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Robust method for estimating the Lindblad operators of a dissipative quantum process
from measurements of the density operator at multiple time points

N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory
Department of Nuclear Engineering, MIT, Cambridge, Massachusetts 02139

~Received 18 November 2002; published 28 April 2003!

We present a robust method for quantum process tomography, which yields a set of Lindblad operators that
optimally fit the density operators measured at a sequence of time points. The benefits of this method are
illustrated using a set of liquid-state nuclear magnetic resonance measurements on a molecule containing two
coupled hydrogen nuclei which are sufficient to fully determine its relaxation superoperator. It was found that
the complete positivity constraint, which is necessary for the existence of the Lindblad operators, was also
essential for obtaining arobust fit to the measurements. The general approach taken here promises to be
broadly useful in studying dissipative quantum processes in many of the diverse experimental systems cur-
rently being developed for quantum-information processing purposes.
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I. INTRODUCTION

An important task in designing and building devices c
pable of quantum-information processing~QIP! is to deter-
mine the superoperators that describe the evolution of t
component subsystems from experimental measurem
This task is commonly known in QIP asquantum process
tomography~QPT! @1#. The superoperators obtained fro
QPT allow one to identify the dominant sources of decoh
ence and focus development efforts on eliminating the
while precise knowledge of relevant parameters can be u
to design quantum error correcting codes and
decoherence-free subsystems that circumvent their eff
@1,2#. Methods have previously been described by which
‘‘superpropagator’’P of a quantum process can be dete
mined@3,4#. Assuming that the process’ statistics are stati
ary and Markovian@5,6#, a more complete description ma
be obtained by determining the corresponding ‘‘supergen
tor,’’ that is, a time-independent superoperatorG from which
the superpropagator at any timet is obtained by solving the
differential equationṖ(t)52G P(t). The formal solution to
this equation is exp(2Gt), where ‘‘exp’’ is the superoperato
exponential.

The purpose of this paper is to describe a data fitt
procedure by which estimates of a supergenerator can
obtained. This problem is nontrivial because, as in ma
other data fitting problems, the estimates obtained from
straightforward~e.g., least-squares! fits turn out to be very
sensitive to small, even if random, errors in the measu
data. In some cases, this may result in a supergenerator
is obviously physically impossible; in others, it may simp
result in large errors in the generator despite it yielding
reasonably good fit to the data. Parameter estimation p
lems with this property are commonly known asill-
conditioned@7,8#. The main result of this paper is that, a
though the problem of estimating a supergenerator from
measurements of the superpropagators at various time
ill-conditioned, this ill-conditioning can be greatly alleviate
by incorporating prior knowledge of the solution into th
fitting procedure as a constraint. The prior knowledge t
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we use here is a very general property of open quan
system dynamics known ascomplete positivity.

Roughly speaking, complete positivity means that ifP is
a superoperator that maps a density operator of a syste
another density operator, then any extension of the fo
I^ P also returns a positive operator, whereI denotes the
identity map on an extension of the domain ofP. The most
general form of a completely positive Markovian mas
equation for the density operatorr of a quantum system is
known as the Lindblad equation@5,6#. This may be written as

ṙ~ t !52ı@H,r~ t !#1 1
2 (

m51

M

$@Lmr~ t !,Lm
† #1@Lm ,r~ t !Lm

† #%,

~1!

where\51, t is time,H is the system’s Hamiltonian,Lm are
known as Lindblad operators, andLm

† denote their adjoints. It
is easily seen that the Lindblad equation necessarily p
serves the trace tr(r)51 of the density matrix, meaning
tr( ṙ)50, and a little harder to show that it also preserves
positive-semidefinite character of the density opera
Proofs that it has the yet-stronger property of complete p
tivity may be found in Refs.@5,9–11#. The QPT method we
describe in this paper relies upon the Lindblad character
tion of complete positivity.

The paper is organized as follows. In the first part of t
paper we present a computational procedure that fits a c
pletely positive supergenerator to a sequence of estimate
the superpropagators of a quantum process at multiple
points. This procedure initially extracts an estimate of t
decoherent part of the supergenerator, without the Ham
tonian commutation superoperator~which is assumed to be
available from independent prior measurements!. It then re-
fines this initial estimate via a nonlinear least-squares fi
the superpropagators, in which complete positivity is e
forced by adding a suitable penalty function to the sum of
squares minimized. Finally, any residual noncompletely po
tive part of the supergenerator is ‘‘filtered’’ out by a matr
projection technique based on principle component anal
@11,12#.
©2003 The American Physical Society22-1
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In the second part of the paper, the procedure is valida
by using it to determine the natural spin-relaxation super
erator of a molecule containing two coupled spin 1/2 nuc
in the liquid state from a temporal sequence of density
erators. These, in turn, were derived by state tomogra
meaning a set of nuclear magnetic resonance~NMR! mea-
surements sufficient to determine the density matrix. In
process we confirm the ill-conditioned nature of the proble
and that the complete positivity constraint is needed to ob
a robust estimate of the supergenerator. The final results
used to compute a compatible set of Lindblad operators,
these were difficult to interpret. Hence the Hadamard rep
sentation ofT2-relaxation dynamics@13# was used to derive
a new set of Lindblad operators that are easier to inter
and explain most of the relaxation dynamics. The inform
tion these operators convey agree with theoretical expe
tions as well as with some additional independent meas
ments, in support of the accuracy of the results obtained

II. COMPUTATIONAL PROCEDURE

In this paper we are concerned with anN-dimensional
open quantum system (N,`), the dynamics of which are
described by a Markovian master equation of the fo
@5,6,14#:

dr

dt
5 2ı@H,r#2R~r2req!

⇔ drD

dt
5 2ıHrD2RrD . ~2!

In this equation,\[1, r5r(t) is the system’s density op
erator, req this operator at thermal equilibrium,rD[r
2req, H is the system’s internal Hamiltonian,H the corre-
sponding commutation superoperator, andR is the so-called
relaxation superoperator. The equivalence of the first an
second lines follows from the fact thatreq is time-
independent and proportional to the Boltzmann opera
exp(2H/kBT), so that it commutes withH.

