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Universality in the three-body problem for 4He atoms

Eric Braaten* and H.-W. Hammer†

Department of Physics, The Ohio State University, Columbus, Ohio 43210
~Received 22 March 2002; published 11 April 2003!

The two-body scattering lengtha for 4He atoms is much larger than their effective ranger s . As a conse-
quence, low-energy few-body observables have universal characteristics that are independent of the interaction
potential. Universality implies that, up to corrections suppressed byr s /a, all low-energy three-body observ-
ables are determined bya and a three-body parameterL* . We give simple expressions in terms ofa andL*
for the trimer binding-energy equation, the atom-dimer scattering phase shifts, and the rate for three-body
recombination at threshold. We determineL* for several4He potentials from the calculated binding energy of
the excited state of the trimer and use it to obtain the universality predictions for the other low-energy
observables. We also use the calculated values for one potential to estimate the effective range corrections for
the other potentials.
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I. INTRODUCTION

The interactions of nonrelativistic particles with e
tremely low energies, such as cold atoms, are determ
primarily by theirS-wave scattering lengtha. Typically, uau
is of the order of the natural length scalel associated with
low-energy interactions, which for short-range interactions
given by the range of the potential. Ifuau is much larger than
l, however, low-energy atoms exhibit universal propert
that are independent of the interaction potential. In the tw
body sector, universality implies that low-energy observab
are determined by the single parametera up to corrections
suppressed byl /uau. In particular, the cross section for low
energy atom-atom scattering is a simple function ofE anda
only. If a.0, there is also a shallow two-body bound sta
~the dimer! whose binding energy is determined bya: B2
5\2/ma2, wherem is the mass of the atoms@1#.

Efimov showed that if the two-body scattering length
large, there are also universal properties in the three-b
sector@2#. The most remarkable is a sequence of three-b
bound states~trimers! with binding energies geometricall
spaced in the interval between\2/ma2 and\2/ml2. In addi-
tion to the binding energies of these Efimov trimers, the lo
energy three-body observables include scattering rates
three atoms and, ifa.0, an atom and a dimer. The cons
quences of universality in the three-body sector are simp
if the potential supports no deep two-body bound states w
binding energies of order\2/ml2. In this case, the low-
energy three-body observables are determined bya and a
single three-body parameter up to corrections suppresse
l /uau. A simple physical observable that can be used as
three-body parameter is the binding energy of the Efim
state closest to threshold. Alternatively, the three-body
rameter can be specified by a boundary condition on
three-body wave function at short distances. In Ref.@3#, the
authors introduced a more abstract three-body parameteL*

*Electronic address: braaten@mps.ohio-state.edu
†Present address: Helmholtz-Institut fu¨r Strahlen- und Kernphysik

~Theorie!, Universität Bonn, Nussallee 14-16, 53115 Bonn, Ge
many. Electronic address: hammer@itkp.uni-bonn.de
1050-2947/2003/67~4!/042706~12!/$20.00 67 0427
ed

s

s
-
s

dy
y

-
or

st
th

by
e
v
-
e

with dimensions of wave number@defined in Eq.~10! be-
low#, which is particularly convenient for quantitative calc
lations within the effective field theory approach.

A large two-body scattering length can be obtained by fi
tuning a parameter in the interatomic potential to bring a r
or virtual two-body bound state close to the two-atom thre
old. The fine tuning can be obtained experimentally by a
justing an external variable, such as a magnetic field@4# or an
electric field@5#. Large scattering lengths for23Na and85Rb
atoms have been obtained in the laboratory by tuning
external magnetic field to the neighborhood of a Feshb
resonance@6#. The fine tuning can also be provided accide
tally by nature. A prime example is the4He atom, whose
scattering lengtha'104 Å @7# is much larger than its effec
tive ranger s'7.3 Å @8#, which can be taken as an estima
of the natural low-energy length scalel.

The large scattering length for4He makes this atom an
ideal example of universality. The experimental informati
on low-energy4He atoms is rather limited. Using diffractio
of a molecular beam of small4He clusters from a transmis
sion grating, the bond length of the4He dimer has recently
been measured@7#: ^r &5(5264) Å, which is an order of
magnitude larger than the effective range. The scatte
length a5104218

18 Å and the dimer binding energyB2

51.120.2
10.3 mK were derived from the measured bond leng

using the zero-range approximation@7#. The 4He trimer and
several larger4He clusters have been observed@9,10#, but no
quantitative experimental information about their binding e
ergies is available to date. However, there have been ex
sive theoretical calculations of the few-body problem f
4He using modern two-body potentials@11,12#. Theoretical
calculations of trimer binding energies have also improv
so that they now have several digits of accuracy@13–16#.
They indicate that there are two trimers: a ground state w
binding energyB3

(0) and an excited state with binding energ
B3

(1) . The ground-state binding energies of larger4He clus-
ters have been calculated using the diffusion Monte Ca
method@16#. Their excited-state binding energies have be
calculated using a combination of Monte Carlo methods a
the hyperspherical adiabatic approximation@17#. There have
also been some calculations on three-body scattering obs
©2003 The American Physical Society06-1
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E. BRAATEN AND H.-W. HAMMER PHYSICAL REVIEW A 67, 042706 ~2003!
ables. TheS-wave phase shifts for atom-dimer scatteri
have been calculated in Refs.@3,15#. The three-body recom
bination rate has been calculated at threshold@18–21# and as
a function of energy@22#.

Universality implies that in the limit of large scatterin
length, all low-energy three-body observables are determ
by the scattering lengtha ~or equivalently the dimer binding
energyB2) and one three-body parameter such asL* . In
order to determine this parameter, a low-energy three-b
observable is required as input. We can take advantage o
accurate calculations of the trimer binding energies for m
ern 4He potentials by usingB3

(1) to determineL* for 4He.
Once this parameter is determined, universality can be u
to predict all other low-energy three-body observables
4He atoms.

We can also exploit accurate theoretical calculations
older 4He potentials to demonstrate the nontrivial nature
universality in the three-body sector@23,24#. Scaling vari-
ables are dimensionless combinations of physical obs
ables. Universality implies that three-body scaling variab
are nontrivial universal functions ofaL* . By eliminating
the dependence onL* , we can express one scaling variab
as a universal function of any other scaling variable. T
various 4He potentials have slightly different scatterin
lengthsa and also different values ofL* . Therefore, if one
scaling variable is plotted as a function of a second,
points for various4He potentials should all lie along a un
versal line. Frederico, Tomio, Delfino, and Amorim calc
lated the scaling function relatingB3

(1)/B3
(0) to B2 /B3

(0) and
showed that the points for various4He potentials lie close to
the universal scaling curve@23,24#.

