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Resonant vibrational excitation of CO2 by electron impact: Nuclear dynamics
on the coupled components of the2Pu resonance
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We report the results of a fullyab initio study of resonant vibrational excitation of CO2 by electron impact
via the 3.8 eV2Pu shape resonance. First, we solve the fixed-nuclei, electronic scattering problem using the
complex Kohn variational method to produce resonance parameters for both the2A1 and 2B1 components of
the resonance for a variety of symmetric-stretch geometries and for a range of bending angles. The nuclear
dynamics associated with the two components of the resonance are coupled by Renner-Teller coupling. We
carry out a two-mode treatment of the nuclear dynamics in a complex local potential model using the complex
resonance energy surfaces derived from our calculated fixed-nuclei cross sections with Renner-Teller coupling.
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I. INTRODUCTION

Resonance enhancement of electron-CO2 collision cross
sections near 4-eV incident energy has been known and s
ied since the early work of Bru¨cke @1#. Detailed studies of
resonant vibrational excitation have been carried out
among others, C˘ adez̆et al. @2#, Johnstone, Akther, and New
ell @3# and, most recently, by Allan@4,5#. While much of our
thinking about resonant vibrational excitation is influenc
by local complex potential theories, most notably the o
dimensional boomerang models of Birtwistle and Herz
berg @6# and Dube´ and Herzenberg@7#, there are aspects o
electron-CO2 scattering, as Currell and Comer@8# first
pointed out, that have a polyatomic origin and cannot
described by a simple one-dimensional model.

CO2 provides a serious challenge and test of theories
polyatomic resonant vibrational excitation for a number
reasons. First, there is the phenomenon known asFermi
resonance, which refers to an accidental degeneracy betw
certain vibrational modes@9#. This, in turn, gives rise to
strong mixing among various zeroth-order vibrational sta
Consequently, it is necessary to adopt a multidimensio
treatment of the nuclear motion just to be able to describe
physical vibrational states of the target. This fact was illu
trated in our previousab initio study of electron-CO2 scat-
tering@10#, in which we carried out a three-dimensional bo
merang treatment of vibrational excitation using the comp
2A1 potential surface derived from a series of fixed-nuc
variational scattering calculations. While those earlier cal
lations clearly showed the importance of treating both sy
metric stretch and bending motion in the nuclear dynam
and were successful in reproducing the envelope of the r
nant vibrational excitation cross sections for both memb
of the lowest Fermi dyad, they failed to reveal the detai
structure in the cross sections that is evident in Allan’s@4#
recent measurements.

The question of the origin of that structure in the cro
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sections brings us to a second major problem, one wh
probes the fundamentally polyatomic nature of the collis
dynamics and constitutes the major focus of this paper.
resonance enhancement of the excitation cross section
due to the formation of a temporary (CO2

2) negative ion
which, in linear geometry, has2Pu symmetry. Upon bend-
ing, this 2Pu state splits into nondegenerate2A1 ~lower! and
2B1 ~upper! components, the latter of which we ignored
our earlier treatment. Kazanskii@11#, who has performed
several calculations on the electron-CO2 problem using
model potentials, has recently given a description of the
sential physics involved in treating the two-component re
nance collision problem, but lacking substantive informati
about the resonance surfaces, he did not pursue the m
further. In an ealier study, Currell and Comer@8# had specu-
lated that nonadiabatic coupling between the two com
nents of the2Pu resonance could be responsible for reson
excitation of odd quanta of nontotally symmetric vibration
modes, which has also been observed. The present treatm
which includes both the2A1 and 2B1 surfaces, shows this
not to be the case but does reveal that the weak interfere
structure which Allan observed is a manifestation of th
coupling.

This study takes a completelyab initio approach to reso-
nant vibrational excitation of CO2 and provides a more com
plete treatment of the nuclear dynamics than that prese
in our earlier study@10#. The fixed-nuclei variational calcu
lations @12# are extended toB1 symmetry and used to con
struct a complex potential surface for the2B1 state of CO2

2 .
The nuclear dynamics problem is then solved by extend
the time-dependent Boomerang model@13# to treat multidi-
mensional motion on two resonance surfaces coupled
nonadiabatic~Renner-Teller! coupling. In the spirit of a com-
plete first-principles approach, the target vibrational sta
which were computed using degenerate perturbation the
in our earlier treatment@14#, are numerically computed her
using the calculated CO2 potential surface. To complete th
©2003 The American Physical Society08-1
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treatment, we extend the analyses of Dube´ and Herzenberg
@7# and Estradaet al. @15# to derive an expression for th
differential cross section within the coupled-channel boom
ang model which permits a comparison of theab initio re-
sults with Allan’s absolute measurements.

The organization of this paper is as follows. The follow
ing section gives a brief summary of the complex Ko
methodology used to carry out the fixed-nuclei electro
scattering calculations and to calculate the resonance
faces. In Sec. III we outline the extension of the multidime
sional boomerang model to the case of coupled resona
states. Our treatment follows closely that of Estrada, Ce
baum, and Domcke@15#, with extensions appropriate for
molecule belonging to a non-Abelian point group. The an
lar dependence of the excitation cross sections within
coupled-channel boomerang model is also derived. In S
IV we briefly review the Renner-Teller effect in linear tr
atomic molecules and show how this nonadiabatic coup
scheme applies to the present case of electron-scatte
resonances. This section also presents the working equa
used in the present study. In Sec. V, we discuss the nume
solution of the coupled-channel boomerang model usin
time-dependent wave-packet approach. We also summa
our implementation using the multiconfiguration tim
dependent Hartree~MCTDH! method@16#. Our results are
presented in Sec. VI along with comparisons to experim
We conclude, in Sec. VII, with a brief summary as well as
discussion of some of the open questions that remain, inc
ing the possible interaction of the resonance dynamics w
the virtual state that may be responsible for producing str
ture in the vibrational excitation cross sections near thre
old, as well as the mechanisms that may be responsible
exciting ‘‘forbidden’’ ~odd-quanta! bending levels. Unless
specified otherwise, we use atomic units throughout.

II. FIXED-NUCLEI ELECTRON-SCATTERING
CALCULATIONS

A. Calculating the complex potential surfaces
for the 2A1 and 2B1 components of the resonance

The fixed-nuclei calculations were carried out using
complex Kohn variational method. The details of calcu
tions using this method for electron-CO2 collisions were de-
scribed in our first paper on the fixed-nuclei cross secti
for this problem@12#, which showed variations in the cros
sections with the symmetric stretch coordinate. To und
stand the physical description of the resonance states,
useful to recall the form of the trial wave function in the
variational calculations. In the Kohn method, we use a s
tionary principle for theT matrix

Tstat5Ttrial 22E C~H2E!C, ~1!

which is evaluated with a trial wave function for the (N
11)-electron system of the form

C5A@Fo~rW1•••rWN!F~rWN11!#1(
m

dmQm~rW1 , . . . ,rWN11!.

~2!
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In Eq. ~2! Fo is the Hartree-Fock, self-consistent field~SCF!
ground state of CO2, A antisymmetrizes the coordinates
the incident electron with those of the target electrons a
the sum contains square-integrable, (N11)-electron terms
that describe correlation and polarization effects. The sca
ing functionF(rWN11) is further expanded in a combined b
sis of Gaussian (f i) and continuum~Ricatti-Bessel,j l , and
Hankel,hl

1) basis functions

F~rW !5(
i

cif i~rW !1(
lm

@ j l~kr !d l l o
dmmo

1Tll ommo
hl

1~kr !#Ylm~ r̂ !Y r . ~3!

Applying the stationary principle@Eq. ~1!# results in a set
of linear equations for the coefficientsci , dm , andTll ommo

.

The T-matrix elementsTll ommo
are the fundamental dynam

cal quantities from which all fixed-nuclei cross sections a
derived.

To perform nuclear dynamics studies using the extens
of the boomerang model to coupled resonances, we req
the complex local potential surfaces formed by the resona
positions and widths as a function of nuclear geometry. C
culating accurate resonance parameters requires a prope
scription of the dynamic response of the target to the incid
electron, and that effect is described by including asympt
cally decaying closed channels in the trial wave functi
using theQm(rW1 , . . . ,rWN11) terms in Eq.~2!.