By choosing a basis for the ‘‘Liouville space’’ of densit
operators, the equation may be written in matrix form
@11,14,15#

durD&

dt
5 2~ ıH1R!urD&[2GurD&, ~3!

where the underlines denote the corresponding matrice
some Liouville space basis andur& is the N2-dimensional
column vector obtained by stacking the columns of the d
sity matrix r on top of each other in left-to-right order@11#.
A numerical solution to this equation at any pointt in time
may be obtained by applying the propagatorP(t) to the ini-
tial condition urD(0)&, where the propagator is obtained b
computing the matrix exponentialP(t)5exp(2Gt) @15,16#.
Note thatH andR do not commute in general, and that th
sum G[ıH1R will not usually be a normal matrix~one
which commutes with its adjoint!. This, in turn, greatly re-
duces the efficiency and stability with which its matrix e
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ponential can be computed@17# ~although this was not an
issue in the small problems dealt with here!, and we expect it
to also significantly complicate theinverse problem.

In this section we describe an algorithm for solving th
inverse problem, that is, to determine the relaxation supe
erator R from an estimate of the HamiltonianH together
with estimates of the propagatorPm5P(tm) at M>1 time
points 0,t1,t2,•••,tM . This problem, like many othe
inverse problems, turns out to be ill-conditioned, mean
that small experimental errors in the estimates of theH and
Pm may be amplified to surprisingly large, and genera
nonphysical, errors in the resulting superoperatorR @7#. For
example, if one tries to estimateR in the obvious way as

R ' @2ıH2 ln~P1!#/t1 , ~4!

one will generally obtain nonsense even ifH and P1 are
known to machine precision, because of the well-known a
biguity of the matrix logarithm with respect to the additio
of independent multiples of 2ıp onto its eigenvalues. Using
the principal branch of the logarithms will only work ifH is
small compared toR, and the only reasonably reliabl
means of resolving the ambiguities is to utilize addition
data and/or prior knowledge of the solution. Even then
combinatorial search for the right multiples of 2ıp may be
infeasibly time consuming.

An alternative to the logarithm, which utilizes data
multiple time points and is capable of resolving the ambig
ities even whenH is much larger thanR, is to estimate the
derivative att50 of

eitH/2P~ t !eitH/2 5 e2tR1O~ t2!. ~5!

This derivative is obtained by Richardson extrapolation,
ing central differencing aboutt50 over a sequence of tim
points such thattm52m21t1 (m51, . . . ,M ), according to
the well-known procedure@18#:

for m from 1 to M do

D1,11M2mª 2m22~eit mH/2Pmeit mH/2

2e2 i t mH/2Pm
21e2 i t mH/2!;

for , from 1 to m21 do

D11,,11M2mª D,,11M2m

1~D,,11M2m2D,,M2m!/~4,21!;

end do
end do

The inversePm
215P(2tm) is assured of existing unless lon

times are used or the errors in the data are large. The me
produces an estimate of the derivative att50 that is accurate
up toO(t1

2M), and which may be increased by computing t
exponential from the highest-order estimate at further in
val halvings. The method performs well when the relati
errors in the Hamiltoniand!1/(DntM), where Dn is the
range of frequencies present in the Hamiltonian, but it te
to emphasize the errors inP1 rather than averaging over th
2-2



n
g
w

f

us
t
te

t
b

ar
e
n

s
a

ne
ac

p

-
n

os
r

ill-
ta

d
na

rt

-
r-

.

an
ce

ro-
y

is
e

es
-

aus
tor

s
er-
the

to
ec-

to
s a

of

re-
r
e

er
he
ga-

r-

en-

ob-
su-

d-

ROBUST METHOD FOR ESTIMATING THE LINDBLAD . . . PHYSICAL REVIEW A67, 042322 ~2003!
errors at all the time points. Hence we do not recomme
that it be used alone, but rather as a means of obtainin
good starting point for a nonlinear fit to the data, as will no
be described.

This nonlinear fit involves minimization of the sum o
squares

x2~R ; H,P1 , . . . ,PM ! [ (
m51

M

iexp@2~ ıH1R!tm#2PmiF
2

~6!

with respect toR, wherei•iF
2 denotes the squared Frobeni

norm ~sum of squares of the entries of its matrix argumen!.
Previous results with similar minimization problems indica
that x2 will have many local minima@19#, making a good
starting point that takes the 2ıp ambiguities into accoun
absolutely necessary. The derivatives of this function may
obtained via the techniques described in Ref.@16#, but the
improvements in efficiency to be obtained by their use
likely to be of limited value in practice given that all th
resources needed, both experimental and computatio
grow rapidly withN ~which itself grows exponentially with
the number of qubits used in quantum information proce
ing problems!. In addition, the quality of the results matters
great deal more than the speed with which they are obtai
and the quality will not generally depend greatly on the
curacy with which the minimum is located.

For these reasons, we have used the Nelder-Mead sim
algorithm @20#, as implemented in theMATLAB ™ program,
for the small ~two-qubit! experimental test problem de
scribed in the following section. This has the further adva
tage of being able to avoid local minima better than m
gradient-based optimization algorithms. Preliminary nume
cal studies, however, exhibited the anticipated
conditioning with respect to small perturbations in the da
even whenR was constrained to be symmetric~implying a
unital system which satisfies detailed balance! and positive
semidefinite~as required for the existence of a finite fixe
point!. Therefore, it is necessary to incorporate additio
prior information regardingR into the minimization. The
information that we have found to be effective is a prope
of R known ascomplete positivity@5,6,11#.

An intrinsic definition which does not involve an environ
ment was first given by Kraus@21#, and states that a supe
propagatorP is completely positive if and only if it can be
written as a ‘‘Kraus operator sum,’’ namely,

P~r! 5 (
,51

N2

K,rK,
† , ~7!

wherer5r† and K1 , . . . ,KN2 all act on the system alone
Another intrinsic definition subsequently given by Choi@22#
states that a superpropagator is completely positive if
only if, relative to any basis of the system’s Hilbert spa
the so-calledChoi matrix is positive semidefinite@11#,
namely,
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0 d C [ (
i , j 50

N21

P~ u i &^ j u! ^ ~ u i &^ j u! 5 (
i , j 50

N21

P~ u i &u j &)~^ i u^ j u!.

~8!