In this paper, we collect all the information that is cu
rently available on the universal properties in the three-b
system of 4He atoms. We go beyond the work in Ref
@23,24# in various respects. We give explicit parametrizatio
in terms of a and the three-body parameterL* for many
low-energy three-body observables, including Efimov bin
ing energies, atom-dimer scattering phase shifts, and
three-body recombination rate. We also calculate additio
scaling functions and estimate the effective range cor
tions. In Sec. II, we briefly review universality in the two
body sector. In Sec. III, we discuss the universal proper
of the trimer binding energies. We determine the three-b
parameterL* for various 4He potentials from the excited
state binding energyB3

(1) and use universality to predict th
ground-state energyB3

(0) . We also demonstrate universali
by exhibiting the correlation between the scaling variab
B3

(0)/B2 andB3
(1)/B2 for various 4He potentials. In Secs. IV

and V, we discuss the universal properties in atom-dim
scattering and three-body recombination, respectively.
use universality to predict theS-wave scattering lengtha12
and effective ranger s,12 for atom-dimer scattering as well a
the rate constant for three-body recombination at thresh
We also demonstrate universality by exhibiting the corre
tions between the scaling variablea12/a and the energy scal
ing variables for various4He potentials. Section VI contain
a summary and the outlook for using universality as the b
for a quantitative description of cold atoms.
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II. TWO-BODY SECTOR

We begin by reviewing the universal properties in t
two-body sector for 4He @1#. We use the phrase ‘‘low-
energy’’ to refer to energies close to the threshold for fr
atoms. There is a natural length scalel for low-energy ob-
servables. For a short-range potential,l is set by the range. If
the potential has a van der Waals tail,V(r )→2C6 /r 6, the
natural low-energy length scale isl'(mC6 /\2)1/4. The
natural energy scale for low-energy observables is\2/ml2.
For 4He, C651.46 a.u. which leads tol 55 Å and \2/ml2

50.4 K. Universality occurs because a parameter in the t
body potential has been tuned such that the scattering le
is unnaturally large. The scattering lengtha5104 Å @7# for
4He is much larger thanl. We can interpret the large scatte
ing length as the result of an accidental fine tuning by nat
of either a parameter in the two-body potential, such as
overall strength, or of the mass of the4He atom. The3He
atom has a mass that is only about 3/4 of that of4He, and its
scattering length is27.1 Å @11#, close in magnitude to the
natural low-energy length scale.

If uau@ l , universality can be used to describe the lo
energy observables for atoms in spite of the fact that the
der Waals tail makes the potential long range. Explicit e
pressions for the scattering length and effective range fo
potential with a van der Waals tail have been derived in R
@25#. A long-range potential introduces nonanalytic behav
in the dependence of the scattering amplitudes on the w
vector k. However if the potential falls off like 1/r 6, this
nonanalytic behavior enters first at fourth order ink. Such
effects cannot be reproduced by a short-range potential.
tunately, their effects on low-energy observables are s
pressed by four powers ofl /a. We will focus on the univer-
sality predictions at leading order inl /a and also on the
effective range corrections that are first order inl /a. At this
level of accuracy, the effects of the van der Waals tail
low-energy observables can be reproduced by a short-ra
potential. Realistic interatomic potentials will therefore e
hibit the same universal characteristics as short-range po
tials.

The two-body observables are the differential cross s
tions for two-body scattering and the binding energies
two-body bound states. The differential cross section for
elastic scattering of two identical spinless bosons with to
energyE5\2k2/m has the general form

ds

dV
54U (

L even

2L11

k cotdL~k!2 ik
PL~cosu!U2

, ~1!

wheredL(k) is the phase shift for theLth partial wave. The
total cross section is obtained from Eq.~1! by integrating
over a solid angle of 2p to avoid counting identical particle
twice. At low energies, the cross section is dominated by
L50 ‘‘ S-wave’’ term. The effective range expansion
k cotd0(k) has the form

k cotd0~k!52
1

a
1

1

2
r sk

21•••. ~2!
6-2
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UNIVERSALITY IN THE THREE-BODY PROBLEM FOR . . . PHYSICAL REVIEW A 67, 042706 ~2003!
The first two coefficients define the scattering lengtha and
the effective ranger s . The natural size for these coefficien
is the low-energy length scalel. The binding energies of the
two-body bound states are determined by the poles of
scattering amplitude. ForS-wave bound states, the bindin
energies areB2

(n)5\2kn
2/m, where kn is a solution to the

equation

ik cotd0~ ik!1k50. ~3!

The natural energy scale for a bound state close to thres
is \2/ml2.

If the scattering lengtha is unnaturally large, the differ-
ential cross section exhibits universal behavior at ener
small compared to\2/ml2:

ds

dV
5

4a2

11k2a2
, kl!1, uau@ l . ~4!

The leading correction comes from the effective range.
wave numberk of order (r sa)21/2 or smaller, the error is of
orderr s /a. At larger wave numbers, the error increases l
k2r s

2 and becomes of order one atk of order 1/r s . Note that
the differential cross section~4! is determined as a functio
of k by the single parametera.

If a is large and positive, there is one additional lo
energy observable. There is a shallow two-bodyS-wave
bound state that we will refer to as ‘‘the dimer.’’ Up to co
rections suppressed byl /a, its binding energy is

B25
\2

ma2
, a@ l . ~5!

Alternatively, if we takeB2 as input, universality gives a
prediction for the scattering length:

aB[
\

AmB2

. ~6!

The leading correction to the universal prediction forB2 in
Eq. ~5! comes from the effective range. If we truncate t
effective range expansion~2! after thek2 term, Eq.~3! is a
quadratic equation with two solutions,

B2
(6)5

\2

m

2

r s
2 F12

r s

a
6A122

r s

a G . ~7!

The solutionB2
(1) is an artifact of the truncation. We woul

expect a state with such an energy only if the higher-or
terms in the effective range expansion are unnaturally sm
The solutionB2

(2) is the binding energy of the shallow dime
If we expand to first order inr s /a, we obtain

B2
(2)5

\2

ma2 F11
r s

a G . ~8!
04270
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The corrections from higher orders in the effective ran
expansion~2! are suppressed byl 2/a2 and should therefore
be comparable in magnitude to ther s

2/a2 correction.
We now consider the two-body observables for4He. In

Table I, we give the calculated scattering length@15#, the
effective range@8#, and the dimer binding energies@15# for
four commonly used potentials: two modern potenti
LM2M2 @11# and TTY @12#, and two older potentials
HFDHE2 @26# and HFD-B@27#.

In Table I, we also give some simple theoretical pred
tions for two-body observables. We give the predictionaB
for the scattering length obtained from Eq.~6! by usingB2 as
input. We also give two predictions for the dimer bindin
energyB2 using the scattering dataa and r s as input. They
are the universality prediction in Eq.~5! and the prediction
including the first-order effective range correction in Eq.~8!.
We can obtain estimates of the theoretical errors in
proaches based on the universality at largea by comparing
those approximations with the calculated value ofB2. The
universality prediction\2/ma2 differs from B2 by at most
8% and the errors decrease to at most 0.7% if the first-o
effective range correction is included. This suggests that p
dictions of low-energy observables based on universa
should have an accuracy of about 10% and that that one
be able to reduce the errors to about 1% by including eff
tive range corrections.

