
PHYSICAL REVIEW A 67, 042702 ~2003!
Loss of coherence due to bremsstrahlung

Giorgio Calucci*
Dipartimento di Fisica Teorica dell’Universita` di Trieste, INFN, Sezione di Trieste, I 34014 Trieste, Italy

~Received 22 October 2002; published 3 April 2003!

It is shown that bremsstrahlung can give rise to a loss of coherence for quantum systems. Here a particular
mechanism is analyzed, which makes use of the formal properties of the infrared radiation in QED. A charged
particle goes through a scattering process into a superposition of two kinematically distinct states. The scat-
tering also gives rise to the emission of a cloud of soft photons, and it is precisely this process that washes out
the interference term between the two final states.
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I. STATEMENT OF THE PROBLEM

The fact that the bremsstrahlung process can lead to
loss of quantum coherence has been studied in detail@1#, and
one of the relevant results is that this kind of mechanism i
work even when the environment is at zero temperature
that the relevant process is pure emission of photons. In
article a simple, definite case is examined in terms of
usual formalism of QED: infrared emission by a charg
particle undergoing a scattering process in vacuum with
condition that it is found in a superposition of two well sep
rated eigenstates of the momentum.

While the most usual treatment of the infrared radiat
goes through an intermediate procedure of regularization
the introduction of an energy cutoff or equivalently of a ma
for the photon@2,3#, it is also possible to follow the time
evolution of the state: the finite time provides the infrar
cutoff. This procedure, proposed and discussed by Steinm
@4#, is particularly well suited in this case because it allo
us to study the time evolution of the decoherence.

The problem is reduced to this form: there is a partic
say an electron, at rest, it suffers a sudden hit, and it beco
relativistic in a very short time, i.e., the momentum trans
is large with respect to its mass, but its final state is a su
position of two different velocities, which, for computation
simplicity, will be chosen of the same absolute value. Due
its acceleration the electron radiates; the infrared tail of
radiation cannot be resolved completely and is theref
summed up in defining the transition probability. The qu
tion is, how does this fact reflect on the superposition of
charged states?

II. THE SCATTERING PROCESS AND THE RADIATION

A. Standard tools

There are standard tools of scattering theory and of Q
of soft photons that will be used; they are certainly w
known but since some of their features will be essential
the following discussion a short summary of their propert
will be presented@3#. The unitsc5\51 and the standard
symbolsa5e2/(4p) andg51/A12v2 are used.
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In scattering theory one considers some total Hamilton
H5H01V and a state evolving with it: uC(t)&
5e2 iHt uC(0)&; this state is then analyzed in terms of sta
evolving with the free Hamiltonian uFn(t)&
5e2 iH 0tuFn(0)&.

This procedure defines the evolution operatorU(t)
5eiH 0te2 iHt , which may also be expressed by means of
interaction term in Dirac or interaction representation:

U~ t !5P expE
0

t

@2 iṼ~t!dt#, Ṽ~ t !5eiH 0tVe2 iH 0t.

~1!

P is the time ordering and it must be remembered that in
interaction terms the field operators evolve according toH0 .

In QED with soft photons the charged particle is compa
tively very heavy, there is no pair production, and moreo
the spin is not very relevant because the dipole~and multi-
pole! emission is suppressed for very large wavelengths.
the charged particle is treated in first quantization, the s
variables are suppressed, and the velocity, not the th
momentum, is taken as a fixed vector with absolute va
near 1; this results in the Hamiltonian@3#

H5H01V, ~2a!

H052 ivW •]W1
m

g
1(

n
E d3k vak,n

† ak,n, ~2b!

V52
e

~2p!3/2(
n
E d3k

A2v
@ak,nvW •eW k,neikW•rW

1ak,n
† vW •eW k,ne2 ikW•rW#1D. ~2c!

