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Resonant magnetic vortices
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By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering
by a magnetic vortex of Aharonov-Bohm type. Regge poles of theSmatrix are associated with surface waves
orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp charac-
teristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are
Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum ana-
logues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind
of artificial atom while the semiclassical approach developed here could be profitably extended in various areas
of the physics of vortices.
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I. INTRODUCTION

Modern electronic technology is based on the control
current and, with this aim in view, artificial structures such
quantum wires, dots, and other nanoscaled devices have
developed ~see, for example, Ref.@1#, and references
therein!. In this context, the Aharonov-Bohm~AB! effect
@2–4# is nowadays often involved: a magnetic flux threadi
a confined region with leads is used to modify the electr
transport behavior. With this in mind, we study, in this pap
an artificial structure that presents richer scattering prope
than the ordinary flux lines usually considered. Such a s
tem could provide a different kind of artificial atom.

Here, we consider the scattering of a spinless elec
~massM, charge2e, and total energyE) by the magnetic
vortex defined, in the cylindrical coordinate system (r,w,z),
by the electromagnetic potential

V5H 1` for r,R1

0 for r.R1 ,
~1a!

A5H ~F/2pr!ew for r,R2

0 for r.R2 ,
~1b!

with R1,R2. In Eq. ~1!, the scalar potential describes a ha
core which prevents the electron from entering the regior
,R1 while the vector potential describes, in the radial gau
the magnetic fieldB5(F/2pr)@d(r)2d(r2R2)#ez . This
field consists of a flux line atr50 ~the usual AB flux line!
and an infinitely thin magnetic-field shell localized atr
5R2. Inside the regionr,R2, the total flux is given byF
while outside this region it vanishes. Such a vortex was fi
suggested by Aharonov in order to avoid the ambiguities
the incoming wave function of the electron in the AB sc
tering, ambiguities arising from the long-range behavior
the vector potential. It was studied by Liang in Ref.@5#.
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In this paper, the scattering of the electron is analyz
from a semiclassical point of view by using the compl
angular momentum~CAM! method. It should be noted tha
this method has been extensively used in several domain
scattering theory since the pioneering work of Watson@6#
dealing with the propagation and diffraction of radio wav
around the earth~see the monographs of Newton@7# and of
Nussenzveig@8#, and references therein for various applic
tions in quantum mechanics, nuclear physics, electromag
tism, optics, acoustics, and seismology!. As far as we know,
the CAM method has never been introduced in the contex
the AB effect~see, however, the end of Ref.@9# where Berry
envisages the possibility of such an approach! or in order to
study the electron scattering by a magnetic field as well as
resonant aspects. As we shall show below, this semiclas
approach permits us to emphasize the aspects of scatt
linked to time-reversal invariance breaking as well as
rich resonant properties of the magnetic vortex and m
particularly the existence of quasibound states associ
with surface waves orbiting around the vortex and suppor
by the magnetic-field shell.

II. EXACT S MATRIX AND RESONANCES

From now on, we treat our problem in a two-dimension
setting, ignoring thez coordinate. We denote byĤ the
Hamiltonian of the electron and we introduce its wave nu
ber k5A2ME/\ as well as the quantum flux parametera
52eF/2p\. We are first interested by the construction
the S matrix. Because of the cylindrical symmetry of th
vortex, theS matrix is diagonal and its elementsS,m are
given byS,m5S,d,m . For a given angular momentum inde
,PZ, the coefficientS, is obtained from the partial wave
C, solution of the following problem@10#:

~i! C, satisfies the time-independent Schro¨dinger equa-
tion (Ĥ2E)C,50;

~ii ! C, vanishes atr5R1 ~impenetrability of the hard
core of radiusR1) while C, as well as its normal derivative
are both continuous atr5R2 ~which guarantee the continu
ity of the probability density and of the radial component
©2003 The American Physical Society04-1
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the probability current atr5R2 @5#!;
~iii ! at large distance,C, has the asymptotic behavior

C,~r,w! ¥

r→1`

1
A2pkr

~e2 i (kr2,p/22p/4)

1S,ei (kr2,p/22p/4)!ei ,w.

