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Loss of coherence due to bremsstrahlung
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It is shown that bremsstrahlung can give rise to a loss of coherence for quantum systems. Here a particular
mechanism is analyzed, which makes use of the formal properties of the infrared radiation in QED. A charged
particle goes through a scattering process into a superposition of two kinematically distinct states. The scat-
tering also gives rise to the emission of a cloud of soft photons, and it is precisely this process that washes out
the interference term between the two final states.
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I. STATEMENT OF THE PROBLEM In scattering theory one considers some total Hamiltonian
H=Ho+V and a state evolving with it:|¥(t))
The fact that the bremsstrahlung process can lead to the e '"'|W(0)); this state is then analyzed in terms of states
loss of quantum coherence has been studied in défaind  evolving  with the free  Hamiltonian |®(t))
one of the relevant results is that this kind of mechanism is at-e~"Ho'|®(0)).
work even when the environment is at zero temperature, so This procedure defines the evolution operatd(t)
that the relevant process is pure emission of photons. In this-e'ote ™™ which may also be expressed by means of the
article a simple, definite case is examined in terms of thénteraction term in Dirac or interaction representation:
usual formalism of QED: infrared emission by a charged t
article undergoing a scattering process in vacuum with the _ & ey — aiHoty g o iH ot
gondition that?t is fgound ina su?)eprposition of two well sepa- U —Pexpfo[— V(ndr], V(H)=eTove T
rated eigenstates of the momentum. 1)
While the most usual treatment of the infrared radiation
goes through an intermediate procedure of regularization by s the time ordering and it must be remembered that in the
the introduction of an energy cutoff or equivalently of a massinteraction terms the field operators evolve accordingi §o
for the photon[2,3], it is also possible to follow the time  In QED with soft photons the charged particle is compara-
evolution of the state: the finite time provides the infraredtively very heavy, there is no pair production, and moreover
cutoff. This procedure, proposed and discussed by Steinmarifie spin is not very relevant because the dip@led multi-
[4], is particularly well suited in this case because it allowspole) emission is suppressed for very large wavelengths. So
us to study the time evolution of the decoherence. the charged particle is treated in first quantization, the spin
The problem is reduced to this form: there is a particle,variables are suppressed, and the velocity, not the three-
say an electron, at rest, it suffers a sudden hit, and it becomesomentum, is taken as a fixed vector with absolute value
relativistic in a very short time, i.e., the momentum transfemear 1; this results in the Hamiltonid8]
is large with respect to its mass, but its final state is a super-
position of two different velocities, which, for computational H=Hy+V, (28
simplicity, will be chosen of the same absolute value. Due to
its acceleration the electron radiates; the infrared tail of this m
radiation cannot be resolved completely and is therefore Ho=—ig-d+—+ 2, f d*k wa] ,ay ,, (2b)
summed up in defining the transition probability. The ques- Yoo C
tion is, how does this fact reflect on the superposition of the
charged states? e d3k . R
v | et

Il. THE SCATTERING PROCESS AND THE RADIATION +af ,i-&.,e K +A. (20

A. Standard tools
There are standard tools of scattering theory and of QED N€ constand is an energy renormalization term, having the
of soft photons that will be used: they are certainly well role that in a covariant treatment is played by the mass coun-

known but since some of their features will be essential fof€"erm- The quantized electromagnetic field is in the Cou-
the following discussion a short summary of their propertied®™P gauge with linear polarizations; the fundamental com-
will be presented3]. The unitsc=#=1 and the standard mutation relations are given in noncovariant form:

symbolsa=e?/(47) and y=1/J1—v? are used. : L
[ak,lnak",/']:5v,v’5(k_k,)- (3)

*Email address: giorgio@ts.infn.it The use of Eq(1) then gives
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v e d3k B ( _ 2)
V(t)=— (271_)3/22 f > [akyvﬁ.gkyye|k-r+|(k-ufw)t b= —ZJ dzv —Q{C+|n[wMt(1 v2)]
v V2w
—Ciloyt(1—v2)]}. 8b
+al’vﬁ’.gkyyeflkrfl(k»ufw)t]_'_A. (4) I[a)M ( UZ)]} ( )