The constantD is an energy renormalization term, having th
role that in a covariant treatment is played by the mass co
terterm. The quantized electromagnetic field is in the C
lomb gauge with linear polarizations; the fundamental co
mutation relations are given in noncovariant form:

@ak,n ,ak8,n8
†

#5dn,n8d~kW2kW8!. ~3!

The use of Eq.~1! then gives
©2003 The American Physical Society02-1
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Ṽ~ t !52
e

~2p!3/2(
n
E d3k

A2v
@ak,nvW •eW k,neikW•rW1 i ~kW•vW 2v!t

1ak,n
† vW •eW k,ne2 ikW•rW2 i ~kW•vW 2v!t#1D. ~4!

From these expressions it follows that@Ṽ(t),Ṽ(t8)# is a
number and so the application of the Wick theorem to Eq.~1!
can be performed in a very compact and efficient way, i
form due originally to Hori@5#, with the result

U~ t !5expF1

2
E

0

tE
0

t d

dṼ~t!
D~t,t8!

d

dṼ~t8!
G

3N expE
0

t

@2 iṼ~t!dt#; ~5a!

hereD(t,t8) is the contraction of two interaction operator

D~t,t8!5^uP„Ṽ~t!Ṽ~t8!…u&, ~5b!

whereu & is the photon vacuum.

B. Finite time evolution

Normal ordering according to Eq.~5! gives rise to a nu-
merical factor inU, i.e.,

expF2
1

2 E0

tE
0

t

D~t,t8!dt dt8G5expF ia2
1

2
bG , ~6!

and a straightforward calculation gives

D~t,t8!5
e2

~2p!3 E dV
1

2
v dv v2

3sin2 uk@ei ~kW•vW 2v!~t2t8!q~t2t8!1t↔t8#,

~7!

wherekW•vW 5vv sinuk .
In calculating the exponentsa andb, an ultraviolet diver-

gence is found. This is not unexpected because no renor
ization has been performed; moreover, the divergence is
ferent from the correct covariant one because in
ultraviolet region treating the velocities of the electron
constant vectors is kinematically inconsistent. Since we
interested in the infrared behavior, this divergence will si
ply be cut off by inserting an upper limitvM whenever
needed. In this way the result is

a5
e2

~2p!2 E 1

2
dzv2~12z2!F2

vMt

12vz

1
1

~12vz!2 Si@vMt~12vz!#G , ~8a!
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b5
e2

~2p!2 E dzv2
~12z2!

~12vz!2 $C1 ln@vMt~12vz!#

2Ci@vMt~12vz!#%. ~8b!

In these expressions the positionz5cosuk has been used,C
is the Euler-Mascheroni constant, and Si and Ci are the s
integral and cosine-integral functions@6#. The term linear in
time that appears in the imaginary parta could be eliminated
by suitably defining the countertermD into V; the ultraviolet
cutoff is, however, essential in the logarithmic term inb. For
large values oft the relevant limits are

Si~mt!→ 1

2
p, Ci~mt!→0 for t→`.

The most important term is the logarithm appearing inb, so
it is necessary to calculate its coefficientB:

B5
e2

~2p!2 v2E dz
12z2

~12vz!2 5
4a

p F1

v
ln@g~11v !#21G.0.

~9!

Although the complete expression contains the arbitr
parametervM the coefficientB is independent ofvM . If, as
a particular case, the final stateuF0(t)& contains no photon a
all, then the operator termN exp*0

t @2iṼ(t)dt# gives simply 1
and the result for the transition probability is

P05 z^F0~ t !uC~ t !& z25e2b'const3~vMt !2B. ~10!

So the probability goes to zero as the time grows.
Acting on a stateuFn(t)& containingn photons of mo-

menta (kW1 ,...,kWn), the operatorN exp*0
t @2iṼ(t)dt# yields a

factor

Fn5
1

An!
F e

~2p!3/2G n

~vW •eW !1¯~vW •eW !nei ~kW11¯1kWn!•rW

3
1

2n/2Av1¯vn

1

~kW•vW 2v!1

¯

1

~kW•vW 2v!n

@1

2e2 i ~kW•vW 2v!1#¯@12e2 i ~kW•vW 2v!n#. ~11!