This equation uses the notation of quantum information p
cessing, in which thei th elementary unit vector is denoted b
u i & (0< i ,N), P(u i &^ j u) is theN3N matrix of the operator
obtained by applying the superpropagatorP to the projection
operator given byu i &^ j u versus our choice of basis, andP is
the N23N2 matrix for P versus the Liouville space bas
u i &u j & ~as forH, etc., above!. It can further be shown that th
eigenvectorsk, of the Choi matrix are related to the~matri-
ces of an equivalent set of! Kraus operators byuK,&
5Ak,k, , where k,>0 are the corresponding eigenvalu
and the ‘‘ket’’ uK,& again indicates the column vector ob
tained by stacking the columns ofK, on top of one another
@11#.

These results can be used not only to compute a Kr
operator sum from any completely positive superpropaga
given as a ‘‘supermatrix’’ acting on theN2-dimensional
Liouville space, but also to ‘‘filter’’ such a supermatrix so a
to obtain the supermatrix of the completely positive sup
propagator nearest to it, in the sense of minimizing
Frobenius norm of their difference@11#. This is done simply
by setting any negative eigenvalues of the Choi matrix
zero, rebuilding it from the remaining eigenvalues and v
tors, and converting this reconstructed Choi matrix back
the corresponding supermatrix. Although this generally ha
beneficial effect upon the least-squares fits versusx2 ~as de-
fined above!, it is still entirely possible that the sequence
filtered propagatorsPm8 will not correspond to a completely
positiveMarkovianprocess, so that no time-independent
laxation superoperatorR can fit it precisely. This, togethe
with the ill-conditioned nature of the problem, implies on
will still not usually obtain satisfactory results even aft
filtering. For this reason we shall now describe how t
above characterizations of completely positive superpropa
tors can be extended to supergenerators.

As indicated in the Introduction, completely positive Ma
kovian processes, orquantum dynamical semigroupsas they
are also known, may be characterized as those with a g
eratorG that can be written in Lindblad form@5,6,9–11#. On
expanding the commutators in Eq.~1!, this becomes

2G~r! [2ı@H,r#1 1
2 (

m51

N2

~2LmrLm
† 2Lm

† Lmr2rLm
† Lm!.

~9!

The operatorsLm are usually calledLindblad operators. It
may be seen that the Choi matrixC associated with2R is
never positive semidefinite, becausêI uCuI &5tr(2R),0.
Nevertheless, it can be shown that the superpropagator
tained by taking the exponential of any trace-preserving
pergeneratorR @meaning tr„R(r)…5^I uRur&50] is com-
pletely positive if and only if a certain projection ofC is
positive semidefinite, namely,E C E, whereE5I ^ I 2uI &^I u
@11#. In this case an equivalent system of orthogonal Lin
blad operators is determined byuLm&5Alm,m , wherelm
2-3
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BOULANT et al. PHYSICAL REVIEW A 67, 042322 ~2003!
>0 are the eigenvalues and,m the eigenvectors ofE C E. In
the event thatE C E has negative eigenvalues we can simp
set them to zero to obtain a similar but completely posit
supergenerator, much as we did with the Kraus operat
Most importantly, however, this characterization of co
pletely positive supergenerators gives us a means of en
ing complete positivity during nonlinear fits to a sequence
propagators at multiple time points.

The following section describes our experience with a
plying this approach to a sequence of superpropagators
tained from liquid-state NMR data. The complete positiv
of the relaxation superoperator was maintained by addin
simple penalty function onto the sum of squares that w
minimized by the simplex algorithm, as described abo
This penalty function consisted of the sum of the square
the negative eigenvalues of the corresponding projected C
matrix. While more rigorous and efficient methods of forci
the projected Choi matrix to be positive semidefinite are c
tainly possible, this strategy was sufficient to demonstrate
main result of this paper, which is thatthe complete positivity
constraint greatly alleviates the ill-conditioned nature
such fits.

III. EXPERIMENTAL VALIDATION

The experiments were carried out on a two-spin-1
2 system

consisting of the hydrogen atoms in 2,3-dibromothiophe
~see Fig. 1! at 300 K dissolved in deuterated acetone, usin
Bruker Avance 300 MHz spectrometer. The internal Ham
tonian of this system in a frame rotating at the frequency
the second spin is

H [ Hint 5 p@n1sz
11~J/2!s1

•s2# ~10!

wheren15161.63 Hz is the chemical shift of the first spi
J55.77 Hz is the coupling between the spins, ands
5@sx ,sy ,sz# are Pauli spin operators.

The ‘‘quantum operation’’ we characterized was just fr
evolution of the system under its internal Hamiltonian,

FIG. 1. Molecule of 2,3-dibromothiophene with the two proto
labeled 1 and 2. The chemical bonds among the atoms are indic
by double parallel lines, and a transparent ‘‘dot-surface’’ used
indicate their van der Waals radii.
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gether with decoherence and relaxation back towards
equilibrium statereq;sz

11sz
2 . In liquid-state NMR on

small organic molecules such as dibromothiophene, this p
cess is mediated primarily by fluctuating dipolar interactio
between the two protons as well as with spins neighbor
molecules, and since the correlation time for small molecu
in room temperature liquids is on the order of picosecon
the Markovian approximation is certainly valid@14,24#. We
add that our sample was not degassed so that the presen
dissolved paramagnetic O2 shortened theT1 and T2 relax-
ation times considerably.

The experiment consisted of preparing a complete se
orthogonal input states~that is, density matrices!, letting
each evolve freely for a given timeT, and then determining
the full output states via quantum state tomography@25,26#.
Since only ‘‘single quantum’’ coherences can be directly o
served in NMR@14#, this involves repeating the experime
several times followed by a different readout pulse seque
each time, until all the entries of the density matrix ha
been mapped into observable ones. The experiments w
carried out at four exponentially spaced timesT, as required
by the Richardson extrapolation procedure described ab
specificallyT50.4,0.8,1.6, and 3.2 s.

To describe the density and superoperator matrices,
so-called ‘‘transition basis’’ was used@14#. This Liouville
space basis is intermediate between the Cartesian basis
the Zeeman~or polarization and shift operator@14#! basis, in
that the basis elements are all Hermitian like those of
Cartesian basis, but like the Zeeman basis they have a w
definedcoherence order, or difference in total angular mo
mentum along the applied magnetic fieldB0 between the two
Zeeman states connected by the transition. These basis s
are listed in Table I versus the Cartesian basis.

This basis was chosen because the relaxation supero
tor R is expected to have the ‘‘Redfield kite’’ structure in th

ted
o

TABLE I. Table of operators~vs Cartesian basis! of the transi-
tion basis used for the density and superoperator matrices, the
responding matrix indices and their coherence orders~see text!.