In these expressions the positios cosd, has been used;
From these expressions it follows thg¥(t),V(t')] is a is the Euler-Mascheroni constant, and Si and Ci are the sine-
number and so the application of the Wick theorem to(#}.  integral and cosine-integral functiop8]. The term linear in
can be performed in a very compact and efficient way, in dime that appears in the imaginary partould be eliminated
form due originally to Hori[5], with the result by suitably defining the countertermminto V; the ultraviolet

cutoff is, however, essential in the logarithmic termbirFor

1 large values of the relevant limits are
=expg — —D(7,7")—
2 JoJo sV (7 N(7) ) 1 .
Sl(mt)—>§77, Ci(mt)—0 for t—oo,
t ~
XNexpf [—iV(ndr]; (5a) . . . .
0 The most important term is the logarithm appearindp,iso

it is necessary to calculate its coefficidBit
hereD(7,7") is the contraction of two interaction operators,

Bo fd—lz a1|[(1+)]1}o
~ ~ = 20U Z 2= | n Y v)|— >
D(r,7)=(IPE(nV(r)]), (5) (2m) (1v2)" v ©
where|) is the photon vacuum. Although the complete expression contains the arbitrary
parametew), the coefficienB is independent ob,, . If, as
B. Finite time evolution a particular case, the final stdtky(t)) contains no photon at

Normal ordering according to Eq5) gives rise to a nu- 2l then the operator tertvexp/q[—iV(n)dr] gives simply 1

merical factor in/, i.e., and the result for the transition probability is

_ 2_ o—b_ -B
exr{—%JtJtD(r,r’)drdr’ :exr{ia—%b} ©) o= Po(t)|¥(t))[*=e""~cons (wyt) " °. (10
0Jo

and a straightforward calculation gives

So the probability goes to zero as the time grows.
Acting on a statg®,(t)) containingn photons of mo-

menta (21 n) the operator\Vexpft[ — iV(7)dr] yields a
factor

D(r,7')= fdQ wdwv?

(2 (2m)? 1 [ e
. - ’ F e Y
XSi? B [e K7D g (1)t 1], " nl@m?®
(7 1 1 1
» : -
2”/2\/w1"‘wn(k~ﬁ—w)1 (K-7— ),

1 (G- &)y (- &)kt Fkn) T

[1
wherek- 5= wu sin .

In calculating the exponentsandb, an ultraviolet diver-
gence is found. This is not unexpected because no renormal-
ization has been performed; moreover, the divergence is dif-
ferent from the correct covariant one because in th
ultraviolet region treating the velocities of the electron as
constant vectors is kinematically inconsistent. Since we are
interested in the infrared behavior, this divergence will sim- Gn=[9(wr)]"n! (123
ply be cut off by inserting an upper limib,, whenever
needed. In this way the result is

_efi(lz»z?fw)l]...[1_e*i('z‘5"”)n]. (11)

n calculating the absolute square, one gets the additional
actor

with the positiort

The parametemr is an ultraviolet cutoff having the same role as

vz wy - It is introduced in order to make clear that the final result
concerning the time evolution of the interference tefsee Eqg.

(8a) (20)] is independent of the rati@y /wg between the virtual and
real cutoffs.

(UMt
1_

e? 1
_(2—)2f§d202(1—22) -

1
+ mSi[wMt(l_UZ)] ,
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e , (1-7%) do 1 , 1 )
g(wR)_Wf dzv mj{l—cos{wt(l =K U [V )+ 5K e [W )
—v2)]}, (12b) +R(D_[U_[V_Y (D, |U|P,)]. (14

For the absolute squares there is nothing new to say; for
every definiten they go to zero fot— and the sum ovem
yields a finite result. Something new could happen, after re-
summation oven, in the interference term

and it is easily verified thag)(wg) has the same form ds
with the unique substitutiow,, — wg.

The behavior for large of |[(®,(t)| W (t))[? is clear: it
goes to zero for every value ofas (Inwgt)?(wyt) /N, so
in the photon Fock space the evolution operafaonverges () =Re (D _|[U_(1)| T _Y* (D U, (V)| ¥, )].
weakly to zero. If a sum ovar is performed, then the expo-
nential of g(wg) compensate the facta ® and the sum Here in fact we get two different factors of tyge,, Eq.
converges to a finite ||m|t' which of course dependsm (11), the former Withl}l and the latter W|th)2 They build

and wy, . Instead of Eq(10) it results in the fact up terms likeG,,, again say,
. Qn=[a(wr)]"n! (159
> U (H)|¥(1))[2=e"PT9~constx — | for t—ee. with
n M
(13
2 EI (U1 €)(v1-€)