In calculating the absolute square, one gets the additio
factor

Gn5@g~vR!#n/n! ~12a!

with the position1

1The parametervR is an ultraviolet cutoff having the same role a
vM . It is introduced in order to make clear that the final res
concerning the time evolution of the interference term@see Eq.
~20!# is independent of the ratiovM /vR between the virtual and
real cutoffs.
2-2
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g~vR!5
e2

~2p!2 E dzv2
~12z2!

~12vz!2

dv

v
$12cos@vt~1

2vz!#%, ~12b!

and it is easily verified thatg(vR) has the same form asb,
with the unique substitutionvM→vR .

The behavior for larget of z^Fn(t)uC(t)& z2 is clear: it
goes to zero for every value ofn as (lnvRt)2n(vMt)2B/n!, so
in the photon Fock space the evolution operatorU converges
weakly to zero. If a sum overn is performed, then the expo
nential of g(vR) compensate the factore2b and the sum
converges to a finite limit, which of course depends onvR
andvM . Instead of Eq.~10! it results in the fact

(
n

z^Fn~ t !uC~ t !& z25e2b1g'const3F vR

vM
GB

for t→`.

~13!

The actual expressions forb andg show also that the small-t
behavior of the probabilities is essentially proportional
t2n. This is useful to notice since thet50 emission is not
very well defined. In this simplified dynamics, in fact, the
is a short time in which the primary interaction is active, t
one that transfers a large momentum. Within this period
calculation of the accompanying soft radiation is very dif
cult, but the total emission is certainly not very relevant.

For comparison with the conclusions of the next sect
we stress this result: the virtual corrections give rise to
decreasing factor, the real corrections yield an increasing
tor, and the two compensate fort→`. For future conve-
nience it is useful to recall that these results are usually
tained in a slightly different way, there is no mention of fini
time, there is an explicit infrared cutoff, sayl, and it is
verified that the dependences onl lead to divergences fo
everyn, but they compensate in the sum overn @2,3#.

C. Superposition of two states of motion

With the same technique now it is possible to investig
the behavior of the soft radiation in the case in which
charged particle after the scattering ends in a superpos
of two well distinct states of motion.

The kind of scattering process is not relevant, as can
learned from@2#. What really matters is that the particle su
fers a spacelike momentum transferq2, which is much larger
than its mass2q2@m2.

The possible origin of the splitting is not analyzed, only
formal dynamical model is built up: the initial particle has
conserved internal variable, sayt3 , such that its eigenvalue
affect the velocity after the scattering, e.g.,vW 65vW 1t3wW .
The effective Hamiltonian after the scattering, which is li
ear inv, has, therefore, the same structure int3 and, in turn,
the same structure is reproduced in the evolution operatoU.
If the initial state was, e.g., an eigenstate oft1 , the evolution
gives rise to uC(t)&u5(1/&)@U1(t)uC1(0)&
1U2(t)uC2(0)&] and the transition probability, in the hy
pothesis thatt3 is strictly conserved, takes the form
04270
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P5
1

2
z^F1uU1uC1& z21

1

2
z^F2uU2uC2& z2

1Re@^F2uU2uC2&* ^F1uU1uC1&#. ~14!

For the absolute squares there is nothing new to say;
every definiten they go to zero fort→` and the sum overn
yields a finite result. Something new could happen, after
summation overn, in the interference term

I~ t !5Re@^F2uU2~ t !uC2&* ^F1uU1~ t !uC1&#.

Here in fact we get two different factors of typeFn , Eq.
~11!, the former withv1 and the latter withv2 . They build
up terms likeGn , again say,

Qn5@q~vR!#n/n! ~15a!

with

q~vR!5
e2

~2p!3 E dV

(
pol

~vW 1•eW !~vW 1•eW !