For the molecular symmetries in which the resonan
appear, we have found that the dominant physics of re
ation of the target in the presence of an extra electron trap
in a shape resonance is captured by a ‘‘relaxed s
consistent field’’ procedure that includes only configuratio
involving symmetry- and spin-conserving single excitatio
of the target. This procedure and the other parameters o
calculation are described in Ref.@12#.

The 2Pu resonance state splits into two nondegener
states of symmetry2A1 and 2B1 when the molecule is bent
Our earlier study@10# reported the behavior of the fixed
nuclei cross sections for the lower of these two states (2A1)
as a function of stretching and bending. For a bend angl
zero, the degenerate2Pu state decreases in energy as t
molecule is stretched, crossing the neutral ground state
becoming electronically bound at a CO distance of;2.6
bohr. Upon bending, the width of the2A1 component of the
resonance increases dramatically as it decreases in en
For the 2B1 ~upper! state, however, the behavior with in
creasing bend angle is entirely different. Its width increa
little as the molecule bends while maintaining the equil
rium CO distance, and it increases in energy. That beha
can be seen in the fixed-nuclei results in Fig. 1. These c
sections show the energy dependence of the resonance
tive to the neutral ground state. The total electronic energ
the resonance energy plus the CO2 ground-state energy. Th
absolute energy of the2B1 state rises as a function of in
creasing bend angle although it is seen to decrease slig
relative to the elastic threshold.
8-2



o
th
a
te
n

ck
di
f a

o
oe
o
r

e

a
t
e

i
te

it
v

w
e
o

es
th

ro

om
on

.

nd
-

that
so-
plex

at
on-
tem
re
ase

ing

we
-
rmi
e
plex
r
e
the
ero
d.

in
th

ula-
of

,

n-

he
the

e
po-

ta-
on

its
qu

RESONANT VIBRATIONAL EXCITATION OF CO2 BY . . . PHYSICAL REVIEW A 67, 042708 ~2003!
It is well known @17,18# that the 2A1 state of CO2
2 is a

stable negative ion, i.e., electronically bound, when the m
ecule is either stretched or bent sufficiently. Stretching
molecule in linear geometry causes the width to decre
monotonically and the corresponding resonance parame
are straight forward to obtain by fitting the calculated eige
phase sums to a Breit-Wigner form with a smooth ba
ground. Calculating resonance parameters for large ben
angles for the2A1 state, however, presents something o
problem, as we discussed earlier@10#.

To understand why the width of the2A1 resonance state
increases with increasing bend angle, one should first n
that the symmetric-stretch motion with zero bend angle d
not change the symmetry of the molecule, and hence d
not significantly change the angular-momentum characte
the resonance, whose lowestl component at equilibrium isp
wave. Bending the molecule, however, breaks the deg
eracy of the2Pu resonance and mixes ans-wave component
into the 2A1 resonance. There is no angular-momentum b
rier associated with ans wave, so it is not surprising tha
such an admixture causes the width, which is the invers
the resonance lifetime, to increase. In2B1 symmetry, how-
ever, thes wave is not present and the resonance lifetime
relatively insensitive to bending. It is also important to no
that upon bending CO2 acquires a dipole moment.

At sufficiently large bending angles, CO2
2 becomes a

bound state, and at first glance it is natural to expect that
the 2A1 resonance state that should become bound. Howe
the picture is likely to be more complicated than that. As
discussed earlier@10#, the origin of the bound state of th
anion seems to depend on the path of the nuclei. If the m
ecule is first stretched until the2Pu resonance state becom
bound, and then bent to the equilibrium geometry of
CO2

2 bound anion, one concludes that it is the2A1 reso-
nance state which becomes bound. However, the elect
CO2 system also has a virtual state@19#. If one begins with
that virtual state, and bends the molecule, it too can bec
bound. Then upon stretching the C—O bond distance
can arrive at the same equilibrium geometry for the CO2

2

bound anion state, but conclude that it is a different state

FIG. 1. e21CO2 fixed-nuclei integrated cross section, in un
of ao

2 , in 2B1 symmetry showing bend-angle dependence at e
librium C—O bond distance.
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In another study@20# we provided a model for how this
puzzle about the topology of the resonant, virtual and bou
states of CO2

2 might be resolved. That interpretation in
volves tracking the poles of theSmatrix for a model for this
system in the complex momentum plane and showing
there can be a conical intersection of the virtual and re
nance states on a nonphysical Riemann sheet in the com
k plane of theSmatrix. As a result, it is possible to show th
transporting such a system around a closed loop in the c
figuration space of nuclear geometries can bring the sys
to a different state, and that two circuits of the loop a
required to return the system to the same electronic ph
with the accumulation of a Berry phase.

That complicated picture suggests that for large bend
angles the simple two-component resonance picture of CO2

2

may break down. However, in the present calculations,
have considered dynamics~beginning with the ground vibra
tional state and ending with the molecule in the lowest Fe
dyad or triad states! that does not probe that region. In th
calculations presented here, we have used the same com
potential surface for the2A1 resonance that we used in ou
earlier study@10# that included only one component of th
resonance, and which is constructed from the fits of
fixed-nuclei cross sections to have a width that goes to z
continuously for bending angles where the anion is boun

B. Parametrization of the complex resonance surfaces

From a series of fixed-nuclei scattering calculations
2A1 and 2B1 symmetries we have constructed fits to bo
complex potential surfaces appropriate for dynamics calc
tions involving the symmetric stretch and bending modes
CO2. The real and imaginary parts of those surfaces,Eres

5EReal2 iG/2, whereG is the width, are shown in Fig. 2
and the different characters of the2A1 and 2B1 states are
immediately apparent. While the bending motion on the2A1
surface is down hill in energy toward the equilibrium co
figuration of CO2

2 , the bending motion on the2B1 is con-
fined by a shallow potential well. Just as important for t
dynamics is the dramatic difference in the behavior of
width. The increase in width of the2A1 with bending con-
trasts with the insensitivity of the width of2B1 to bending
angle.

For the fits we defineRCO as the C—O bond length~in
bohr! and the angleQ asp minus the O—C—O bond angle
in degrees. It is clear that forQ50 the two surfaces must b
degenerate and have the same imaginary part as two com
nents of the2Pu resonance state. Therefore, our represen
tions of the two surfaces contain terms depending only
RCO added to terms that depend on bothRCO andQ.

The real parts of the surfaces are described by

VA1
~RCO ,Q!5M ~RCO!2F~RCO!~1.976 7631024

21.215 2931027Q2!Q2 ~4!

for the 2A1 state and

i-
8-3



w, widths.
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FIG. 2. Complex potential surfaces for both components of the resonance. Top row, real part of resonance energies; bottom ro
Energies are in hartrees and the bend angle, defined asp minus the O—C—O bond angle, is in degrees.
n
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VB1
~RCO ,Q!5M ~RCO!1~2.89883102428.9627

31025RCO!Q2 ~5!

for the 2B1 component.
The widths are given by

GA1
~RCO ,Q!5G~RCO!10.002 exp@2A~RCO!Q2#Q2

~6!

and

GB1
~RCO ,Q!5G~RCO!1$45.559 exp@26.4623RCO#%Q2.

~7!

The functionsM (RCO) and G(RCO), describing purely
symmetric-stretching behavior, are

M ~RCO!50.117 35810.409 035$12exp@21.370~RCO

22.337 18!#%2 ~8!

and
04270
G~R!55
7.8608211.9292RCO

16.8032RCO
2 , RCO,2.56

21.7282RCO
3 10.165 008RCO

4

0, RCO>2.56,
~9!

the latter function fixing the width at zero in the regio
where the anion is bound. The functionsF andA involved in
the terms that couple stretching and bending are defined

F~RCO!5exp@20.6~RCO22.33!#, ~10!

A~RCO!50.00512.5F12
1

11exp@20~RCO22.7!#G .
~11!

