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Optimal encryption of quantum bits

P. Oscar Boykin* and Vwani Roychowdhury†
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We show that 2n random classical bits are both necessary and sufficient for encrypting any unknown state
of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal
protocols in terms of a set of unitary operations that comprise anorthonormal basisin a canonical inner
product space. Moreover, a connection is made between quantum encryption and quantum teleportation that
allows for a different proof of optimality of teleportation.
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I. INTRODUCTION

A natural generalization of the encryption process
classical information in the context of quantum data can
described as follows. Alice has a quantum state comprisinn
qubits that she intends either to send to Bob, or to store
quantum memory for later use. Eve may intercept the s
during transmission or may access the quantum memory.
ice wants to make sure thateven ifEve receives the entire
state, she learns nothing. Toward this end, Alice perfor
one of many possible operations on her quantum data,
keeps the identity of the chosen operation secret from E
Without loss of generality, we assume the set of all poss
operations that Alice can choose from is known to everyo
including Eve. The index of the exact operation perform
by Alice on her quantum data is thekey, which is used later
by Alice or by Bob~in which case, Alice and Bob must hav
shared the key at some point! to undo Alice’s operation and
retrieve the original data. Note that the set of operations
Alice can perform must be reversible and, hence, unitary@1#.
Thus, a quantum encryption scheme consists of such a s
unitary operations, and a protocol for generating the key

At this point, it is useful to provide a more formal descri
tion of the encryption framework and then introduce the c
cepts of security and optimality. For ann-qubit system, the
most general scheme is to have a set ofM operations$Uk%,
k51, . . . ,M , where each elementUk is a 2n32n unitary
matrix. The keyk is chosen with some probabilitypk , and
the input quantum state is encrypted by applying the co
sponding unitary operationUk . In the decryption stage,Uk

†

is applied to the quantum state to retrieve the original st
The input stater is called the message state, and the out
staterc is called the cipher state. Now, the protocol is info
mationally secure if for every input stater, the output state
rc is the totally mixed state:

rc5(
k

pkUkrUk
†5

1

2n
I . ~1!
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The reason thatrc must be the totally mixed state is twofold
First, for security, all inputs must be mapped to the sa
output density matrix~becauserc must be independent of th
input!. Second, since the encryption operations are unit
the totally mixed state is clearly mapped to itself, and hen
rc5(1/2n)I . It is easy to verify now that the above scheme
informationally secure. Eve could prepare ann qubit, totally
mixed state on her own. Since two processes that outpu
same density matrices are indistinguishable@2#, anything that
can be learned fromrc can also be learned from the total
mixed state that she prepares herself. Hence, the design
terion for quantum encryption is to find such a distribution
unitary operations$pk ,Uk% that will map all inputs to the
totally mixed state.

The issues we address in the rest of this paper include
following.

~1! Design of encryption algorithms: What is a natur
choice of the encryption set$pk ,Uk%? In Sec. II, we provide
a generalization of the classical one time pad, and descri
quantum one time pad that uses 2n random classical bits and
applies bit-wise Pauli rotations to encrypt anyn-qubit state.

~2! Optimality: To encrypt a quantum state comprisingn
qubits, how many classical bits would one need to store
key?

~3! Characterization of the set of optimal encryption pr
tocols: Is there a succinct description of the set of all poss
optimal ~i.e., using the least number of bits for the key! en-
cryption schemes that Alice can use? In Sec. III, we ans
both these questions; and we show that 2n random classical
bits are necessary, and that a set$pk ,Uk%, k51, . . . ,22n is
an encryption set if and only if the set$Uk% forms an ortho-
normal basis in a canonical inner product space.

The concept of quantum encryption, as discussed in
paper, was first introduced in a Los Alamos archive pa
@3#. As pointed out in Sec. IV of this paper, previous qua
tum communication protocols, such as teleportation@4# and
superdense coding@5#, are closely related to the concept
quantum encryption, and in that sense the basic idea of q
tum encryption has been around for a while. In fact, we sh
in Sec. IV that the standard teleportation protocol based
bell-basis measurements is equivalent to the quantum
time pad procedure, derived in Sec. II. A few other results
quantum encryption have also been reported. Ambainiset al.
@6# show that the bound on the size of the classical key a
©2003 The American Physical Society17-1
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applies in the case where the encryption process invo
some ancillary qubits. Additionally, many of the connectio
between the quantum one-time pad, and teleportation
superdense coding~discussed in Sec. IV! have been further
examined in Ref.@7#. Since any reversible encoding of qua
tum data has to involve unitary operations, it is natural t
the unitary encoding and decoding sets, introduced h
would be an integral part of any cryptographic protocol, a
indeed,@8,9# use them for their quantum authentication pr
tocols.

II. A QUANTUM ONE-TIME PAD

For classical information, Shannon defined informatio
ally secure cryptography@10#, using the mutual information
between two variables,I (M ;C), in the following way:

I ~M ;C!5H~C!2H~CuM !50, ~2!

whereM is the random variable for the message,C is the
random variable for the cipher text~i.e., output of the en-
cryption process!, and H(X) is the entropy of the random
variableX given by(xp(X5x)log2„1/p(X5x)…. The above
relationship impliesp(cum)5p(c), i.e., the cipher-textc is
independent of the messagem. Since one must be able t
recover the message from the cipher text given the key,
must also satisfyI (M ;CuK)5H(M ). Hence, the secrec
condition combined with the recoverability condition implie
that H(K)>H(M ) and H(C)>H(M ) for informationally
secure cryptography. An example of informationally sec
cryptography is the one-time pad@11#. The messagem is
compressed to its entropy, and then for each bit of the c
pressed message, a random key bit is generated. Thu
complete keyk is a full-entropy random string of lengt
H(M ). Then, the cipher text isc5m% k; i.e., whenever a bit
is 1 in the key, then asx operation is applied to the corre
sponding message bit. Givenc, one knows nothing ofm; but
given c andk, one hasm exactly.