~kW•vW 12v!~kW•vW 22v!
v dv

3$12exp@2 i ~kW•vW 12v!t#2exp@ i ~kW•vW 22v!t#

1exp@ i ~kW•vW 22kW•vW 1!t#%. ~15b!

So we get again an exponential form, but with a more co
plicated exponentq(vR), which is now complex. Writing
q(vR)5x1 iy so that Req(vR)5ex cosy, the time evolution is
essentially governed byex, and the term iny produces only
oscillations.

For computational simplicity from now on the calcula
tions are made in the particular casevW •wW 50 so the two
speeds are equal,v15v25v. The termx can be computed
and the result is

x5E dV j$@C1 ln~vRts1!2Ci~vRts1!#1@C1 ln~vRts2!

2Ci~vRts2!#2@C1 ln~vRts3!2Ci~vRts3!#% ~16!

with

s1512v cosu1 , s1512v cosu2 ,

s35uv cosu12v cosu2u, k•v65vv cosu6 , and

j5
a

2p2 v2
cosd2cosu1cosu2

~12v cosu1!~12v cosu2!
. ~17!

The termssi are positive by construction so that here also
large values oft only the logarithmic term and the constan
survive in Eq.~16!:

x5E dV jFC1 ln~vRt !1 lnS s1s2

s3
D G ,

and one must then calculate explicitly the coefficient of t
dominant logarithmic termX5* dV j. Here the angle be-
tween the two velocities isd. It is convenient to take the
2-3
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polar axis along one of the velocities so thatu15u;
cosu25cosu cosd2sinu sind cosf. The integration is
lengthy but quite standard and yields

X5
2a

p H 1

v
ln

11v
12v

212JJ ~18a!

with

J5
12v2 cosd

2
@2~12cosd!2v2 sin2 d#21/2

3Farcsin
~11v !~12cosd!2v2 sin2 d

~12v !sind
g

2arcsin
~12v !~12cosd!2v2 sin2 d

~11v !sind
gG . ~18b!

The expression is not very transparent, since the depend
on the two parametersd and v, or g, is interwoven. It be-
comes much clearer in some limits. Ford→0 it results in
J→1 so we get forX the limiting form ofB, Eq.~9!, as must
happen. In the limitg→` at fixed dÞ0 such thatgd@1
results inJ→2 ln(gd) so that in this limit

X5
4a

p H ln~2g!2
1

2
2 ln~gd!J . ~19a!

Comparing this result with the limiting form of Eq.~9!,

B5
4a

p
@ ln~2g!21#, ~19b!

we see that, in this case, at variance with the standard re
shown in the previous section, the effect ofX does not com-
pletely compensate the effect ofB. If we consider the ratio of
the interference term at different times we have

I~ t1!

I~ t2!
5F t1

t2
G2n

with n5
4a

p F ln~gd!2
1

2G . ~20!

This result could also be obtained in a different way, witho
use of finite time, but with an explicit infrared cutoff, sayl,
and it is verified that in this case the dependences onl do not
compensate.

III. PERTURBATIVE TREATMENT

In the previous section the problem was treated in a w
that is not very usual in quantum field theories; moreov
some approximations justified by the kinematical restrictio
were used. Really, a more general result could be attaine
the use of a covariant formulation of the infrared emissi
which was elaborated and published long ago@7#, but per-
haps it may be useful to present a treatment according to
most standard procedures, i.e., a perturbative treatmen
terms of Feynman graphs where only the kinematical res
tions inherent to the problem, the consideration of very s
photons, appear. There is a price to pay: the actual calc
tions are limited to the first nontrivial perturbative order,
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finite time effects are considered, but the infrared cutoff
introduced and used for further discussion. The treatmen
very standard, so it will just be outlined as rapidly as po
sible.

The process is the same previously considered: at l
three terms must be taken into account. In every term
superposition of two states of motion, now denoted asi and
j, is considered.