Equipped with these representations of theab initio reso-
nance parameters we have all the requirements to perf
local complex potential or boomerang calculations for t
resonant vibrational excitation cross sections. However,
must first formulate the local complex potential model f
two resonances with the appropriate coupling.
8-4
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RESONANT VIBRATIONAL EXCITATION OF CO2 BY . . . PHYSICAL REVIEW A 67, 042708 ~2003!
III. THE BOOMERANG MODEL FOR COUPLED
ELECTRON-SCATTERING RESONANCES

IN POLYATOMIC MOLECULES

The local complex potential, or boomerang@6#, model is
derived using Feshbach partitioning@21# to first separate
resonant and nonresonant scattering and then applyin
number of simplifying assumptions to obtain an effecti
Schrödinger equation for nuclear motion in the body-fixe
frame. The key approximations are the assumption that
energetically open vibrational states of the target form
complete set, at least over the region of space spanned b
initial target vibrational level, and that the electronic co
pling element between the resonance state and the b
ground continuum be approximately independent of
ejected electron energy. These approximations require
the incident electron energy be much larger than the ta
vibrational energy spacing. The limits of validity of thes
approximations are well understood@22#, and have been
tested in a few calculations using more rigorous nonlo
formulations@23–25#. The boomerang model will obviousl
break down near the thresholds for vibrational excitati
and we have not attempted to apply it near the elastic thr
old where other effects are expected to be operative. F
diatomic molecule there is only a single vibrational degree
freedom, and in the case of an isolated resonance the w
ing expressions of the theory are quite simple. The equa
that determines the nuclear dynamics is

@E2KR2Er~R!1 iG~R!/2#jn~R!5fn~R!. ~12!

In Eq. ~12!, the negative-ion energy surface is characteriz
by a real partEr(R) and an imaginary part2 iG(R)/2. The
nuclear kinetic-energy operator is denoted byKR , and the
‘‘entry amplitude,’’ fn , is defined as

fn~R!5@G~R!/2p#1/2xn~R!, ~13!

wherexn is the initial vibrational wave function of neutra
target.

The resonantT matrix for vibrational excitation is ob-
tained by projecting the solution of Eq.~12! onto the ‘‘exit
amplitude,’’fn8 :

Tnn8~E!5^fn8ujn&. ~14!

Combining Eqs.~12! and~14! allows us to writeTnn8(E) as
the matrix element of a nuclear Green’s function betwe
entry and exit amplitudes,

Tnn8~E!5 K fn8U 1

E2KR2Er~R!1 iG~R!/2UfnL . ~15!

Because the majority of applications of this theory ha
been to diatomics, it has become conventional to write
working equations of the local complex potential theory
this manner, and avoid the more rigorous discussion
which the entry and exit amplitudes have an implicit dep
dence on the angles specifying the orientation of molec
frame with respect to the incident momentum of the elect
in the laboratory frame. The integral cross sections are t
04270
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proportional to the modulus squared of the amplitude in E
~15!. However in the polyatomic case there are some sub
ties, particularly, with respect to constructing the different
and integral cross sections from theT matrices of this theory,
that are obscured by these formulations. Estradaet al. @15#
have discussed this point with considerable care in the c
text of coupled resonances in polyatomic systems.

Our formulation follows theirs in most respects and sp
cializes it to the case at hand, in which the symmetries of
components of the CO2

2 resonance negate the assumptio
they used to formulate the model problem with which th
explored these questions. The goal is to obtain working eq
tions that have the form of Eqs.~12!–~15! in the body-fixed
frame, but also obtain the correct connection of those am
tudes to the integral and differential cross sections.

A. The case of two-coupled overlapping resonances

We take up the formulation at the point of expressing
nuclear wave equation, after some of the usual assumpt
of the local complex potential theory have been made@15#.
Labeling the two resonances ‘‘1’’ and ‘‘2’’ we first define
vector of nuclear wave functions in a notation that preser
the dependence on the direction of the incoming electr
whose incident momentum we denote byk,

jW kn~R!5S j1kn~R!

j2kn~R!
D , ~16!

These are the components of the nuclear wave function
the two resonance surfaces. We similarly define the driv
vector of the nuclear wave equation according to

XW kn~R!5S X1kn~R!

X2kn~R!
D . ~17!

Later we will make an assumption characteristic of the b
merang model below in which the dependence ofXW kn(R) on
the wave vector of the incident electron,k, will be made
explicit. Here and elsewhere, we useR to denote collectively
the nuclear coordinates.

The nuclear wave equation is then a vector equation, w
a 232 Hamiltonian matrix that acts on the components
the nuclear wave function on each of the two coupled re
nance surfaces,

~E2H !jW kn~R!5XW kn~R!. ~18!

The Hamiltonian for this equation can be written in the for

H5F KR1V1~R! W1,2~R!1U1,2~R!

W2,1~R!1U2,1~R! KR1V2~R!
G , ~19!

in which KR denotes the nuclear kinetic energy;Vi , i
51,2, denotes the complex potential surface of each of
two resonances; andWi , j (R) and Ui , j (R) denote two pos-
sible types of couplings between the resonance states.

Estradaet al. @15# make an important observation abo
the question of the vibronic couplings. One kind of couplin
8-5
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McCURDY et al. PHYSICAL REVIEW A 67, 042708 ~2003!
which we call hereWi , j (R), is a coupling through the con
tinuum to which the resonances can decay@26,27#. In es-
sence, the electron can escape from one resonance stat
be recaptured into the other. However, in the present case
two resonances have different molecular symmetries,
therefore are coupled to continua of different symmetri
This mechanism, therefore, cannot couple the2A1 and 2B1
resonances of CO2. The other coupling, denoted here b
Ui , j , is nonadiabatic coupling originating in the nuclear k
netic energy and the breakdown of the Born-Oppenhei
approximation for nearly degenerate states. The compon
of the 2Pu resonance in CO2

2 are coupled by a classic form
of nonadiabatic coupling familiar from molecular spectro
copy, called the Renner-Teller effect, in which the angu
momentum associated with the degenerate bending mod
the molecule couples to the electronic angular momentum
the resonance state. However, before we discuss the ex
form of the coupling, we must confront the question of ho
to extract the cross sections from the solutions of the tw
dimensional nuclear wave equation.

We can solve Eq.~18! formally,

jW kn~R!5~E2H1 ih!21XW kn~R!, ~20!

and use the result in an expression analogous to Eq.~14! to
obtain a matrix equation for theT matrix like that in Eq.
~15!,

Tk8n8,k,n~E!5E E XW k8n8~R!†~E2H1 ih!21

3XW kn~R8!dR8dR. ~21!

There are four contributions to this amplitude that we c
denote byTi j ,

Ti j 5E E Xik8n8~R!†@~E2H1 ih!21# i j Xj kn~R8!dR8dR,

~22!

so that

Tk8n8,k,n~E!5 (
i , j 51

2

Ti j . ~23!

Each term in this sum can have a different angular dep
dence that arises from the entry and exit amplitudesXikn .

To get the contributions from which the integral and d
ferential cross sections are to be constructed we need t
voke the further approximation, intrinsic to the boomera
model and familiar from the original literature@6,7,22# on
the subject, that these amplitudes factor because the e
and exit amplitudes factor according to the formula

Xikn~R!5S G i~R!

2p D 1/2

xn~R!Yl imi
~k!, ~24!

wherexn(R) is a vibrational state of the neutral molecul
andYl imi

(k) is an angular function with (l i ,mi) denoting the

angular-momentum quantum numbers of thei th initial state.
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The axis of quantization for the angular functions is in t
laboratory-fixed frame and will be chosen below to coinci
with the direction of the incident electron momentum. D
pending on the symmetries of the resonances, the ang
function can be a linear combination of spherical harmon
of the samel but differentm. We will use the notationYi
below to denote such functions.

Under the usual assumptions of effective degeneracy
molecular rotational levels, the differential cross section
related to thisT matrix by an average over molecular orie
tations,

dsk8n8,k,n~E!

dV
5

~2p!4

k2
uTk8n8,k,n~E!u2, ~25!

where the average over the orientations of the molecul
denoted by the bar. The integral cross section for vibratio
excitation is then given by

sk8n8,k,n~E!5
~2p!4

k2 E uTk8n8,k,n~E!u2dV. ~26!