Index Operator Order

1 434 identity 0
2 sz

1 0
3 sz

2 0
4 sz

1sz
2 0

5 sx
1sx

21sy
1sy

2 0
6 sx

1sy
22sy

2sx
1 0

7 sx
1 1

8 sy
1 1

9 sx
2 1

10 sy
2 1

11 sx
1sz

2 1
12 sy

1sz
2 1

13 sz
1sx

2 1
14 sz

1sy
2 1

15 sx
1sx

22sy
1sy

2 2
16 sx

1sy
21sy

1sx
2 2
2-4
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ROBUST METHOD FOR ESTIMATING THE LINDBLAD . . . PHYSICAL REVIEW A67, 042322 ~2003!
basis@14#. This block-diagonal structure arises because
difference in frequency between transitions of different c
herence orders, given that the Zeeman interaction domin
all others, is large enough to average out these other inte
tions including those responsible for decoherence and re
ation, in effect decoupling the blocks from one another
that nocross relaxationoccurs between them~see Fig. 2!.
This so-called ‘‘secular approximation’’ considerably reduc
the number of parameters in the superoperator from
5@(22)2#2 to 81532122182122 @since the diagonal (sz)
basis elements do not cross relax with any nondiagonal
ments#.

An additional reduction may be obtained by assuming
tailed balance: the microscopic reversibility of all cros
relaxation processes. The relaxation superoperator re
structed from the experimental data was bordered with
initial row and column of zeros to forceR(I )50, because
the totally random density matrixI /4 neither varies nor con
tributes to the variations in any of the other transition ope
tors. This may be done providedR operates onrD5r
2req, and together with detailed balance it implies that t
supermatrixR will be symmetric, reducing the number o
parameters to be estimated to only 48561313613.

The result of applying the fitting procedure without th
complete positivity constraint to the initial estimate obtain
by Richardson extrapolation is shown in Fig. 3~a!. It may be
seen that the self-relaxation rates did not vary in a system
fashion with the coherence order and that large cro
relaxation rates were found, neither of which is consist
with the physics of spin relaxation in liquid-state NMR spe
troscopy@14#. In addition, this relaxation superoperator im
plies that spin 1 has aT2'2.3 s, while spin 2 has aT2
'4.6 s, in disagreement with the independent measurem
of T2 given below.

The fit after adding the complete positivity constraint
shown in Fig. 3~b!, again starting from the results of th
Richardson extrapolation. It may now be seen that the res
do vary systematically with coherence number and that
resulting relaxation superoperator is very nearly diagonal

FIG. 2. Redfield kite structure of the relaxation superopera
expressed in the transition basis~Table I!. The shaded area corre
sponds to blocks of different coherence order, which are effectiv
decoupled from each other.
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obtain further evidence for the validity of this superoperat
we measured the single-spinT1 ~longitudinal, orsz) andT2
~transverse, orsx5sy) relaxation rates, using the well
established inversion-recovery and Carr-Purcell-Meiboo
Gill ~CPMG! experiments@24#. The results for both spins
were T155.6 s andT252.7 s, which agree quite well with
the values of 5.6 s and 2.6 s obtained from this relaxat
superoperator. Although this is obviously a relatively simp
relaxation superoperator, it is reasonable to expect tha
complete positivity constraint will substantially improve th
estimates of more complicated superoperators contain
nonzero cross-relaxation rates that cannot be obtained f
the standard experiments.

Finally, the cross-relaxation rate between the populat
termssz

1 and sz
2 , which is due to the well-known nuclea

Overhauser effect~NOE! @27#, is essentially zero in Fig
3~b!. This can occur when the overall rotational correlati
time of the molecule plus its ‘‘solvent-cage’’ is on the ord
of 1 ns, but was somewhat unexpected given the small
of 2,3-dibromothiophene. As a result, we carried out the
lective inversion recovery experiment that consists of inve
ing selectively the longitudinal magnetization of one of t
two protons and looking at the evolution of the magnetiz
tion of the other one while the first relaxes towards therm
equilibrium. The change in longitudinal magnetization of t
second proton was measured to be less than 1% of the
perturbed magnetization revealing essentially no NOE ef
and providing yet further evidence for the validity of th
superoperator. The lack of any appreciable NOE in o
sample is somewhat surprising, and implies a rotational c
relation time tc for dibromothiophene of order 1/v0
.500 ps, at which value theory predicts the NOE will va
ish @14#. This is somewhat surprising given the modest m
lecular weight~242 D! of dibromothiophene, the low viscos
ity of the acetone solvent used, and the valuetc54.4 ps
reported in@24# with the solvent carbon disulfide. A muc
longer correlation time is consistent with the shorterT1 re-
laxation time of our sample~5.6 s instead of 47.5 s@24#!,
although theT1 was also shortened by the presence of d
solved oxygen in our sample. The correlation time repor
in Ref. @24# was derived from a dipole-dipoleT2 of 88 s.
Since this is not expected to be affected by dissolved oxyg
a stronger indication of a much longer correlation time m
be found in our dipole-dipoleT253.4 s, which is derived
from our experimental results in the Appendix. This impli
that ourtc.113.9 ps, which although still a little short is a
least getting close enough to lead to some reduction in
NOE. Such a long correlation time may be rationalized a
‘‘solvent cage’’ effect due to electric dipole interactions b
tween the solvent and solute in our sample, which is
present in the nonpolar solvent carbon disulfide.

