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Resonant magnetic vortices
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By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering
by a magnetic vortex of Aharonov-Bohm type. Regge poles ofSthmtrix are associated with surface waves
orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp charac-
teristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are
Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum ana-
logues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind
of artificial atom while the semiclassical approach developed here could be profitably extended in various areas
of the physics of vortices.
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[. INTRODUCTION In this paper, the scattering of the electron is analyzed
from a semiclassical point of view by using the complex
Modern electronic technology is based on the control ofangular momentuniCAM) method. It should be noted that
current and, with this aim in view, artificial structures such asthis method has been extensively used in several domains of
quantum wires, dots, and other nanoscaled devices have beggattering theory since the pioneering work of Wat$6h
developed (see, for example, Ref[1l], and references dealing with the propagation and diffraction of radio waves
therein. In this context, the Aharonov-BohrtAB) effect  around the eartlisee the monographs of Newtfn] and of
[2—4] is nowadays often involved: a magnetic flux threadingNussenzveid8], and references therein for various applica-
a confined region with leads is used to modify the electroniions in quantum mechanics, nuclear physics, electromagne-
transport behavior. With this in mind, we study, in this paper,tism, optics, acoustics, and seismoldgys far as we know,
an artificial structure that presents richer scattering propertiedhe CAM method has never been introduced in the context of
than the ordinary flux lines usually considered. Such a systhe AB effect(see, however, the end of R¢®] where Berry
tem could provide a different kind of artificial atom. envisages the possibility of such an apprgamhin order to
Here, we consider the scattering of a spinless electrostudy the electron scattering by a magnetic field as well as its
(massM, charge—e, and total energye) by the magnetic resonant aspects. As we shall show below, this semiclassical
vortex defined, in the cylindrical coordinate system¢,z),  approach permits us to emphasize the aspects of scattering

by the electromagnetic potential linked to time-reversal invariance breaking as well as the
rich resonant properties of the magnetic vortex and more

+o  for p<R; particularly the existence of quasibound states associated

V=[ 0 for p>R, (1@ with surface waves orbiting around the vortex and supported

by the magnetic-field shell.

(®2mp)e, for p<R, o
B 0 for p>Ry, (1b) Il. EXACT S MATRIX AND RESONANCES

with R;<R,. In Eq. (1), the scalar potential describes a hard Erom _now 9”’ we treat our problem in a two-d|rrA1en3|onaI
core which prevents the electron from entering the region S€tting, ignoring thez coordinate. We denote by the
<R, while the vector potential describes, in the radial gaugeHamlltonlan of the electron and we introduce its wave num-
the magnetic fieldB=(P/27p)[5(p)— 8(p—R,)]e,. This ber k=v2ME/h as we.II as the quantum flux paramgter
field consists of a flux line a»=0 (the usual AB flux ling = —e®/27h. We are first interested by the construction of
and an infinitely thin magnetic-field shell localized at the S matrix. Because of the cylindrical symmetry of the
=R,. Inside the regiop<R,, the total flux is given byp  VOrtex, the S matrix is dlago_nal and its elemeng, are
while outside this region it vanishes. Such a vortex was firs@iven byS,m= S . For a given angular momentum index
suggested by Aharonov in order to avoid the ambiguities of €Z, the coefficientS, is obtained from the partial wave
the incoming wave function of the electron in the AB scat- ¥ ¢ solution of the following probleni10]:
tering, ambiguities arising from the long-range behavior of (i) ¥, satisfies the time-independent Safirmer equa-
the vector potential. It was studied by Liang in Ri]. tion (H—E)¥,=0;
(i) ¥, vanishes atp=R; (impenetrability of the hard
core of radiusR;) while ¥, as well as its normal derivative
*Electronic address: decanini@univ-corse.fr are both continuous at=R, (which guarantee the continu-
"Electronic address: folacci@univ-corse. fr ity of the probability density and of the radial component of
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the probability current ap=R, [5]);
(iii ) at large distance¥', has the asymptotic behavior

—i(kp—Cml2— ml4)

1
V(p,p) —
P=EE N2k

+ Sgei(kp_hﬂz_ 7T/4))ei€<p

(e
In the regionR,; < p<R,, H is the standard AB Hamiltonian

given by
+1( J )2 @
—| =i
p2lag ¢

# 1
—_ + —
ap> P

ﬁZ

d
2M

ap

and the solution of problenti) is expressible in terms of
Bessel functiongsee Ref[11]) as a linear combination of
Jo—o(kp)e't® andH (kp)e'‘¢. Let us recall that in the
usual AB scattering, the Bessel function

indices are
|¢—a| with € eZ. Here, absolute values are unnecessary
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FIG. 1. The normalized total cross section.