We now have the task of explicitly evaluating, for e
ample, the expression for the differential cross section

dsk8n8,k,n~E!

dV
5

~2p!4

k2
uT111T121T211T22u2, ~27!

and writing the result in terms of amplitudes that arise fro
solving the equation analogous to Eq.~20!, in which the
entry and exit amplitudes have the for
(G i(R)/2p)1/2xn(R), i.e., do not contain a dependence
the direction of the momentum of the incident or exitin
electron. Then we will have reduced the nuclear wave eq
tion to a form that can be solved entirely in the molecu
fixed frame of reference. The connection with the laborat
frame is made through the average over molecular orie
tions.

With the factorization in Eq.~24! the contributions to the
T matrix can be written in the form

Ti j 5Yi~k!* t i j Yj~k!. ~28!

The amplitudest i j originate from the effective nuclear wav
equation, now expressed entirely in the body-fixed frame

jW n~R!5~E2H1 ih!21XW n~R!, ~29!

and are defined according to

t i j 5E E Xin8~R!†@~E2H1 ih!21# i j Xj n~R8!dR8dR

~30!

with entry and exit amplitudes defined by

Xin~R!5S G i~R!

2p D 1/2

xn~R!. ~31!
8-6
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Equations~29!–~31! are the working expressions of th
local complex potential theory for coupled resonances i
polyatomic system. They have no reference to the direc
of the incident and exiting momentum of the scattered e
tron, as one expects from the familiar boomerang theory
isolated resonances. The explicit form of the Hamiltonian,H,
for the case of Renner-Teller coupling will be discussed
the following sections. At this point, however, the question
how to evaluate the cross sections once we have solved t
equations.

Inserting Eqs.~28! and ~23! into the equations for the
cross sections, Eqs.~25! and~26!, provides the starting poin
for deriving the explicit connections of thet i j amplitudes to
those cross sections. We will show in the following secti
that the integral cross section takes a simple form in
case, somewhat different from the case considered by
tradaet al. @15#:

sn8,n~E!5
4p3

k2
~ ut11u21ut22u21ut12u21ut21u2!5

4p3

k2
tr ~ t†t!.

~32!

To derive this equation, and the corresponding one for
differential cross sections, we must explicitly perform t
average over molecular orientations in Eqs.~25! and~26! for
the particular case of the2A1 and 2B1 symmetries arising
from the 2Pu resonance, and that is the task to which
now turn.

B. Angular dependence

The dominant component of the2Pu resonance has an
gular momentuml 51 with m561. So in Eq. ~28! one
could associate the two components of the resonanci
51,2 with m561. However, upon bending, the comp
nents of 2Pu transform with the molecular symmetries2A1
and 2B1, which do not map onto single values ofm. Since
we have used the electronic basis that transforms with
lecular symmetries in the formulation of the nuclear wa
equation, we must therefore use the combinations of
usual spherical harmonics,Ylm that transform withx andy.
Those ‘‘real spherical harmonics’’ are defined by

S Yx

Yy
D 5S 1/A2 21/A2

i /A2 i /A2
D S Y1,21

mol

Y1,1
mol D[M S Y1,21

mol

Y1,1
mol D , ~33!

where we have emphasized the fact that they are specifie
the molecule-fixed frame.

These are the angular functions that appear in Eq.~28!,
with i 51 corresponding toYx and i 52 corresponding to
Yy , and our task in this section is to evaluate the aver
over orientations of the molecule-fixed frame in Eq.~27!
using these definitions. To simplify angular-momentum al
bra of the average over molecular orientations, we first de
a set of amplitudes,tmi ,mj

, that refer to the usual spherica

harmonics withm561,

t5M†tM . ~34!
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Expressed in terms of these amplitudes, Eq.~23! now reads

Tk8n8,kn~E!5 (
mi ,mf

Y1,mf

mol* ~k8!tmf ,mi
Y1,mi

mol~k!. ~35!

The average over molecular orientations in Eq.~27! can
be written in terms of the Euler angles relating the molecu
and laboratory frames as

uTk8n8,kn~E!u25
1

8p2E uTk8n8,kn~E!u2dv, ~36!

wheredv5sinbdadbdg. The explicit dependence on thes
Euler angles of the molecule-fixed spherical harmoni
Y1,m

mol(k), is given by the familiar relation@28#,

Y1,m
mol~k!5(

m
Y1,m

lab~k!Dm,m
1 ~a,b,g!, ~37!

whereDm,m
1 (a,b,g) is a Wigner rotation matrix. With these

substitutions, Eq.~35! now reads

Tk8n8,kn~E!5 (
mi ,mf ,m,m8

Y1,m
lab* ~k8!Dm,mf

1* ~a,b,g!tmf ,mi

3Y1,m8
lab

~k!Dm8,mi

1
~a,b,g!. ~38!

We can simplify the integral over Euler angles in Eq.~36!
considerably by choosing thez axis of the laboratory frame
to coincide with the direction of the incident momentumk.
Then we can use the identity~because onlym50 contrib-
utes!

(
m

Y1,m~k!Dm,m
1 ~a,b,g!5Y1,m~b,g! ~39!

to rewrite Eq.~36! as

1

8p2E uTk8n8,kn~E!u2dv

5 (
mi ,mf ,ni ,nf

tnf ,ni
* tmf ,mi (

m,m8
Y1,m8~k8!Y1,m* ~k8!

3
1

8p2E Dm8,nf

1
~a,b,g!Dm,mf

1* ~a,b,g!Y1,ni
* ~b,g!

3Y1,mi
~b,g!dv. ~40!

We are still left with integrals of the products of fou
functions of the Euler angles, but using the relation

Yl ,m~b,g!5A2l 11

4p
D0,m

l ~a,b,g!, ~41!

we can write those as products of four Wigner rotation m
trices. Then we can use the product rule
8-7
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D
m

18 ,m1

j 1 ~v!D
m

28 ,m2

j 2 ~v!5 (
m,m8, j

~2 j 11!Dm8,m
j* ~v!

3S j 1 j 2 j

m1 m2 mD S j 1 j 2 j

m18 m28 m8
D

~42!

and the formula for the integral of three rotation matrices

1

8p2E D
m

18 ,m1

j 1 ~a,b,g!D
m

28 ,m2

j 2 ~a,b,g!D
m

38 ,m3

j 3 ~a,b,g!dv

5S j 1 j 2 j 3

m1 m2 m3
D S j 1 j 2 j 3

m18 m28 m38
D ~43!

to perform all the integrals in Eq.~40!. After some algebra
we obtain the result for the average over molecular orien
tions in terms of spherical harmonics of angles specifying
direction of the ejected electron and Wigner three-j symbols

1

8p2E uTk8n8,kn~E!u2dv

5 (
mi ,mf ,ni ,nf

tnf ,ni
* tmf ,mi (j ,m,m

Y1,m~k8!Y1,m* ~k8!

3S 1 1 j

m 0 2m D 2S 1 1 j

mf ni mD
3S 1 1 j

nf mi mD 3

4p
~2 j 11!. ~44!

We can now use Eq.~44! in Eq. ~25! and evaluate the
spherical harmonics and three-j symbols explicitly to obtain
the final result for the differential cross section,

dsn8,n

dV
~E!5

3p2

20k2
$@71cos~2u!#~ ut1,1u21ut21,21u2

1ut1,21u21ut21,1u2!1@1

13 cos~2u!#4 Re~t1,1* t21,21!%. ~45!

This expression differs in a key way from Dube and Herz
berg’s @7# result for an isolated resonance in the case o
diatomic target. For an isolated resonance the factorizatio
theT matrix in our Eq.~28! leads to only a single term in Eq
~27!. The result is that the differential cross section in th
theory for an isolated resonance takes the form

dsn8,n

dV
~E!5g~u!sn8,n~E! ~46!

and consists of an energy-independent angular factor,g(u),
multiplied by the energy-dependent integral cross sect
04270
-
e

-
a
of

n.

That is not the case for multiple resonances, and an inte
ence term appears in Eq.~45! due to the coupling betwee
the resonances. This fact was pointed out by Estradaet al.
@15#, but the case they considered involved resonances
ing different parities under inversion, and their final res
does not involve all four contributions for theT matrix in Eq.
~27!.