Because of the substantial degeneracy of the diagona
ements with the same coherence order, the superoperat
Fig. 3~b! was also very nearly diagonal in the eigenbasis
the Hamiltonian commutation superoperatorH, so thatH
andR very nearly commute. This allowed further estimat
to be obtained directly from the superpropagato
Pm'exp(2ıHtm)exp(2Rtm), simply by taking the~real!
logarithms of the absolute values of their eigenvalues,

r

ly
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FIG. 3. Three different estimates of the relaxation superoperator of 2,3-dibromothiophene in the transition basis, indexed as in
Table I. ~a! Relaxation superoperator obtained from a least-squares fit, without the complete positivity constraint, of the exp
exp@2ı(H1R)tm# to the propagatorsPm at the corresponding times (t150.4,t250.8,t351.6,t453.2 s) with respect to the symmetri
Redfield kite relaxation superoperator matrixR, starting from the results of Richardson extrapolation~see text!. ~b! The relaxation super-
operator obtained from a fit to the same data and with the same starting value ofR, but with the complete positivity constraint included
the fit. ~c! The relaxation superoperator obtained by assuming thatH andR commute, and using the average of the estimates obtaine
taking the logarithms of the absolute values of the eigenvalues of the propagators over all four time points as the final estimate~see text!.
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thereby canceling the phase factors from the Hamilton
exponential. From Fig. 3~c! we see that the result of avera
ing these estimates over all four evolution times is very si
lar to the completely positive estimate in Fig. 3~b! ~correla-
tion coefficient 0.80; ratio of squared norm of the differen
to that of the average 0.90). We note that the estimate in
3~c! did not explicitly assume the Redfield kite structur
thereby providing a further consistency check on our resu

IV. INTERPRETATION VIA LINDBLAD AND HADAMARD
OPERATORS

In this section we present a system of Lindblad operat
which act on the density operator to give essentially the sa
derivative as the relaxation superoperator described ab
~see Fig. 3!. As described in the foregoing ‘‘Computation
Procedure’’ section, such a system of Lindblad operators m
be obtained by diagonalizing the corresponding projec
Choi matrix, although it will be seen that a more easily
terpreted system was obtained by considering the parts oR
04232
n

i-

g.
,
s.

s,
e

ve

y
d

-

responsible forT1 and T2 relaxation separately using th
‘‘Hadamard relaxation matrix’’ formalism@13#. Because
these calculations were somewhat involved, however, the
tails are given in the Appendix. From here on, the relaxat
superoperatorR will correspond to the matrix shown in Fig
3~b!.

These representations of relaxation processes are
mally applied to the density matrix in the Zeeman basisrD

Zee

~regarded as the computational basis in QIP!, which requires
converting the supergeneratorR from the transition to the
Zeeman basis. This is easily done via a unitary transform
tion, RZee[2U RtraU†, whereUur tra&5urZee& ~the matrixU
may be derived from Table I; the factor of 2 corrects for
change in norm due to the fact that the transition basis
Hermitian!. Although any relaxation superoperator can
modified to act directly on the density operatorr rather than
its difference with the equilibrium density operatorrD5r
2req ~vide supra! by taking the right projectionR(I
2ureq&^Iu) @28,29#, this makes only a negligible change
2-6
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ROBUST METHOD FOR ESTIMATING THE LINDBLAD . . . PHYSICAL REVIEW A67, 042322 ~2003!
R since in liquid-state NMRreq differs from the identityI by
ireq2I iF /i I iF&1025. In any case, the treatment ofT1 re-
laxation given in the Appendix was considerably simplifi
by treating it as a unital~identity preserving! process acting
on rD.

As described following Eq.~9!, a complete system o
Lindblad operators may be obtained by diagonalizing
projected Choi matrix

E C E 5 V L V†, ~11!

where it is assumed that the eigenvalues have been ord
such thatlm>lm11 for m51, . . . ,N221, and defining the
Lindblad matrices such that for alllm.0:

uLm& 5 AlmVum&. ~12!

This gave rise to a total of 11 Lindblad operators, the pha
of which were chosen so as to make them as nearly Her
ian as possible. Once this was done, all 11 operators w
within 2% of being Hermitian.

The relative contributions of these Lindblad operators
the overall relaxation of the spins can be quantified by
squared Frobenius normsiLmiF

25lm . This calculation
shows that about 35% of the mean-square noise reside
the first Lindblad operator, namely,

L1 ' 0.346~sz
11sz

2!10.025sz
1sz

2 , ~13!

which represents strongly correlated dephasing with aT2 for
both spins of;4.2 s@13#, much as expected. The next fo
largest Lindblads together contributed, roughly equally,
other 43% to the total mean-square noise, but were con
erably more difficult to interpret

L2'20.013sx
120.045sy

120.153sx
220.061sy

210.150sx
1sz

2

20.039sy
1sz

210.111sz
1sx

210.106sz
1sy

2 ,

L3'10.046sz
120.026sz

220.057sx
1sy

220.266sz
1sz

2 ,
~14!

L4'20.024sx
120.006sy

120.081sx
220.077sy

220.155sx
1sz

2

20.193sy
1sz

210.002sz
1sx

220.012sz
1sy

2 ,

L5'20.017sx
120.060sy

120.071sx
220.090sy

210.090sx
1sz

2

20.001sy
1sz

220.183sz
1sx

220.118sz
1sy

2 .

It can be shown thatL3 contributes about 0.15 s21 to the
decay rates of the single-quantum coherences~single-spin
flips!, bringing down the decay timeT2'2.6 s and, save fo
some small cross terms in the single quantum block, ra
little else.

The superoperators corresponding to each of the rem
ing nine Lindblads separately all contained significant cr
terms between the populations and the zero or double q
tum coherences, in violation of the secular approximat
@14#. Only on summing over all of them do these nonphy
cal cross terms cancel out, leaving a largely diagonal re
04232
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ation superoperator behind: the ratio of the mean-squ
value of the off-diagonal entries ofR to that of the diagonal
entries was 1.3% in the transition basis and 3.8% in the Z
man; the latter dropped to 1.8% on excluding the block c
responding toT1 relaxation of the populations~vide infra!.
The nonphysical nature of most of the Lindblads is clearly
artifact of the way that our procedure for calculating the
forces them to be orthogonal and minimal in number.
order to physically interpret the dominant relaxation pr
cesses, we therefore focus our attention first onT1 relaxation
among the populations~diagonal entries of the density ma
trix in the Zeeman basis!, along with the associated nonadi
baticT2 relaxation, and then try to account for the remaini
T2 relaxation via simple adiabatic, albeit correlated, p
cesses.

The calculations given in the Appendix gave four Herm
ian Lindblad operators, which describe theT1 relaxation of
the first spin,

LT1

x15A0.15321
2 sx

1 , LT1

y15A0.15321
2 sy

1 ,

LT1

xz5A0.15321
2 sx

1sz
2 , LT1

yz5A0.15321
2 sy

1sz
2 , ~15!

and similarly for the second spin,

LT1

x25A0.15281
2 sx

2 , LT1

y25A0.15281
2 sy

2 ,

LT1

zx5A0.15281
2 sz

1sx
2 , LT1

zy5A0.15281
2 sz

1sy
2 . ~16!

