energy side of the lowerdepend strongly on the scattering angle. Finally, in Fig. 10,
Fermi dyad cross sections. These boomerang structures neee compare our calculated cross section for excitation of the
quire that a component of the wave packet survive for ahighest level of the triad with the results reported by Allan at
least a single vibrational period on the negative-ion surface90° [5]. The measurements in this case are not absolute, and
and in this case are clearly associated withBhgesonance were therefore scaled for comparison with our calculations.
component. The dominance Bf at longer times is evident Here we note that a shift of a few tenths of an eV in the
from the time dependence of the electronic-state populationsnergy scale, which reflects our error in the absolute place-
shown in Fig. 7. ment of the anion state relative to the neutral, brings theory

Another noteworthy feature of these results is that there imnd experiment into essentially perfect qualitative agree-
evidently a correlation between the magnitude of the crossnent.
sections and the structure of the target vibrational levels. For
both the dyad and the triad, it is the highest-energy member
of each polyad that has the largest excitation cross section
which in turn corresponds, as seen in Fig. 3, to the vibra- We have attempted to demonstrate with this study that
tional state that “leans” toward larges (stretching coordi- resonant vibrational excitation in an electron-polyatomic
nate. The signatures of the Fermi resonance states are thusolecule collision can be accurately treated entirely from
seen in the magnitudes of the cross sections. first principles. In the present case of g @hat goal has been

Using thet;; amplitudes, we computed the differential largely achieved. Moreover, the treatment highlights aspects
cross sections given by E@5). The results for the dyad are of the collision dynamics that give rise to observable effects
shown in Fig. 8. The left panel of this figure compares ourthat are purely polyatomic in nature. We have seen how the
calculated cross section with Allarl4] absolute differential phenomenon of Fermi resonance makes a multidimensional
cross sections at 135°. We note that the calculations are sutreatment of the nuclear dynamics essential and how the dif-
cessful in reproducing both the overall energy dependencterent members of a Fermi polyad imprint their unique sig-
and fine structure in the cross sections, while the peak valuggatures on the vibrational excitation cross sections. More-
of the cross section are approximately 50% larger than thever, the fact that the resonance state, which is doubly
measured values. We hasten to point out that the boomeramegenerate when the target is in its initial linear geometry,
model assumption that the angular dependence of the reseplits into two nondegenerate components when the mol-
nance states can be described by a single partial wave is netule bends, leads naturally to a coupled-channel generaliza-
very realistic in the present case, where bending changes thien of the complex local potential or boomerang model,
symmetry of the target. For this reason, we feel that thevith nonadiabatic Coriolis coupling providing the mecha-

VIl. DISCUSSION
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FIG. 9. Calculated DCS for vibrational excitation of the Fermi triad. Heavy solid curve, high-energy member; solid curve with squares,
middle member; light solid curve, low-energy member. Left panel, 135°; right panel, 90°.

nism for coupling the dynamics on the two resonance surand Comer have implief8] in citing the work of Estrada
faces. That coupling is essential to include if we are to deet al.[15]. The situation described by Estradgal. pertains
scribe the fine structure in the cross sections. to the vibronic coupling, in polyatomic molecules belonging
Our treatment only takes symmetric stretch and bendingo Abelian point groups, between resonance states belonging
motion into consideration. Asymmetric stretch is probablyto totally symmetric and nontotally symmetric representa-
needed for a better quantitative description, although Kazanions, respectively. For théll, Renner-Teller situation we
skir's recent model calculations have investigated such efhaye considered here, such transitions are still forbidden by
fects and found them to be smplll]. We have restricted our - qymmetry. On the other hand, a traditional adiabatic-nuclei
calculations to excitations from the ground vibrational Statetreatment[37] that included bendinginstantaneous symme-

into the first wo Fermi polyads, where we expect that thetr breaking would give a nonzero cross section for such
coupled-channel boomerang treatment captures the essentﬂ%nsitions, since the dipole moment induced by bending

physics. The qual complex potential a.pproach will IorObanycouples are even and odd components of the total wave func-
break down radically when the dyanmics probes parts of th? Rathb tal. [38] h twudied thi hani .
2/, surface where it crosséer avoids crossingthe ground lon. Rathboneet al. 1ave studie IS mechanism in
state of the anion. That crossingr avoided crossingoccurs connection with C@ photoionization and have shown that it
: ) A : can produce large cross sections when enhanced by a shape

for symmetric stretch near equilibrium but with large bend_resoﬁance Thisgmechanism however would not exglain thg
ing angles, which would be probed by the dynamics of vi-. ’ : ’ L g
brational excitation either ending or starting with higly ex- |_nterference structures in thg Cross ,sectlons for such transi
cited vibrational levels. tions that are_clearly seen in AI_Ians measurem_e[mjsA

The resonance formalism we have used cannot descridd©Per theoretical treatment of this problem remains an open