III. TRIMER BINDING ENERGIES

The most dramatic prediction of universality in the thre
body sector with large scattering length is the existence
Efimov states@2#. They are a sequence of shallow three-bo
bound states with binding energies much smaller th
\2/ml2. If a parameter in the two-body potential is tune
such thata→6`, the number of these states increas
roughly as ln(uau/l)/p. The spacing of the deeper states
roughly geometric with the ratio of successive binding en
gies approaching 515. The suggestion that the excited s
of the 4He trimer is an Efimov state was first made in Re
@28#. Accurate calculations using modern potentials supp
that interpretation@13–15,29#. In Refs.@3,23,30#, it was ar-

TABLE I. Two-body observables for four4He potentials.
Lengths and energies are given in Å and mK, respectively. The
three columns show the calculated scattering lengthsa @15#, effec-
tive rangesr s @8#, and dimer binding energiesB2 @15#. The last
three columns show the universality predictionsaB for a usingB2

as input, the universality predictions forB2 usinga as input, and the
predictions forB2 including the first-order effective range corre
tion. ~For 4He, the conversion constant is\2/m512.1194 K Å2.!

Potential a rs B2 aB \2

ma2

B2
(2)

HFDHE2 124.65 7.396 0.83012 120.83 0.7800 0.82
HFD-B 88.50 7.277 1.68541 84.80 1.5474 1.674
LM2M2 100.23 7.326 1.30348 96.43 1.2064 1.294
TTY 100.01 7.329 1.30962 96.20 1.2117 1.300
6-3
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E. BRAATEN AND H.-W. HAMMER PHYSICAL REVIEW A 67, 042706 ~2003!
gued that the trimer ground state is also an Efimov state.
is an Efimov state, universality can be used to predict
binding energy. We will show that the resulting predictio
are within the errors expected from effective range corr
tions. We will also give a definitive criterion for a three-bod
bound state to be an Efimov state.

Efimov derived some powerful constraints on low-ener
three-body observables for systems with large scatte
length @2#. They follow from the approximate scale invar
ance at length scalesR in the regionl !R!uau together with
the conservation of probability. He introduced polar variab
H and j in the plane whose axes are 1/a and the energy
variable sgn(E)umEu1/2/\. The angular variablej is

j5H 2arctan~aAmB3/\!, a.0

2p1arctan~ uauAmB3/\!, a,0.
~9!

Efimov showed that low-energy three-body observables
determined by a few universal functions of the anglej. In
particular, the binding energies of the Efimov states are
lutions to an equation involving a single universal functi
D(j) @2#. Efimov’s equation for the binding energies rea
@2,30#

B31
\2

ma2 5
\2L

*
2

m
e2pn/s0exp@D~j!/s0#, ~10!

wheres0'1.006 24 is a transcendental number that satis
the equation

A3 s0 cosh~ps0/2!58 sinh~ps0/6!. ~11!

We use a three-body parameterL* that was first introduced
in Ref. @3# through a rather technical definition specific to
effective-field theory. Efimov’s Eq.~10!, together with the
explicit parametrization ofD(j) given below in Eqs.~12!–
~14! provides an equivalent definition ofL* . Note that we
measureB3 from the three-atom threshold, soB3.B2 for
a.0. If the universal functionD(j) is known, the Efimov
binding energiesB3 can be calculated as a function ofa and
L* by solving Eq.~10! for different values of the integern.
Equation ~10! has an exact discrete scaling symmetry:
there is an Efimov state with binding energyB3 for the pa-
rametersa andL* , then there is also an Efimov state wi
binding energyl2B3 for the parametersl21a andL* if l
5exp@n8p/s0# with n8 an integer. Due to this symmetry, Eq
~10! defines L* only up to multiplicative factors of
exp@p/s0#. If a.0, the scattering lengtha in Eqs. ~9! and
~10! can be replaced byaB defined in Eq.~6!. The change in
the predictions forB3 when aB is used instead ofa can be
taken as an estimate of the theoretical error associated
effective range corrections.

The universal functionD(j) could be determined by solv
ing the three-body Schro¨dinger equation for the Efimov
binding energies in various potentials whose scatter
lengths are so large that effective range corrections are
ligible. It can be calculated more easily by using the effect
field theory of Ref.@3# in which the effective range can b
set to zero. In Ref.@3#, the dependence of the bindin
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energy ona and L* was calculated for the shallowest Efi
mov state anda.0. In Ref.@30#, the binding energies of the
three lowest Efimov states were calculated for both si
of a and used to extract the universal functionD(j). In
Fig. 1, we plot 2(mB3 /\2L

*
2 )1/4 as a function of

sgn (a)(L* uau)21/2 for these three branches of Efimo
states. The binding energies for deeper Efimov states and
shallower states near (L* uau)21/250 can be obtained from
the discrete scaling symmetry. Parametrizations ofD(j) in
various regions forj were obtained by fitting the Efimov
spectrum@30#,

jPF2
3p

8
,2

p

4 G :D53.10x229.63x22.18,

x5~2p/42j!1/2, ~12!

jPF2
5p

8
,2

3p

8 G :D51.17y311.97y212.12y28.22,

y5p/21j, ~13!

jPF2p,2
5p

8 G :D50.25z210.28z29.11,

z5~p1j!2exp@21/~p1j!2#. ~14!

These parametrizations deviate from the numerical result
less than 0.013. The discontinuity atj523p/8 and j5
25p/8 is less than 0.016. Using Eq.~10! and the parametri-
zations~12–14!, the full spectrum of Efimov states can b
calculated as a function ofa andL* . Equation~10! can also
be used as an operational definition of the three-body par
eterL* , which was originally defined in the framework o
effective field theory@3#. If the binding energyB3 of an
Efimov state is known either from experiment or by solvi
the three-body Schro¨dinger equation, we can determineL*
by demanding thatB3 be a solution to Eq.~10! for some
integern.

A given two-body potential is characterized by values oa
and L* and corresponds to a vertical line in Fig. 1. Th

FIG. 1. The energy variable2(mB3 /\2L
*
2 )1/4 for three shallow

Efimov states as a function of sgn (a)(L* uau)21/2. The vertical
dashed line corresponds to the LM2M2 and TTY potentials
4He.
6-4
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TABLE II. The trimer binding energiesB3
(0) andB3

(1) in mK measured from the three-atom threshold f
four 4He potentials. The calculated values from Ref.@15# are in columns 1 and 2. The values ofaL* , the
universality predictions forB3

(0) , and the predictions forB3
(0) including effective range corrections usingB2

andB3
(1) as input are in columns 3–5. The corresponding values usinga andB3

(1) as input are in columns
6–8. Numbers in brackets were used as input. LO and NLO represent leading order and next-to-
order, respectively.

Potential B3
(0) B3

(1) aBL* B3
(0) ~LO! B3

(0) ~NLO! aL* B3
(0) ~LO! B3

(0) ~NLO!