In the regionR1,r,R2 , Ĥ is the standard AB Hamiltonian
given by

Ĥ52
\2

2M F ]2

]r2
1

1

r

]

]r
1

1

r2 S ]

]w
2 ia D 2G ~2!

and the solution of problem~i! is expressible in terms o
Bessel functions~see Ref.@11#! as a linear combination o
J,2a(kr)ei ,w and H,2a

(1) (kr)ei ,w. Let us recall that in the
usual AB scattering, the Bessel function indices a
u,2au with ,PZ. Here, absolute values are unnecess
because we do not require the regularity of the modesr
50. In the regionr.R2 , Ĥ reduces to the free Hamiltonia
and the solution of problem~i! can be constructed from
J,(kr)ei ,w andH,

(1)(kr)ei ,w. As a consequence, the parti
wave C, solution of problems~i! and ~ii ! can be obtained
exactly. Then, by using the standard asymptotic behavio
Hankel functions@11#, we find from problem~iii ! the expres-
sion of the diagonal elementsS, of the S matrix:

S,~k!5122
D,

(1)~k!

D,~k!
, ~3!

whereD,
(1)(k) andD,(k) are two 333 determinants which

are explicitly given by

D,
(1)~k!5n,2a~k!J,~kR2!2d,2a~k!J,8~kR2!, ~4a!

D,~k!5n,2a~k!H,
(1)~kR2!2d,2a~k!H,

(1)8~kR2!,
~4b!

with

nm~k!5Hm
(1)~kR1!Jm8 ~kR2!2Jm~kR1!Hm

(1)8~kR2!,
~4c!

dm~k!5Hm
(1)~kR1!Jm~kR2!2Jm~kR1!Hm

(1)~kR2!. ~4d!

The unitarity of theS matrix @7#, which expresses the prob
ability conservation, can be easily verified by using elem
tary properties of Bessel functions. The reciprocity prope
@7#, which is associated with time-reversal invariance, is
satisfied becauseS, is not an even function of,. Further-
more, theS matrix is not invariant under the changea→a
11. Here, and by contrast to the case of the ordinary
scattering, the electron can distinguish between two flu
which differ by an integer multiple of 2p\/e.

From theS matrix, one can construct the scattering a
plitude
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f ~k,w!5A 1

2ipk (
,52`

1`

@S,~k!21#ei ,w, ~5!

while the total scattering cross section can be obtained
using the optical theorem:

sT~k!5
1

2p
A8p

k
Im@e2 ip/4f ~k,w50!#. ~6!

In Fig. 1, we present the total cross section as a func
of kR1. As far as the numerical aspects of our work a
concerned, we restrict ourselves to the particular configu
tion a59 andR253R1 ~we note, however, that the resul
emphasized numerically are very general! and we further-
more use the reduced wave numberkR1 instead of the wave
numberk. Rapid variations of sharp characteristic shapes
be observed. This strongly fluctuating behavior is due
scattering resonances. These resonances are the poles
S matrix lying in the fourth quadrant of the complexk plane
and they are determined by solving

D,~k!50 for ,PZ. ~7!

The solutions of Eq.~7! are denoted byk,p5k,p
(o)2 iG,p/2,

wherek,p
(o).0 andG,p.0, the indexp permitting us to dis-

tinguish between the different roots of Eq.~7! for a given,.
In the immediate neighborhood of the resonancek,p , S,(k)
has the Breit-Wigner form, i.e., is proportional to

G,p/2

k2k,p
(o)1 iG,p/2

. ~8!

As a consequence, when a pole of theSmatrix is sufficiently
close to the real axis in the complexk plane, it has an appre
ciable influence on the total cross section. In Fig. 2, re
nances are exhibited. A one-to-one correspondence betw
the peaks ofsT in Fig. 1 and the resonances near the r
kR1 axis can be clearly observed. In the scattering of
electron with wave numberk,p

(o), a decaying state of the
electron-vortex system is formed. It has a finite lifetime pr
portional to 1/G,p and which increases witha. When the
corresponding scattering resonance can be observed o

FIG. 1. The normalized total cross sectionsT .
4-2
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total cross section, it is a long-lived state. Because of th
quasibound states, the magnetic vortex behaves as a kin
artificial atom.

III. SEMICLASSICAL ANALYSIS

Using the CAM method, we can provide a physical p
ture of the scattering process in term of diffraction by surfa
waves and a physical explanation of the mechanism of re
nance excitation valid for high wave numbers. We shall wo
from the scattering amplitude but we are fully aware of t
fact that a more rigorous~but also more longer! analysis
could be done from the trace of the Green function. We fi
apply the Poisson summation formula to the scattering
plitude ~5!. We have

f ~k,w!5A 1

2ipk (
m52`

1` E
2`

1`

dl@Sl~k!21#eil(w1m2p).

~9!