It is interesting to note that Eq.~45! can be specialized to
the case of a doubly degenerate2Pu resonance by setting
t1,15t21,21 and setting the coupling to zero,t1,215t21,1.
The result is

ds

dV
5

3p2

10k2
utu2@917 cos~2u!#. ~47!

This result has the form of Eq.~46! and can also be gotten b
evaluating Eqs.~2.65! and ~2.66! of Dube and Herzenberg’s
@7# original analysis for diatomics withl min51.

The integral cross section in Eq.~26! is found from Eq.
~45! by integrating over the directions of the exiting electro
and takes the simple form

sn8,n~E!5
4p3

k2
~ ut1,1u21ut21,21u21ut1,21u21ut21,1u2!

5
4p3

k2
tr ~t†t!

5
4p3

k2
tr ~ t†t!, ~48!

where the last equality arises because the body-fixedt andt
amplitudes are related by the unitary transformation defi
explicitly in Eqs.~33! and~34!. The amplitudes,t i j , refer to
the four possibilities for entering and exiting, respectively,
the 2A1 and 2B1 resonance states. The result expressed
Eqs.~32! and ~48! is that the integral cross section is give
by an incoherent sum of those four contributions to theT
matrix.

With the local complex potential theory formulated fo
our case of two-coupled resonances that arise from the2Pu
resonance in CO2, we are ready to turn to the question of th
nonadiabatic coupling between them.

IV. RENNER-TELLER COUPLING
IN ELECTRON-SCATTERING RESONANCES

For linear triatomic molecules, the nonadiabatic coupli
between components ofP, D, etc., electronic states whos
degeneracy is lifted upon bending is a phenomenon tha
well understood in molecular spectroscopy. It was first p
dicted by Renner@29# in 1934, and has been observed a
analyzed quantitatively in a number of physical system
These well-understood examples involve states of lin
molecules that are electronically bound. Our discussion
8-8
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this effect in the context of resonance states, whose fi
lifetimes give rise to a complex potential surface for ea
component of the pair of Renner-Teller coupled states,
lows the treatments for bound states given in the exten
reviews of Brown and Jorgensen@30# and Jungen and Mere
@31#. Our goal here is to specialize the classic treatmen
this effect to the case of the2Pu state of CO2

2 and express
the result in terms of diabatic states that correlate prop
with the 2A1 and 2B1 resonance states.

We begin by focusing on the nuclear kinetic-energy o
erator in the Schro¨dinger equation for a linear molecule,

~H2E!C50 ~49!

with

H5Kn1Hel , ~50!

where Kn denotes the nuclear kinetic-energy operator.
will formulate the coupling between the2A1 and 2B1 states
using normal coordinates for the nuclear motion. We den
the normal coordinate for symmetric stretch bys1 and those
of the degenerate bending modes bys2a ands2b . Neglecting
the end-over-end rotations of the molecule we can write
kinetic energy for nuclear motion in the form

Kn52
1

2m1

]2

]s1
2

2
1

2m2
S ]2

]s2a
2

1
]2

]s2b
2 D . ~51!

In Eq. ~51! the reduced masses are given in terms of
carbon and oxygen atomic masses by

m15MO/2 ~52!

and

m25MCS 11
MC

2MO
D . ~53!

The potentials for bending must be functions of on
As2a

2 1s2b
2 , because they cannot depend on orientation of

plane in which the molecule bends. So we can transform
the polar coordinatesr anda

r5As2a
2 1s2b

2 , ~54!

a5tan21~s2b /s2a!. ~55!

Taking out a factor ofr1/2,

C5F/r1/2, ~56!

we find

Kn52
1

2m1

]2

]s1
2

1
1

m2

3S 2
1

2

]2

]r2
2

1

8r2
2

1

2r2

]2

]a2D . ~57!
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We can identify the operator2]2/]a2 with the square of the
component of rotational angular momentum about the fig
axis,Nz , and rewrite this equation as

Kn52
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2

1
1

2m2r2 S Nz
22

1

4D . ~58!

The Renner-Teller analysis now replacesNz by the differ-
ence between thez components of the total angular mome
tum Jz and the electronic angular momentumLz to obtain

Kn52
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2

1
1

2m2r2 S ~Jz2Lz!
22

1

4D . ~59!

With the nuclear kinetic energy in this form, we can proce
to write the total wave function as a linear combination
products of the two electronic states and nuclear wave fu
tions associated with each,

F~r ,s1 ,r,x!5f1~r ,s1 ,r!h1~s1 ,r,x!

1f2~r ,s1 ,r!h2~s1 ,r,x!, ~60!

in which r denotes collectively the electronic coordinates a
x denotes the angle defining the orientation of thex-z plane
for electrons and nuclei. The electronic wave functions
defined such that the zeroth-order component is either thx
or they component of theP state~suppressing the symme
ric stretch coordinate for the moment!,

f1~r ,r!5fPx
~r !1f18 ~r !r1•••, ~61!

f2~r ,r!5fPy
~r !1f28 ~r !r1•••. ~62!

Keeping just the leading terms and using

LzfPy
~r !52 iLfPx

~r !, ~63!

LzfPx
~r !5 iLfPy

~r !, ~64!

Lz
2fPx,y

~r !5L2fPx,y
~r !, ~65!

where L51 is the magnitude of thez component of the
electronic angular momentum for a2Pu state, we get the
Renner-Teller equation for nuclear motion by operating w
the total Hamiltonian in Eq.~50! on F in Eq. ~60!,
8-9
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1

2m1
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]s1
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2
1

2m2
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]r2
1

1

2m2r2 S 2
]2

]x2
1L22

1

4D 1VPx
i /~m2r2!LS 2 i
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2 i /~m2r2!LS 2 i
]x D 2

2m1 ]s1
2

2
2m2 ]r2

1
2m2r2 S 2

]x2
1L22

4D 1VPy

3S h1~s1 ,r,x!

h2~s1 ,r,x!
D 5ES h1~s1 ,r,x!

h2~s1 ,r,x!
D . ~66!
o

or
- ar
In Eq. ~66! the electronic potential surfaces of the two res
nances are denoted byVPx,y

5VPx,y
(s1 ,r) and depend only

on the internal vibrational coordinates of the molecule.
Now, following Ref. @30#, we can associate the operat

Jz52 i ]/]x with its eigenvalue,K, by assuming the factor
ized form for the wave function,
t
so
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r
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04270
- S h1~s1 ,r,x!

h2~s1 ,r,x!
D 5S RK,1~s1 ,r!

RK,2~s1 ,r!
D eiKx. ~67!

This replacement brings us to the final form of the nucle
Schrödinger equation for the case at hand,
S 2
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
1

1

2m2r2 S K21L22
1

4D1VPx
iLK/~m2r2!

2 iLK/~m2r2! 2
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
1

1

2m2r2 S K21L22
1

4D1VPy

D
3S RK,1~s1 ,r!

RK,2~s1 ,r!
D 5ES RK,1~s1 ,r!

RK,2~s1 ,r!
D . ~68!

From Eq.~68! we can read off the Hamiltonian for the nuclear wave equation of the boomerang model in Eq.~29!,

H5S 2
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
1

1

2m2r2 S K21L22
1

4D1VA1
iLK/~m2r2!

2 iLK/~m2r2! 2
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
1

1

2m2r2 S K21L22
1

4D1VB1

D ,

~69!
-
in

nic
to
g
and
ve
fore
e
n of
which we now have in the adiabatic representation tha
directly connected to the molecular symmetries of the re
nance states in ourab initio electron-scattering calculations
The complex potential surfaces of the two resonance st
are denoted byVA1

andVB1
, and are functions ofs1 andr.

Equation~69! defines the Hamiltonian that we will use in ou
local complex potential calculations to treat the motion of
nuclei on the coupled resonance surfaces.