HFDHE2 116.7 1.67 1.258 118.5 116.7 1.364 129.1 119.3
HFD-B 132.5 2.74 0.922 137.5 @132.5# 1.051 159.7 @132.5#
LM2M2 125.9 2.28 1.033 130.3 126.8 1.155 147.4 128.6
TTY 125.8 2.28 1.025 129.1 125.6 1.147 146.4 127.5
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dashed line shown corresponds to the LM2M2 and TTY
tentials for 4He atoms. The intersections of this line with th
binding-energy curves correspond to the infinitely many E
mov states. The two intersections visible in the figure cor
spond to the excited state and the ground state of the4He
trimer. The third bound state predicted by Efimov’s equat
has a binding energy that is'515B3

(0)'67 K. This is much
larger than the natural low-energy scale\2/ml2 which is 0.4
K. This state and all the deeper Efimov states are there
artifacts of the limita@ l .

We can use one of the trimer binding energies as the in
to determineL* . It is safer to use the binding energyB3

(1) of
the excited state because it is least affected by the h
energy effects that cut off the Efimov spectrum. The m
accurate calculations ofB3

(1) have been obtained by solvin
the Faddeev equations in the hyperspherical represent
@13#, in configuration space@14#, and with hard-core bound
ary conditions@15#. These methods give results that agree
within 0.6%. The results of Ref.@15# for B3

(0) andB3
(1) for the

HFDHE2, HFD-B, LM2M2, and TTY potentials are given i
Table II. The results for the binding energyB3

(0) of the
ground state of the trimer agree well with diffusion Mon
Carlo calculations@16#, which giveB3

(0)5(131.060.7) mK
for the HFD-B potential and (125.560.6) mK for the TTY
potential. Taking the calculated dimer binding energyB2 as
the two-body input, we determineL* by demanding that
B3

(1) satisfy Eq.~10! with n51. Solving Eq.~10! with n
52, we obtain the predictions forB3

(0) in column 4 of Table
II. The predictions are only 1–4 % higher than the calcula
values. If we use the calculated values ofa as input instead
of B2, we obtain the predicted values ofB3

(0) in column 7 of
Table II. These values are larger than the calculated one
11–21 %. The difference between these predictions and th
obtained by usingB2 andB3

(1) as the input gives an indica
tion of the size of effective range corrections. The pred
tions are labeled LO in Table II because they are the univ
sality prediction at ‘‘leading order’’ inr s /a.

The numerical values ofL* for the four potentials in the
Table II are nearly the same. If we useaB and B3

(0) as the
input, we obtainL* 50.0107 Å21 for the LM2M2 and TTY
potentials. The values for the other two potentials differ
less than 3%. If we usea and B3

(0) as the input, we obtain
L* 50.0115 Å21 for the LM2M2 and TTY potentials. The
values for the other two potentials differ by less than 5
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The small differences between the values ofL* for these
potentials illustrates the fact thatL* tends to be insensitive
to the parameter in the potential that is tuned to make
scattering length large.

The availability of accurate calculations ofB3
(0) andB3

(1)

for various older4He potentials can be used to demonstr
the nontrivial nature of universality in the three-body sect
Different potentials that give a large two-body scatteri
length should correspond to different values ofL* . The
scaling variablesB3

(0)/B2 andB3
(1)/B2 are functions ofaL*

only. If we eliminateL* , we obtain a prediction forB3
(1)/B2

as a universal function ofB3
(0)/B2. A closely related scaling

function that expressesB3
(1)/B3

(0) as a function ofB2 /B3
(0)

has been calculated by Frederico, Tomio, Delfino, a
Amorim using the renormalized zero-range model@23,24#.
We have reproduced their scaling function using the solut
to Efimov’s equation~10!. In Fig. 2, our calculation of the
universal scaling function relatingB3

(1)/B2 to B3
(0)/B2 is

shown as a solid line. AsL* increases, one moves along th
solid line to the right. The data points in Fig. 2 are the resu
from calculations with various4He potentials. The filled
symbols show the results from Motovilovet al. @15#, which
we used to determineL* for each potential, while the ope
symbols display the results from various other calculatio

FIG. 2. The excited-state energyB3
(1) as a function of the

ground-state energyB3
(0) . The solid line is the universal scalin

curve predicted by Eq.~10!. The filled symbols show the result
from Motovilov et al. @15#, while the open symbols display th
results from various other calculations@13,14,29,31,32#. The results
for the LM2M2/TTY, HFDHE2, and HFD-B potentials are ind
cated by the circles, squares, and diamonds, respectively. The
triangles show results from Ref.@14# for four other potentials.
6-5
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E. BRAATEN AND H.-W. HAMMER PHYSICAL REVIEW A 67, 042706 ~2003!
@13,14,29,31,32#. The results for the LM2M2/TTY,
HFDHE2, and HFD-B potentials are displayed by the circl
squares, and diamonds, respectively. The open trian
show results from Ref.@14# for four other potentials.

The points fall very close to the universal scaling curv
with the exception of the result of Ref.@32# for the LM2M2
potential, which lies well below. In that paper, the over
strength of the potential was varied such thatB2 passed
through zero. The results failed to exhibit the Efimov effe
of an accumulation of three-body bound states at threshol
B2→`. The numerical accuracy of this calculation has be
questioned in Ref.@33#. All the remaining results fall along
the universal scaling curve. This demonstrates that the do
nant effect of the different potentials on the trimer bindi
energies can be described by a single parameter that we
identify with L* .

It is interesting to note that calculations using only t
lowest adiabatic hyperspherical potential@29# or the lowest
orbital angular-momentum wave function give results t
already lie near the scaling curve. Including additional ad
batic potentials or higher orbital angular momentaL moves
the point to the right along the scaling curve until conv
gence is reached. This trend is most evident in the calc
tion of Ref. @15#, where the partial results forLmax50,2 can
be compared with the fully converged result withLmax54
~see Tables 2 and 3 in Ref.@15#!.

Note that the most accurate points in Fig. 2 all lie syste
atically above the scaling curve by approximately the sa
amount. One can interpret this deviation as being due
effective range effects. These effects are included in poten
models, but the effective range is set to zero in the renorm
ized zero-range model and in the effective field theory wh
were used to calculate the scaling curve. It should be p
sible to account for these differences quantitatively by tak
into account effective range corrections@34,35,53#. Since
r s /a'0.07, we expect that including the effective range c
rections as a first-order perturbation would shift the scal
curve by a small amount, bringing it into better agreem
with the calculated points.

We can take into account the effective range correcti
to B3

(0) approximately if we assume that the deviationDB3
(0)

of the leading-order universality prediction from the calc
lated value comes almost entirely from a correction linea
r s . The calculated result for one potential can then be u
to estimate the effective range corrections for the oth
ChoosingB3

(0) for the HFD-B potential as the input and d
noting the deviations ofB3

(0) from the leading-order univer
sality predictions byDB3

(0) , we can estimate the effectiv
range corrections for any other potential by

S DB3
(0)

B2
D

pot

5S DB3
(0)

B2
D

HFD-B

~r s /aB!pot

~r s /aB!HFD-B
. ~15!

