PHYSICAL REVIEW A 67, 042706 (2003
Universality in the three-body problem for “He atoms
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The two-body scattering lengt for “He atoms is much larger than their effective ramge As a conse-
guence, low-energy few-body observables have universal characteristics that are independent of the interaction
potential. Universality implies that, up to corrections suppresser; by, all low-energy three-body observ-
ables are determined layand a three-body parametér, . We give simple expressions in termsaand A
for the trimer binding-energy equation, the atom-dimer scattering phase shifts, and the rate for three-body
recombination at threshold. We determitg for several*He potentials from the calculated binding energy of
the excited state of the trimer and use it to obtain the universality predictions for the other low-energy
observables. We also use the calculated values for one potential to estimate the effective range corrections for
the other potentials.
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I. INTRODUCTION with dimensions of wave numbégdefined in Eq.(10) be-
low], which is particularly convenient for quantitative calcu-
The interactions of nonrelativistic particles with ex- lations within the effective field theory approach.

tremely low energies, such as cold atoms, are determined A large two-body scattering length can be obtained by fine
primarily by their Swave scattering length. Typically, |a]  tuning a parameter in the interatomic potential to bring a real
is of the order of the natural length scdl@associated with  or virtual two-body bound state close to the two-atom thresh-
low-energy interactions, which for short-range interactions iS|d. The fine tuning can be obtained experimentally by ad-
given by the range of the potential. |H| is much larger than jysting an external variable, such as a magnetic fidldr an
|, however, low-energy atoms exhibit universal propertiesg|ectric field[5]. Large scattering lengths fdfNa and&Rb
that are independent of the interaction potential. In the tWo4iyms have been obtained in the laboratory by tuning an
body sector, universality implies that low-energy observableg, o na| magnetic field to the neighborhood of a Feshbach
are determined by the sm_gle paramedeup to c_orrectlons resonancé6]. The fine tuning can also be provided acciden-
suppressed bifal. In particular, the cross section for low- tally by nature. A prime example is théHe atom, whose
energy atom-atom scaltering is a simple functioreainda scattering lengtla~104 A[7] is much larger than its effec-

only. If a>0, there is also a shallow two-body bound state_. — . :
(the dimey whose binding energy is determined By B, tive ranger ;~7.3 A [8], which can be taken as an estimate
of the natural low-energy length scdle

=#?/ma’, wherem is the mass of the atonjg].
s The large scattering length fdtHe makes this atom an

Efimov showed that if the two-body scattering length is. ; X X . .
large, there are also universal properties in the three-bodgeal example of universality. The experimental information

sector[2]. The most remarkable is a sequence of three-bod{" low-energy*He atoms is rather limited. Using diffraction
bound statestrimers with binding energies geometrically ©f @ molecular beam of smafiHe clusters from a transmis-
spaced in the interval betwed?/ma? and%2/ml2. In addi- sion grating, the bond length of tHtHe @mgr has recently
tion to the binding energies of these Efimov trimers, the low-P€en measurefi7]: (r)=(52+4) A! which is an order of
energy three-body observables include scattering rates fépagnitude Iargger than the effective range. The scattering
three atoms and, &>0, an atom and a dimer. The conse- length a=104"j3 A and the dimer binding energp,
quences of universality in the three-body sector are simplest 1.1°65 MK were derived from the measured bond length
if the potential supports no deep two-body bound states withising the zero-range approximatipf]. The *He trimer and
binding energies of ordefi2/ml2. In this case, the low- several largefHe clusters have been obserf&dL0], but no
energy three-body observables are determinecaland a  quantitative experimental information about their binding en-
single three-body parameter up to corrections suppressed nges is available to date. However, there have been exten-
I/|al. A simple physical observable that can be used as théive theoretical calculations of the few-body problem for
three-body parameter is the binding energy of the Efimov'He using modern two-body potentigls1,12. Theoretical
state closest to threshold. Alternatively, the three-body pacalculations of trimer binding energies have also improved,
rameter can be specified by a boundary condition on th&0 that they now have several digits of accurt$-16.
three-body wave function at short distances. In R8f. the ~ They indicate that there are two trimers: a ground state with
authors introduced a more abstract three-body paramegter binding energyBy” and an excited state with binding energy
B(31). The ground-state binding energies of lardéte clus-
ters have been calculated using the diffusion Monte Carlo
*Electronic address: braaten@mps.ohio-state.edu method[16]. Their excited-state binding energies have been
TPresent address: Helmholtz-Institiit Strahlen- und Kernphysik ~ calculated using a combination of Monte Carlo methods and
(Theori@, Universita Bonn, Nussallee 14-16, 53115 Bonn, Ger- the hyperspherical adiabatic approximat[dT]. There have
many. Electronic address: hammer@itkp.uni-bonn.de also been some calculations on three-body scattering observ-
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ables. TheSwave phase shifts for atom-dimer scattering Il. TWO-BODY SECTOR
have been calculated in Ref8,15]. The three-body recom-

bination rate has been calculated at threshb&-21 and as We begin by reviewing the universal properties in the