The actual expressions forandg show also that the smail- wR)= f do 2 o do
behavior of the probabilities is essentially proportional to (2m)3 (K71~ w)(K-Tp— o)
t2". This is useful to notice since thte=0 emission is not
very well defined. In this simplified dynamics, in fact, there x{1—exgd —i(K-0,— o)t]—exfi(k-v,— o)t]
is a short time in which the primary interaction is active, the
one that transfers a large momentum. Within this period the +expi(k-v,—k-v)t]}. (15b)

calculation of the accompanying soft radiation is very diffi-

cult, but the total emission is certainly not very relevant. ~So we get again an exponential form, but with a more com-
For comparison with the conclusions of the next sectiorplicated exponent|(wg), which is now complex. Writing

we stress this result: the virtual corrections give rise to a&j(wg)=x+iy so that RE“R=e*cosy, the time evolution is

decreasing factor, the real corrections yield an increasing faessentially governed bg*, and the term iry produces only

tor, and the two compensate for-. For future conve- oscillations.

nience it is useful to recall that these results are usually ob- For computational simplicity from now on the calcula-

tained in a slightly different way, there is no mention of finite tions are made in the particular ca8ew=0 so the two

time, there is an explicit infrared cutoff, say, and it is speeds are equal,, =v_=v. The termx can be computed

verified that the dependences anlead to divergences for and the result is

everyn, but they compensate in the sum ovef2,3].

X= f dQ f{[C‘F In( a)Rtsl) - C|((1)Rtsl)] + [C+ |n(thSZ)
C. Superposition of two states of motion

With the same technique now it is possible to investigate ~ ~ CI(@rtS2)]=[C+ In(wgtss) — Ci(wrtsy) I} (16)

the behavior of the soft radiation in the case in which theyth
charged particle after the scattering ends in a superposition

of two well distinct states of motion. s;=1-vcosh,, s;=1-vcosb_,
The kind of scattering process is not relevant, as can be
learned from{2]. What really matters is that the particle suf- s3=|v cos#, —v cosh_|, k-v.=vwcosh., and
fers a spacelike momentum transég which is much larger
than its mass- g?>m?. = a , C0sd—cosh,cosh- 1n

. . e =5 2V .

The possible origin of the splitting is not analyzed, only a 27" (1-vcosh,)(1-vcosh.)
formal dynamical model is built up: the initial particle has a
conserved internal variable, say, such that its eigenvalues
affect the velocity after the scattering, e.g., =uv+ 73W.
The effective Hamiltonian after the scattering, which is lin-
ear inv, has, therefore, the same structurerjrand, in turn,
the same structure is reproduced in the evolution opetéator X= f dQ ¢
If the initial state was, e.g., an eigenstaterpf the evolution
gives rise to |W(t))| = (IV2)[U,(t)|¥ (0))  and one must then calculate explicitly the coefficient of the
+U_(t)|¥_(0))] and the transition probability, in the hy- dominant logarithmic ternX= [ dQ &. Here the angle be-
pothesis thatrs is strictly conserved, takes the form tween the two velocities i$. It is convenient to take the

The termss; are positive by construction so that here also for
large values of only the logarithmic term and the constants
survive in Eq.(16):

$1S;
C+In(th)+In(—)
S3
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polar axis along one of the velocities so that =6; finite time effects are considered, but the infrared cutoff is
cosf_=cosf cosé—sinfsindcos¢. The integration is introduced and used for further discussion. The treatment is

lengthy but quite standard and yields very standard, so it will just be outlined as rapidly as pos-
sible.
e Z_a EI 1+U—1—j (18 The process is the same previously considered: at least
T nl_v three terms must be taken into account. In every term the
superposition of two states of motion, now denoted asd
with j, is considered.
102 coss (1). A perturbative scattering amplitude without any radia-
—v“cCos , o
— T[2(:1__0(.)565)_1)2Sinz 5]71/2 tive correction:
Mo=Mg’ +M{y’=cit(q)Q(d; ,p)u(p)
(1+v)(1—cosd)—v2sir? & e e At PIUEp
x| arcsin (1—0v)sino Y +c¢;u(q;)Q(q;,p)u(p). (219
(1-v)(1—cosd) —v?sirt & - (2 A perturbati\./e' scattering.amplitude with real radiative
—arcsin (1+0)sind y|- (18  corrections, describing the emission of one photon:
—m® (j)
The expression is not very transparent, since the dependencé\/lf_ M7+ M,
on the two parameters andv, or v, is interwoven. It be- —ie(2m) ¥2c,[U(g)Q(q; ,p—K)S(p—K)&(K)u(p)
comes much clearer in some limits. F8+0 it results in o
J—1 so we get foiX the limiting form of B, Eq.(9), as must +u(q;) e(k)S(q;+k)Q(gi+k,p)u(p)]
happen. In the limity—oc at fixed 6#0 such thatyé>1 _ B aa
results in7— 2 In(yd) so that in this limit *+¢;Lua;)Q(a;,p=k)S(p=k)e(k)u(p)
da 1 +u(d))&(k)S(q;+k)Q(a;+k,p)u(p) ;- (21b
X= T In(2y) = 2 nCyo) . (193 (3) A perturbative scattering amplitude with virtual radia-
tive corrections, describing the emission and reabsorption of
Comparing this result with the limiting form of E9), one photon:
4o —nm D (i
B=—[In(2y)-1], aop ~ Me=M, M,