+ o

1 _
fke)=\ g, 2, S —1]es, (5

because we do not require the regularity of the modes at
=0. In the regiorp>R,, H reduces to the free Hamiltonian While the total scattering cross section can be obtained by
and the solution of problenti) can be constructed from using the optical theorem:

Jo(kp)e' ¢ andH{M(kp)e'‘?. As a consequence, the partial

wave ¥, solution of problemdi) and (ii) can be obtained

exactly. Then, by using the standard asymptotic behavior of

Hankel functiong11], we find from problendiii ) the expres-
sion of the diagonal elemeng of the S matrix:

DMk
Se(k)=1—2€—()

DK’ @

whereD{"(k) andD (k) are two 3x3 determinants which
are explicitly given by
DMK =n,_ (k) J¢(KRp) —d¢— (K)I{(KRy), (4a)

De(k)=n¢_o(KHP(KRy) —d;o(K)HP (KR,),
(4b)

with

N, (K)=HO (KR I, (KRy) —J,,(kRYH D' (kR,),
(40

d,(K)=H(kR)JI,(KRy) = J,(kR)HP(KR,). (4d)

The unitarity of theS matrix [7], which expresses the prob-

1 (8T i
o1(K)= 5=\ 7 Imle ™ (kg =0)]. ®6)

In Fig. 1, we present the total cross section as a function
of kR;. As far as the numerical aspects of our work are
concerned, we restrict ourselves to the particular configura-
tion =9 andR,=3R; (we note, however, that the results
emphasized numerically are very gengrahd we further-
more use the reduced wave numk®&; instead of the wave
numberk. Rapid variations of sharp characteristic shapes can
be observed. This strongly fluctuating behavior is due to
scattering resonances. These resonances are the poles of the
S matrix lying in the fourth quadrant of the compl&plane
and they are determined by solving

D,k)=0 for feZ.

@)

The solutions of Eq(7) are denoted by, =k{%) —il",/2,
wherek{?)>0 andI";,>0, the indexp permitting us to dis-
tinguish between the different roots of H@) for a given{.
In the immediate neighborhood of the resonakgg, S¢(k)

has the Breit-Wigner form, i.e., is proportional to

T o2

— 8
k—k{®+iT (/2 ®

ability conservation, can be easily verified by using elemenAs a consequence, when a pole of 8watrix is sufficiently
tary properties of Bessel functions. The reciprocity propertyclose to the real axis in the compl&plane, it has an appre-
[7], which is associated with time-reversal invariance, is notiable influence on the total cross section. In Fig. 2, reso-

satisfied becaus8, is not an even function of. Further-
more, theS matrix is not invariant under the change— «

nances are exhibited. A one-to-one correspondence between
the peaks ofor in Fig. 1 and the resonances near the real

+1. Here, and by contrast to the case of the ordinary ABKR; axis can be clearly observed. In the scattering of an

scattering, the electron can distinguish between two fluxeslectron with wave numbek%%) )

which differ by an integer multiple of 2%/e.

a decaying state of the
electron-vortex system is formed. It has a finite lifetime pro-

From theS matrix, one can construct the scattering am-portional to 1I';, and which increases wite. When the

plitude

corresponding scattering resonance can be observed on the
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FIG. 3. Regge poles in the complex angular momentum plane.
FIG. 2. Scattering resonances in the comp& plane.

total cross section, it is a long-lived state. Because of thes\éide an uniform approximation valid in a Iarge range around
quasibound states, the magnetic vortex béhaves as a kind §I>:O We are not.mterested by such a contribution that does
artificial atom ' t play any role in the resonance phenomenon. In(Ef,

' terms such as ek y(K)(¢=m2m)] are surface wave contri-
butions. A Regge pole lying in the firgrespectively the
third) quadrant of the CAM plane corresponds to a surface

