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Robust method for estimating the Lindblad operators of a dissipative quantum process
from measurements of the density operator at multiple time points
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We present a robust method for quantum process tomography, which yields a set of Lindblad operators that
optimally fit the density operators measured at a sequence of time points. The benefits of this method are
illustrated using a set of liquid-state nuclear magnetic resonance measurements on a molecule containing two
coupled hydrogen nuclei which are sufficient to fully determine its relaxation superoperator. It was found that
the complete positivity constraint, which is necessary for the existence of the Lindblad operators, was also
essential for obtaining @obust fit to the measurements. The general approach taken here promises to be
broadly useful in studying dissipative quantum processes in many of the diverse experimental systems cur-
rently being developed for quantum-information processing purposes.
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[. INTRODUCTION we use here is a very general property of open quantum
system dynamics known a®mplete positivity

An important task in designing and building devices ca- Roughly speaking, complete positivity means thaPifs
pable of quantum-information processif@IP) is to deter- a superoperator that maps a density operator of a system to
mine the superoperators that describe the evolution of the@nother density operator, then any extension of the form
component subsystems from experimental measurements® P also returns a positive operator, whefedenotes the
Th|s task iS Common'y known in Q“D @Jantum process |dent|ty map on an extension of the (_?Iomaimaf The most
tomography(QPT) [1]. The superoperators obtained from 9eneral form of a completely positive Markovian master
QPT allow one to identify the dominant sources of decoher&duation for the density operatprof a quantum system is
ence and focus development efforts on eliminating themknown as the Lindblad equatib,6]. This may be written as
while precise knowledge of relevant parameters can be used v
to design quantum error correcting codes and/or- . . 1 + +
decoherence-free subsystems that circumvent their effecté)(t)__'[H’p(t)]JrEmZ‘l {[Lmp(0), L]+ [Lm.p(OLn]},
[1,2]. Methods have previously been described by which the 1)
“superpropagator”P of a quantum process can be deter-
mined[3,4]. Assuming that the process’ statistics are stationwherefi =1, tis time,H is the system’s Hamiltoniarn,,,, are
ary and Markoviar{5,6], a more complete description may known as Lindblad operators, ahqﬁ1 denote their adjoints. It
be obtained by determining the corresponding “supergenerds easily seen that the Lindblad equation necessarily pre-
tor,” that is, a time-independent superoperafdirom which ~ serves the trace w)=1 of the density matrix, meaning
the superpropagator at any timés obtained by solving the tr(p)=0, and a little harder to show that it also preserves the
differential equatioriP(t)= — G P(t). The formal solution to  positive-semidefinite character of the density operator.
this equation is exp{Gt), where “exp” is the superoperator Proofs that it has the yet-stronger property of complete posi-
exponential. tivity may be found in Refs[5,9-11. The QPT method we

The purpose of this paper is to describe a data fittingdescribe in this paper relies upon the Lindblad characteriza-
procedure by which estimates of a supergenerator can ken of complete positivity.
obtained. This problem is nontrivial because, as in many The paper is organized as follows. In the first part of the
other data fitting problems, the estimates obtained from th@aper we present a computational procedure that fits a com-
straightforward(e.g., least-squargdits turn out to be very pletely positive supergenerator to a sequence of estimates of
sensitive to small, even if random, errors in the measurethe superpropagators of a quantum process at multiple time
data. In some cases, this may result in a supergenerator thabints. This procedure initially extracts an estimate of the
is obviously physically impossible; in others, it may simply decoherent part of the supergenerator, without the Hamil-
result in large errors in the generator despite it yielding aonian commutation superoperat@rhich is assumed to be
reasonably good fit to the data. Parameter estimation protavailable from independent prior measuremgritsthen re-
lems with this property are commonly known ab- fines this initial estimate via a nonlinear least-squares fit to
conditioned[7,8]. The main result of this paper is that, al- the superpropagators, in which complete positivity is en-
though the problem of estimating a supergenerator from théorced by adding a suitable penalty function to the sum of the
measurements of the superpropagators at various times sgjuares minimized. Finally, any residual noncompletely posi-
ill-conditioned, this ill-conditioning can be greatly alleviated tive part of the supergenerator is “filtered” out by a matrix
by incorporating prior knowledge of the solution into the projection technique based on principle component analysis
fitting procedure as a constraint. The prior knowledge thaf11,12,.
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In the second part of the paper, the procedure is validatedonential can be computdd 7] (although this was not an
by using it to determine the natural spin-relaxation superopissue in the small problems dealt with hgrand we expect it
erator of a molecule containing two coupled spin 1/2 nucleito also significantly complicate thaverse problem
in the liquid state from a temporal sequence of density op- In this section we describe an algorithm for solving this
erators. These, in turn, were derived by state tomographynverse problem, that is, to determine the relaxation superop-
meaning a set of nuclear magnetic resonafid®R) mea- erator R from an estimate of the HamiltoniaH together
surements sufficient to determine the density matrix. In thevith estimates of the propagat®t,=P(t,,) at M=1 time
process we confirm the ill-conditioned nature of the problempoints 0<t;<t,<---<ty . This problem, like many other
and that the complete positivity constraint is needed to obtaiinverse problems, turns out to be ill-conditioned, meaning
a robust estimate of the supergenerator. The final results atkeat small experimental errors in the estimates ofthand
used to compute a compatible set of Lindblad operators, bup,, may be amplified to surprisingly large, and generally
these were difficult to interpret. Hence the Hadamard reprenonphysical, errors in the resulting superoper&a7]. For
sentation ofT ,-relaxation dynamic$13] was used to derive example, if one tries to estimafe in the obvious way as
a new set of Lindblad operators that are easier to interpret N
and explain most of the relaxation dynamics. The informa- R~[—1H=In(P1)]/ty, (4)
tion these operators convey agree with theoretical expecta-

tions as well as with some additional independent measur ne will geneLglly obta_in_ nortl)sense ev]?nhf_if anﬁ 7k21 are
ments, in support of the accuracy of the results obtained. nown to machine precision, because of the well-known am-
biguity of the matrix logarithm with respect to the addition

of independent multiples of12r onto its eigenvalues. Using
the principal branch of the logarithms will only work’H is