Since the various4He potentials have similar values ofr s ,
the shiftDB3

(0) is almost the same for all the potentials. T
resulting predictions forB3

(0) are shown in column 5 of Table
II. The corresponding prediction usinga andB3

(1) as the in-
put are shown in column 8. The predictions are labeled N
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in Table II because they are approximate universality pred
tions at ‘‘next-to-leading order’’ inr s /a. For each of the
HFDHE2, LM2M2, and TTY potentials, the two NLO pre
dictions differ by less than 3%. They also differ from th
calculated results in column 1 by less than 3%.

We can use the results in Table II to give universal
predictions forB3

(0) for potentials other than HFD-B both a
LO and NLO in the effective range. As our best estimate,
take the average of the two predictions obtained by usingB2
anda as the two-body input. We take the difference to be
estimate of the theoretical error. The universality predictio
for the TTY potential are

LO: B3
(0)5138617 mK ~TTY!,

NLO: B3
(0)512762 mK ~TTY!. ~16!

The calculated value in column 1 of Table II lies within th
error bar for both predictions. Note that including effecti
range corrections decreases the size of the error bar b
order of magnitude.

The identification of the excited state of the4He trimer as
an Efimov state is well established@3,13–15,23,28–30#. We
now discuss the question of whether the ground state of
4He trimer should be identified as an Efimov state. The go
agreement between the universality prediction forB3

(0) and
the calculated value could be fortuitous. Some authors h
used as the criterion for an Efimov state that a sufficien
large increase in the strength of the two-body poten
should make it unstable to decay into an atom and a dim
Increasing the strength of the two-body potential decrea
the scattering length. This tends to move the vertical das
line in Fig. 1 to the right. A sufficiently large shift in the
vertical line will move it beyond the point where that bran
of Efimov states terminates on the line corresponding to
dimer binding energy. According to this criterion, the excit
state of the trimer is an Efimov state but the ground stat
not. However, we argue that the criterion for an Efimov st
should not be based on how its binding energy behaves u
a large deformation of the strength of the two-body potent
but on how it behaves under arbitrary small deformations
the potential. If it is an Efimov state, any small deformati
of the two-body potential will move its binding energy alon
the universal scaling curve in Fig. 2. The various model p
tentials for 4He can be interpreted as deformations of t
‘‘true’’ 4He potential. The fact that the binding energies f
these potentials lie along the universal curve is a convinc
evidence that the ground state of the4He trimer is an Efimov
state.

If the true binding energyB3
(1) of the excited4He trimer

was measured and found to disagree with the calcula
value using modern potentials, it would indicate that tho
potentials are not sufficiently accurate to predict low-ene
three-body observables. Using the universality approa
there would be no need to improve the potential in order
predict these observables. We could simply take the m
sured value ofB3

(1) as the input required to determineL* . If
we did choose to improve the potential, universality impli
that to get predictions for low-energy three-body observab
6-6
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TABLE III. The atom-dimer scattering lengthsa12 and effective rangesr s,12 in angstroms for four4He
potentials. The calculated values ofa12 from Ref.@15# are in column 1. The values ofaL* , the universality
predictions fora12, the predictions fora12 including effective range corrections, and the universality pred
tions for r s,12 usingB2 andB3

(1) as input are in columns 2–5. The corresponding predictions usinga andB3
(1)

as input are in columns 6–9. Numbers in brackets were used as input.

Potential a12 aBL* a12 ~LO! a12 ~NLO! r s,12 ~LO! aL* a12 ~LO! a12 ~NLO! r s,12 ~LO!

HFDHE2 – 1.258 87.9 103~5! 278 1.364 65.8 101~5! 902
HFD-B 135~5! 0.922 120.2 @135~5!# 6.4 1.051 100.4 @135~5!# 18.6
LM2M2 131~5! 1.033 113.1 128~5! 16.0 1.155 92.8 128~5! 75
TTY 131~5! 1.025 114.5 129~5! 14.4 1.147 94.0 129~5! 69
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with errors of orderr s /a, it would be sufficient to introduce
a two-parameter deformation of the short-distance part of
potential and tune both parameters simultaneously so tha
potential gives the correct values forB2 andB3

(1) . Alterna-
tively, we could leave the two-body potential unchanged,
instead introduce an artificial short-range three-body po
tial and tune its strength in order to get the correct value
B3

(1) . This is essentially what is done in the effective fie
theory approach; the parameterL* is varied by adjusting the
strength of a three-body contact interaction@3#. In the case of
4He atoms, the ‘‘true’’ three-body potential decreases
binding energyB3

(0) of the ground-state trimer by about 0
mK @16#. Its effect onB3

(1) should be much smaller becau
the excited state is much larger in size. Thus, the effect
the ‘‘true’’ three-body potential on low-energy three-bod
observables should be very small. However, universality
plies that the dominant effect on low-energy three-body
servables from a deformation of the two-body potential t
leaves the scattering length fixed is equivalent to the effec
adding a three-body potential.

IV. ATOM-DIMER SCATTERING

The differential cross section for the elastic scattering
an atom and a dimer with wave numbersk in the center-of-
mass frame has the form

ds

dV
5U(

L50

`
2L11

k cotdL~k!2 ik
PL~cosu!U2

, ~17!

wheredL(k) is the phase shift for theL th partial wave. These
phase shifts are real valued below the dimer breakup thr
old atk5(4mB2/3\2)1/2. Above that threshold, they becom
complex valued because of the inelasticity from scatter
into three-atom final states.

If the two-body scattering length is large, the cross sect
for low energiesE&\2/ma2 has a universal form. ForL
>1, the phase shiftsdL(k) are universal functions ofka
only. To the best of our knowledge, they have not been
culated. TheL50 phase shiftd0(k) is also universal, but it
depends onaL* as well as onka. The general structure o
the dependence onaL* was deduced by Efimov@2#. For k
below the breakup threshold,ka cotd0 can be written as

ka cotd05c1~ka!1c2~ka!cot@s0ln~aL* !1f~ka!#,
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2

A3
, ~18!

where c1(ka), c2(ka), and f(ka) are unknown universa
functions that satisfy the constraintsc1(2/A3)50 and
c2(2/A3)52/A3 @36#. Using the effective field theory of Ref
@3#, we have calculated these functions. The results can
parametrized as follows:

c1~ka!520.2210.39k2a220.17k4a4,

c2~ka!50.3210.82k2a220.14k4a4,

f~ka!52.6420.83k2a210.23k4a4. ~19!

The atom-dimer scattering lengtha12 and effective range
r s,12 are defined by the low-energy limit of theS-wave phase
shift by an equation analogous to Eq.~2!. From Eqs.~18! and
~19!, we obtain after the use of trigonometric identities

a125a„1.4622.15 tan@s0ln~aL* !10.09#…, ~20!

r s,125a„1.3021.64 tan@s0ln~aL* !11.07#

10.53 tan2@s0ln~aL* !11.07#…. ~21!