. two-body sector for*He [1]. We use the phrase “low-
a funq'uon Of en_erg;[ZZ]. . L . energy” to refer to energies close to the threshold for free
Universality implies that in the limit of large scatterln_g atoms. There is a natural length schlfor low-energy ob-
length, all Iowjenergy three—body observables' are d"jter_m'”egervables. For a short-range potentias set by the range. If
by the scattering length (or equivalently the dimer binding e potential has a van der Waals tal(r)— — C¢/r®, the
energyB,) and one three-body parameter suchAgs. In  natural low-energy length scale is~(mCq/42)Y4 The
order to determine this parameter, a low-energy three-bodifatural energy scale for low-energy observables3sm|2.
observable is required as input. We can take advantage of theyr “He, Cs=1.46 a.u. which leads tb=5 A and#?/ml?
accurate calculations of the trimer binding energies for mod=0.4 K. Universality occurs because a parameter in the two-
ern “He potentials by usin@®$" to determineA,, for *He. body potential has been tuned such that the scattering length
Once this parameter is determined, universality can be used unnaturally large. The scattering lengtk= 104 A [7] for
to predict all other low-energy three-body observables for*He is much larger thah We can interpret the large scatter-
“He atoms. ing length as the result of an accidental fine tuning by nature
We can also exploit accurate theoretical calculations fof either a parameter in the two-body potential, such as its
older *He potentials to demonstrate the nontrivial nature ofoverall strength, or of the mass of tiéle atom. The*He
universality in the three-body sectf3,24. Scaling vari- atom has a mass that is only about 3/4 of thatidé, and its
ables are dimensionless combinations of physical obsenscattering length is-7.1 A [11], close in magnitude to the
ables. Universality implies that three-body scaling variablesatural low-energy length scale.
are nontrivial universal functions afA, . By eliminating If |a|>1, universality can be used to describe the low-
the dependence oh, , we can express one scaling variable energy observables for atoms in spite of the fact that the van
as a universal function of any other scaling variable. Theder Waals tail makes the potential long range. Explicit ex-
various “He potentials have slightly different scattering pressions for the scattering length and effective range for a
lengthsa and also different values of, . Therefore, if one potential with a van der Waals tail have been derived in Ref.
scaling variable is plotted as a function of a second, thé25]. A long-range potential introduces nonanalytic behavior
points for various*He potentials should all lie along a uni- in the dependence of the scattering amplitudes on the wave
versal line. Frederico, Tomio, Delfino, and Amorim calcu- vector k. However if the potential falls off like &P, this
lated the scaling function relating$”/B{ to B,/B{") and ~ honanalytic behavior enters first at fourth orderkinSuch
showed that the points for variod$le potentials lie close to  €ffects cannot be reproduced by a short-range potential. For-
the universal scaling cunj@3,24. tunately, their effects on Iow-ener.gy observables are sup-
In this paper, we collect all the information that is cur- Pressed by four powers éfa. We will focus on the univer-
rently available on the universal properties in the three-body@lity predictions at leading order ifia and also on the
system of “He atoms. We go beyond the work in Refs. effective range corrections that are first ordet/ia. At this
[23,24] in various respects. We give explicit parametrizationslevel of accuracy, the effects of the van der Waals tail on
in terms ofa and the three-body parametdr, for many low-energy observables can be reproduced by a short-range
low-energy three-body observables, including Efimov bind_p_ot_ennal. Reahstl_c interatomic poFer_wtlaIs will therefore ex-
ing energies, atom-dimer scattering phase shifts, and th@b't the same universal characteristics as short-range poten-
three-body recombination rate. We also calculate additiondfals. . )
scaling functions and estimate the effective range correc- The two-body observables are the differential cross sec-
tions. In Sec. II, we briefly review universality in the two- tions for two-body scattering and the binding energies for
body sector. In Sec. Ill, we discuss the universal propertie§v0-body bound states. The differential cross section for the
of the trimer binding energies. We determine the three-bod;?'aSt'C scattering of two identical spinless bosons with total
parameterA, for various “He potentials from the excited €nergyE=#%2k’/m has the general form
state binding energB!" and use universality to predict the
ground-state energﬁgo). We also demonstrate universality do B
by exhibiting the correlation between the scaling variables a0
B{Q)/B, andBSM/B, for various “He potentials. In Secs. IV

and V, we discuss the universal properties in atom-dime , . .
scattering and three-body recombination, respectively. W(Nhere5L(k) Is the phase shift for theth partial wave. The

use universality to predict th&wave scattering length,, fotal cross section is obtained from BG) by integrating

and effective range. .. for atom-dimer scattering as well as over a solid angle of 2 to avoid counting identical particles

the rate constan?fg'rlzthree—bod recombinatior? at threshol wice. At low energies, the cross section is dominated by the
. y o =0 “S-wave” term. The effective range expansion of

We also demonstrate universality by exhibiting the correla-

. . . k cot&y(k) has the form

tions between the scaling varialde,/a and the energy scal-

ing variables for variou$He potentials. Section VI contains

a summary and the outlook for using universality as the basis

for a quantitative description of cold atoms.

4 2L+1 5 2 .
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The first two coefficients define the scattering lengthnd TABLE |. Two-body observables for four'He potentials.
the effective range. The natural size for these coefficients Lengths and energies are given in A and mK, respectively. The first
is the low-energy length scaleThe binding energies of the three columns show the calculated scattering lengtfi5], effec-
two-body bound states are determined by the poles of théve rangesrs [8], and dimer binding energieB, [15]. The last
scattering amplitude. FoBwave bound states, the binding three columns show the universality predictianpsfor a using B,

energies areB(Z”)=ﬁ2K§/m, where «,, is a solution to the as m_pu_t, the umve_rsallty_ predlctlc_)ns By, usinga as input, and the
predictions forB, including the first-order effective range correc-

equation tion. (For “He, the conversion constantig/m=12.1194 K &.)
I, cotdy(i k) + k=0. @ potential a s B, ag 52 B.")

The natural energy scale for a bound state close to threshold ma

is 22/ml?.

If the scattering lengtla is unnaturally large, the differ- HFDHE2  124.65 7.396 0.83012 120.83 0.7800 0.8263

ential cross section exhibits universal behavior at energie‘::,”:D'B 88.50 7.277 168541 84.80 15474 16746
small compared t&2/ml2: LM2M2 100.23 7.326 1.30348 96.43 1.2064 1.2946

TTY 100.01 7.329 1.30962 96.20 1.2117 1.3005

do 4a2

—=———" ki<l,|a|>I. 4

dQ  1+k2a? The corrections from higher orders in the effective range

expansion(2) are suppressed Hy/a? and should therefore

The leading correction comes from the effective range. Atbe comparable in magnitude to th§/a? correction.
wave numbek of order sa) 2 or smaller, the error is of  \We now consider the two-body observables ffe. In
orderrg/a. At larger wave numbers, the error increases likeTable |1, we give the calculated scattering len§iis], the
k2r§ and becomes of order one labf order 1f¢. Note that  effective rangdg 8], and the dimer binding energi¢s5] for
the differential cross sectiof®) is determined as a function four commonly used potentials: two modern potentials

of k by the single parametex LM2M2 [11] and TTY [12], and two older potentials
If ais large and positive, there is one additional low- HFDHE2[26] and HFD-B[27].
energy observable. There is a shallow two-bd8wave In Table |, we also give some simple theoretical predic-
bound state that we will refer to as “the dimer.” Up to cor- tions for two-body observables. We give the predictan
rections suppressed bya, its binding energy is for the scattering length obtained from Ef) by usingB, as
input. We also give two predictions for the dimer binding
52 energyB, using the scattering datandrg as input. They
Bz:m_az’ a>|. (5)  are the universality prediction in E¢5) and the prediction

including the first-order effective range correction in E8).
. ) ) , , , We can obtain estimates of the theoretical errors in ap-
Alternatively, if we takeB, as input, universality gives a proaches based on the universality at laagey comparing

prediction for the scattering length: those approximations with the calculated valueBgf The
universality predictiori?/ma? differs from B, by at most

_ 8% and the errors decrease to at most 0.7% if the first-order

ag= \/TBZ (6) effective range correction is included. This suggests that pre-

dictions of low-energy observables based on universality
should have an accuracy of about 10% and that that one may
be able to reduce the errors to about 1% by including effec-
tive range corrections.