We are interested in electron collisions with CO2 in its
ground electronic (1Sg) and vibrational state. The projectio
of rotational and electronic angular momentum on the m
lecular axis in this initial neutral state is therefore zero. Af
the resonant capture of the electron into the temporary a
state, the projection of the electronic angular momentum
this axis, which is also the projection of the total angu
is
-

es

e

-
r
n
n
r

momentum because of the initial state of the target, is61.
We therefore setK51 andL51 in Eq.~69! that defines the
Hamiltonian for nuclear motion in the negative ion. How
ever, for the initial and final vibrational states that appear
the entry and exit amplitudes in Eq.~31!, we are dealing with
vibrational levels of the neutral target in its ground electro
state, which has1Sg symmetry, and therefore corresponds
L50. The vibrational levels which we will be considerin
as initial and final states are the ground vibrational state
the first Fermi dyad and triad, respectively, all of which ha
zero angular momentum about the figure axis, and there
correspond toK50. To compute these vibrational states, w
use the same normal coordinates in a one-channel versio
Eq. ~69! with K50 and L50 and employ the~real! SCF
potential surface we calculated for the ground state,
8-10
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H52
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
2

1

8m2r2
1VSCF(1Sg) .

~70!

We reiterate that the reason that the total angular momen
in the Renner-Teller Hamiltonian for nuclear motion in t
resonance state is different from that in the initial state of
system is that the incident~and exiting! electron carry non-
zero orbital angular momentum.

Now we can turn to the problem of the numerical soluti
of the equations for nuclear motion in the boomerang mo
given in Eqs.~29!–~31! using the Hamiltonian in Eq.~69!.

V. NUMERICAL SOLUTION OF THE EQUATIONS
OF THE LOCAL COMPLEX POTENTIAL MODEL

FOR COUPLED RESONANCE STATES

The first step in our solution of Eqs.~29!–~31! is to recast
them in a time-dependent form. The time-dependent form
lation of the boomerang model, first described by McCur
and Turner@13#, starts from the observation that Green
function in Eq.~30! can be written as the Fourier transfor
of the corresponding time propagator. TheT matrix for reso-
nant vibrational excitation can then be written as

Tn8,n~E!5
1

i E0

`

dteiEtE dRXW n8~R!†jW n~ t,R!

5
1

i E0

`

dteiEtE dRXW n8~R!†e2 iHtXW n~R!. ~71!

This expression has the form of an overlap of a tw
component wave packet propagating on the coupled r
nance surfaces, whose initial condition is determined by
the entry amplitude

XW n~R!5S @G1~R!/2p#1/2xn~R!

@G2~R!/2p#1/2xn~R!
D , ~72!

with a stationary vector exit amplitude of the same form, b
corresponding to the final vibrational staten8.

In Eq. ~71! the interval@0,̀ ) of the time integration is
determined by the boundary conditions satisfied by Gree
function in Eq.~30!. The time-dependent formulation give
an appealing picture of the physics of a collision, in whi
the resonant attachment of the incident electron create
wave packet on the resonant surfaces that moves while
caying due to the finite lifetime of the resonance. The fam
iar ‘‘boomerang’’ structure in the vibrational excitation cro
sections can arise if the wave packet survives on the com
potential surfaces long enough to revisit its original locat
and cause at least one ‘‘recurrence’’ in the time-depend
overlap in Eq.~71!.

To construct the integral and differential cross sections
need the individualt i j amplitudes. The time-dependent re
resentation fort i j , which is apparent from Eq.~71!, is
04270
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t i , j~E!5
1

i E0

`

dteiEtE dRS Fd i1 0

0 d i2
GXW n8~R! D †

3e2 iHtFd j 1 0

0 d j 2
GXW n~R!. ~73!

The four t i j amplitudes are thus found by starting the wa
packet on one or the other of the2A1 or 2B1 surfaces, speci-
fied by the indexj, and Fourier transforming its overlap wit
an exit amplitude on the surface specified byi.

For systems with more than one vibrational degree
freedom, the time-dependent formulation provides a com
tational advantage, because it does not involve the solu
of large systems of complex linear equations. The propa
tion times in this problem are generally short, since the wa
packets survive on the complex surfaces for at most a
vibrational periods. In these calculations the propagat
times varied from 35 to 50 fs, depending on the initial co
ditions, at which point the norm of the packets was negli
bly small and thet i j amplitudes in Eq.~73! were converged.
As in our earlier study on this system@10#, we have chosen
to propagate the wave packets using the multiconfigura
time-dependent Hartree~MCTDH! method@16,32#.

The underlying discretization ofs1 andr was made using
a discrete variable representation~DVR! for each degree of
freedom. The ‘‘standard’’ method for solving the time
dependent Schro¨dinger equation would construct an explic
solution for the packet propagating on the multidimensio
DVR grid. A serious problem with this approach is that t
computational effort required scales exponentially with t
number of degrees of freedom, making it prohibitively e
pensive to implement as the number of degrees of freed
grows. The MCTDH method retains the essential rigor of
standard method while providing extraordinary compu
tional efficiency, especially for systems with many degre
of freedom.

In the MCTDH method, as in the standard method,
start with a time-independent orthonormal product basis

$x j 1

(1)~Q1!•••x j f

( f )~Qf !%, j k51, . . . ,Nk , ~74!

where we have assumed that there aref degrees of freedom
in a problem described by nuclear coordinatesQ1 , . . .Qf .
For computational efficiency, the basis functions,x j k

(k) , are

chosen as the basis functions of a discrete variable repre
tation ~DVR! @33#.

The central idea in the MCTDH scheme@16,34,35# is that
one can employ a smaller, but now time-dependent, basis
expanding the wave function, i.e.,

C~Q1 , . . .Qf ,t !5 (
j 151

n1

••• (
j f51

nf

Aj 1 , . . . j f
~ t ! )

k51

f

w j k
(k)~Qk ,t !

~75!

with nk!Nk . The single-particle functions in turn are rep
resented as linear combinations of the primitive basis in
~74!,
8-11
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FIG. 3. Vibrational wave functions calculated on the SCF surface~times bending normal coordinater1/2). ~a! Ground state,~b! lower
member of Fermi dyad,~c! upper member of dyad,~d! lowest member of Fermi triad,~e! middle member of triad,~f! highest member of
triad. The normal coordinatesr ands are in atomic units.
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w j k
(k)~Qk ,t !5 (

i k51

Nk

ci k j k
(k) ~ t !x i k

(k)~Qk!. ~76!

Since both the coefficients,Aj 1••• j f
, and the single-particle

functions are time dependent, the wave-function represe
tion is not unique. Uniqueness can be achieved by impos
additional constraints on the single-particle functions wh
keep them orthonormal for all times@16#.
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The MCTDH approach has been applied to a variety
problems ranging from reactive and surface scattering to
determination of photodissociation and photoabsorpt
spectra~see Ref.@16# and references therein!. The success of
this method for systems with a large number of degrees
freedom was underlined in a recent application to the sp
boson model including 80 vibrational modes@36#. We used
this approach in our earlier calculations on CO2 which in-
volved only the 2A1 resonance state@10# and found that it
works very effectively for propagation on complex potent
8-12
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FIG. 4. Wave-packet propagation beginning at2A1 ~lower! resonance surface. All quantities are in atomic units. Left column, compo
of packet on2A1 surface; right column, component of packet on2B1 surface.
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surfaces. Applying the MCTDH approach in this case
quires that we reexpress our representation of the poten
as sums of separable terms, but that expansion can be ac
plished without difficulty. MCTDH is particularly useful fo
solving problems with many degrees of freedom. Howeve
can be very convenient to use MCTDH even for rather lo
dimensional problems, as the MCTDH package@32# supplies
analysis routines~e.g., evaluation of cross correlation! and
visualization routines which work in conjunction with th
propagation routine.
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The Renner-Teller Hamiltonian in Eq.~69! presents a
problem that we did not encounter in our earlier study. P
viously, we used Cartesian normal coordinates in our rep
sentation of the Hamiltonian for the2A1 resonance state. In
that representation, the Hamiltonian is three dimensional
the present case of the two-component Renner-Teller Ha
tonian, withNz and Lz quantized, the representation is tw
dimensional. However, the Renner-Teller Hamiltonian h
singularities of the form 1/r2 at the origin of the bending
coordinate, both in the diagonal and coupling terms. T
8-13
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FIG. 5. Wave-packet propagation beginning at2B1 ~upper! resonance surface. All quantities are in atomic units. Left column, compo
of packet on2A1 surface; right column, component of packet on2B1 surface.
r

s

s ix
on
stretching motion can be treated with any one of seve
well-known choices of DVR~sin, Hermite, etc.!, because the
potentials cause the packet to vanish benignly at the limit
the grid in s1. On the other hand, ther motion requires a
modified DVR to treat the singularity atr50 properly.