~1!. A perturbative scattering amplitude without any rad
tive correction:

M05M0
~ i !1M0

~ j !5ci ū~qi !Q~qi ,p!u~p!

1cj ū~qj !Q~qj ,p!u~p!. ~21a!

~2! A perturbative scattering amplitude with real radiati
corrections, describing the emission of one photon:

Mr5Mr
~ i !1Mr

~ j !

5 ie~2p!23/2$ci@ ū~qi !Q~qi ,p2k!S~p2k!ê~k!u~p!

1ū~qi !ê~k!S~qi1k!Q~qi1k,p!u~p!#

1cj@ ū~qj !Q~qj ,p2k!S~p2k!ê~k!u~p!

1ū~qj !ê~k!S~qj1k!Q~qj1k,p!u~p!#%. ~21b!

~3! A perturbative scattering amplitude with virtual radi
tive corrections, describing the emission and reabsorptio
one photon:

M v5M v
~ i !1M v

~ j !

5 i
e2

~2p!4 E $ci@ ū~qi !gmS~qi2k!Q~qi2k,p2k!

3S~p2k!gmu~p!#1cj@ ū~qj !gmS~qj2k!Q~qj2k,p

2k!S~p2k!gmu~p!#%D~k!d4k. ~21c!

S( l ) andD( l ) are clearly the free electron and photon prop
gators, andQ(q,p) is the perturbative form of the verte
responsible for the scattering with large momentum trans
Given these definitions, the subsequent calculations stri
follow the procedure exposed in detail in Ref.@1#, only the
points relevant for the present discussion will be repeate2

In Eq. ~21b! the infrared divergent contribution, denote
by a tilde, is

M̃ r5b i~k!M0
~ i !1b j~k!M0

~ j ! ,

bs~k!52
e

~2p!3/2Fqsen

qsk
2

pen

pk G , s5 i , j . ~22!

In a similar way the infrared contribution ofM v is

M̃ v5r iM0
~ i !1r jM0

~ j ! . ~23!

2In the previous section the choicesp5(m,0) andci5cj51/&
were made.
2-4
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The actual form ofrs can be given@2#, but it is not
necessary3 for the following simple reason: We know that i
QED there is a compensation of the infrared divergen
order by order ina in the perturbative expansion, so in o
case this compensation must happen, when the states
usual, i.e., when only one of thecj is different from zero at
the first order ina between the term 2 Re@Mv M0* # and the
term uMr u2 ~integrated over the infrared phase space a
summed over the polarizations of the photon!. The ordera
term of the transition probability is

P̃5 (
s5 i , j

ucsM0
~s!u2F(

n
E d3k

2v
bs

2~k!12rsG
12 Re~cicj* M0

~ i !M0
~ j !* !

3F(
n
E d3k

2v
b i~k!b j~k!1r i1r j G .

The infrared compensation says that

1

2 (
n
E d3k

2v
bs

2~k!1rsu ir50; ~24!

the subscript ‘‘ir’’ states that the equality is valid for th
infrared divergent part.

So we may reexpress the infrared factor which multipl
Re(cicj*M0

(i)M0
(j)* ) in terms of the functionsbs with the result

J52
1

2 (
n
E d3k

2v
@b i~k!2b j~k!#2, v.l. ~25!

It is explicitly seen that the initial velocity, or momentum
plays no role in the compensation of thel dependence; the
relevant effect originates from the difference betweenqW i and
qW j which appear in the expression ofb. The interference term
is affected, therefore, by an infrared factor that diverges lo
rithmically in the limit l→0; in fact, from Eqs.~22! and
~25! it is seen that the integral separates into an angular
tor and a factor*dv/v giving rise to the logarithmic diver-
gence. So the divergence exists unless the angular part g
zero, which happens only ifqW i5qW j . This kind of divergent
behavior is just the logarithm of the zero ofI(t) found in the
previous section whent→`.