The leading correction to the universal prediction By in
Eqg. (5) comes from the effective range. If we truncate the
effective range expansiof®) after thek? term, Eq.(3) is a
guadratic equation with two solutions,

ll. TRIMER BINDING ENERGIES

7) The most dramatic prediction of universality in the three-
body sector with large scattering length is the existence of
Efimov state$2]. They are a sequence of shallow three-body

The solutionB}™) is an artifact of the truncation. We would bound states with binding energies much smaller than
expect a state with such an energy only if the higher-ordef:”/ml°. If a parameter in the two-body potential is tuned
terms in the effective range expansion are unnaturally smalfuch thata— *, the number of these states increases

The solutionBS ) is the binding energy of the shallow dimer. foughly as Infal/l)/m. The spacing of the deeper states is
If we expand to first order im./a, we obtain roughly geometric with the ratio of successive binding ener-

gies approaching 515. The suggestion that the excited state
of the *He trimer is an Efimov state was first made in Ref.

(8) [28]. Accurate calculations using modern potentials support
that interpretatiorf13—-15,29. In Refs.[3,23,3(Q, it was ar-

2
B(Z*):ﬁ_
ma?

;
1+ —.
a
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gued that the trimer ground state is also an Efimov state. If it 0.0 T T
is an Efimov state, universality can be used to predict its \ \i
binding energy. We will show that the resulting predictions -0 ° DN ]

are within the errors expected from effective range correc-
tions. We will also give a definitive criterion for a three-body
bound state to be an Efimov state.

—(mByA 2)1/4
|
w
o

Efimov derived some powerful constraints on low-energy i ]
three-body observables for systems with large scattering i "‘-\
length[2]. They follow from the approximate scale invari- 40 ‘.
ance at length scalé®in the regionl <R<|a| together with : ]
the conservation of probability. He introduced polar variables B0 The 20 a0

H and ¢ in the plane whose axes arealand the energy sgn(a)(A.ja)™?

variable sgnE)|mE|¥%#. The angular variablé is
FIG. 1. The energy variable (mB;/22A2)Yfor three shallow

—arctarfa 'm By/%), a>0 Efimov states as a function of sga)(A, |a])"Y2 The vertical
&= (9) dashed line corresponds to the LM2M2 and TTY potentials for
—+arctarf|a]VmBs/#), a<o0. “He.

Efimov showed that low-energy three-body observables ar

Energy ona and A as calculated for the shallowest Efi-
determined by a few universal functions of the an§lein gy x W " W !

mov state ané>0. In Ref.[30], the binding energies of the

luti i tion involvi inal . | functi %hree lowest Efimov states were calculated for both signs
utions 1o an equation Involving a singlé universal Iunclion ¢ 5 544 ysed to extract the universal functidr{é). In

A(€) [2]. Efimov’s equation for the binding energies readsFig_ 1, we plot —(mleﬁzAi)l"‘ as a function of

[2.30) sgn @)(A,|al]) "2 for these three branches of Efimov
52 242 states. The binding energies for deeper Efimov states and for
By+ —2=—*e2””’50exr[A(§)/so], (10 shallower states near\(, |a|) ~?=0 can be obtained from
ma - m the discrete scaling symmetry. Parametrizationg 6f) in
wheresy=~1.006 24 is a transcendental number that satisfie\éalrlous regions for were obtained by fitting the Efimov
. pectrum[30],
the equation
. 37
\3 s cOsH (/2) = 8 sink 7s,/6). (11 Ee —?,—Z}:A=3.10<2—9.63<—2.18,

We use a three-body parametey that was first introduced 2

in Ref.[3] through a rather technical definition specific to an X=(—mld— &), (12
effective-field theory. Efimov’s Eq(10), together with the

explicit parametrization oA (¢) given below in Eqs(12)— 5_7" _ 3_77
(14) provides an equivalent definition df, . Note that we 8' 8
measureB; from the three-atom threshold, &5>B, for

a>0. If the universal function\ (&) is known, the Efimov y=ml2+§, (13
binding energie8; can be calculated as a functionaand

A=1.1%3+1.9%%+2.13—8.22,

S

A, by solving Eq.(10) for different values of the integer. - S| 9 _

Equation (10) has an exact discrete scaling symmetry: if §e|—m— g [(A=0.2%"+028-9.11,

there is an Efimov state with binding enerBy for the pa-

rametersa and A, , then there is also an Efimov state with z=(m+&)%exd — U7+ £)?]. (14)

binding energyAr?B; for the parameters ta and A, if A
=exdn’ w/sy] with n’ an integer. Due to this symmetry, Eq. These parametrizations deviate from the numerical results by
(10) defines A, only up to multiplicative factors of less than 0.013. The discontinuity &&= —37/8 and =
exdmls). If a>0, the scattering length in Egs.(9) and —5/8 is less than 0.016. Using E(L0) and the parametri-
(10) can be replaced bagg defined in Eq(6). The change in zations(12—-14, the full spectrum of Efimov states can be
the predictions foB; whenag is used instead of can be calculated as a function @fandA , . Equation(10) can also
taken as an estimate of the theoretical error associated withe used as an operational definition of the three-body param-
effective range corrections. eter A, , which was originally defined in the framework of
The universal functior (£) could be determined by solv- effective field theory[3]. If the binding energyB; of an
ing the three-body Schdinger equation for the Efimov Efimov state is known either from experiment or by solving
binding energies in various potentials whose scatteringhe three-body Schdinger equation, we can determing,
lengths are so large that effective range corrections are netpy demanding thaB; be a solution to Eq(10) for some
ligible. It can be calculated more easily by using the effectiveintegern.
field theory of Ref[3] in which the effective range can be A given two-body potential is characterized by values of
set to zero. In Ref[3], the dependence of the binding and A, and corresponds to a vertical line in Fig. 1. The
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TABLE II. The trimer binding energieB{”) andB$" in mK measured from the three-atom threshold for
four “He potentials. The calculated values from RéE] are in columns 1 and 2. The valuesaf, , the
universality predictions foBY”), and the predictions faB{) including effective range corrections usifg
andB$Y as input are in columns 3-5. The corresponding values usiagd BS" as input are in columns
6—8. Numbers in brackets were used as input. LO and NLO represent leading order and next-to-leading
order, respectively.