Using the CAM method, we can provide a physical pic-Wave propagating cpunterclockwistespectively cIockwis)e.
ture of the scattering process in term of diffraction by surfaceround the magnetic vortex and Rg(k) represents its azi-
waves and a physical explanation of the mechanism of resgnuthal propagation constant while (k) is its damping
nance excitation valid for high wave numbers. We shall workconstant. In Eq(11), we take into account the multiple cir-
from the scattering amplitude but we are fully aware of theCumnavigations around the magnetic vortex. Figure 3 exhib-
fact that a more rigorougbut also more longgranalysis its the distribution of Regge poles for a given wave number.
could be done from the trace of the Green function. We firstfhe Regge poles in the first and third quadrants are not sym-
apply the Poisson summation formula to the scattering ammetrically distributed as a consequence of the breaking of

Ill. SEMICLASSICAL ANALYSIS

plitude (5). We have time-reversal invariance. The Regge pole RPGs very
close to the real axis in the complaxplane. It then corre-

1 = +oo _ sponds to a surface wave which is slightly attenuate during

f(k,¢)= \/mme f ) d\[ S, (k) — 1]e'MeFmem, its propagation and which contributes significantly to the

9 scattering process and to the resonance mechanism. The
Regge pole RP% is not so close to the real axis but it could

We now go over the complex plane.\ is then called the have an appreciable influence on the resonance mechanism
CAM andS, (k) is then an analytical extension 8f(k) into while the other Regge poles are too far to contribute so sig-
the CAM plane. We can then deform the path of integrationnificantly.
in Eq. (9) taking into account the possible singularities. The ~Resonance phenomena@sd the resonant behavior b
only singularities that are met are the poles of 8wmatrix ~ and, therefore, obry) can now be understood in terms of
lying in the CAM plane. They are known as Regge polessurface waves. Ak varies, each Regge polg,(k) describes

[7,8] and are determined by solving a trajectory(usually designed as a Regge trajectpry) in
the CAM plane. When the quantity Rg(k) coincides with
Dy(k)=0 for k>0. (100 an integer, a resonance occurs. Indeed, it is produced by a

. . constructive interference between the different components
The solutions of Eq(10) are denoted by, the indexp  of the pth surface wave, each component corresponding to a
permitting us to distinguish between the different roots. Wegjfferent number of circumnavigations. Resonance wave
can then extract from Eq9) the contribution of a residue nympers are, therefore, obtained from the Bohr-Sommerfeld

series over Regge poles given by quantization condition
2im = (K (s m2
fs(k,@)= TE *ry(k) 21 ehp(k)(e=m2m) = (17) ReAy(ki?)=¢ for eZ. (12)
P m=

wherer ;(k) =Res S, (K) ], - Here the+ and — signs By assuming thak is in the neighborhood dk{) and using
are associated with the Regge poles lying, respectively, in thRe\ ,(k)>Im \ ,(k) (which can be numerically verified, ex-
first and in the third quadrant of the CAM plane. It should becept for very low frequencigswe can expand (k) in a
noted thatf differs from fg by contour integrals which pro- Taylor series abmkﬁff}, and obtain
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Then, after summation oven in Eq. (11), we find, by using

13
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FIG. 6. Identification of resonances on the total cross section.

Im A (k)

= rvatynd I (14)
dRe,(k)/d k) =k

Ve _
2

Equations(12) and (14) are semiclassical formulas that per-
mit us to determine the location of the resonances from
Regge trajectories. Figure 5 exhibits the resonance distribu-
tion obtained from the semiclassical formuld®) and (14)
by using the Regge trajectories numerically calculdiszk
Fig. 4). A comparison of Fig. 5 and Fig. @r a numerical
comparison between the exact and the semiclassical spectra
shows a very good agreement, except for low values of the
wave numberk. Furthermore, as indicated in Fig. 5, the
semiclassical theory permits us to classify the resonances in
distinct families, each family being associated with one
Regge pole and therefore to understand the meaning of the
indexp introduced to denote the solutions of E@). In Fig.
6, an enlargement of Fig. 1 is presented and the peaks are
associated with the semiclassical resonances linked to the
Regge poles RPO and RPL-.

A deeper understanding of the scattering process as well

Eq. (13), thatfg(k,¢) presents a resonant behavior given byas its dependence on the quantum flux parametean be

the Breit-Wigner formula8) with
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FIG. 5. Semiclassical resonances in the comBx plane.

obtained by solving perturbatively E¢L0). Wait [12] pre-
sents a method in order to study acoustic whispering-gallery
phenomena in circular cylinders. Such a method is equally
valid, mutatis mutandis, for finding the solutions of E&0).