In this paper we are concerned with &hdimensional small compared toR, and the only reasonably reliable
open quantum systenNK«), the dynamics of which are means of resolving the ambiguities is to utilize additional
described by a Markovian master equation of the formdata and/or prior knowledge of the solution. Even then, a

IIl. COMPUTATIONAL PROCEDURE

[5,6,14: combinatorial search for the right multiples of72 may be
infeasibly time consuming.
dp An alternative to the logarithm, which utilizes data at
at - ILH,p]=R(p— peg multiple time points and is capable of resolving the ambigu-
ities even wherf is much larger thark, is to estimate the
d derivative att=0 of
22 = —Hps—Rps. @
dt e'H2p(t) it = =Ry O(t?), (5)

In this equationfi=1, p=p(t) is the system’s density op- This derivative is obtained by Richardson extrapolation, us-
erator, peq this operator at thermal equilibriumps=p  ing central differencing about=0 over a sequence of time
— pegs H is the system’s internal Hamiltoniaft{ the corre-  points such that,,=2™ t; (m=1,... M), according to
sponding commutation superoperator, &ds the so-called  the well-known procedurgl8]:

relaxation superoperatorThe equivalence of the first and

second lines follows from the fact thape, is time- for mfrom 1 toM do
independent and proportional to the Boltzmann operator D = 22 G2 _itmH2
exp(—H/kgT), so that it commutes withi. ZLIEM=m = = Zm=
By choosing a basis for the “Liouville space” of density — e tmt2p lo-itmll/2).
operators, the equation may be written in matrix form as - -~
[11,14,19 for € from 1 tom—1 do
d Ditea+m—m:=De1im-—
|5tA> _ _('E+E)|BA>E_Q|BA>’ 3) P1+ie1+M-—m*= ¢ 1+M-m e
+(Dr1sm-m— Dem-m)/(4°—1);

where the underlines denote the corresponding matrices vs and do

some Liouville space basis ang) is the N2-dimensional  end do

column vector obtained by stacking the columns of the den-

sity matrix p on top of each other in left-to-right ordgt1].  The inversel_D,;]lzf(—tm) is assured of existing unless long
A numerical solution to this equation at any potrin time  times are used or the errors in the data are large. The method
may be obtained by applying the propagaRft) to the ini-  produces an estimate of the derivativeal that is accurate
tial condition|p,(0)), where the propagator is obtained by up toO(tf'V'), and which may be increased by computing the
computing the matrix exponenti&(t)=exp(—gt) [15,14. exponential from the highest-order estimate at further inter-
Note that’{ and R do not commute in general, and that the val halvings. The method performs well when the relative
sum G=1H+R will not usually be a normal matrixone errors in the Hamiltoniand<1/(Avty), whereAv is the
which commutes with its adjoint This, in turn, greatly re- range of frequencies present in the Hamiltonian, but it tends
duces the efficiency and stability with which its matrix ex- to emphasize the errors i, rather than averaging over the
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errors at all the time points. Hence we do not recommend N-1 N-1

that it be used alone, but rather as a means of obtaining & <C = P(ixihe i) = > PUDIN G,

good starting point for a nonlinear fit to the data, as willnow =0 ij=0"—

be described. (8)
This nonlinear fit involves minimization of the sum of

This equation uses the notation of quantum information pro-
cessing, in which théth elementary unit vector is denoted by
li) (0<i<N), P(Ji){j]) is theNX N matrix of the operator
) obtained by applying the superpropagédkoto the projection
XARIHPy, oo P = 2 llexd — (1H+R)ty] - Poll operator given byi)(j| versus our choice of basis, afitlis
m=1 2 2 . . . — .
©6) t_he_N X N“ matrix for P versus the Liouville space basis
li)|j) (as forH, etc., above It can further be shown that the
eigenvectork, of the Choi matrix are related to thHenatri-
with respect taR, where||- |2 denotes the squared Frobeniusces of an equivalent set )ofkraus operators bylK ¢)
norm (sum of squares of the entries of its matrix argument —= \/K—fké’v where k,=0 are the corresponding eigenvalues
Previous results with similar minimization problems indicategnd the “ket” |K¢) again indicates the column vector ob-
that x* will have many local minimé19], making a good  tained by stacking the columns &f, on top of one another
starting point that takes thei2 ambiguities into account [11].
absolutely necessary. The derivatives of this function may be These results can be used not only to compute a Kraus
obtained via the techniques described in R&B], but the  operator sum from any completely positive superpropagator
improvements in efficiency to be obtained by their use argyiven as a “supermatrix” acting on thé&2-dimensional
likely to be of limited value in practice given that all the |jouville space, but also to “filter” such a supermatrix so as
resources needed, both experimental and computationab obtain the supermatrix of the completely positive super-
grow rapidly withN (which itself grows exponentially with propagator nearest to it, in the sense of minimizing the
the number of qubits used in quantum information processgrobenius norm of their differendd.1]. This is done simply
ing problems. In addition, the quality of the results matters a by setting any negative eigenvalues of the Choi matrix to
great deal more than the speed with which they are obtainegero, rebuilding it from the remaining eigenvalues and vec-
and the quality will not generally depend greatly on the ac+ors, and converting this reconstructed Choi matrix back to
curacy with which the minimum is located. the corresponding supermatrix. Although this generally has a
For these reasons, we have used the Neldsr-Mead simpl@yeneficial effect upon the least-squares fits vesuéas de-
algorithm [20], as implemented in the&IATLAB ~ program,  fined above it is still entirely possible that the sequence of
for the small (two-qubit experimental test problem de- filtered propagator, will not correspond to a completely
scribed in the following section. This has the further advanyositive Markovian process, so that no time-independent re-
tage of being able to avoid local minima better than MoSiaxation superoperataR can fit it precisely. This, together
gradient-based optimization algorithms. Preliminary numeriyyith the ill-conditioned nature of the problem, implies one
cal studies, however, exhibited the anticipated ill-yj still not usually obtain satisfactory results even after
conditioning with respect to small perturbations in the datafijtering. For this reason we shall now describe how the

even whenR was constrained to be symmet(iplying a  apove characterizations of completely positive superpropaga-
unital system which satisfies detailed balanaad positive  tors can be extended to supergenerators.