Potential BY  BY agA, BP (Lo BY (NLO)  aA, BP (LOo) BY (NLO)

HFDHE?2 116.7 1.67 1.258 118.5 116.7 1.364 129.1 119.3
HFD-B 1325 274 0.922 137.5 [132.5 1.051 159.7 [132.5

LM2M2 1259 228 1.033 130.3 126.8 1.155 147.4 128.6
TTY 1258 2.28 1.025 129.1 125.6 1.147 146.4 1275

dashed line shown corresponds to the LM2M2 and TTY po-The small differences between the valuesAqf for these
tentials for“He atoms. The intersections of this line with the potentials illustrates the fact that, tends to be insensitive
binding-energy curves correspond to the infinitely many Efi-to the parameter in the potential that is tuned to make the
mov states. The two intersections visible in the figure correscattering length large.
spond to the excited state and the ground state of*the The availability of accurate calculations B and BS"
trimer. The third bound state predicted by Efimov’s equationfor various older*He potentials can be used to demonstrate
has a binding energy that 485153%0)%67 K. This is much  the nontrivial nature of universality in the three-body sector.
larger than the natural low-energy scal®ml|? which is 0.4  Different potentials that give a large two-body scattering
K. This state and all the deeper Efimov states are thereforlength should correspond to different values of . The
artifacts of the limita>1. scaling variable8{")/B, andB{")/B, are functions ofaA,

We can use one of the trimer binding energies as the inpunly. If we eliminateA ,, , we obtain a prediction foB"/B,
to determine\,, . Itis safer to use the binding energ§" of  as a universal function BL)/B,. A closely related scaling
the excited state because it is least affected by the highynction that expresseB{Y/BY) as a function of8,/B{
energy effects that cut off the Efimov spectrum. The most a5 peen calculated by Frederico, Tomio, Delfino, and
accurate calculations (3(31) have been obtained by solving Amorim using the renormalized zero-range mofi28,24.
the Faddeev equations in the hyperspherical representatiege have reproduced their scaling function using the solution
[13], in configuration spacgl4], and with hard-core bound- to Efimov's equation(10). In Fig. 2, our calculation of the
ary conditiond15]. These methods give results that agree toniversal scaling function relatin@(gl)/Bz to 5(30)/32 is
within 0.6%. The results of Ref15] for BY) andB§" forthe  shown as a solid line. A&, increases, one moves along the
HFDHEZ2, HFD-B, LM2M2, and TTY potentials are given in solid line to the right. The data points in Fig. 2 are the results
Table IIl. The results for the binding energdy” of the  from calculations with various’He potentials. The filled
ground state of the trimer agree well with diffusion Monte symbols show the results from Motovilat al.[15], which
Carlo calculationg16], which give B{’=(131.00.7) mK  we used to determina, for each potential, while the open
for the HFD-B potential and (125250.6) mK for the TTY  symbols display the results from various other calculations
potential. Taking the calculated dimer binding eneByyas
the two-body input, we determinda, by demanding that
B{M satisfy Eq.(10) with n=1. Solving Eq.(10) with n
=2, we obtain the predictions f@{) in column 4 of Table
II. The predictions are only 1-4 % higher than the calculated «
values. If we use the calculated valuesacds input instead aﬂ\n 2r ]
of B,, we obtain the predicted values Bf,,o) in column 7 of
Table Il. These values are larger than the calculated ones by - 5
11-21 %. The difference between these predictions and those
obtained by usindd, andB$" as the input gives an indica- -
tion of the size of effective range corrections. The predic- 100.0
tions are labeled LO in Table Il because they are the univer-
sality prediction at “leading order” irrg/a.

377

B3

200.0 300.0
B,”/B,

h ical values of. for the four botentials in the FIG. 2. The excited-state enerdgs" as a function of the
€ numerical vaiu * urp lals | ground-state energBy). The solid line is the universal scaling

Table Il are nl'aarly the same._llf we uag and Bg)) as the curve predicted by Eq(10). The filled symbols show the results
input, we obtainA , =0.0107 A™* for the LM2M2 and TTY  from Motovilov et al. [15], while the open symbols display the
potentials. The values for the other two potentials differ byresuits from various other calculatiof3,14,29,31,3R The results

less than 3%. If we usa and BY as the input, we obtain for the LM2M2/TTY, HFDHE2, and HFD-B potentials are indi-
A, =0.0115 A'! for the LM2M2 and TTY potentials. The cated by the circles, squares, and diamonds, respectively. The open
values for the other two potentials differ by less than 5%.triangles show results from RefL4] for four other potentials.
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[13,14,29,31,3R The results for the LM2M2/TTY, in Table Il because they are approximate universality predic-
HFDHEZ2, and HFD-B potentials are displayed by the circlestions at “next-to-leading order” inri/a. For each of the
squares, and diamonds, respectively. The open triangldsFDHE2, LM2M2, and TTY potentials, the two NLO pre-

show results from Ref.14] for four other potentials. dictions differ by less than 3%. They also differ from the
The points fall very close to the universal scaling curve,calculated results in column 1 by less than 3%.
with the exception of the result of Rdf32] for the LM2M2 We can use the results in Table Il to give universality

potential, which lies well below. In that paper, the overall predictions forB(go) for potentials other than HFD-B both at
strength of the potential was varied such tigt passed LO and NLO in the effective range. As our best estimate, we
through zero. The results failed to exhibit the Efimov effecttake the average of the two predictions obtained by uBing

of an accumulation of three-body bound states at threshold agda as the two-body input. We take the difference to be an
B,— . The numerical accuracy of this calculation has beerestimate of the theoretical error. The universality predictions
questioned in Ref(33]. All the remaining results fall along for the TTY potential are

the universal scaling curve. This demonstrates that the domi-

nant effect of the different potentials on the trimer binding LO: B{=138+17 mK (TTY),
energies can be described by a single parameter that we can
identify with A, . NLO: B®=127+2 mK (TTY). (16)

It is interesting to note that calculations using only the
lowest adiabatic hyperspherical potentiab] or the lowest The calculated value in column 1 of Table Il lies within the
orbital angular-momentum wave function give results thaterror bar for both predictions. Note that including effective
already lie near the scaling curve. Including additional adiatange corrections decreases the size of the error bar by an
batic potentials or higher orbital angular momehtanoves  order of magnitude.
the point to the right along the scaling curve until conver-  The identification of the excited state of tAele trimer as
gence is reached. This trend is most evident in the calculaan Efimov state is well establish¢8,13—-15,23,28—-30We
tion of Ref.[15], where the partial results fdr,,,,=0,2 can now discuss the question of whether the ground state of the
be compared with the fully converged result with,,,=4 “He trimer should be identified as an Efimov state. The good
(see Tables 2 and 3 in RdfL5)). agreement between the universality prediction %‘?) and