By using in, Eq.(4) the appropriate asymptotic expansions
[11] (Debye expansions and uniform expansions in terms of
the Airy function for Bessel functions, we can obtain an
asymptotic approximation for the Regge polegk),

kR 1/3
— + 2
)\Rpm(k)—kR2+a+uo(kR2)(T) +, (153)

kR 1/3
KR\ ™
2

(15b)

Mg+ (K) = £ KR+ ar % u;(kR2)<

with p=1,2, ... .Hereu, (kRy) andu, (kR,) are given by
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TABLE I. A comparison between the exact and the asymptoticcountered, in the context of quantum mechanics, the
values for Regge polesx=9, R,=3R; andkR;=18).

whispering-gallery phenomena described long-time ago by
Rayleigh[13,14] in acoustics.

Regge poles A, exact \p semiclassical
) ] IV. CONCLUSION AND PERSPECTIVES
RPO+ +58.11+0.117i +57.69+0.305i
RP1+ +53.08+0.708i +53.21+0.470i To conclude, we would like first to comment on some
RP2+ +48.62+1.027i +48.52+0.840i aspects of our work and then to consider some possible di-
RP3+ +44.7141.143i +44.50+0.866i rections that are ;ugggsted by our results: _
RP1— 38021658 35912 302i (@) We have investigated the resonant properties of a
' e ' o rather special magnetic vortex for which the Salinger

RP2- —32.83-1.5901 —30.52- 1,739 equation can be solved exactly in terms of Bessel functions.
RP3— —28.62-1.552i —26.50-1.473i

As a consequence, we have been able to perform the exact as

well as the asymptotic calculations involved. We think that
scattering by such a vortex cannot be considered as a thought
experiment. Such a vortex could be realized and experimen-
tally studied because, in the domain of the AB effect, experi-
mentalists have developed ingenious technidqses, for ex-

12
T 4
Ug =to+i =" —Oto) exp{ - 57-03’2> ,

UE=toti (- Tpr)llz ample, Ref[4]). At any rate, even if that is not possible, we
PP (—ty) think that resonant properties as well as surface waves could
be experimentally observed from more general magnetic vor-
where tices.
3,23 30 11123 (b) The CAM method_could be _naturally l_,lsed ir_1 many
to= _(_) = _[_ p+ — other areas of the physm_s of vortices and in part|cular_ in
4 2 4 order to study, from a semiclassical point of view, scattering
by vortices in superfluids and Bose-Einstein condensates or
and in superconductors. However, it seems to us that our ap-
2 |13 2 \13 proach could be above all profitably extended in all the do-
To=tota k_Rz) y Tpe=lpE a(k_Rz) . mains where analogs of the AB effect have been recently

developed, extending the pioneering contribution of Berry

In Table 1, we present some results for Regge poles. A com€t &l [15] (see Refs[16-1 for the acoustical AB effect,

parison between the “exact’ and the asymptotic valuesRefs. [19-27 for the hydrodynamical AB effect and Ref.

shows a rather good agreement. It could be possible t&23l for the optical AB effect In the particular case of the

greatly improve the imaginary parts of the asymptotic resultScattering of ultrasonic waves by hydrodynamic vortices, the

by taking into account higher orders of the perturbative se©AM method could provide new interpretations of sound

ries (15). By replacing Eq(15) in Eq. (11), it is obvious that and flow ipteragtions in connection with the geometrical
all the surface waves are supported by the infinitely thintheory of diffraction. , ,
magnetic-field shell localized aga=R,. Furthermore, be- (©) Fma_lly, appl_lcatlons in the dOF“a'” of electronics and
cause of the terna that appears in Eq(15), surface wave mesoscopic physics could l_ae envisaged and the resonant
propagating around the magnetic vortex acquire a geometr[pagnet'c vortex used to modify the eleqtron-transport behav-
lor. Surface waves as well as the associated resonances could

cal phaseagp+ am27 (the + and — signs correspond, re- I i nifi I d ilati
spectively, to surface waves propagating counterclockwis8°t On'y contribute significantly to conductance oscillations,
ut also lead to new effects.

and clockwise reminiscent of the Aharonov-Bohm effect.
Resonances are, therefore, associated with whispering-
gallery modes mainly concentrated at the inside surface of
the magnetic-field discontinuity at=R,. Here we have en-
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