We now go over the complexl plane.l is then called the
CAM andSl(k) is then an analytical extension ofS,(k) into
the CAM plane. We can then deform the path of integrat
in Eq. ~9! taking into account the possible singularities. T
only singularities that are met are the poles of theS matrix
lying in the CAM plane. They are known as Regge po
@7,8# and are determined by solving

Dl~k!50 for k.0. ~10!

The solutions of Eq.~10! are denoted bylp , the indexp
permitting us to distinguish between the different roots.
can then extract from Eq.~9! the contribution of a residue
series over Regge poles given by

f S~k,w!5A2ip

k (
p

6r p~k! (
m51

1`

eilp(k)(w6m2p), ~11!

wherer p(k)5Res@Sl(k)#l5lp(k) . Here the1 and 2 signs
are associated with the Regge poles lying, respectively, in
first and in the third quadrant of the CAM plane. It should
noted thatf differs from f S by contour integrals which pro

FIG. 2. Scattering resonances in the complexkR1 plane.
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vide an uniform approximation valid in a large range arou
w50. We are not interested by such a contribution that d
not play any role in the resonance phenomenon. In Eq.~11!,
terms such as exp@ilp(k)(w6m2p)# are surface wave contri
butions. A Regge pole lying in the first~respectively the
third! quadrant of the CAM plane corresponds to a surfa
wave propagating counterclockwise~respectively clockwise!
around the magnetic vortex and Relp(k) represents its azi-
muthal propagation constant while Imlp(k) is its damping
constant. In Eq.~11!, we take into account the multiple cir
cumnavigations around the magnetic vortex. Figure 3 exh
its the distribution of Regge poles for a given wave numb
The Regge poles in the first and third quadrants are not s
metrically distributed as a consequence of the breaking
time-reversal invariance. The Regge pole RP01 is very
close to the real axis in the complexl plane. It then corre-
sponds to a surface wave which is slightly attenuate dur
its propagation and which contributes significantly to t
scattering process and to the resonance mechanism.
Regge pole RP11 is not so close to the real axis but it cou
have an appreciable influence on the resonance mecha
while the other Regge poles are too far to contribute so
nificantly.

Resonance phenomenons~and the resonant behavior off S
and, therefore, ofsT) can now be understood in terms o
surface waves. Ask varies, each Regge polelp(k) describes
a trajectory~usually designed as a Regge trajectory@7#! in
the CAM plane. When the quantity Relp(k) coincides with
an integer, a resonance occurs. Indeed, it is produced
constructive interference between the different compone
of the pth surface wave, each component corresponding
different number of circumnavigations. Resonance wa
numbers are, therefore, obtained from the Bohr-Sommer
quantization condition

Relp~k,p
(o)!5, for ,PZ. ~12!

By assuming thatk is in the neighborhood ofk,p
(o) and using

Relp(k)@Im lp(k) ~which can be numerically verified, ex
cept for very low frequencies!, we can expandlp(k) in a
Taylor series aboutk,p

(o), and obtain

FIG. 3. Regge poles in the complex angular momentum pla
4-3
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lp~k!',1S d Relp~k!

dk D
k5k

(o)
,p

~k2k,p
(o)!1 i Imlp~k,p

(o)!.

~13!

Then, after summation overm in Eq. ~11!, we find, by using
Eq. ~13!, that f S(k,w) presents a resonant behavior given
the Breit-Wigner formula~8! with

FIG. 4. Regge trajectories.

FIG. 5. Semiclassical resonances in the complexkR1 plane.
04270
G,p

2
5S Im lp~k!

d Relp~k!/dkD
k5k

,p
(o)

. ~14!

Equations~12! and ~14! are semiclassical formulas that pe
mit us to determine the location of the resonances fr
Regge trajectories. Figure 5 exhibits the resonance distr
tion obtained from the semiclassical formulas~12! and ~14!
by using the Regge trajectories numerically calculated~see
Fig. 4!. A comparison of Fig. 5 and Fig. 2~or a numerical
comparison between the exact and the semiclassical spe!
shows a very good agreement, except for low values of
wave numberk. Furthermore, as indicated in Fig. 5, th
semiclassical theory permits us to classify the resonance
distinct families, each family being associated with o
Regge pole and therefore to understand the meaning of
indexp introduced to denote the solutions of Eq.~7!. In Fig.
6, an enlargement of Fig. 1 is presented and the peaks
associated with the semiclassical resonances linked to
Regge poles RP01 and RP11.