Note that the most accurate points in Fig. 2 all lie system+the calculated value could be fortuitous. Some authors have
atically above the scaling curve by approximately the sameised as the criterion for an Efimov state that a sufficiently
amount. One can interpret this deviation as being due téarge increase in the strength of the two-body potential
effective range effects. These effects are included in potentialhould make it unstable to decay into an atom and a dimer.
models, but the effective range is set to zero in the renormalncreasing the strength of the two-body potential decreases
ized zero-range model and in the effective field theory whichthe scattering length. This tends to move the vertical dashed
were used to calculate the scaling curve. It should be podine in Fig. 1 to the right. A sufficiently large shift in the
sible to account for these differences quantitatively by takingvertical line will move it beyond the point where that branch
into account effective range correctiofi34,35,53. Since  of Efimov states terminates on the line corresponding to the
rs/a~0.07, we expect that including the effective range cor-dimer binding energy. According to this criterion, the excited
rections as a first-order perturbation would shift the scalingstate of the trimer is an Efimov state but the ground state is
curve by a small amount, bringing it into better agreemennot. However, we argue that the criterion for an Efimov state
with the calculated points. should not be based on how its binding energy behaves under

We can take into account the effective range corrections large deformation of the strength of the two-body potential,
to B”) approximately if we assume that the deviatibB{?)  but on how it behaves under arbitrary small deformations of
of the leading-order universality prediction from the calcu-the potential. If it is an Efimov state, any small deformation
lated value comes almost entirely from a correction linear inof the two-body potential will move its binding energy along
rs. The calculated result for one potential can then be usethe universal scaling curve in Fig. 2. The various model po-
to estimate the effective range corrections for the othersientials for *He can be interpreted as deformations of the
ChoosingB{) for the HFD-B potential as the input and de- “true” *He potential. The fact that the binding energies for

noting the deviations OB%O) from the |eading-order univer- these potentials lie along the universal curve is a convincing
sality predictions byAB{), we can estimate the effective evidence that the ground state of tfige trimer is an Efimov

range corrections for any other potential by state. o L o _
If the true binding energ)B(3 ) of the excited*He trimer
AB® AB® / was measured and found to disagree with the calculated
3 3 (rs aB)pot . . . ..
B =5 (r/ag) . (15  value using modern po_tentlals, it would |nd|c§1te that those
2/ pot 2 /) nrp-g\' s’ 9B/HFD-B potentials are not sufficiently accurate to predict low-energy

three-body observables. Using the universality approach,
Since the various'He potentials have similar values of,  there would be no need to improve the potential in order to
the ShiftAB(30) is almost the same for all the potentials. The predict these observables. We could simply take the mea-
resulting predictions foBY are shown in column 5 of Table sured value oB$ as the input required to determine, . If
[I. The corresponding prediction usirsgand B(31) as the in-  we did choose to improve the potential, universality implies
put are shown in column 8. The predictions are labeled NLGhat to get predictions for low-energy three-body observables
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TABLE lll. The atom-dimer scattering lengttes, and effective ranges, ;, in angstroms for foufHe
potentials. The calculated valuesayf, from Ref.[15] are in column 1. The values afA, , the universality
predictions fora,,, the predictions foa,, including effective range corrections, and the universality predic-
tions forr 1, usingB, andB$" as input are in columns 2—5. The corresponding predictions @simgiBS"
as input are in columns 6—9. Numbers in brackets were used as input.

Potential a;; agA, a;p(L0) app (NLO) rgp,(LO) aA, a;p(LO) ap (NLO) rgp (LO)

HFDHE2 -  1.258  87.9 1a8) 278  1.364 65.8 105) 902
HFD-B 1355 0.922 120.2 [1355)] 6.4 1051 1004 [1355)] 18.6
LM2M2  131(5) 1.033  113.1 126) 16.0 1155 92.8 128) 75
TTY 131(5) 1.025 1145 126) 144 1147 940 129) 69

with errors of order/a, it would be sufficient to introduce 2
a two-parameter deformation of the short-distance part of the O<kas —, (18
potential and tune both parameters simultaneously so that the V3

potential gives the correct values By and B(31). Alterna- .
tively, we could leave the two-body potential unchanged, bu herg cu(ka), Cz("‘?‘)' and ¢(ka) are unknown universal
unctions that satisfy the constraints,(2/y/3)=0 and

instead introduce an artificial short-range three-body poten- - ) Lo
tial and tune its strength in order to get the correct value fo2(2\3)=2/\3[36]. Using the effective field theory of Ref.
Bgl)‘ This is essentially what is done in the effective field 3], we have calculated these functions. The results can be

theory approach; the parametky is varied by adjusting the parametrized as follows:

strength of a three-body contact interactj@f In the case of cy(ka)=—0.22+0.39k%a?— 0.17k*a*

“He atoms, the “true” three-body potential decreases the ! '

binding energyBY” of the ground-state trimer by about 0.3 c,(ka)=0.32+0.82k2a2— 0.14k*a%,

mK [16]. Its effect onBSY should be much smaller because

the excited state is much larger in size. Thus, the effects of ¢(ka)=2.64—0.83k?a’+0.23k*a*. (19

the “true” three-body potential on low-energy three-body

observables should be very small. However, universality im-The atom-dimer scattering lengthy, and effective range
plies that the dominant effect on low-energy three-body ob+ s 1, are defined by the low-energy limit of tf®wave phase
servables from a deformation of the two-body potential thaishift by an equation analogous to Eg). From Eqs(18) and
leaves the scattering length fixed is equivalent to the effect of19), we obtain after the use of trigonometric identities

adding a three-body potential.
a;p,=a(l.46-2.15tafsgin(aA , ) +0.09), (20

IV. ATOM-DIMER SCATTERING ro1,=2a(1.30- 1.64 tafisoin(aA , ) + 1.07]
The differential cross section for the elastic scattering of 1053 taﬁ[soln(aA*)+1.07J). (21)

an atom and a dimer with wave numbdrs the center-of-

mass frame has the form The atom-dimer scattering lengths,, for the HFD-B,
" B LM2M2, and TTY potentials were calculated in R¢L5],
do 2L+1 b p 1 and the results are given in column 1 of Table Ill. Using the
dQ | <o keots, (k) —ik L(coso)| (17 values of A, determined in the preceding section, we can
predict the atom-dimer scattering length and compare with
wheres, (K) is the phase shift for the™ partial wave. These the calculated values. The leading-order universality predic-
phase shifts are real valued below the dimer breakup thresfiions fora;, andrs;, are given in columns 3, 5, 7, and 9 of
old atk= (4mB,/3%2)2. Above that threshold, they become Table IIl. If B, andB§" are used as inputs, the predictions
complex valued because of the inelasticity from scatteringor a;, are smaller than the calculated values by about 13%.
into three-atom final states. If aandB{Y are used as inputs, the predictions are smaller
If the two-body scattering length is large, the cross sectiorthan the calculated values by about 28%. Note that the pre-
for low energiesE<7#2/ma’ has a universal form. Fok dictions forr ¢y, differ by as much as a factor of 5 depending
=1, the phase shift$, (k) are universal functions oka  on whetheB, or ais used as the two-body input. In Fig. 3,
only. To the best of our knowledge, they have not been calwe show the atom-dimer scattering parametgesandr 1,
culated. TheL=0 phase shiftdy(k) is also universal, but it as functions oA, . The values ofigA, andaA, for the
depends oraA, as well as orka. The general structure of TTY potential are indicated by the vertical dashed and dot-
the dependence amA, was deduced by Efimoj2]. Fork  dashed lines, respectively. Note that, is positive definite.