The atom-dimer scattering lengthsa12 for the HFD-B,
LM2M2, and TTY potentials were calculated in Ref.@15#,
and the results are given in column 1 of Table III. Using t
values ofL* determined in the preceding section, we c
predict the atom-dimer scattering length and compare w
the calculated values. The leading-order universality pred
tions for a12 andr s,12 are given in columns 3, 5, 7, and 9 o
Table III. If B2 and B3

(1) are used as inputs, the prediction
for a12 are smaller than the calculated values by about 13
If a andB3

(1) are used as inputs, the predictions are sma
than the calculated values by about 28%. Note that the
dictions forr s,12 differ by as much as a factor of 5 dependin
on whetherB2 or a is used as the two-body input. In Fig. 3
we show the atom-dimer scattering parametersa12 and r s,12
as functions ofaL* . The values ofaBL* andaL* for the
TTY potential are indicated by the vertical dashed and d
dashed lines, respectively. Note thatr s,12 is positive definite.
It achieves a minimum value that is very close to zero n
aL* 50.94 and diverges ataL* 51.64. The extracted val
ues ofaL* for 4He are fortuitously in the interval betwee
6-7
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E. BRAATEN AND H.-W. HAMMER PHYSICAL REVIEW A 67, 042706 ~2003!
the minimum and the divergence where the effective ra
changes rapidly withaL* . This leads to a large differenc
in the values ofr s,12 obtained from usinga or B2 as the
two-body input.

In Fig. 4, we show theS-wave scattering phase shiftd0(k)
for the TTY potential as a function of the center-of-ma
energyEcm shifted by the dimer binding energy so that t
scattering threshold is at zero energy,

Ecm1B25
3\2k2

4m
, ~22!

wherek is the wave number of the atom or the dimer. Th
shifted energy variable has the advantage that the positio
the scattering threshold is independent of whetherB2 or a is
taken as the two-body input. The solid and dashed lines s
the universality prediction withB2 and a as the two-body
input, respectively. The vertical dashed and dot-dashed l
indicate the dimer breakup threshold forB2 and a as the
two-body input, respectively. The filled circles show the
sults of Ref.@15#, which were obtained by solving the Fad
deev equation with hard-core boundary conditions. The
sults are in good agreement with the error band defined
the solid and dashed curves.

FIG. 3. The atom-dimer scattering lengtha12/a ~a! and effective
ranger s,12/a ~b! as a function ofaL* . The values ofaBL* and
aL* for the TTY potential are indicated by the vertical dashed a
dot-dashed lines, respectively.

FIG. 4. TheS-wave scattering phase shiftsd0 for the TTY po-
tential usingB2 as the two-body input~solid line! and usinga as the
two-body input~dashed line! as a function of the center-of-mas
energy~with the scattering threshold defined as zero energy!. The
filled circles show the fully converged calculation of Ref.@15# with
Lmax54. The vertical dashed and dot-dashed lines indicate
dimer breakup threshold forB2 anda as the two-body input, respec
tively.
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Universality implies that the scaling variablea12/aB is a
universal function ofaL* . By eliminatingL* , we can ex-
pressB3

(n)/B2 as a universal function ofa12/aB . The various
4He potentials should all give binding energies and scat
ing lengths that lie along this curve. In nuclear physics
similar correlation has been observed between the s
doublet neutron-deuteron scattering lengtha12 and the bind-
ing energy of the tritonB3. Calculations ofB3 anda12 using
various potential models for the nucleon-nucleon interact
give results that cluster along a line in thea12-B3 plane
called the Phillips line@37#. The observed values ofB3 and
a12 also lie on that line. Modern nucleon-nucleon potenti
predict a value forB3, which is about 5–10 % below the
measured value. Accurate values for botha12 and B3 are
obtained by adding a short-range three-body potential
adjusting one parameter to reproduce the measured t
binding energy. The Phillips line in nuclear physics aris
from the largeS-wave scattering length in both the spin
triplet (r s /a'1/3) and spin-singlet (r s /uau'1/8) nucleon-
nucleon channels@38,39,54#. In the case of4He, there are
two Phillips lines: one for the4He trimer ground state and
one for the excited state. These Phillips lines are shown
Figs. 5~a! and 5~b!, respectively. The solid line is the unive
sality prediction from Eqs.~10! and ~20!. As L* increases,
one moves along the solid line to the left. The data poi
show the results of Ref.@15# for the LM2M2/TTY ~circles!
and HFD-B potentials~diamonds!. They lie close to the Phil-
lips lines as expected from universality. For both potentia
the points lie slightly above the scaling curves, consist
with small effective range corrections.

We can use the calculated result fora12 for the HFD-B
potential from Ref.@15# to estimate the effective range co
rections for the other potentials. Denoting the deviation
a12 from the universality prediction byDa12, we can esti-
mate the effective range correction by

S Da12

aB
D

pot

5S Da12

aB
D

TTY

~r s /aB!pot

~r s /aB!TTY
. ~23!

The resulting predictions fora12 are shown in column 4 of
Table III. The corresponding predictions usinga andB3

(1) as
the input are shown in column 8. The two NLO predictio

d

e

FIG. 5. The Phillips line for~a! the trimer ground state and~b!
excited state. The solid line gives the universality prediction, wh
the data points show the results of Ref.@15# for the HFD-B ~dia-
monds! and LM2M2/TTY potentials~circles!.
6-8
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UNIVERSALITY IN THE THREE-BODY PROBLEM FOR . . . PHYSICAL REVIEW A 67, 042706 ~2003!
agree to within 2%. For the LM2M2 and TTY potential
they agree with the calculated results in column 1 to wit
the error bars.

We can use the results in Table III to give universal
predictions for potentials other than HFD-B fora12 both at
leading order and next-to-leading order in the effect
range. As the prediction and the theoretical error ina12, we
take the average and the difference of the predictions
tained by usingB2 anda as the two-body input. The univer
sality predictions for the TTY potential are

LO: a125~104621! Å ~TTY!,

NLO: a125~12965! Å ~TTY!. ~24!

The LO and NLO predictions for the TTY potential bo
agree to within errors with the calculated value in Table
Including the effective range corrections decreases the e
by about an order of magnitude. The error in the NLO p
diction in Eq.~24! is dominated by the error in the calculate
value for the HFD-B potential. There is no accurate calcu
tion for r s,12 for any of the4He potentials. Thus, we can onl
give a leading-order universality prediction forr s,12. Since
r s,12 is positive definite and because it is so sensitive to
precise value ofaL* , we take the universality prediction fo
r s,12 to be the geometric mean of the predictions obtained
using eitherB2 or a as input. We take the theoretical unce
tainty to be a multiplicative factor equal to the ratio of th
two predictions. The resulting leading-order universality p
diction for the TTY potential is then

LO: r s,125~32225
1121! Å ~TTY!. ~25!