semidefinite(as required for the existence of a finite fixed  aAgindicated in the Introduction, completely positive Mar-
point). Therefore, it is necessary to incorporate additionakgyian processes, @uantum dynamical semigroups they
prior information regardingR into the minimization. The are also known, may be characterized as those with a gen-
information that we have found to be effective is a propertygratorg that can be written in Lindblad forif5,6,9—11. On

squares

M

of R known ascomplete positivity5,6,11]. _ expanding the commutators in E@), this becomes
An intrinsic definition which does not involve an environ-
ment was first given by Krau®1], and states that a super- N2
propagatorP is completely positive if and only if it can be  —gG(p) =—1[H,p]+ %> (2LmpLi =L Lp—pLliLw.
written as a “Kraus operator sum,” namely, m=1 ©
N? The operatord ,, are usually called.indblad operators. It
P(p) = (21 KepK7, (7)  may be seen that the Choi matiixassociated with- R is

never positive semidefinite, becausg|C|l)=tr(—R)<0.
Nevertheless, it can be shown that the superpropagator ob-
wherep=p" andK,, ... Kyz all act on the system alone. tained by taking the exponential of any trace-preserving su-
Another intrinsic definition subsequently given by Cf@2]  pergeneratorR [meaning tR(p))=(I|R|p)=0] is com-
states that a superpropagator is completely positive if angletely positive if and only if a certain projection df is
only if, relative to any basis of the system’s Hilbert space,positive semidefinite, namely, C £, whereE=1®1—[1)(l|

the so-calledChoi matrix is positive semidefinite[11],  [11]. In this case an equivalent system of orthogonal Lind-
namely, blad operators is determined B)= VA fm, Wherex,
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TABLE I. Table of operatorgvs Cartesian basiof the transi-
tion basis used for the density and superoperator matrices, the cor-
responding matrix indices and their coherence or¢egs text

Index Operator Order

1 4X 4 identity 0

2 or 0

3 ol 0

4 oio? 0

5 olol+ 031,0)2/ 0

6 0'&032,— 0'30)% 0

7 oL 1

8 oy 1

9 0'5 1

10 o5 1

FIG. 1. Molecule of 2,3-dibromothiophene with the two protons 11 olo? 1

labeled 1 and 2. The chemical bonds among the atoms are indicated 12 oo 1

by double parallel lines, and a transparent “dot-surface” used to 13 031'05 1
indicate their van der Waals radii. i3

14 a0, 1

. . 15 a'ia')z(— ola? 2

=0 are the eigenvalues aiig, the eigenvectors of C £. In 16 (ri(err(r))l:(ré 5

the event thaf C £ has negative eigenvalues we can simply Y

set them to zero to obtain a similar but completely positive
supergenerator, much as we did with the Kraus operatorgaher with decoherence and relaxation back towards the
Most importantly, however, this characterization of Com'equilibrium state pog~ o+ o2, In liquid-state NMR on

eq z z"*

pletely positive sgpgrgengrators gIVES US a means of enfor mall organic molecules such as dibromothiophene, this pro-
ing complete positivity during nonlinear fits to a sequence o

ropanators at multiple time points cess is mediated primarily by fluctuating dipolar interactions
P 1E)héJ followin secrt)ion desgribes.our experience with a between the two protons as well as with spins neighboring
plying this apprgoach to a sequence of surr))erpropagators %%olecules, and since the correlation time for small molecules
tained from liquid-state NMR data. The complete positivity room temperature liquids is on the order of picoseconds,

of the relaxation superoperator was maintained by addin fhe Markovian approximation is certainly valjd4,24. We
. perop y 9 8dd that our sample was not degassed so that the presence of
simple penalty function onto the sum of squares that wa:

minimized by the simplex algorithm, as described above.%![Tc’SOI,z./ed param_r:\jgneglczahortened thef, and T, relax-
This penalty function consisted of the sum of the squares of 'on imes consiceravly. :
. The experiment consisted of preparing a complete set of

the negative eigenvalues of the corresponding projected Ch%'rthogonal input statesthat is, density matrices letting

matrix. While more rigorous and efficient methods of forcing . . -
the projected Choi matrix to be positive semidefinite are cer—each evolve freely for a given timg and then determining

) ) . S the full output states via quantum state tomograjitty,26|.
tamly possible, th|s strategy was sufficient to demons.tra.te th%ince only “single quantum” coherences can be directly ob-
main result of this paper, which is thidte complete positivity

constraint greatly alleviates the ill-conditioned nature of served in NMR[14], this involves repeating the experiment
such fits 9 y several times followed by a different readout pulse sequence

each time, until all the entries of the density matrix have
been mapped into observable ones. The experiments were
. EXPERIMENTAL VALIDATION carried out at four exponentially spaced tiniesas required
The experiments were carried out on a two-shisystem  PY the Richardson extrapolation procedure described above,
consisting of the hydrogen atoms in 2,3-dibromothiophenéPecificallyT=0.4,0.8,1.6, and 3.2 s. .
(see Fig. 1at 300 K dissolved in deuterated acetone, using a 10 describe the density and superoperator matrices, the