e?
we see that, in this case, at variance with the standard result (2m)* f {cilu(a)y,S(ai—k)Q(gi—k,p—k)
shown in the previous section, the effectotloes not com- -

pletely compensate the effect Bf If we consider the ratio of X S(p—k)y*u(p)]+c;[ula;) y,S(a;—k)Q(a;—k,p
the interference term at different times we have

—k)S(p—k) y*u(p)1}D(k)d*k. (210
1ty = t_l o with v= 4_a In(yd)— } . (20 S(l) andD(l) are clgarly the free eIeptron and photon propa-
Uty |[to @ 2 gators, andQ(q,p) is the perturbative form of the vertex

. . , . ) responsible for the scattering with large momentum transfer.
This result could also be obtained in a different way, withoulg;jyen these definitions, the subsequent calculations strictly
use pf f|n|te' yme, bu_t Wlth an explicit infrared cutoff, say 5110w the procedure exposed in detail in REE], only the
and itis verified that in this case the dependences 0anot  ,ints relevant for the present discussion will be repeted.
compensate. In Eq. (21b) the infrared divergent contribution, denoted
by a tilde, is
Ill. PERTURBATIVE TREATMENT
~ : .
In the previous section the problem was treated in a way Mf:ﬁi(k)Mg)Jrﬁi(k)Mg)’
that is not very usual in quantum field theories; moreover,
some approximations justified by the kinematical restrictions
were used. Really, a more general result could be attained by
the use of a covariant formulation of the infrared emission, o ) o )
which was elaborated and published long 4@h but per- Ina similar way the infrared contribution &f, is
haps it may be useful to present a treatment according to the - . .
most standard procedures, i.e., a perturbative treatment in M,=piMgy+pMG. (23
terms of Feynman graphs where only the kinematical restric-
tions inherent to the problem, the consideration of very soft———
photons, appear. There is a price to pay: the actual calcula-?in the previous section the choicgs=(m,0) andc;=c;=1/2
tions are limited to the first nontrivial perturbative order, nowere made.

e

_ 0s€, PE€,
Bs(k)= 2m

ak  pk

Cos=ij. (22
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The actual form ofps can be given[2], but it is not ables or of the ultraviolet divergence have been done. The
necessaryfor the following simple reason: We know that in price to pay is that we lose the possibility of summing in
QED there is a compensation of the infrared divergenceslosed form all orders inv.
order by order ina in the perturbative expansion, so in our
case this compensation must happen, when the states are
usual, i.e., when only one of thg is different from zero at
the first order ina between the term 2 R, Mg] and the What has been presented may be considered an extended
term |M,|? (integrated over the infrared phase space andxercise in QED, because no new idea has been introduced.
summed over the polarizations of the phgtofhe ordera  This exercise could be useful, however, because it contains a
term of the transition probability is description of a standard process that is not completely stan-
dard. There is a process of measurement that involves by
- ) d3k 5 construction a sum over incoherent contributions so the fact
= Z [P f 54 Ps(K+2ps that the interference terms, at the end, disappear, seems quite
s=h g obvious. Yet the way in which the interference terms go to
+2 RG(CiC,-* MS)ME)”*) zero is not simply determined by the measurement process
but from the dynamics of the soft radiation; in fact, at fixed
choice of the final states, it depends on the time after the
' primary scattering at which the observation is performed.
Although some atrtificial parametess, ,wg have been intro-
duced, the exponentin Eg. (20) which determines the rate
of reduction of the interference terms is completely given by
3 the kinematical conditionsu(,6) and by the fundamental
1 d°k . . king f titative statement, it must
=S f—ﬁz(k)+Ps|ir=0' (24) constanta. Looking for some quan ' , :
2% 20 7F be said that the exponent is very small in the usual condi-
tions. The effect becomes comparatively larger for very en-
the subscript “ir” states that the equality is valid for the €rgetic electrons: let us assume, for definiteness, that
infrared divergent part. =10* and 5=4°; then, from Eq.(19), »~0.05, and from
So we may reexpress the infrared factor which multipliesEd. (20) in going fromt; to t, the interference term is re-