The problem of the singularity inr appears even in the
Schrödinger equation for nuclear motion on the1Sg ground
state of CO2 when the bending motion is expressed in the
coordinates,
04270
al

of
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H52
1

2m1

]2

]s1
2

2
1

2m2

]2

]r2
1

1

2m2r2 S K22
1

4D1V~s1 ,r!.

~77!

The eigenstates of this Hamiltonian behave asrK11/2 at the
origin and thus their derivatives with respect tor diverge at
r50. If coupling is neglected in the Renner-Teller matr
Hamiltonian, the behavior at the origin of the wave functi
8-14
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FIG. 6. Integral cross sections for vibrational excitation. Left panel: Fermi dyad, upper heavy solid line denotes high-energy co
of dyad, lower heavy solid line denotes low-energy component of dyad, light solid lines are the results of earlier calculations from R@10#.
Right panel: Fermi triad, heavy solid lines in order of decreasing magnitude denote high-, middle and low-energy members of tri
a
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is r1/21AK21L2
. Since we must consider the case ofK50 for

the initial and final vibrational states, we require a DVR th
allows the wave function to behave asr1/2 at the origin, and
thus take on the most singular behavior for its derivati
r21/2, that our numerical calculations on the propagat
wave packets can encounter. The problem was solved
adopting a Laguerre DVR with underlying basis functionsf
that satisfy the boundary conditionf(r);r1/2. This La-
guerre DVR is described in the Appendix.

VI. CROSS SECTIONS FOR EXCITATION OF LOWEST
FERMI DYAD AND TRIAD VIBRATIONAL STATES

OF CO2

As we emphasized in our earlier single-channel stu
@10#, the near degeneracy of the zeroth-order symme
stretch and bending levels (nstretch'2nbend), or ‘‘Fermi
resonance’’ phenomenon, leads to a complete breakdow
the single-mode description of the excited vibrational sta
The classic approach to this problem is to describe the vi
tional states as linear combinations of the zeroth-or
single-mode levels using degenerate perturbation the
This was the procedure we previously employed@10#, using
the semiempirically determined values for the mixing co
ficients given in Dennison’s classic work@14#. In the present
work, we have opted for a completelyab initio approach and
so the target vibrational states were computed numeric
using the 2D Hamiltonian of Eq.~70! and our calculated SCF
results potential surface. Figure 3 shows contour plots of
‘‘radial’’ wave functions,F @Eq. ~56!#, for the ground state
and for the various components of the Fermi-coupled d
and triad. Note that, because of the boundary conditio
these functions vanish at linear geometry,r50, as explained
above. The striking thing to notice here is how the no
lines for the upper and lower members of each polyad cu
in opposite directions, the upper levels favoring a ‘‘stretch
and bent’’ target configuration.

All of the calculations we are reporting are for excitatio
of CO2 starting in its ground vibrational state. This sta
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multiplied by either (GA1
/2p)1/2 or (GB1

/2p)1/2, becomes the
initial wave packet for a time-dependent propagation us
the techniques previously outlined. Figures 4 and 5 sh
how the wave packets evolve on the two surfaces when t
are initiated on either the2A1 or 2B1 surface, respectively. In
the first case, the component of the wave packet on the2A1
surface rapidly vanishes as it spreads because of the dram
increase in the width associated with increased bending
the 2A1 component dissipates, population density on the2B1
starts to build up but, because of the relatively constant
havior of the width on the2B1 surface, is not rapidly extin-
guished. Figure 5 shows the case when the wave pack
initiated on the2B1 surface. Once again, the population de
sity on the 2B1 surface broadens as the anion bends a
stretches, but a significant fraction survives after a sin
recurrence time. In contrast, the population fraction that
pears on the lower2A1 surface is rapidly quenched.

FIG. 7. Populations of the2A1 and 2B1 resonance states durin
propagation of wave packets. For packet beginning at2A1: solid
curve denotes population of2A1 and dashed curve denotes popu
tion of 2B1. For the packet beginning at2B1: solid curve with
squares denotes population of2B1 and solid curve with circles de
notes population of2A1.
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FIG. 8. DCS for vibrational excitation of the Fermi dyad. Left panel: 135°, upper~lower! heavy solid curve denotes high-~low-! energy
member of dyad, light curves denote absolute experimental values of Ref.@4#. Right panel: calculated DCS at 90°, upper~lower! curve
denotes high-~low-! energy member.
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The integral cross sections for excitation of the Ferm
coupled dyad and triad levels were computed as descr
above and are shown in Fig. 6. Comparing these cross
tions with our earlier results for the dyad@10#, we find that
the inclusion of the2B1 component of the resonance giv
rise to the interference structure in the cross sections, w
was entirely absent in the earlier one-channel treatment
deed, the structure is seen to be most pronounced in
energy ranges where the individual levels of each pol
strongly overlap, for example, on the high-energy side of
upper Fermi dyad and the low-energy side of the low
Fermi dyad cross sections. These boomerang structure
quire that a component of the wave packet survive for
least a single vibrational period on the negative-ion surfa
and in this case are clearly associated with theB1 resonance
component. The dominance ofB1 at longer times is eviden
from the time dependence of the electronic-state populat
shown in Fig. 7.

Another noteworthy feature of these results is that ther
evidently a correlation between the magnitude of the cr
sections and the structure of the target vibrational levels.
both the dyad and the triad, it is the highest-energy mem
of each polyad that has the largest excitation cross sec
which in turn corresponds, as seen in Fig. 3, to the vib
tional state that ‘‘leans’’ toward largers ~stretching coordi-
nate!. The signatures of the Fermi resonance states are
seen in the magnitudes of the cross sections.

Using the t i j amplitudes, we computed the differenti
cross sections given by Eq.~45!. The results for the dyad ar
shown in Fig. 8. The left panel of this figure compares o
calculated cross section with Allan’s@4# absolute differential
cross sections at 135°. We note that the calculations are
cessful in reproducing both the overall energy depende
and fine structure in the cross sections, while the peak va
of the cross section are approximately 50% larger than
measured values. We hasten to point out that the boome
model assumption that the angular dependence of the r
nance states can be described by a single partial wave is
very realistic in the present case, where bending change
symmetry of the target. For this reason, we feel that
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absolute magnitudes of the integrated cross sections
probably more accurate than the differential results. The ri
panel of Fig. 8 shows the calculated values at 90°. The
culations predict that the magnitude of the cross section
90° is roughly half of what it is at 135°, whereas the ratio
the upper to lower dyad cross sections is about the sam

Our calculated results for the triad at 90° and 135°
shown in Fig. 9. Here, the importance of the interferen
term in Eq. ~25! for the differential cross section is mor
noticeable: the relative magnitudes of the individual lev
depend strongly on the scattering angle. Finally, in Fig.
we compare our calculated cross section for excitation of
highest level of the triad with the results reported by Allan
90° @5#. The measurements in this case are not absolute,
were therefore scaled for comparison with our calculatio
Here we note that a shift of a few tenths of an eV in t
energy scale, which reflects our error in the absolute pla
ment of the anion state relative to the neutral, brings the
and experiment into essentially perfect qualitative agr
ment.

VII. DISCUSSION

We have attempted to demonstrate with this study t
resonant vibrational excitation in an electron-polyatom
molecule collision can be accurately treated entirely fro
first principles. In the present case of CO2, that goal has been
largely achieved. Moreover, the treatment highlights aspe
of the collision dynamics that give rise to observable effe
that are purely polyatomic in nature. We have seen how
phenomenon of Fermi resonance makes a multidimensi
treatment of the nuclear dynamics essential and how the
ferent members of a Fermi polyad imprint their unique s
natures on the vibrational excitation cross sections. Mo
over, the fact that the resonance state, which is dou
degenerate when the target is in its initial linear geome
splits into two nondegenerate components when the m
ecule bends, leads naturally to a coupled-channel genera
tion of the complex local potential or boomerang mod
with nonadiabatic Coriolis coupling providing the mech
8-16
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FIG. 9. Calculated DCS for vibrational excitation of the Fermi triad. Heavy solid curve, high-energy member; solid curve with s
middle member; light solid curve, low-energy member. Left panel, 135°; right panel, 90°.
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nism for coupling the dynamics on the two resonance s
faces. That coupling is essential to include if we are to
scribe the fine structure in the cross sections.