In spite of the large error bars, we can predict with con
dence thatr s,12 is positive because the expression~21! is
positive definite.

V. THREE-BODY RECOMBINATION

Three-body recombination is the process in which two
the three incoming atoms form a dimer and the third at
recoils to balance energy and momentum. The rate of th
body recombination events per unit time and unit volume
a gas of cold atoms is proportional to the third power of
number density@18#: n5an3. The recombination rate con
stanta is a complicated function of the momenta of the thr
incoming atoms. At threshold, all three momenta vanish
a reduces to a number. The total three-body recombina
rate is the sum of the rates for all the dimers.

If the scattering lengtha is large and positive, there is
shallow dimer withB25\2/ma2. The rate constanta for
recombination into the shallow dimer at threshold must b
universal function ofaL* . It was calculated in Ref.@21#
using the effective field theory of Ref.@3#. The result can be
parametrized as

a567.1 sin2@s0ln~aL* !10.19#
\a4

m
. ~26!
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This remarkable oscillatory dependence on ln(aL* ) was pre-
viously observed in calculations using the hidden cross
theory @19# and the adiabatic hyperspherical representat
@20#. In the hyperspherical representation, the oscillatory
havior arises from interference between two pathways fr
the incoming channel on the second adiabatic potential to
outgoing channel on the first adiabatic potential. Effect
field theory allows the argument of the sin2 to be determined
in terms of the same three-body parameterL* that enters
atom-dimer scattering and the trimer binding energies.

Using the values ofL* determined in Sec. III, we can
predict the three-body recombination constanta from Eq.
~26!. Our predictions fora for four 4He potentials are given
in Table IV. The predictions vary by more than a factor of
depending on whether we takeB2 or a as the two-body input.
This large difference arises because the value ofaL* for
4He atoms is fortuitously close to the value nearaL*
50.83 at which the sin2 factor in Eq.~26! vanishes. This is
illustrated in Fig. 6, wherea in units of \a4/m is plotted as
a function ofaL* . The vertical dashed and dot-dashed lin
indicate the values ofaBL* andaL* for the TTY potential,
respectively. If we usea as input instead ofB2, the sin2

factor is larger by a factor of two. Sincea is positive definite
and because it is so sensitive to the precise value ofaL* ,
we take the universality prediction to be the geometric me
of the predictions obtained by using eitherB2 or a as the
input. We take the theoretical uncertainty to be a multiplic
tive factor equal to the ratio of the two predictions. Th
resulting leading-order universality prediction for the TT
potential is

TABLE IV. The three-body recombination constant at thresho
a in 10227 cm6/s. The leading order predictions from universali
using B2 and B3

(1) (a and B3
(1)) as input are in column 2~4!. The

corresponding values ofaL* are given in column 1~3!.

Potential aBL* a ~LO! aL* a ~LO!

HFDHE2 1.258 3.79 1.363 5.95
HFD-B 0.922 0.064 1.051 0.37
LM2M2 1.033 0.45 1.155 1.16
TTY 1.025 0.41 1.147 1.11

FIG. 6. The three-body recombination constant at thresholda in
units of \a4/m as a function ofaL* ~solid line!. The values of
aBL* andaL* for the TTY potential are indicated by the vertica
dashed and dot-dashed lines, respectively.
6-9
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E. BRAATEN AND H.-W. HAMMER PHYSICAL REVIEW A 67, 042706 ~2003!
LO: a5~0.720.4
11.2!310227 cm6/s ~TTY!. ~27!

There have been several previous calculations of the th
body recombination rate at threshold for4He. Fedichev,
Reynolds, and Shlyapnikov@18# calculated the rate by mak
ing a semianalytic approximation to the Faddeev equati
in the hyperspherical representation. In the limit of lar
scattering length, they obtained a result that depends oa
only: a53.9\a4/m. They did not observe the oscillator
dependence ofa on ln(a) predicted by Efimov theory, so
there must have been an error in their analysis. They fo
that solving the Faddeev equations numerically for the T
potential for 4He gave corrections of about 10%. Insertin
the value ofa for the TTY potential into their analytica
result, we obtain a predictiona50.6310227 cm6/s that
agrees with the universality prediction in Eq.~27!. This
agreement is probably fortuitous.

Nielsen and Macek@19# calculated the three-body recom
bination rate at threshold by applying hidden crossing the
to the Faddeev equations in the hyperspherical represe
tion. They found that in the limit of large scattering length,a
could take any value between 0 and 68\a4/m depending on
some WKB phase. This is consistent with the effective fi
theory result in Eq.~26!. For a Gaussian potential that give
the same scattering length and effective range as the LM2
potential, they obtained the prediction a51.1
310227 cm6/s. They pointed out that the result is extreme
sensitive to their WKB phase because it is close to the va
for which a vanishes.

Esry, Greene, and Burke@20# calculated the three-bod
recombination rate at threshold by solving the Schro¨dinger
equation in hyperspherical coordinates numerically for ma
potentials with one or atmost a few two-body bound sta
In the casea.0, they found that the recombination rat
could be well approximated by an empirical formula th
reduces in the largea limit to an expression with an oscilla
tory dependence on lna similar to Eq.~26!. In the case of
4He, their result for the HFD-B3-FCI1 potential@40# is a
50.12310227 cm6/s. A new calculation in the hyperspher
cal adiabatic representation that also uses the HFD-B3-F
potential has recently been carried out@22#. This calculation
includes states with angular momentumJ.0, so that non-
zero energies can be considered. At threshold, it agrees
the result of Ref.@20#.

The large uncertainty in the universality prediction fora
arises because the value ofaL* for the 4He potentials lies
fortuitously close to the zero of Eq.~26!. In order to improve
on the universality prediction~26! within the effective field
theory approach, it would be necessary to include effec
range corrections. If there was an accurate calculation oa
for a potential for whichB3

(1) ~or another low-energy three
body observable! is known, we could use that result to es
mate the effective range corrections for other potentials.
only calculation ofa we consider accurate enough is for t
HFD-B3-FCI1 potential in Ref.@22#. Unfortunately, we are
not aware of any calculation ofB3

(1) for that potential.
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VI. SUMMARY AND OUTLOOK

The universality approach to the three-body problem w
large scattering length was pioneered by Efimov@2#, who
emphasized the qualitative insights it provides. This a
proach implies a correlation between all the low-ener
three-body observables for potentials that have a large s
tering length. The universality approach is also useful a
quantitative tool. It implies that up to corrections suppress
by l /a, all low-energy three-body observables are det
mined bya and a single three-body parameter. A conveni
choice for the three-body parameter is the parameterL* in-
troduced in Ref.@3# because the dependence of some obse
ables onL* is known analytically.