Bruker Avance 300 MHz spectrometer. The internal Hamil-S0-called “transition basis” was usefd.4]. This Liouville

the second spin is the Zeemarfor polarization and shift operatt4]) basis, in
that the basis elements are all Hermitian like those of the
H=Hiy = 7[vios+(32)at- 2] (10  Cartesian basis, but like the Zeeman basis they have a well-

definedcoherence orderor difference in total angular mo-
wherev;=161.63 Hz is the chemical shift of the first spin, mentum along the applied magnetic fi&@g between the two
J=5.77 Hz is the coupling between the spins, and Zeeman states connected by the transition. These basis states
=[oy,0y,0,] are Pauli spin operators. are listed in Table | versus the Cartesian basis.
The “quantum operation” we characterized was just free  This basis was chosen because the relaxation superopera-
evolution of the system under its internal Hamiltonian, to-tor R is expected to have the “Redfield kite” structure in this
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Redfield Kite Structure obtain further evidence for the validity of this superoperator,
we measured the single-spin (longitudinal, ora,) and T,
/ \ , (transverse, oro,=o,) relaxation rates, using the well-
Population . . . X
block (4x 4) established inversion-recovery and Carr-Purcell-Meiboom-

Gill (CPMG) experimentg24]. The results for both spins
Zero quantum wereT;=5.6 s andl,=2.7 s, Which agree quite. well With-
block (2x 2) the values of 5.6 s and 2.6 s obtained from this relaxation
superoperator. Although this is obviously a relatively simple
relaxation superoperator, it is reasonable to expect that a
Single quantum complete positivity constraint will substantially improve the
block (8x8) estimates of more complicated superoperators containing
nonzero cross-relaxation rates that cannot be obtained from
Double quantum the standard experiments.
J block (2x 2) Finally, the cross-relaxation rate between the population

\ terms o and o2, which is due to the well-known nuclear

FIG. 2. Redfield kite structure of the relaxation superoperatoroVerhauser effectNOE) [27], is essentially zero in Fig.
expressed in the transition bagiEable ). The shaded area corre- 3(b). This can occur when the overall rotational correlation

sponds to blocks of different coherence order, which are effectiverfime of the molecule plus its “solvent-cage” is on the order
decoupled from each other. of 1 ns, but was somewhat unexpected given the small size
of 2,3-dibromothiophene. As a result, we carried out the se-
basis[14]. This block-diagonal structure arises because théective inversion recovery experiment that consists of invert-
difference in frequency between transitions of different co-ing selectively the longitudinal magnetization of one of the
herence orders, given that the Zeeman interaction dominatéwo protons and looking at the evolution of the magnetiza-
all others, is large enough to average out these other interation of the other one while the first relaxes towards thermal
tions including those responsible for decoherence and relaxequilibrium. The change in longitudinal magnetization of the
ation, in effect decoupling the blocks from one another scsecond proton was measured to be less than 1% of the un-
that nocross relaxationoccurs between thertsee Fig. 2 perturbed magnetization revealing essentially no NOE effect
This so-called “secular approximation” considerably reducesand providing yet further evidence for the validity of this
the number of parameters in the superoperator from 256uperoperator. The lack of any appreciable NOE in our
=[(2%)?]? to 81=32+22+82+22 [since the diagonalf,)  sample is somewhat surprising, and implies a rotational cor-
basis elements do not cross relax with any nondiagonal elgelation time 7. for dibromothiophene of order &y
mentq. =500 ps, at which value theory predicts the NOE will van-
An additional reduction may be obtained by assuming deish [14]. This is somewhat surprising given the modest mo-
tailed balance: the microscopic reversibility of all cross-lecular weight(242 D) of dibromothiophene, the low viscos-
relaxation processes. The relaxation superoperator recoity of the acetone solvent used, and the valye4.4 ps
structed from the experimental data was bordered with ameported in[24] with the solvent carbon disulfide. A much
initial row and column of zeros to forcB(1)=0, because longer correlation time is consistent with the shorigrre-
the totally random density matri¥4 neither varies nor con- laxation time of our samplé5.6 s instead of 47.5 g24]),
tributes to the variations in any of the other transition operaalthough theT; was also shortened by the presence of dis-
tors. This may be done provide®R operates onpy,=p  solved oxygen in our sample. The correlation time reported
—peq, and together with detailed balance it implies that thein Ref. [24] was derived from a dipole-dipol&, of 88 s.
supermatrixR will be symmetric, reducing the number of Since this is not expected to be affected by dissolved oxygen,
parameters to be estimated to only=4@+ 3+ 36+ 3. a stronger indication of a much longer correlation time may
The result of applying the fitting procedure without the be found in our dipole-dipold,=3.4 s, which is derived
complete positivity constraint to the initial estimate obtainedfrom our experimental results in the Appendix. This implies
by Richardson extrapolation is shown in FigaB It may be  that ourr,=113.9 ps, which although still a little short is at
seen that the self-relaxation rates did not vary in a systematieast getting close enough to lead to some reduction in the
fashion with the coherence order and that large crossNOE. Such a long correlation time may be rationalized as a
relaxation rates were found, neither of which is consistentsolvent cage” effect due to electric dipole interactions be-
with the physics of spin relaxation in liquid-state NMR spec-tween the solvent and solute in our sample, which is not
troscopy[14]. In addition, this relaxation superoperator im- present in the nonpolar solvent carbon disulfide.

plies that spin 1 has d@,~2.3 s, while spin 2 has &, Because of the substantial degeneracy of the diagonal el-
~4.6 s, in disagreement with the independent measuremengsnents with the same coherence order, the superoperator in
of T, given below. Fig. 3(b) was also very nearly diagonal in the eigenbasis of