A deeper understanding of the scattering process as
as its dependence on the quantum flux parametera can be
obtained by solving perturbatively Eq.~10!. Wait @12# pre-
sents a method in order to study acoustic whispering-gal
phenomena in circular cylinders. Such a method is equ
valid, mutatis mutandis, for finding the solutions of Eq.~10!.
By using in, Eq.~4! the appropriate asymptotic expansio
@11# ~Debye expansions and uniform expansions in terms
the Airy function! for Bessel functions, we can obtain a
asymptotic approximation for the Regge poleslp(k),

lRP01~k!5kR21a1u0
1~kR2!S kR2

2 D 1/3

1•••, ~15a!

lRPp6~k!56kR21a6up
6~kR2!S kR2

2 D 1/3

1•••,

~15b!

with p51,2, . . . .Hereu0
1(kR2) andup

6(kR2) are given by

FIG. 6. Identification of resonances on the total cross section
4-4
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u0
15t01 i

t0
1/2

~2t0!
expS 2

4

3
t0

3/2D ,

up
65tp1 i

~2tp6!1/2

~2tp!
,

where

t052S 3p

4 D 2/3

, tp52F3p

2 S p1
1

4D G2/3

and

t05t01aS 2

kR2
D 1/3

, tp65tp6aS 2

kR2
D 1/3

.

In Table I, we present some results for Regge poles. A c
parison between the ‘‘exact’’ and the asymptotic valu
shows a rather good agreement. It could be possible
greatly improve the imaginary parts of the asymptotic res
by taking into account higher orders of the perturbative
ries ~15!. By replacing Eq.~15! in Eq. ~11!, it is obvious that
all the surface waves are supported by the infinitely t
magnetic-field shell localized atr5R2. Furthermore, be-
cause of the terma that appears in Eq.~15!, surface wave
propagating around the magnetic vortex acquire a geom
cal phaseaw6am2p ~the 1 and 2 signs correspond, re
spectively, to surface waves propagating counterclockw
and clockwise! reminiscent of the Aharonov-Bohm effec
Resonances are, therefore, associated with whispe
gallery modes mainly concentrated at the inside surface
the magnetic-field discontinuity atr5R2. Here we have en-

TABLE I. A comparison between the exact and the asympto
values for Regge poles (a59, R253R1 andkR1518).

Regge poles lp exact lp semiclassical

RP01 158.1110.117i 157.6910.305i
RP11 153.0810.708i 153.2110.470i
RP21 148.6211.027i 148.5210.840i
RP31 144.7111.143i 144.5010.866i
RP12 238.0221.658i 235.2122.302i
RP22 232.8321.590i 230.5221.739i
RP32 228.6221.552i 226.5021.473i
a-

,
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countered, in the context of quantum mechanics,
whispering-gallery phenomena described long-time ago
Rayleigh@13,14# in acoustics.

IV. CONCLUSION AND PERSPECTIVES

To conclude, we would like first to comment on som
aspects of our work and then to consider some possible
rections that are suggested by our results:

~a! We have investigated the resonant properties o
rather special magnetic vortex for which the Schro¨dinger
equation can be solved exactly in terms of Bessel functio
As a consequence, we have been able to perform the exa
well as the asymptotic calculations involved. We think th
scattering by such a vortex cannot be considered as a tho
experiment. Such a vortex could be realized and experim
tally studied because, in the domain of the AB effect, expe
mentalists have developed ingenious techniques~see, for ex-
ample, Ref.@4#!. At any rate, even if that is not possible, w
think that resonant properties as well as surface waves c
be experimentally observed from more general magnetic v
tices.

~b! The CAM method could be naturally used in man
other areas of the physics of vortices and in particular
order to study, from a semiclassical point of view, scatter
by vortices in superfluids and Bose-Einstein condensate
in superconductors. However, it seems to us that our
proach could be above all profitably extended in all the d
mains where analogs of the AB effect have been rece
developed, extending the pioneering contribution of Be
et al. @15# ~see Refs.@16–18# for the acoustical AB effect,
Refs. @19–22# for the hydrodynamical AB effect and Re
@23# for the optical AB effect!. In the particular case of the
scattering of ultrasonic waves by hydrodynamic vortices,
CAM method could provide new interpretations of sou
and flow interactions in connection with the geometric
theory of diffraction.

~c! Finally, applications in the domain of electronics an
mesoscopic physics could be envisaged and the reso
magnetic vortex used to modify the electron-transport beh
ior. Surface waves as well as the associated resonances
not only contribute significantly to conductance oscillation
but also lead to new effects.
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