In order to determineL* , one three-body observable
required as input. A convenient choice is the binding ene
of the shallowest Efimov state. OnceL* is determined, all
other low-energy three-body observables can be predic
We used calculations of the binding energyB3

(1) of the ex-
cited state of the trimer to determineL* for various 4He
potentials. We then used universality to calculate the bind
energyB3

(0) of the ground state of the trimer, the atom-dim
phase shifts below the dimer breakup threshold, and
three-body recombination constant at thresholda. We gave
explicit expressions for the three-body recombination c
stant a in Eq. ~26! and for theS-wave atom-dimer phase
shifts below the breakup threshold in Eq.~18!. We also gave
an explicit parametrization for the universal functionD(j)
that appears in Efimov’s equation~10! for the trimer binding
energies.

The leading corrections to the universality predictio
come from effective range corrections. If these correctio
are included, there should be a systematic improvemen
the accuracy of the predictions for all low-energy obse
ables with errors decreasing to second order inl /a. The ef-
fective range corrections have not yet been calculated for
case of three identical spinless bosons with large scatte
length. We therefore used accurate calculations ofB3

(0) and
a12 for the HFD-B potential as input to deduce the appro
mate effective range corrections in these observables for
other potentials. The resulting theoretical errors are sma
than those for the leading-order universality prediction
about an order of magnitude as expected. Comparing w
the calculated values ofB3

(0) anda12, we see that the theo
retical errors correctly reflect the accuracy of the LO a
NLO universality predictions. An actual calculation of th
effective range corrections for the three-body observab
would eliminate the need for using calculations of thre
body observables for one potential as additional inputs.

The leading-order universality predictions presented
this paper were obtained using the effective field theory
Ref. @3#, which is a particularly convenient implementatio
of the universality approach for three-body systems. M
generally, the effective field theory provides a framework
the model independent description of low-energy phenom
by exploiting a separation of scales in the system@41#. Using
renormalization, all short-distance effects are systematic
absorbed into a few low-energy parameters such as the
tering lengtha andL* . As a consequence, the dependen
6-10
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on the relevant low-energy parameters is explicit, while
relevant details of how their numerical values arise fro
complicated short-distance dynamics are omitted. The ef
tive field theory allows for systematically improvable calc
lations of low-energy observables with well-defined error
timates. This method has many applications ranging fr
particle physics over nuclear physics to condensed-ma
physics@42–44#.

An important open question is that how universality
manifested in the four-body problem. Low-energy four-bo
observables must depend on the two-body parametera and
the three-body parameterL* . Are any new four-body pa-
rameters required to calculate low-energy four-body obse
ables up to corrections suppressed byl /uau? There are theo
retical arguments in support of both answers to this quest
There is a renormalization argument for zero-ran
d-function two-body potentials that indicates that a n
four-body parameter is required to calculate four-body bi
ing energies@45#. On the other hand, a power counting arg
ment within the effective field theory framework sugge
that a four-body parameter should not be necessary to ca
late four-body observables to leading order inl /uau @46#. This
raises the exciting possibility of calculating the binding e
ergy of the4He tetramers close to the four-atom threshold
about 10% accuracy usinga andB3

(1) ~or another low-energy
three-body observable! as the only inputs. There is som
circumstantial evidence in favor of this possibility from th
four-body problem in nuclear physics. There is a correlat
called the ‘‘Tjon line’’ between the binding energyB3 of the
triton (3H nucleus! and the binding energyB4 of the a par-
ticle (4He nucleus! @47#. Calculations of these binding ene
gies using modern nucleon-nucleon interaction potent
give results that underestimate both binding energies
cluster along a line in theB3-B4 plane. By adding a three
body potential whose strength is adjusted to get the cor
value forB3, one also gets an accurate result forB4 ~see Ref.
@48# for some recent calculations with modern nucle
forces!.

The results for4He presented in the paper apply equa
well to other bosonic atoms with large scattering length
long as the effects of deep two-body bound states on l
energy observables are sufficiently small. By definition
deep bound state has a binding energy of order\2/ml2 or
larger. If a,0, any dimer is deeply bound. Ifa.0, any
dimer other than the shallow dimer withB2'\2/ma2 is
deeply bound. One qualitative effect of the deep two-bo
states is that the Efimov states become resonances be
they can decay into an atom and a deeply bound dimer. D
two-body bound states also provide additional channels
three-body recombination. Their effects can be particula
dramatic fora,0 if there is an Efimov state near the thre
atom threshold because it gives a resonant enhanceme
the three-body recombination rate into deep two-body bo
states@20,49#. The existence of deep two-body bound sta
does not affect the universality prediction for low-energy o
servables in the two-body sector. However, in the three-b
sector, it implies that a third parameter in addition toa and
L* is required to predict low-energy observables up to c
rections suppressed byl /uau @49#. This parameter takes int
04270
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account the cumulative effects of all the deep two-bo
bound states. The modification of Efimov’s equation for t
binding energies was given in Ref.@30#.

The universality approach discussed in this paper is
limited to identical bosons. It can be applied to any thre
particle system for which at least two of the three pairs ha
a large scattering length. Some examples are given in a
cent review article@50#. The universality predictions will de-
pend on the three pairwise scattering lengths, the ratios o
masses, and the three-body parameterL* .

An especially promising application of the universali
approach is to cold atoms in the vicinity of a Feshbach re
nance, where the effective scattering length can be contro
by an external magnetic field@4#. This creates the exciting
possibility of testing the unique oscillatory dependence
low-energy three-body observables on the scattering len
that is predicted by universality. In this paper, we have
ploited the fact that the various4He potentials span a sma
interval of aL* . Using a Feshbach resonance to control
scattering length, it might be possible to scan through
entire cycle of the oscillatory behavior. Among the drama
effects that one may be able to observe are the divergenc
a12 nearaL* 54.3 and the zero ofa nearaL* 50.83.

The behavior of cold atoms near a Feshbach resonan
in general a complicated coupled-channel problem involv
the various hyperfine states of the atoms. However, from
point of view of universality, the coupled-channel effects i
troduce no additional complications. If one is sufficient
close to the resonance and if the energy relative to the thr
old for one hyperfine state is small as compared to the
perfine splittings, only that hyperfine state needs to be
cluded explicitly. The coupled-channel effects can be tak
into account through the values of the low-energy parame
a, which diverges at the resonance, andL* , which varies
slowly in the neighborhood of the resonance.

The behavior of a Bose-Einstein condensate of atoms w
large scattering lengths has been studied experimentally
using Feshbach resonances to tune the scattering lengt
alkali atoms@6#. In the low-density limitna3!1, the non-
trivial aspects of universality in the three-body sector a
reflected in a small oscillatory dependence of the energy d
sity of the condensate on ln(L*n1/3) @51#. There is a possi-
bility that these three-body effects would allow the existen
of stable homogeneous condensates with large negative
tering length@52#. The intermediate density region, whe
na3;1 butnl3!1 is a more difficult problem. It is an ope
question whether or not a condensate in this region has
versal properties that are determined by constants sucha
and L* that describe the low-energy properties in the fe
body sectors. If there are, it may be possible to use univ
sality to predict in detail the behavior of a Bose-Einste
condensate of atoms near a Feshbach resonance.
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