The fit after adding the complete positivity constraint isthe Hamiltonian commutation superoperaf@r so that
shown in Fig. 8b), again starting from the results of the andR very nearly commute. This allowed further estimates
Richardson extrapolation. It may now be seen that the result® be obtained directly from the superpropagators
do vary systematically with coherence number and that thé,~exp(—1Ht,,)exp(—Rt,), simply by taking the(real
resulting relaxation superoperator is very nearly diagonal. Tdogarithms of the absolute values of their eigenvalues, and
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FIG. 3. Three different estimates of the relaxation superoperator of 2,3-dibromothiophene in the transition basis, indexed as indicated in
Table 1. (a) Relaxation superoperator obtained from a least-squares fit, without the complete positivity constraint, of the exponential
exd —1(H+R)ty,] to the propagator$,, at the corresponding timed,;&0.41,=0.8t3=1.61,=3.2 s) with respect to the symmetric
Redfield kite relaxation superoperator matix starting from the results of Richardson extrapolatisee text (b) The relaxation super-
operator obtained from a fit to the same data and with the same starting vaRieboft with the complete positivity constraint included in
the fit. (¢) The relaxation superoperator obtained by assumingZhahd R commute, and using the average of the estimates obtained by
taking the logarithms of the absolute values of the eigenvalues of the propagators over all four time points as the final s=inesie

thereby canceling the phase factors from the Hamiltoniamesponsible forT; and T, relaxation separately using the
exponential. From Fig. (@) we see that the result of averag- “Hadamard relaxation matrix” formalism[13]. Because

ing these estimates over all four evolution times is very simithese calculations were somewhat involved, however, the de-
lar to the completely positive estimate in FighB(correla-  tails are given in the Appendix. From here on, the relaxation
tion coefficient 0.80; ratio of squared norm of the differencesuperoperaton will correspond to the matrix shown in Fig.

to that of the average 0.90). We note that the estimate in Figg(p),

3(c) did not explicitly assume the Redfield kite structure, These representations of relaxation processes are nor-
thereby providing a further consistency check on our resultsma"y applied to the density matrix in the Zeeman b?;é%e

(regarded as the computational basis in Qifhich requires
IV. INTERPRETATION VIA LINDBLAD AND HADAMARD converting the supergenerat® from the transition to the

OPERATORS Zeeman basis. This is easily done via a unitary transforma-

In this section we present a system of Lindblad operatorgiion, R“*=2U R"U", whereU|p")=|p**9 (the matrixU
which act on the density operator to give essentially the sam@iay be derived from Table I; the factor of 2 corrects for a
derivative as the relaxation superoperator described abowhange in norm due to the fact that the transition basis is
(see Fig. 3. As described in the foregoing “Computational Hermitian). Although any relaxation superoperator can be
Procedure” section, such a system of Lindblad operators magnodified to act directly on the density operagorather than
be obtained by diagonalizing the corresponding projectedts difference with the equilibrium density operatpk=p
Choi matrix, although it will be seen that a more easily in- —pgq (vide supra by taking the right projectionR(Z
terpreted system was obtained by considering the par& of —|pe(Z]|) [28,29, this makes only a negligible change to
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R since in liquid-state NMP, differs from the identity by ~ ation superoperator behind: the ratio of the mean-square
lpeq—1lle /1= 10°°. In any case, the treatment @ re-  Value of the off-diagonal entries @ to that of the diagonal
by treating it as a unitalidentity preservingprocess acting Man; the latter dropped to 1.8% on excluding the block cor-
on py. responding tory relaxation of the popul_atlonendt_a infra).

As described following Eq(9), a complete system of The nonphysical nature of most of the Lindblads is clearly an

Lindblad operators may be obtained by diagonalizing theraor;[gggt t?\l;metgvab)é tgﬁ;gugngfgi%urrﬁir‘;?%gﬁﬁ“'g&'&%é?em
projected Choi matrix 9 X

order to physically interpret the dominant relaxation pro-
csCcE=VAV (11) cesses, we therefore focus our attention firsTgmelaxation
-== === among the population&liagonal entries of the density ma-

where it is assumed that the eigenvalues have been order&# in the Zeeman basjsalong with the associated nonadia-

such that\ ;=\ .1 for m=1, ... N2—1, and defining the batic T, relaxation, and then try to account for the remaining

Lindblad matrices such that for all,,>0: T, relaxation via simple adiabatic, albeit correlated, pro-
cesses.

1L = VAmV|m). (12) The calculations given in the Appendix gave four Hermit-

ian Lindblad operators, which describe the relaxation of

This gave rise to a total of 11 Lindblad operators, the phasethe first spin,
of which were chosen so as to make them as nearly Hermit- W1 [—ma 1 yi_ 1
ian as possible. Once this was done, all 11 operators were LTl_ 0.153 0y, LTl_ V0.153% 0y,
within 2% of being Hermitian.

The relative contributions of these Lindblad operators to L}:=10.153% 007, L¥=\0.153Z0y0%, (15
the overall relaxation of the spins can be quantified by the o )
squared Frobenius normL[2=\,,. This calculation and similarly for the second spin,

shows that about 35% of the mean-square noise resided in X2_ [A1Eod 2 V2_ [0 1Eod .2
the first Lindblad operator, namely, LT, =\0.1828 0%, L7,=V0.15280y,
L, ~ 0.34 01+ 02) +0.0255102, (13) L¥=10.1528 0705, LP=10.15280507. (16)

which represents strongly correlated dephasing with for In addition_, near degeneracy_ of the (1,4) and (_2,3) rates in
both spins of~4.2 s[13], much as expected. The next four the relaxation superoperator in the Zeeman basis can be used
largest Lindblads together contributed, roughly equally, an{® combine the associated Lindblad operators into four
other 43% to the total mean-square noise, but were considPultiple-quantumT Lindblad operators based on the aver-

erably more difficult to interpret age rate:

L,~—0.013}—0.045} - 0.153:2— 0.061s2+0.150r 102 L= \0.0252 0102, L¥=\0.02520}02,
~0.03%7y0%+0.11%0305+0.1067; 07, L¥=\0.0252 0y0%, LY=\0.02520y07. (17)

L~ +0'0461%_0'02613_0-0572125_0-2661%23, By working through some examples, it may be seen that

(14)  the sum of the Lindbladian superoperators for each of the
1 N 5 ) 1 three sets of four Lindblad operators above also causes all
L4~—0.0247,—0.0067, —0.0810,— 0.07%y — 0.155050;  the off-diagonal entries 0p5°® to decay with the rate con-
1.2 1.2 1.2 stant 1/(Z;). This corresponds tmonadiabatic T relax-
—0. +0. —0. . . ) : )
0.19% 0, +0.0027, 75— 0.012r,0y ation. Therefore, we subtracted this nonadiab@ticcontri-

~_ 1_ 1_ 2 2 12 bution to get the adiabati€, contribution toR and derived
Ls~~0.017,~0.06r, ~0.071, ~0.09Qr; +0.090r, the following three Lindblad operators from it, using the

_0.001%1, 2_-0.183} )2(_0_118,%05_ Hadamard operator formalispi3]:
It can be shown thak ; contributes about 0.15$ to the adl_ 1 4.2 ad2_ 1 1 >
=./0. + =4/0. -
decay rates of the single-quantum coherenisgle-spin Ly, =V0 9569\/_5(02 o2, L3, =0 172%(02 o2):
flips), bringing down the decay tim&,~2.6 s and, save for
some small cross terms in the single quantum block, rather L$d3= J0.293 10%05. (18
little else. 2

The superoperators corresponding to each of the remairFhese correspond to totally correlated, totally anticorrelated,
ing nine Lindblads separately all contained significant cros&nd pure single-quantui, relaxation, respectivelyl3]. Al-
terms between the populations and the zero or double quatkough the Hadamard product formalism gave a simpler de-
tum coherences, in violation of the secular approximatiorscription with a clearer physical interpretation, it left a small
[14]. Only on summing over all of them do these nonphysi-discrepancy between the complete relaxation superoperator
cal cross terms cancel out, leaving a largely diagonal relaxreconstructed from the new Linblad operators above and the
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completely positive relaxation superoperaf®r®® obtained ~we have further shown how one can use the simpler and
by fitting to the experimental superpropagatffég. 3b)].  more intuitive “Hadamard operator” formalism to extract
The matrix of the relaxation superoperator reconstructedhe physical “noise generators” of the system from its full
from the new Lindblad operators abov@Z%¢, was obtained relaxation superoperator. We believe this two-step process is

by taking the 4<4 matrices for theT, and adiabaticT,  illustrative of how quantum process tomography on many

relaxation, i-e-B%fe andB%Eein the Appendix, and distribut- distinct kinds of physical systems should be done.

ing their entries at the corresponding locations of the 16
X 16 matrix RAE while setting all its other entries to zero.
The discrepancy was then quantified by computing the rela- This work was supported by ARO through Grant Nos.
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IR
This gave a value of 6.3%, which is roughly comparable to APPENDIX

the errors in the measurements of the density operators ) ) ) ) )

(~5%), indicating that the simplifying assumptions made in N this appendix we derive the physical “noise genera-
deriving the new Lindblad operators are able to account fofOrS” operative in 2,3-dibromothiophene from the full relax-
the experiments to within the measurement errors. These a&lion superoperator matrix shown in Figbg after convert-
sumptions included a lack of any correlations in the underinNg it from the transition to the Zeeman basis. First, The
lying T, processes as well as the absence of cross relaxatigiPmatrix was extracted and, assuming that the random

in the adiabaticT, processes, and are in accord with what isfielc;is responsible are'unco.rrelated at the two spins, us'ed to
expected in the NMR experiments on small molecules in th&l€rive the corresponding, Linblad operators. The nonadia-
liquid state[14]. batic T, relaxation rates are then subtracted from the diago-

nal entries of the relaxation superoperator matrix in the Zee-
man basis, and the result arranged as a “Hadamard
relaxation matrix”[13] (vide infra). Finally, this was decom-

In this paper, we have demonstrated a robust procedure kjyosed to yield a totally correlated, a totally anticorrelated,
which one can derive a set of Lindblad operators that collecand a pure single quantum Lindblad operator which collec-
tively account for a Markovian quantum process, with atively described the adiabatit, relaxation.
minimum of prior assumptions regarding the nature of the The populations block of the relaxation superoperator cor-
process beyond the physical necessity of complete positivityesponds to indices 1—4 in the transition basise Table ).
This procedure should be widely useful in studies of dissipaand the nonzero entries ¢f)(l| in the Zeeman basis. The
tive quantum processes and in designing and testing newalues obtained from the completely positive least-squares fit
guantum information processing devices. In the Appendixshown in Fig. 8b) are

V. CONCLUSION

iden oy o] 0707 1) 1 111)
0.0000 0.0000 0.0000 0.00 0.3301 —0.1435 —-0.1617 -—0.024

Bt{?: 0.0000 0.1780 —0.0002 0.0089( «»| —0.1435 0.3129 -0.0254 -0.1440 :B?je
0.0000 —0.0002 0.1784 -—0.0097 —0.1617 —0.0254 0.3500 —0.1630
0.0000 0.0089 —0.0097 0.3061 —0.0249 —-0.1440 —-0.1629 0.3319

(A1)

in the transition(left) as well as the Zeemafright) bases. that is,
The matricesB%i and B%‘l’e are related by theHadamard

Z _ pt Zee__ 1 t
transformW [13,23, 2WRTW =Ry < Ri*=;WRrW, (A3

1 1 1 sinceW?=1. In the absence of cross correlation, symmetry
considerations imply thag%‘ze should be centrosymmetric