below the breakup thresholllacotd, can be written as It achieves a minimum value that is very close to zero near
aA,=0.94 and diverges aA, =1.64. The extracted val-
kacotsy=c4(ka)+cy(ka)cofsgin(aA , )+ ¢(ka)], ues ofaA, for *He are fortuitously in the interval between
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FIG. 3. The atom-dimer_scattering length,/a (a) and effective FIG. 5. The Phillips line for(@ the trimer ground state an®)
rangers;,/a (b) as a function oA, . The values ofigA, and  gycited state. The solid line gives the universality prediction, while
aA, for the TTY potential are indicated by the vertical dashed andihe gata points show the results of REE5] for the HFD-B (dia-
dot-dashed lines, respectively. monds and LM2M2/TTY potentialg(circles.

the minimum and the divergence where the effective range
changes rapidly wittaA, . This leads to a large difference
in the values ofr 1, obtained from usinga or B, as the
two-body input.

In Fig. 4, we show th&wave scattering phase shifg(k)
for the TTY potential as a function of the center-of-mass
energyE.,, shifted by the dimer binding energy so that the
scattering threshold is at zero energy,

Universality implies that the scaling variabdg,/ag is a
universal function obA, . By eliminatingA, , we can ex-
presng”)/Bz as a universal function af;,/ag . The various
“He potentials should all give binding energies and scatter-
ing lengths that lie along this curve. In nuclear physics, a
similar correlation has been observed between the spin-
doublet neutron-deuteron scattering length and the bind-
ing energy of the tritorB;. Calculations oB; andaj, using
various potential models for the nucleon-nucleon interaction
give results that cluster along a line in tlag,-B; plane
called the Phillips lind37]. The observed values &3 and

wherek is the wave number of the atom or the dimer. This@12 also lie on that line. Modern nucleon-nucleon potentials
shifted energy variable has the advantage that the position @fedict a value forBs, which is about 5-10% below the
the scattering threshold is independent of whefheor ais ~ Measured value. Accurate values for betfy and B; are
taken as the two-body input. The solid and dashed lines sho@btained by adding a short-range three-body potential and
the universality prediction witiB, and a as the two-body adjusting one parameter to reproduce the measured triton
input, respectively. The vertical dashed and dot-dashed linddinding energy. The Phillips line in nuclear physics arises
indicate the dimer breakup threshold B, and a as the from the largeSwave scattering length in both the spin-
two-body input, respectively. The filled circles show the re-triplet (rs/a~1/3) and spin-singletr¢/|a|~1/8) nucleon-
sults of Ref.[15], which were obtained by solving the Fad- hucleon channelf38,39,54. In the case of'He, there are
deev equation with hard-core boundary conditions. The retwo Phillips lines: one for thé'He trimer ground state and

sults are in good agreement with the error band defined b9ne for the excited state. These Phi”ipS lines are shown in
the solid and dashed curves. Figs. 5a) and §b), respectively. The solid line is the univer-

sality prediction from Eqgs(10) and (20). As A, increases,
one moves along the solid line to the left. The data points
E show the results of Refl5] for the LM2M2/TTY (circles

] and HFD-B potential¢diamonds$. They lie close to the Phil-

312k?
4m

Ecm+ Bz = y (22)

360 T T ——T

340
7 ] lips lines as expected from universality. For both potentials,
S g ] the points lie slightly above the scaling curves, consistent
3 with small effective range corrections.

& ] We can use the calculated result #®f, for the HFD-B

R potential from Ref[15] to estimate the effective range cor-

. rections for the other potentials. Denoting the deviation of
a,;, from the universality prediction by\a,;,, we can esti-
mate the effective range correction by

280
H 1.5 2.0

(Egn + B;) [mK]
FIG. 4. TheSwave scattering phase shifg for the TTY po- A A /
tential usingB, as the two-body inputsolid line) and usinga as the d12) _ (A8 (rs/ap)pot _ 29
two-body input(dashed ling as a function of the center-of-mass ag pot ag TTY(rS/aB)TTY

energy(with the scattering threshold defined as zero energle

filled circles show the fully converged calculation of Rgf5] with ) o )

La=4. The vertical dashed and dot-dashed lines indicate thd he resulting predictions foa,, are shown in column 4 of
dimer breakup threshold f@, anda as the two-body input, respec- Table lIl. The corresponding predictions usiagndB§" as
tively. the input are shown in column 8. The two NLO predictions
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agree to within 2%. For the LM2M2 and TTY potentials, TABLE IV. The three-body recombination constant at threshold

they agree with the calculated results in column 1 to withine in 10" cm/s. The leading order predictions from universality

the error bars. using B, and B{" (a andBSY) as input are in column 24). The
We can use the results in Table Ill to give universality corresponding values @A, are given in column 13).

predictions for potentials other than HFD-B fag, both at

leading order and next-to-leading order in the effectivePotential ap/ a (LO) aA, a (LO)
range. As the prediction and the theoretical erroajp, we  yrpHe2 1.258 3.79 1.363 595
take the average and the difference of the predictions obyrp_g 0.922 0.064 1051 0.37
tained by usingB, anda as the two-body input. The univer- LM2M2 1033 0.45 1155 116
sality predictions for the TTY potential are TTY 1025 0.41 1147 111

LO:  a;=(104x21) A (TTY),
This remarkable oscillatory dependence oraly) was pre-
NLO: a;,=(129+5) A (TTY). (24)  viously observed in calculations using the hidden crossing
theory [19] and the adiabatic hyperspherical representation
The LO and NLO predictions for the TTY potential both [20]. In the hyperspherical representation, the oscillatory be-
agree to within errors with the calculated value in Table I11. havior arises from interference between two pathways from
Including the effective range corrections decreases the errdfe incoming channel on the second adiabatic potential to the
by about an order of magnitude. The error in the NLO pre-outgoing channel on the first adiabatic potential. Effective
diction in Eq.(24) is dominated by the error in the calculated field theory allows the argument of the $io be determined
value for the HFD-B potential. There is no accurate calculain terms of the same three-body parametgy that enters
tion for r¢ 1, for any of the*He potentials. Thus, we can only atom-dimer scattering and the trimer binding energies.
give a leading-order universality prediction fog,. Since Using the values ofA, determined in Sec. I, we can
rs1, IS positive definite and because it is so sensitive to th@redict the three-body recombination constanfrom Eq.
precise value ofiA, , we take the universality prediction for (26). Our predictions for for four “He potentials are given
rs1»t0 be the geometric mean of the predictions obtained by Table IV. The predictions vary by more than a factor of 2
using eitherB, or a as input. We take the theoretical uncer- depending on whether we talg or a as the two-body input.
tainty to be a multiplicative factor equal to the ratio of the This large difference arises because the valuadf, for
two predictions. The resulting leading-order universality pre-*He atoms is fortuitously close to the value nemh,