Thus this result does not add anything to what was sai
the previous section. It may be interesting, however, tha
has been obtained by using standard Feynman rules, stan
procedures for the compensation of the infrared terms, a
especially, that no artificial manipulations of the spin va

3In order to be precise it must be recalled that the details of
infrared compensation are gauge dependent, but the final res
not. The most straightforward way to get the final result is the
of the Yennie gauge@8# Dmn5( i /k2)@gmn12kmkn /k2#, because in
this gauge there is no infrared contribution coming from the ren
malization term.
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ables or of the ultraviolet divergence have been done.
price to pay is that we lose the possibility of summing
closed form all orders ina.

IV. SOME CONCLUSIONS

What has been presented may be considered an exte
exercise in QED, because no new idea has been introdu
This exercise could be useful, however, because it contai
description of a standard process that is not completely s
dard. There is a process of measurement that involves
construction a sum over incoherent contributions so the
that the interference terms, at the end, disappear, seems
obvious. Yet the way in which the interference terms go
zero is not simply determined by the measurement proc
but from the dynamics of the soft radiation; in fact, at fixe
choice of the final states, it depends on the time after
primary scattering at which the observation is perform
Although some artificial parametersvM ,vR have been intro-
duced, the exponentn in Eq. ~20! which determines the rate
of reduction of the interference terms is completely given
the kinematical conditions (v,d) and by the fundamenta
constanta. Looking for some quantitative statement, it mu
be said that the exponent is very small in the usual con
tions. The effect becomes comparatively larger for very
ergetic electrons: let us assume, for definiteness, thag
5104 and d54°; then, from Eq.~19!, n'0.05, and from
Eq. ~20! in going from t1 to t2 the interference term is re
duced to one-half if the ratiot2 /t1 is 220'1.053106. Per-
haps the result is more intuitive in space: if the interferen
term has a given size at the distance of 100 fm, where
primary hard scattering is certainly no longer active, then
is reduced to one-half atD,50.1mm, but to have it reduced
to one-fifth takes aD, of about 10 m.

The results presented here are essentially of the same
as the ones presented in@1#. Some differences can be foun
The techniques used are different since here the usual
malism of QED is employed~this is particularly evident in
the perturbative treatment!, and the whole effect stems from
an incomplete compensation between real and virtual em
sion. The other point is that here the two waves generate
the splitting process are not led to interfere in the same
gion; in fact, there is a physical parameter that controls
rapidity of the decoherence, which is precisely the angle
tween the two asymptotic directions of the final states.

From a more formal point of view the result is connect
with the presence of infinitely many degrees of freedo
which may cause unitary evolution to take, finally, eve
physical state outside the original Hilbert space. The t
asymptotic states could be described through the infrapar
formulation. In this case there would be no question of s
pression of the interference terms, since there would not e
a superposition principle@9#. In the example presented her
in Sec. II, the states are not strictly asymptotic, so the po
bility of a superposition is not excluded.

A particular and perhaps accidental property of QED h
been used: the fact that the problem of infrared radiation
be controlled in a satisfactory way even when the incom
state is treated as an isolated charged state, without the c

e
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e
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of photons. This possibility should be contrasted with oth
situations found in theories like QCD, where the divergen
may be eliminated only after summation over incoming a
outgoing infrared particles@10#. However, the infrared struc
ture of QCD is, on the whole, not yet understood, so
comparison cannot be pushed further. One could also th
of replacing the infrared electromagnetic radiation with
gravitational radiation, so every microscopic and mac
scopic body would experience the effect, but in the us
linearized gravitational theory the radiation is exceedin
tiny.

The effect of the gravitational radiation has an interes
principle: it would require, however, a nontrivial extensio
of the treatment presented here. A sharp difference is tha
-
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QED the relevant physical process is the flow of~Abelian!
charge, and it is enough to follow this flow particle by pa
ticle; with the gravitational interaction the relevant process
the flow of energy and momentum and so the scattering p
cess must be studied as a whole.
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