“forbidden” processes such as excitation of nontotally Sym_questlon. . . .
metric vibrational levels from the ground state, as Currell There are also unanswered questions gsspuated with
structures that have been obseryBfin the excitation cross
sections for certain vibrational levels in the energy region
below 1 eV. For example, the mechanism that produces boo-
meranglike vibrational structure near threshold in the excita-
. tion cross sections for the upper levels of the higher polyads
is still not established, but an interaction or interference of
the virtual state[19] with the resonant state dyanmics is
likely to play a major role. As we discussed in our recent
model study[20], however, the topology of that virtual state
_ or resonance surface has a complicated structure for reasons
associated with the angle-dependent dipole moment of the
target. The observed structure is reminiscent of what has
been seen previousB9] in threshold vibrational excitation
of HCI, and that stucture has been successfully treatexdhin
oLLs oy Ly ) initio “nonadiabatic R-matrix” calculations[40]. However,
0 1 2 3 4 5 6 7 the multidimensional nature of the nuclear dynamics in-
Eipcident €V) volved in the present case would likely make a straightfor-
FIG. 10. Differential cross section for the high-energy memberward extension of that approach quite difficult. A complete
of Fermi triad at 90°(heavy solid curvecompared with relative theoretical study of vibrational excitation outside the reso-
DCS of Ref.[5]. nance region remains a formidable challenge.
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2n_+a—1
</>%> =—————w(n,m,a)

Snm (AB)

-1 if n<m,

APPENDIX: LAGUERRE DVR vpm=3 0 if n=m, (A7)

As finite basis set representatigfBR) underlying the 1 it n>m

DVR we use the functions and

aon (n—=1)! a2 21 A B (n+a—1)!(n.—1)!
d)n(x)—\/mx Ze=x212_(x), (Al W(n’m’a)_\/(n<—1)!(n>+a—1)!’ (A8)

with n_-=min(n,m) and n. = max{,m), and

where
K?—1/4 with K=(a—1)/2 if a=odd,
1 n =3 . L . A9)
L3(x)= —ex 2— (e *x""?) (A2) j(j+1) with j=(a—2)/2 if a=even.
n! an
Hencec=—1/4, 0, 3/4, 2 fora=1, 2, 3, 4. Note that/x? is
is the generalized Laguerre polynomial amet1,2,3... .  the centrifugal potential for cylindrical(=odd) or spherical
Note that in Eq.(A1) and in the followingn=1,2,... N, (@=even) symmetry. _ .
whereN denotes the number of basis functigns number of For sake of completeness we also give the matrix ele-

DVR points taken into account. The basis functions satisfyments of the first two inverse powers.

the boundary conditiorb?(x) ~x¥? for x—0, they are or- (1)) palu—1 sa\ _ o—1
thonormal on the intervdl0,»), o =(hlx " ¢m) =2~ "w(n,m,a) (A10)

and
fo d)n(X)*¢m(X)dX=<¢n|¢m>=5nm, (AS) ||(12”)]:<¢§|X72|¢)§1>

(a—2)!

and satisfy the recurrence relation = @+l [(a+1)n.—(a—1)(n-—1)]w(n,m,a),

x3(x)= —(n—1)(n+a—1)$2_,(x)+(2n+a—1) (A12)

X d3(x)— Jnnta)d? . . (x). Ad where the latter equation is valid fa=2 only.
(%) ( Jén1(%) A4 The matrix(A5) can now be transformed to DVR repre-

. . , . . sentation
This recurrence relation defines the matrix representation of
the position operator. Diagonalization of the position opera- DW).BVR= ytpty (A12)

tor matrix produces the DVR points, which are given by the

eigenvalues, and the FBR/DVR transformation matdx  and similarly forD®®, 1%, and|(®). The matricesA10) and

which is the eigenvector matrix dfp3|x|#3). As the latter  (A11) are not needed, in principle, because potential terms

matrix is tridiagonal, one knows that the present DVR is aare usually evaluated by the DVR approximation, which is

“proper” DVR, i.e., the potential matrix element evaluation equivalent to evaluating Eq6A10) and(A11) by a particular

is equivalent to a Gaussian quadrature rufeee e.g. Ref. Gaussian quadratufgrhere the DVR points are the quadra-

[33] or Appendix B of Ref[16].) ture pointg. However, due to the singularity at=0, the
Next we have to determine the matrix representations ofuadrature is not very accurate, and, when a high precision is

the first- and second-order derivative operators. After a conreeded, one may want to use E@510) and(A11), or their

siderable amount of algebra one obtains DVR-transformed versions, respectively.
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Two remarks are finally necessary. First, the variable  lus of the eigenvalues of the Hamiltonian. Hence, large po-
to be replaced in actual calculations by, (or p/py), where  tential values are usually removed by simply truncating the
the length scale, has to be chosen appropriate{Jhis is  Potential at some appropriate value. To make the Laguerre
similar to adjusting the frequency parameigin a Hermite ~DVR useful for wave-packet propagation, we follow a simi-
DVR.) Second, the Laguerre DVR showseryuneven dis- @' route. The second derivative matrix, H6) is diago-
tribution of DVR points. The points are much more densenal'zed' and the large negative eigenvalues are dropped be-

- ) yond some appropriate value. Using these modified
close to the origin and become wider spaced for largérs eigenvalues, the diagonal matrix is backtransformed to its

a consequence, the second derivative matrix has very larGgiginal representation. Our experience with this modifica-
negative eigenvalues, i.e., the kinetic-energy operator, angon of the kinetic-energy operator was very satisfactory. To
hence the Hamiltonian will have very large eigenvaluesgive some typical numbers, out of 50 eigenvalues we
Most integrators for the time-dependent Salinger equa- dropped 5 or 6. The integration step size increased by about
tion, however, are sensitive to large eigenvalues. The ste factor of 30, but the errors introduced by the modification
size taken is proportional to the inverse of the largest moduremained negligible.
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