In addition, near degeneracy of the (1,4) and (2,3) rate
the relaxation superoperator in the Zeeman basis can be
to combine the associated Lindblad operators into f
multiple-quantumT1 Lindblad operators based on the ave
age rate:

LT1

xx5A0.02521
2 sx

1sx
2 , LT1

xy5A0.02521
2 sx

1sy
2 ,

LT1

yx5A0.02521
2 sy

1sx
2 , LT1

yy5A0.02521
2 sy

1sy
2 . ~17!

By working through some examples, it may be seen t
the sum of the Lindbladian superoperators for each of
three sets of four Lindblad operators above also cause
the off-diagonal entries ofrD

Zee to decay with the rate con
stant 1/(2T1). This corresponds tononadiabatic T2 relax-
ation. Therefore, we subtracted this nonadiabaticT2 contri-
bution to get the adiabaticT2 contribution toR and derived
the following three Lindblad operators from it, using th
Hadamard operator formalism@13#:

LT2

ad15A0.9560
1

A8
~sz

11sz
2!, LT2

ad25A0.1721
1

A8
~sz

12sz
2!,

LT2

ad35A0.29311
2 sz

1sz
2 . ~18!

These correspond to totally correlated, totally anticorrelat
and pure single-quantumT2 relaxation, respectively@13#. Al-
though the Hadamard product formalism gave a simpler
scription with a clearer physical interpretation, it left a sm
discrepancy between the complete relaxation superope
reconstructed from the new Linblad operators above and
2-7
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BOULANT et al. PHYSICAL REVIEW A 67, 042322 ~2003!
completely positive relaxation superoperatorR Zee obtained
by fitting to the experimental superpropagators@Fig. 3~b!#.
The matrix of the relaxation superoperator reconstruc
from the new Lindblad operators above,Rnew

Zee , was obtained
by taking the 434 matrices for theT1 and adiabaticT2

relaxation, i.e.,RT1

Zee andRT2

Zee in the Appendix, and distribut-

ing their entries at the corresponding locations of the
316 matrixRnew

Zee while setting all its other entries to zero
The discrepancy was then quantified by computing the r
tive difference between the superoperators, namely,

iRZee2Rnew
ZeeiF

iRZeeiF

. ~19!

This gave a value of 6.3%, which is roughly comparable
the errors in the measurements of the density operat
(;5%), indicating that the simplifying assumptions made
deriving the new Lindblad operators are able to account
the experiments to within the measurement errors. These
sumptions included a lack of any correlations in the und
lying T1 processes as well as the absence of cross relaxa
in the adiabaticT2 processes, and are in accord with what
expected in the NMR experiments on small molecules in
liquid state@14#.

V. CONCLUSION

In this paper, we have demonstrated a robust procedur
which one can derive a set of Lindblad operators that col
tively account for a Markovian quantum process, with
minimum of prior assumptions regarding the nature of
process beyond the physical necessity of complete positi
This procedure should be widely useful in studies of dissi
tive quantum processes and in designing and testing
quantum information processing devices. In the Append
04232
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we have further shown how one can use the simpler
more intuitive ‘‘Hadamard operator’’ formalism to extrac
the physical ‘‘noise generators’’ of the system from its fu
relaxation superoperator. We believe this two-step proces
illustrative of how quantum process tomography on ma
distinct kinds of physical systems should be done.
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APPENDIX

In this appendix we derive the physical ‘‘noise gene
tors’’ operative in 2,3-dibromothiophene from the full rela
ation superoperator matrix shown in Fig. 3~b!, after convert-
ing it from the transition to the Zeeman basis. First, theT1
submatrix was extracted and, assuming that the rand
fields responsible are uncorrelated at the two spins, use
derive the correspondingT1 Linblad operators. The nonadia
batic T2 relaxation rates are then subtracted from the dia
nal entries of the relaxation superoperator matrix in the Z
man basis, and the result arranged as a ‘‘Hadam
relaxation matrix’’@13# ~vide infra!. Finally, this was decom-
posed to yield a totally correlated, a totally anticorrelate
and a pure single quantum Lindblad operator which coll
tively described the adiabaticT2 relaxation.

The populations block of the relaxation superoperator c
responds to indices 1–4 in the transition basis~see Table I.!
and the nonzero entries ofuI &^I u in the Zeeman basis. Th
values obtained from the completely positive least-square
shown in Fig. 3~b! are
RT1

tra 5

iden sz
1 sz

2 sz
1sz

2

F 0.0000 0.0000 0.0000 0.0000

0.0000 0.1780 20.0002 0.0089

0.0000 20.0002 0.1784 20.0097

0.0000 0.0089 20.0097 0.3061

G ↔

u↑↑& u↑↓& u↓↑& u↓↓&

F 0.3301 20.1435 20.1617 20.0249

20.1435 0.3129 20.0254 20.1440

20.1617 20.0254 0.3500 20.1630

20.0249 20.1440 20.1629 0.3319

G 5 RT1

Zee

~A1!
try
c

ion
e

in the transition~left! as well as the Zeeman~right! bases.
The matricesRT1

tra and RT1

Zee are related by theHadamard

transformW @13,23#,

W [ 1
2F 1 1 1 1

1 1 21 21

1 21 1 21

1 21 21 1

G , ~A2!
that is,

2W RT1

ZeeW 5 RT1

tra ↔ RT1

Zee5 1
2 W RT1

traW, ~A3!

sinceW25I . In the absence of cross correlation, symme
considerations imply thatRT1

Zee should be centrosymmetri

@24,27#, and hence we shall use the symmetrized vers
1
2 (RT1

Zee1sx
1sx

2RT1

Zeesx
1sx

2) and its Hadamard transform in th

following, which are
2-8
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ROBUST METHOD FOR ESTIMATING THE LINDBLAD . . . PHYSICAL REVIEW A67, 042322 ~2003!
RT1

tra 5 F 0.0000 20.0000 20.0000 0.0000

0.0000 0.1780 20.0002 0.0000

0.0000 20.0002 0.1784 0.0000

0.0000 0.0000 0.0000 0.3061

G
↔ F 0.3310 20.1532 20.1528 20.0249

20.1532 0.3315 20.0254 20.1528

20.1528 20.0254 0.3315 20.1532

20.0249 20.1528 20.1532 0.3310

G
5 RT1

Zee. ~A4!