Re(cM§MY™*) in terms of the functiong, with the result ~ duced to one-half if the ratio, /t, is 2?0~1.05¢10°. Per-
haps the result is more intuitive in space: if the interference

IV. SOME CONCLUSIONS

X

d3k
2 fg,ei(k)ﬁj(kwﬁpj

The infrared compensation says that

1 a3k term has a given size at the distance of 100 fm, where the
J=—2>, f _[Bi(k)_ﬁj(k)]za w>\. (25  primary hard scattering is certainly no longer active, then it
2% 2w is reduced to one-half & ¢=0.1 um, but to have it reduced
to one-fifth takes a\¢ of about 10 m.

It is explicitly seen that the initial velocity, or momentum,  The results presented here are essentially of the same type
plays no role in the compensation of thedependence; the as the ones presented|ih]. Some differences can be found.
relevant effect originates from the difference betwgeand  The techniques used are different since here the usual for-
d; which appear in the expression gfThe interference term malism of QED is employedthis is particularly evident in
is affected, therefore, by an infrared factor that diverges logathe perturbative treatmentand the whole effect stems from
rithmically in the limit A—0; in fact, from Eqgs.(22) and an incomplete compensation between real and virtual emis-
(25) it is seen that the integral separates into an angular fagion. The other point is that here the two waves generated in
tor and a factof dw/w giving rise to the logarithmic diver- the splitting process are not led to interfere in the same re-
gence. So the divergence exists unless the angular part giveon; in fact, there is a physical parameter that controls the
zero, which happens only &;=¢;. This kind of divergent rapidity of the decoherer_lce,_ Wh|_ch is preusgly the angle be-
behavior is just the logarithm of the zero&ft) found in the  tween the two asymptotic directions of the final states.
previous section whet— . From a more formal point of view the result is connected

Thus this result does not add anything to what was said itvith the presence of infinitely many degrees of freedom,
the previous section. It may be interesting, however, that igvhich may cause unitary evolution to take, finally, every
has been obtained by using standard Feynman rules, standdtdysical state outside the original Hilbert space. The true
procedures for the compensation of the infrared terms, and@symptotic states could be described through the infraparticle

especially, that no artificial manipulations of the spin vari- formulation. In this case there would be no question of sup-
pression of the interference terms, since there would not exist

a superposition principlg]. In the example presented here,
%In order to be precise it must be recalled that the details of thd" S€c. Il, the states are not strictly asymptotic, so the possi-
infrared compensation are gauge dependent, but the final result Rility of a superposition is not excluded.

not. The most straightforward way to get the final result is the use A particular and perhaps accidental property of QED has
of the Yennie gaugés] D, = (i/k?)[g,,,+ 2k k,/k?], because in been used: the fact that the problem of infrared radiation can

this gauge there is no infrared contribution coming from the renor-be controlled in a satisfactory way even when the incoming
malization term. state is treated as an isolated charged state, without the cloud
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of photons. This possibility should be contrasted with otheitQED the relevant physical process is the flow(Abelian)
situations found in theories like QCD, where the divergencegsharge, and it is enough to follow this flow particle by par-
may be eliminated only after summation over incoming andicle; with the gravitational interaction the relevant process is
outgoing infrared particlegl0]. However, the infrared struc- the flow of energy and momentum and so the scattering pro-
ture of QCD is, on the whole, not yet understood, so thecess must be studied as a whole.
comparison cannot be pushed further. One could also think
of replacing the infrared electromagnetic radiation with a
gravitational radiation, so every microscopic and macro-
scopic body would experience the effect, but in the usual My interest in these problems arose from conversation
linearized gravitational theory the radiation is exceedinglyand discussions with Professor G. C. Ghirardi; | thank him
tiny. for what he explained to me. This work has been partially
The effect of the gravitational radiation has an interest insupported by the Italian Ministry the Ministero
principle: it would require, however, a nontrivial extension dell’lstruzione, Universite Ricerca, by means of the Fondi
of the treatment presented here. A sharp difference is that iper la Ricerca Scientifica—Universith Trieste.
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