1

1 1 -1 -1 . .
w=1 ' (A2) [24,27, and hence we shall use the symmetrized version
- 1 -1 1 -1 (RTS* 050 R0y 0}) and its Hadamard transform in the

1 -1 -1 1 following, which are
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0.0000 —0.0000 —0.0000 0.000 In a similar fashion, we may take those describingrelax-
00000 01780 —0.0002 0.000 ation of the second spin to be
0.0000 —0.0002 0.1784 0.000
0.0000 0.0000 0.0000 0.3061
Cors2 ossts _oomse ors  Lho 0Tl L= 01Hele}
| —0.1528 —0.0254 0.3315 —0.1532 A7)

—0.0249 -0.1528 —0.1532 0.3310 In addition, the near degeneracy of the (1,4) and (2,3) rates
_ R%ee_ (A4) can be used to combine the associated Lindblad operators
—1 into four multiple-quantuni, Lindblad operators based on
the average rate:

tra
RI% =

L =0.1528}0%, L7/ =0.1528;07,

As noted in the main paper, thlg of both spins is~5.6 s,
while the NOE ratgconnectings? and o2 in the transition
basig is negligibly Sr;eil” (0.0002). . _ Eﬁ( =/0.0252} o102, E%’ = ‘/0_0252%51(25,

The entries of—BT1 are equal to the diagonal entries of
the Choi matrixC of —R?® and the off-diagonal entries of
R7°¢ are theonly non-negligible entries in their respective LY =0.0252;0y0%, LY =10.0252;0y07.
rows and columns of. Therefore, they are eigenvalues of (A8)
the Choi matrix as well as its projectiafiC £, and their
corresponding eigenvectors are elementary unit vectors
[k)|j) relative to the Zeeman basis. It follows that the Lind-
blad operator for thej(k)th off-diagonal entry oB%ie may

By working through some examples, it may be seen that
e sum of the Lindbladian superoperators for each of the
: three sets of four Lindblad operators above also causes all
be written asJ;JT"ls(—(”B%fﬁ k))Y2k)(j|, and its contribu- the off-diagonal entries 0h3%° to decay with the rate con-

tion to 'BZee is given by stant 1/(Z;). This corresponds tmonadiabatic T relax-
_ . ation. Becaus@%iedoes not act on its off-diagonal entries, it
LE (2% = = GIRETR (k)i p3%9i (Kl = 21 )i 3% may also be seen that if one takes the Lindblad operators

((kIR7S9K)) k) (K| of the four diagonal entries d7°°and

subtractstheir superoperators from those for the off-diagonal
entries, this must exactly cancel the nonadiabaticdecay.
Formally, however, the negative of a Lindbladian superop-

responding to single spin flipghe so-called single-quantum g o101 i$ not a Lindbladian superoperator, and in any case we
coherenc@sare fourfold dgggnerate, and hencg WE can 1€y, ot really want to cancel the nonadiabafig, since it
place their glementary unit eigenvectors by arbltrary.unltaryactua"y occurs. In order to avoid accounting for the nona-
linear comb|n_at|ons thgreof. For example, the fogr L'nd.bladdiabaticT2 twice, it is nevertheless necessary to write down
operators which describe thig, relaxation of the first spin

b laced by the Hermiti tors: a set of Lindblad operators for it alone, without any re-
may be replaced by the Rermitian operators. laxation. Once again, on using the near equality of the diag-

onal entries ofBﬁ’e to replace them by their average and
taking suitable unitary linear combinations of the diagonal

—3p3%90)D- (A5)

The symmetry oB%‘fe implies that the eigenvalues Gfcor-

L¥:=0.15325(|2)(0] +[0)(2| +[3)(1|+|1)(3))

— J0.1532% o, Lindblads|j){j|, we obtain
i na0 _ 1 nal_ 1 1
L¥!= 015325 (|2)(0] - [0)(2] +[3)(1] ~[1)(3]) Ery=v0.331z], Ly, =V0331% 03,
— 1
=10.1532; 0y, L12= 0.33812402, LI®=\0.3312k0l0?. (A9)

L= /0.1532;(|2)(0] + [0)(2 - [3)(1| - |1)(3)) o | o
The Lindbladian superoperator of the first of these is obvi-

=/0.1532% 10?2, ouslyL??O(gA)=g, and so need not be considered further.

We now turn our attention to the diagonal entries of the
16X 16 Zeeman relaxation superoperaf@f®® which we

i
Eﬁz V0.153 2 (12)0]=10)(2| = [3){1]+]1)(3]) shall arrange in a A4 matrix of relaxation rate constants of
the corresponding entries of the density magﬁ?e. It can
=0.15323 007 (A6)  be shown that the %4 matrix
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(00 R?*900) (01R**901) (02R*902) (03 R**903)
(10R*910) (11R*q11) (12R*912) (13R*913)

Rﬁ&% = Ze Ze Ze Ze (AL0)
(20R7920) (21R**921) (22R**q22) (23R“*23)
(30R*30) (3UR*931) (32R*932) (3IR**933)
is also a symmetric submatrix of the Choi matéassociated witﬁ_zZee (up to sign, specifically
(00/clo0y (00c[11) (00/C[22) (00[C[33)
(11/clooy (11c|11) (11c]22) (11|c|33)
N - - - - (A11)
Raao™| (22c00) (22c11) (22c|22) (22([39
(33¢00) (33c11) (33cj22) (33cI39
|
The diagonal ofR35y is thus the same as the diagonal of 3 -1 -1 -1
R%ee Since we have already found a set of Lindblad opera- 1 1l -1 3 -1 -1
tors that fully account for the effects B6°°on p3°°, we will E=1-711T=4 _ 1 -1 3 1| A4

now focus our attention on its off- diagonal entries by defin-
ing a new matrixB%Ee, which is same aRd,ag save for its

four diagonal entries, which are set to zero as indicated beyhere1 denotes a column vector of four 1's. Moreover, the

-1 -1 -1 3

low: Lindblad operators fofT, relaxation may be extracted di-
rectly from —E B%‘;“EE without reference to the full super-
B%(Zeez ngz_ Diag(<kk|EZe(1kk>|k:O, 3. operator’s projected Choi matrix.