As noted in the main paper, theT1 of both spins is;5.6 s,
while the NOE rate~connectingsz

1 andsz
2 in the transition

basis! is negligibly small (20.0002).
The entries of2RT1

Zee are equal to the diagonal entries

the Choi matrixC of 2RZee, and the off-diagonal entries o
RT1

Zee are theonly non-negligible entries in their respectiv

rows and columns ofC. Therefore, they are eigenvalues
the Choi matrix as well as its projectionE C E, and their
corresponding eigenvectors are elementary unit vec
uk&u j & relative to the Zeeman basis. It follows that the Lin
blad operator for the (j ,k)th off-diagonal entry ofRT1

Zee may

be written asLT1

jk [(2^ j uRT1

Zeeuk&)1/2uk&^ j u, and its contribu-

tion to ṙD
Zee is given by

LT1

jk ~rD
Zee! [ 2^ j uRT1

Zeeuk&~ uk&^ j urD
Zeeu j &^ku2 1

2 u j &^ j urD
Zee

2 1
2 rD

Zeeu j &^ j u!. ~A5!

The symmetry ofRT1

Zee implies that the eigenvalues ofC cor-

responding to single spin flips~the so-called single-quantum
coherences! are fourfold degenerate, and hence we can
place their elementary unit eigenvectors by arbitrary unit
linear combinations thereof. For example, the four Lindb
operators which describe theT1 relaxation of the first spin
may be replaced by the Hermitian operators:

LT1

x15A0.15321
2 ~ u2&^0u1u0&^2u1u3&^1u1u1&^3u!

5A0.15321
2 sx

1 ,

LT1

y15A0.1532
i

2
~ u2&^0u2u0&^2u1u3&^1u2u1&^3u!

5A0.15321
2 sy

1 ,

LT1

xz5A0.15321
2 ~ u2&^0u1u0&^2u2u3&^1u2u1&^3u!

5A0.15321
2 sx

1sz
2 ,

LT1

yz5A0.1532
i

2
~ u2&^0u2u0&^2u2u3&^1u1u1&^3u!

5A0.15321
2 sy

1sz
2 . ~A6!
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In a similar fashion, we may take those describingT1 relax-
ation of the second spin to be

LT1

1x 5A0.15281
2 sx

2 , LT1

1y 5 A0.15281
2 sy

2 ,

LT1

zx 5A0.15281
2 sz

1sx
2 , LT1

zy 5A0.15281
2 sz

1sy
2 .

~A7!

In addition, the near degeneracy of the (1,4) and (2,3) ra
can be used to combine the associated Lindblad opera
into four multiple-quantumT1 Lindblad operators based o
the average rate:

LT1

xx 5A0.02521
2 sx

1sx
2 , LT1

xy 5A0.02521
2 sx

1sy
2 ,

LT1

yx 5A0.02521
2 sy

1sx
2 , LT1

yy 5A0.02521
2 sy

1sy
2 .

~A8!

By working through some examples, it may be seen t
the sum of the Lindbladian superoperators for each of
three sets of four Lindblad operators above also cause
the off-diagonal entries ofrD

Zee to decay with the rate con
stant 1/(2T1). This corresponds tononadiabatic T2 relax-
ation. BecauseRT1

Zeedoes not act on its off-diagonal entries,

may also be seen that if one takes the Lindblad opera
(^kuRT1

Zeeuk&)1/2uk&^ku of the four diagonal entries ofRT1

Zee and

subtractstheir superoperators from those for the off-diagon
entries, this must exactly cancel the nonadiabaticT2 decay.
Formally, however, the negative of a Lindbladian supero
erator is not a Lindbladian superoperator, and in any case
do not really want to cancel the nonadiabaticT2, since it
actually occurs. In order to avoid accounting for the non
diabaticT2 twice, it is nevertheless necessary to write dow
a set of Lindblad operators for it alone, without anyT1 re-
laxation. Once again, on using the near equality of the di
onal entries ofRT1

Zee to replace them by their average an

taking suitable unitary linear combinations of the diagon
Lindbladsu j &^ j u, we obtain

LT1

na05A0.33121
2 I , LT1

na15A0.33121
2 sz

1 ,

LT1

na25A0.33121
2 sz

2 , LT1

na35A0.33121
2 sz

1sz
2 . ~A9!

The Lindbladian superoperator of the first of these is ob
ously LT1

na0(rD)50, and so need not be considered furthe

We now turn our attention to the diagonal entries of t
16316 Zeeman relaxation superoperatorRZee, which we
shall arrange in a 434 matrix of relaxation rate constants o
the corresponding entries of the density matrixrD

Zee. It can
be shown that the 434 matrix
2-9



^00uRZeeu00& ^01uRZeeu01& ^02uRZeeu02& ^03uRZeeu03&
Zee Zee Zee Zee

BOULANT et al. PHYSICAL REVIEW A 67, 042322 ~2003!
Rdiag
Zee [ F ^10uR u10& ^11uR u11& ^12uR u12& ^13uR u13&

^20uRZeeu20& ^21uRZeeu21& ^22uRZeeu22& ^23uRZeeu23&

^30uRZeeu30& ^31uRZeeu31& ^32uRZeeu32& ^33uRZeeu33&

G ~A10!

is also a symmetric submatrix of the Choi matrixC associated withRZee ~up to sign!, specifically

2Rdiag
Zee5F ^00uCu00& ^00uCu11& ^00uCu22& ^00uCu33&

^11uCu00& ^11uCu11& ^11uCu22& ^11uCu33&

^22uCu00& ^22uCu11& ^22uCu22& ^22uCu33&

^33uCu00& ^33uCu11& ^33uCu22& ^33uCu33&

G . ~A11!
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The diagonal ofRdiag
Zee is thus the same as the diagonal

RT1

Zee. Since we have already found a set of Lindblad ope

tors that fully account for the effects ofRT1

Zeeon rD
Zee, we will

now focus our attention on its off-diagonal entries by defi
ing a new matrixRT2

Zee, which is same asRdiag
Zee save for its

four diagonal entries, which are set to zero as indicated
low:

RT2

Zee[ Rdiag
Zee2Diag~^kkuRZeeukk&uk50, . . . ,3!.

~A12!