diction for the TTY potential is then =0.83 at which the sffactor in Eq.(26) vanishes. This is
illustrated in Fig. 6, wherer in units ofza*/m is plotted as
LO: re1,=(32732H A (TTY). (25)  afunction ofaA, . The vertical dashed and dot-dashed lines

indicate the values adigA, andaA, for the TTY potential,
respectively. If we use as input instead oB,, the sirf
factor is larger by a factor of two. Sineeis positive definite
and because it is so sensitive to the precise valua/Aqf ,

we take the universality prediction to be the geometric mean
of the predictions obtained by using eithBs or a as the

V. THREE-BODY RECOMBINATION input. We take the theoretical uncertainty to be a multiplica-

Three-body recombination is the process in which two ofilVe factor equal to the ratio of the two predictions. The
the three incoming atoms form a dimer and the third atOn{esultlng _Ieadlng-order universality prediction for the TTY
recoils to balance energy and momentum. The rate of thred20tential is
body recombination events per unit time and unit volume in
a gas of cold atoms is proportional to the third power of the
number density18]: v=an®. The recombination rate con-
stanta is a complicated function of the momenta of the three
incoming atoms. At threshold, all three momenta vanish and
a reduces to a number. The total three-body recombination
rate is the sum of the rates for all the dimers.

If the scattering lengtla is large and positive, there is a
shallow dimer withB,=#%2%/ma?. The rate constant for
recombination into the shallow dimer at threshold must be a
universal function ofaA, . It was calculated in Refl21] 0 0 100
using the effective field theory of R€f3]. The result can be aA.
parametrized as

In spite of the large error bars, we can predict with confi-
dence thatr;, is positive because the expressi@i) is
positive definite.

(o2}
o

IS
o

N
o

o [units of a4/m]

FIG. 6. The three-body recombination constant at threshahd
hat units of Za*/m as a function ofaA, (solid ling). The values of
—67.1siflsIn(aA.)+0.19— 26 agA, andaA, for the TTY potential are indicated by the vertical
“« [Soln(ad.) ) m (26) dashed and dot-dashed lines, respectively.
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LO: a=(0.7fé:421)><10_27 cmb/s (TTY). (27 VI. SUMMARY AND OUTLOOK

The universality approach to the three-body problem with
) ) large scattering length was pioneered by Efim@&y, who
There have b_een_ several previous calculations of .the thre%‘mphasized the qualitative insights it provides. This ap-
body recombination raFe at threshold f6He. Fedichev, proach implies a correlation between all the low-energy
Reynolds, and Shlyapnikd\8] calculated the rate by mak- three-pody observables for potentials that have a large scat-
ing a semianalytic approximation to the Faddeev equationgring length. The universality approach is also useful as a
in the hyperspherical representation. In the limit of largeqyantitative tool. It implies that up to corrections suppressed
scattering length, they obtained a result that dependa on by I/a, all low-energy three-body observables are deter-
only: a=3.9%a*m. They did not observe the oscillatory mined bya and a singie three-body parameter. A convenient
dependence ot on In@) predicted by Efimov theory, so choice for the three-body parameter is the paramétgin-
there must have been an error in their analysis. They foungtoduced in Ref[3] because the dependence of some observ-
that solving the Faddeev equations numerically for the TTYables onA, is known analytically.
potential for “He gave corrections of about 10%. Inserting  In order to determine\, , one three-body observable is
the value ofa for the TTY potential into their analytical required as input. A convenient choice is the binding energy
result, we obtain a predictiomr=0.6x10 2" cmf/s that of the shallowest Efimov state. Ondg, is determined, all
agrees with the universality prediction in E(R7). This  other low-energy three-body observables can be predicted.
agreement is probably fortuitous. We used calculations of the binding ener@&” of the ex-
Nielsen and Macek19] calculated the three-body recom- cited state of the trimer to determin, for various *He
bination rate at threshold by applying hidden crossing theorypotentials. We then used universality to calculate the binding
to the Faddeev equations in the hyperspherical representanergyBS” of the ground state of the trimer, the atom-dimer
tion. They found that in the limit of large scattering length, phase shifts below the dimer breakup threshold, and the
could take any value between 0 and7&8/m depending on three-body recombination constant at thresheldWe gave
some WKB phase. This is consistent with the effective fieldeXplicit expressions for the three-body recombination con-
theory result in Eq(26). For a Gaussian potential that gives Stante in Eq. (26) and for theSwave atom-dimer phase
the same scattering length and effective range as the LM2m8hifts below the breakup threshold in E¢8). We also gave
potential, they obtained the predicona=1.1 a" explicit pa_tramgtrlzz?tlon for_ the umversal_ functl_mﬂ_g)
x 10~ crrf/s. They pointed out that the result is extremelythat appears in Efimov’s equatidh0) for the trimer binding

sensitive to their WKB phase because it is close to the valu§hergies. . . . -
for which « vanishes The leading corrections to the universality predictions
Esry, Greene and Burki20] calculated the three-body come from effective range corrections. If these corrections

binati te at threshold b ving the Sdim are included, there should be a systematic improvement in
recombination rate at threshold by solving the 9€T  the accuracy of the predictions for all low-energy observ-

equation in hyperspherical coordinates numerically for Many, yjes with errors decreasing to second ordeifan The ef-