To see how this can be done, we first observe that given

(A12) any two diagonal matrice& andC (assumed here to equal
in dimension with column vectors of diagonal entries
As implied by our notationR7® contains all the informa- =diag(A) andc=diag(C), respectively, we have

tion regardingT, relaxation processes that is contained in ABC=(A 1 1'C)0OB=(ac’)O®B (Al5)
our full, but diagonal relaxation superoperat@®“® and in

a considerably more compact and easily understood fornfor any other(square but not necessarily diagonalatrix B
Unlike R7°¢, which acts on the column vectdiag(p£®) Of of equal dimension. It follows that the action on a density

diagonal entnes by matrix muIUphcanﬂR%ee acts onp3®®  operatorp of any Lindblad operatok, with respect to a basis

simply by taking the products of all correspondlng pairs Ofwhereln its matrixL is real and diagonal, can be expressed in
entries, one from each matrix, just as these entries are muﬁgrms of Hadamard products as

tiplied together in the full matrix-vector produ@®®q p3®9. Lp)=LpL—t12p—ipL2=(L117L—3L211"

This “entrywise” matrix multiplication, commonly known as - = == = - - ===
the Hadamard produc{15], has already been shown to be a -1

powerful means of describing “simpleT, relaxation pro-

cesse$13] (that is, processes not involving cross relaxation WhereR, is called aHadamard relaxation matrixor L. If

The Hadamard product will be denoted in the following: ~ Multiple diagonal Lindblad operators act simultaneously, the
net Hadamard relaxation matrix is of course the sum of those

associated with the individual Lindblads.
pRee= — EQPZGG— —[{jlpR%TK)(iIRT ﬁk>]13,k:0. Next, let us use the Lindblad operators for nonadiabatic
(A13) T, relaxation given in Eq(A9) above, to illustrate how we
can go the other way, that is, derive these Lindblad operators
from the corresponding Hadamard relaxation matrix. If we
Another important property of the matriR7* is that, let £} =diag(Lt;) be the column vectors formed from the

since the overall projected Choi matigkC £ must be posi- real diagonal entries of these Lindblad matrices and observe

tive semidefinite, the same is true of the projection of that their Hadamard square(s?a©€$a:0_331%1 for i
o7, VLT, =

Zee . . .
—Ry,", and the 44 block of the 16<16 projection matrix  _1 5 3 then Eq(A15) shows that the nonadiabafig Had-
£ that acts on- B%Z‘e is amard relaxation matrix may be written as

1'L*)Op=~R.Op, (A16)
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R = ¢ 1(4'161 2(gna1 Ty l(gnal ues, much as general Lindblad matrices may be obtained
from the eigenvalues and eigenvectors of the projected Choi
_ _(g_f}ﬂ@g“al $a2@£$a2+ Gﬁ;@@g%f matrix £ C £. The numerical values of the entries@ije, as

B %1(6 1®€”a1+ eq_32®€na2+ €$a3®€$a . extracted from the experimental superoperator in Fig. 3, are
- 2 0 07890 0.7757 1.28

- T T
7 ¢ 7 ¢ oo | 07890 0 05033 07426
R | B I B | Br.=| 07757 05033 0 07288 °
A0 Lt 12872 07426 07283 0
| -1 -1 -1]| -1 (A18)
17117 It is easily seen thaﬂ?zee like B%j”e, must be centrosymmet-
-1 1 ric, and if we IlkeW|se symmetrize and subtract the above
+ —1ll 1 nonadiabaticT, Hadamard relaxation matrix, we get
1]l1 0 04274 0.4279 0.95
1 1 17\ 7 117 e - REce_ R 04274 0  0.1721 0.427
03312 | 1 1 1 1 =T2 | 04279 0.1721 0  0.427§
8 1 1171 -1 0.9560 0.4279 0.4274 0
Al9
1 1 11/ 1 (AL9)
-1 The nonzero eigenvalues and associated eigenvectors of
[1 11 1] —E RYIE are (to within 1%
0.3312 1 1111
8 |1 1 1
L1 S 0.9560 ! 0 0.2913; -t
. y — 1 . E 1
~ 0.3312E-211") 2| 0 1
-1 1
01 11
0.33 1 0 1 1
=-0.331 . Al7
trotd e 0.1721 ! ! (A20)
1110 Y B N
0

Noting thatE?=E and that the row and column sums Bf
. S na -
are zero, it may be seen that the projectiek Ry E simply \yhich correspond to a system of three Lindblad operators for
removes the last two terms involving the Hadamard squareghe adiabaticT, relaxation, namely
from the above, which are proportional ibl", leaving
only —E RPE=0.331E behind. Because ‘the vect0€§a 1
adl_ | ad2__ | 1_ 2

are mutually orthogonal and all their squared norms ar&=To — 09569\/_‘ o)), L= 0'172%(22 92)
||£”2||2—0.3312, upon normalization they actually become
eigenvectors ok that are associated with its one nonzero, |_$d3:‘/0_293]%(7%(,§_ (A21)
but triply degenerate, eigenvalue of unity. - -

From this we see that the nonzero entries of the diagonafhese correspond to totally correlated, totally anticorrelated,
Lindblad matriced ¥’ are the entries of the eigenvectors of 4nq pure single-quantum, i.e. dipoldr, relaxation, respec-

-E BT2§ times the square roots of their respective eigenvaliively [13].
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