As implied by our notation,RT2

Zee contains all the informa-

tion regardingT2 relaxation processes that is contained
our full, but diagonal, relaxation superoperatorRZee, and in
a considerably more compact and easily understood fo
Unlike RT1

Zee, which acts on the column vectordiag(rD
Zee) of

diagonal entries by matrix multiplication,RT2

Zee acts onrD
Zee

simply by taking the products of all corresponding pairs
entries, one from each matrix, just as these entries are
tiplied together in the full matrix-vector productRZeeurD

Zee&.
This ‘‘entrywise’’ matrix multiplication, commonly known as
the Hadamard product@15#, has already been shown to be
powerful means of describing ‘‘simple’’T2 relaxation pro-
cesses@13# ~that is, processes not involving cross relaxatio!.
The Hadamard product will be denoted in the following:

ṙD
Zee5 2RT2

Zee(rD
Zee[ 2@^ j urD

Zeeuk&^ j uRT2

Zeeuk&# j ,k50
3 .

~A13!

Another important property of the matrixRT2

Zee is that,

since the overall projected Choi matrixE C E must be posi-
tive semidefinite, the same is true of the projection o
2RT2

Zee, and the 434 block of the 16316 projection matrix

E that acts on2RT2

Zee is
04232
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E [ I 2
1

4
1 1Á5

1

4F 3 21 21 21

21 3 21 21

21 21 3 21

21 21 21 3

G , ~A14!

where1 denotes a column vector of four 1’s. Moreover, t
Lindblad operators forT2 relaxation may be extracted d
rectly from 2E RT2

ZeeE without reference to the full super

operator’s projected Choi matrix.
To see how this can be done, we first observe that gi

any two diagonal matricesA andC ~assumed here to equa
in dimension! with column vectors of diagonal entriesa
5diag(A) andc5diag(C), respectively, we have

A B C 5 ~A 1 1ÁC!(B 5 ~a cÁ!(B ~A15!

for any other~square but not necessarily diagonal! matrix B
of equal dimension. It follows that the action on a dens
operatorr of any Lindblad operatorL, with respect to a basis
wherein its matrixL is real and diagonal, can be expressed
terms of Hadamard products as

L~r! [ L r L2 1
2 L2r2 1

2 r L2 5 ~L 1 1ÁL2 1
2 L21 1Á

2 1
2 1 1ÁL2!(r [ 2RL(r, ~A16!

whereRL is called aHadamard relaxation matrixfor L. If
multiple diagonal Lindblad operators act simultaneously,
net Hadamard relaxation matrix is of course the sum of th
associated with the individual Lindblads.

Next, let us use the Lindblad operators for nonadiaba
T2 relaxation given in Eq.~A9! above, to illustrate how we
can go the other way, that is, derive these Lindblad opera
from the corresponding Hadamard relaxation matrix. If w
let ,T2

nai[diag(LT2

nai) be the column vectors formed from th

real diagonal entries of these Lindblad matrices and obse

that their Hadamard squares,T2

nai(,T2

nai50.33121
4 1 for i

51,2,3, then Eq.~A15! shows that the nonadiabaticT2 Had-
amard relaxation matrix may be written as
2-10
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2RT2

na [ ,T2

na1~,T2

na1!Á1,T2

na2~,T2

na1!Á1,T2

na1~,T2

na1!Á

2 1
2 ~,T2

na1(,T2

na11,T2

na2(,T2

na21,T2

na3(,T2

na3!1Á

2 1
2 1~,T2

na1(,T2

na11,T2

na2(,T2

na21,T2

na3(,T2

na3!Á

5
0.3312

4 S F 1

1

21

21

GF 1

21

1

21

G T

1F 1

21

1

21

GF 1

1

21

21

G T

1F 1

21

21

1

GF 1

1

1

1

G TD
2

0.3312

8 S F 1

1

1

1

G1F 1

1

1

1

G1F 1

1

1

1

G D F 1

21

21

1

G T

2
0.3312

8 F 1

1

1

1

G S @1 1 1 1#

1 @1 1 1 1#

1 @1 1 1 1#
D

5 0.3312~E2 3
4 1 1Á!

520.3312F 0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

G . ~A17!

Noting thatE25E and that the row and column sums ofE
are zero, it may be seen that the projection2E RT2

naE simply

removes the last two terms involving the Hadamard squa
from the above, which are proportional to1 1Á, leaving
only 2E RT2

naE50.3312E behind. Because the vectors,T2

nai

are mutually orthogonal and all their squared norms
i,T2

nai i250.3312, upon normalization they actually becom

eigenvectors ofE that are associated with its one nonze
but triply degenerate, eigenvalue of unity.

From this we see that the nonzero entries of the diago
Lindblad matricesLT2

nai are the entries of the eigenvectors

2E RT2

naE times the square roots of their respective eigenv
-

04232
es

e

,

al

l-

ues, much as general Lindblad matrices may be obtai
from the eigenvalues and eigenvectors of the projected C
matrix E C E. The numerical values of the entries ofRT2

Zee, as

extracted from the experimental superoperator in Fig. 3,

RT2

Zee5F 0 0.7890 0.7757 1.2872

0.7890 0 0.5033 0.7426

0.7757 0.5033 0 0.7283

1.2872 0.7426 0.7283 0

G s21.

~A18!

It is easily seen thatRT2

Zee, like RT1

Zee, must be centrosymmet

ric, and if we likewise symmetrize and subtract the abo
nonadiabaticT2 Hadamard relaxation matrix, we get

RT2

ad [ RT2

Zee2RT2

na5F 0 0.4274 0.4279 0.9560

0.4274 0 0.1721 0.4279

0.4279 0.1721 0 0.4274

0.9560 0.4279 0.4274 0

G .

~A19!

The nonzero eigenvalues and associated eigenvectors
2E RT2

adE are ~to within 1%!

S 0.9560,
1

A2F 1

0

0

21

G D , S 0.2913,12F 1

21

21

1

G D ,

S 0.1721,
1

A2F 0

1

21

0

G D , ~A20!

which correspond to a system of three Lindblad operators
the adiabaticT2 relaxation, namely

LT2

ad15A0.9560
1

A8
~sz

11sz
2!, LT2

ad25A0.1721
1

A8
~sz

12sz
2!,

LT2

ad35A0.29311
2 sz

1sz
2 . ~A21!

These correspond to totally correlated, totally anticorrelat
and pure single-quantum, i.e. dipolar,T2 relaxation, respec-
tively @13#.
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