potentials with one or atmost a few two-body bound statesie tive range corrections have not yet been calculated for the
In the casea>0, they found that the recombination rates case of three identical spinless bosons with large scattering
could be well approximated by an empirical formula thatiength. we therefore used accurate calculation8$t and
reduces in the larga I|m|t.to. an expression with an oscilla- a,, for the HFD-B potential as input to deduce the approxi-
tory dependence on msimilar to Eq.(26). In the case of mate effective range corrections in these observables for the
*He, their result for the HFD-B3-FCI1 potentipd0] is @ other potentials. The resulting theoretical errors are smaller
=0.12<10 ?" cm®/s. A new calculation in the hyperspheri- than those for the leading-order universality prediction by
cal adiabatic representation that also uses the HFD-B3-FCldbout an order of magnitude as expected. Comparing with
potential has recently been carried ¢22]. This calculation  the calculated values (3(30) anda;,, we see that the theo-
includes states with angular momentu® 0, so that non-  retical errors correctly reflect the accuracy of the LO and
zero energies can be considered. At threshold, it agrees Wit O universality predictions. An actual calculation of the
the result of Ref[20]. effective range corrections for the three-body observables
The large uncertainty in the universality prediction tor  would eliminate the need for using calculations of three-
arises because the valueah, for the “He potentials lies  hody observables for one potential as additional inputs.
fortuitously close to the zero of E(6). In order to improve The leading-order universality predictions presented in
on the universality predictio26) within the effective field this paper were obtained using the effective field theory of
theory approach, it would be necessary to include effectiveref. [3], which is a particularly convenient implementation
range corrections. If there was an accurate calculatioa of of the universality approach for three-body systems. More
for a potential for whichBS" (or another low-energy three- generally, the effective field theory provides a framework for
body observableis known, we could use that result to esti- the model independent description of low-energy phenomena
mate the effective range corrections for other potentials. They exploiting a separation of scales in the sysfdj. Using
only calculation ofa we consider accurate enough is for the renormalization, all short-distance effects are systematically
HFD-B3-FCI1 potential in Ref[22]. Unfortunately, we are absorbed into a few low-energy parameters such as the scat-
not aware of any calculation (3(31) for that potential. tering lengtha and A, . As a consequence, the dependence
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on the relevant low-energy parameters is explicit, while ir-account the cumulative effects of all the deep two-body
relevant details of how their numerical values arise frombound states. The modification of Efimov’s equation for the
complicated short-distance dynamics are omitted. The effedsinding energies was given in R¢B0].
tive field theory allows for systematically improvable calcu-  The universality approach discussed in this paper is not
lations of low-energy observables with well-defined error esdimited to identical bosons. It can be applied to any three-
timates. This method has many applications ranging fronparticle system for which at least two of the three pairs have
particle physics over nuclear physics to condensed-mattex large scattering length. Some examples are given in a re-
physics[42—44. cent review articlg50]. The universality predictions will de-

An important open question is that how universality is pend on the three pairwise scattering lengths, the ratios of the
manifested in the four-body problem. Low-energy four-bodymasses, and the three-body paraméter.
observables must depend on the two-body paranseterd An especially promising application of the universality
the three-body parametex, . Are any new four-body pa- approach is to cold atoms in the vicinity of a Feshbach reso-
rameters required to calculate low-energy four-body observaance, where the effective scattering length can be controlled
ables up to corrections suppressed HBwn|? There are theo- by an external magnetic fiel@t]. This creates the exciting
retical arguments in support of both answers to this questiorpossibility of testing the unique oscillatory dependence of
There is a renormalization argument for zero-rangdow-energy three-body observables on the scattering length
S-function two-body potentials that indicates that a newthat is predicted by universality. In this paper, we have ex-
four-body parameter is required to calculate four-body bind-ploited the fact that the varioudHe potentials span a small
ing energie$45]. On the other hand, a power counting argu-interval ofaA, . Using a Feshbach resonance to control the
ment within the effective field theory framework suggestsscattering length, it might be possible to scan through an
that a four-body parameter should not be necessary to calcentire cycle of the oscillatory behavior. Among the dramatic
late four-body observables to leading ordel/im| [46]. This  effects that one may be able to observe are the divergence in
raises the exciting possibility of calculating the binding en-a;, nearaA, =4.3 and the zero ofr nearaA, =0.83.
ergy of the*He tetramers close to the four-atom threshold to  The behavior of cold atoms near a Feshbach resonance is
about 10% accuracy usirgandBS" (or another low-energy in general a complicated coupled-channel problem involving
three-body observableas the only inputs. There is some the various hyperfine states of the atoms. However, from the
circumstantial evidence in favor of this possibility from the point of view of universality, the coupled-channel effects in-
four-body problem in nuclear physics. There is a correlatiorfroduce no additional complications. If one is sufficiently
called the “Tjon line” between the binding enerds, of the  close to the resonance and if the energy relative to the thresh-
triton (3H nucleug and the binding energB, of the « par-  old for one hyperfine state is small as compared to the hy-
ticle (*He nucleus[47]. Calculations of these binding ener- perfine splittings, only that hyperfine state needs to be in-
gies using modern nucleon-nucleon interaction potential§luded explicitly. The coupled-channel effects can be taken
give results that underestimate both binding energies bufito account through the values of the low-energy parameters
cluster along a line in th&;-B, plane. By adding a three- @& which diverges at the resonance, akg, which varies
body potential whose strength is adjusted to get the corre@owly in the neighborhood of the resonance.

value forB;, one also gets an accurate resultBar(see Ref. The behavior of a Bose-Einstein condensate of atoms with
[48] for some recent calculations with modern nuclearlarge scattering lengths has been studied experimentally by
forces. using Feshbach resonances to tune the scattering lengths of

The results for*He presented in the paper apply equally alkali atoms[6]. In the low-density limitna®<1, the non-
well to other bosonic atoms with large scattering length agdrivial aspects of universality in the three-body sector are
long as the effects of deep two-body bound states on lowteflected in a small oscillatory dependence of the energy den-

energy observables are sufficiently small. By definition, asity of the condensate on Ihgn™®) [51]. There is a possi-
deep bound state has a binding energy of odifémI? or bility that these three-body effects would allow the existence

larger. If a<0, any dimer is deeply bound. ©>0, any Of stable homogeneous condensates with large negative scat-
dimer other than the shallow dimer Witl32~h2/ma2 is tering Iength[52] The intermediate denSity region, where
deeply bound. One qualitative effect of the deep two-body1a>~1 butnl®*<1 is a more difficult problem. It is an open
states is that the Efimov states become resonances beca@testion whether or not a condensate in this region has uni-
they can decay into an atom and a deeply bound dimer. Deefgrsal properties that are determined by constants sueh as
two-body bound states also provide additional channels foRnd A, that describe the low-energy properties in the few-
three-body recombination. Their effects can be particularlyoody sectors. If there are, it may be possible to use univer-
dramatic fora<O if there is an Efimov state near the three-sality to predict in detail the behavior of a Bose-Einstein
atom threshold because it gives a resonant enhancement @@ndensate of atoms near a Feshbach resonance.

the three-body recombination rate into deep two-body bound
stateq20,49. The existence of deep two-body bound states
does not affect the universality prediction for low-energy ob-
servables in the two-body sector. However, in the three-body We thank D. Blume, B.D. Esry, and C.H. Greene for use-
sector, it implies that a third parameter in additionatand  ful correspondence. This research was supported by Depart-
A, is required to predict low-energy observables up to corment of Energy Grant No. DE-FG02-91-ER4069 and NSF
rections suppressed Wya| [49]. This parameter takes into Grant No. PHY-0098645.
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