Our treatment only takes symmetric stretch and bend
motion into consideration. Asymmetric stretch is probab
needed for a better quantitative description, although Kaz
skii’s recent model calculations have investigated such
fects and found them to be small@11#. We have restricted ou
calculations to excitations from the ground vibrational st
into the first two Fermi polyads, where we expect that
coupled-channel boomerang treatment captures the ess
physics. The local complex potential approach will proba
break down radically when the dyanmics probes parts of
2A1 surface where it crosses~or avoids crossing! the ground
state of the anion. That crossing~or avoided crossing! occurs
for symmetric stretch near equilibrium but with large ben
ing angles, which would be probed by the dynamics of
brational excitation either ending or starting with higly e
cited vibrational levels.

The resonance formalism we have used cannot desc
‘‘forbidden’’ processes such as excitation of nontotally sy
metric vibrational levels from the ground state, as Curr

FIG. 10. Differential cross section for the high-energy mem
of Fermi triad at 90°~heavy solid curve! compared with relative
DCS of Ref.@5#.
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and Comer have implied@8# in citing the work of Estrada
et al. @15#. The situation described by Estradaet al. pertains
to the vibronic coupling, in polyatomic molecules belongin
to Abelian point groups, between resonance states belon
to totally symmetric and nontotally symmetric represen
tions, respectively. For the2Pu Renner-Teller situation we
have considered here, such transitions are still forbidden
symmetry. On the other hand, a traditional adiabatic-nu
treatment@37# that included bending~instantaneous symme
try breaking! would give a nonzero cross section for su
transitions, since the dipole moment induced by bend
couples are even and odd components of the total wave f
tion. Rathboneet al. @38# have studied this mechanism i
connection with CO2 photoionization and have shown that
can produce large cross sections when enhanced by a s
resonance. This mechanism, however, would not explain
interference structures in the cross sections for such tra
tions that are clearly seen in Allan’s measurements@4#. A
proper theoretical treatment of this problem remains an o
question.

There are also unanswered questions associated
structures that have been observed@5# in the excitation cross
sections for certain vibrational levels in the energy reg
below 1 eV. For example, the mechanism that produces b
meranglike vibrational structure near threshold in the exc
tion cross sections for the upper levels of the higher poly
is still not established, but an interaction or interference
the virtual state@19# with the resonant state dyanmics
likely to play a major role. As we discussed in our rece
model study@20#, however, the topology of that virtual stat
or resonance surface has a complicated structure for rea
associated with the angle-dependent dipole moment of
target. The observed structure is reminiscent of what
been seen previously@39# in threshold vibrational excitation
of HCl, and that stucture has been successfully treated inab
initio ‘‘nonadiabaticR-matrix’’ calculations@40#. However,
the multidimensional nature of the nuclear dynamics
volved in the present case would likely make a straightf
ward extension of that approach quite difficult. A comple
theoretical study of vibrational excitation outside the res
nance region remains a formidable challenge.

r
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APPENDIX: LAGUERRE DVR

As finite basis set representation~FBR! underlying the
DVR we use the functions

fn
a~x!5A ~n21!!

~n1a21!!
xa/2e2x/2Ln21

a ~x!, ~A1!

where

Ln
a~x!5

1

n!
exx2a

dn

dxn
~e2xxn1a! ~A2!

is the generalized Laguerre polynomial anda51,2,3, . . . .
Note that in Eq.~A1! and in the followingn51,2, . . . ,N,
whereN denotes the number of basis functions~or number of
DVR points! taken into account. The basis functions satis
the boundary conditionfn

a(x);xa/2 for x→0, they are or-
thonormal on the interval@0,̀ ),

E
0

`

fn
a~x!* fm

a ~x!dx5^fn
aufm

a &5dnm , ~A3!

and satisfy the recurrence relation

xfn
a~x!52A~n21!~n1a21!fn21

a ~x!1~2n1a21!

3fn
a~x!2An~n1a!fn11

a ~x!. ~A4!

This recurrence relation defines the matrix representatio
the position operator. Diagonalization of the position ope
tor matrix produces the DVR points, which are given by t
eigenvalues, and the FBR/DVR transformation matrixU,
which is the eigenvector matrix of^fn

auxufm
a &. As the latter

matrix is tridiagonal, one knows that the present DVR is
‘‘proper’’ DVR, i.e., the potential matrix element evaluatio
is equivalent to a Gaussian quadrature rule.~See e.g. Ref.
@33# or Appendix B of Ref.@16#.!

Next we have to determine the matrix representations
the first- and second-order derivative operators. After a c
siderable amount of algebra one obtains
04270
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Dnm
(1)5 K fn

aU d

dxUfm
a L 5

1

2
vnmw~n,m,a! ~A5!

and

Dnm
(2)5K fn

aU d2

dx2
2

c

x2Ufm
a L 52

2n,1a21

2~a11!
w~n,m,a!

1
1

4
dnm , ~A6!

where

vnm5H 21 if n,m,

0 if n5m,

1 if n.m

~A7!

and

w~n,m,a!5A~n,1a21!! ~n.21!!

~n,21!! ~n.1a21!!
, ~A8!

with n,5min(n,m) andn.5max(n,m), and

c5H K221/4 with K5~a21!/2 if a5odd,

j ~ j 11! with j 5~a22!/2 if a5even.
~A9!

Hencec521/4, 0, 3/4, 2 fora51, 2, 3, 4. Note thatc/x2 is
the centrifugal potential for cylindrical (a5odd) or spherical
(a5even) symmetry.

For sake of completeness we also give the matrix e
ments of the first two inverse powers.

I nm
(1)5^fn

aux21ufm
a &5a21w~n,m,a! ~A10!

and

I nm
(2)5^fn

aux22ufm
a &

5
~a22!!

~a11!!
@~a11!n.2~a21!~n,21!#w~n,m,a!,

~A11!

where the latter equation is valid fora>2 only.
The matrix~A5! can now be transformed to DVR repre

sentation

D(1),DVR5U†D(1)U ~A12!

and similarly forD(2), I (1), andI (2). The matrices~A10! and
~A11! are not needed, in principle, because potential te
are usually evaluated by the DVR approximation, which
equivalent to evaluating Eqs.~A10! and~A11! by a particular
Gaussian quadrature~where the DVR points are the quadr
ture points!. However, due to the singularity atx50, the
quadrature is not very accurate, and, when a high precisio
needed, one may want to use Eqs.~A10! and~A11!, or their
DVR-transformed versions, respectively.
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Two remarks are finally necessary. First, the variablex is
to be replaced in actual calculations byr /r 0 ~or r/r0), where
the length scaler 0 has to be chosen appropriately.~This is
similar to adjusting the frequency parameterv in a Hermite
DVR.! Second, the Laguerre DVR shows averyuneven dis-
tribution of DVR points. The points are much more den
close to the origin and become wider spaced for largerx. As
a consequence, the second derivative matrix has very l
negative eigenvalues, i.e., the kinetic-energy operator,
hence the Hamiltonian will have very large eigenvalu
Most integrators for the time-dependent Schro¨dinger equa-
tion, however, are sensitive to large eigenvalues. The s
size taken is proportional to the inverse of the largest mo
I.

W

y,

hy

.

y

m

et
y

04270
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lus of the eigenvalues of the Hamiltonian. Hence, large
tential values are usually removed by simply truncating
potential at some appropriate value. To make the Lagu
DVR useful for wave-packet propagation, we follow a sim
lar route. The second derivative matrix, Eq.~A6! is diago-
nalized, and the large negative eigenvalues are dropped
yond some appropriate value. Using these modifi
eigenvalues, the diagonal matrix is backtransformed to
original representation. Our experience with this modific
tion of the kinetic-energy operator was very satisfactory.
give some typical numbers, out of 50 eigenvalues
dropped 5 or 6. The integration step size increased by ab
a factor of 30, but the errors introduced by the modificati
remained negligible.
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