This same one-time pad approach may be applied in
quantum case. For each qubit, two random key bits are g
erated, instead of a single bit as in the classical one-time
case. For secret-key quantum encryption, we assume
these bits are shared between Alice and Bob in advanc
the first bit is 0, then Alice does nothing, else she appliessz
to the qubit. If the second bit is 0, she does nothing, else
appliessx . She continues this protocol for the rest of t
bits.

We now show that this quantum one-time pad protoco
secure. First, note that the bit-wise protocol can be expre
in terms of our general quantum encryption setup by cho
ing pk51/22n and Uk5XaZb (a,bP$0,1%n), where Xa5
^ i 51

n sx
a( i ) andZb5 ^ i 51

n sz
b( i ) . ThusXa corresponds to ap

plying sx to the bits in positions given by then-bit stringa,
and similarly forZb. Next, define the inner product of tw
matricesM1 andM2 as Tr(M1M2

†). If the set of all 2n32n

matrices is seen as an inner product space~with respect to
the preceding inner product!, then one can easily verify tha
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the set of 22n unitary matrices$XaZb% forms an orthonormal
basis. Expanding any message stater, in this XaZb basis,
gives:

r5(
a,b

aa,bXaZb, ~3!

whereaa,b5Tr(rZbXa)/2n. Using this formalism, it is clear
that the given choice ofpk and Uk satisfies Eq.~1!, and
hence, the underlying protocol is secure:

(
k

pkUkrUk
†5

1

22n (
g,d

XgZdrZdXg

5
1

22n (
a,b

aa,b(
g,d

XgZdXaZbZdXg

5
1

22n (
a,b

aa,b(
g,d

~21!ad % gbXaZb

5(
a,b

aa,bda,0db,0X
aZb

5a0,0I 5
Tr~r!

2n
I 5

1

2n
I . ~4!

III. CHARACTERIZATION AND OPTIMALITY
OF QUANTUM ONE-TIME PADS

So far, we have provided one quantum encryption pro
col based on bit-wise Pauli rotations, which uses 2n random
classical bits in order to encryptn quantum bits. Now we
explore other choices of$pk ,Uk%, and also investigate if the
simple quantum one-time pad protocol is optimal. That
can one encryptn-bit quantum states using less than 2n ran-
dom secret classical bits?

Since there are a continuum of valid density matrices~i.e.,
message states!, the quantum security criterion~1! can be
unwieldy to deal with. Hence, we first introduce a modifi
condition that is necessary and sufficient for security.
encryption set$pk ,Uk% satisfies Eq.~1! if and only if it sat-
isfies the following:

(
k51

M

pkUkX
aZbUk

†5da,0db,0I . ~5!

The equivalence of this to Eq.~1! is shown in the Appendix.
Thus, the condition for security becomes discrete, and o
22n equations need to be satisfied by the set$pk ,Uk% in order
for the set to be a valid encryption set.

First, we show a sufficient condition for$pk ,Uk% to act as
a quantum encryption protocol. Particularly, we show th
any unitary orthonormal basisfor the 2n32n matricesuni-
formly applied encrypts n quantum bits. We can always write
the matricesUk in terms of theXaZb basis as
7-2
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Uk5(
a,b

Ca,b
k XaZb. ~6!

Since theseUk’s form an orthonormal basis; the 22n322n

transformation matrixC, comprising of the transformation
coefficients, is a unitary matrix. Hence, the rows and c
umns ofC are orthonormal:

(
k51

M

Ca,b
k ~Cg,d

k !* 5da,gdb,d

and

(
a,b

Ca,b
k ~Ca,b

l !* 5dk,l . ~7!

By substitutingUk in Eq. ~1!, we obtain the following
desired result:

1

22n (
k

UkrUk
†5

1

22n (
a,b

(
g,d

S (
k

Ca,b
k Cg,d

k * DXaZbrZdXg

5
1

22n (
a,b

(
g,d

da,gdb,dXaZbrZdXg

5
1

22n (
a,b

XaZbrZbXa

5
1

2n
I .

Since any unitary orthonormal basis will encrypt, then us
2n bits is the most one needs to use.

We next show that one must use at least 2n bits, and in
the process derive a succinct characterization of all opti
quantum encryption protocols. As a first step, we prove
following result: Given any quantum encryption s
$pk ,Uk%, k51, . . . ,M @i.e., (kpk51, Uk is unitary, and
Eqs. ~1! and ~5! are satisfied#, let Ũk5ApkUk

5(a,bC̃a,b
k XaZb and let C̃ be theM322n transformation

matrix, comprising of the transformation coefficientsC̃a,b
k .

ThenM>22n, and

C̃†C̃5
1

22n
I 22n322n.

In order to provide a proof for the above claim, we introdu
the following shorthand notation:

Ca,b,g,d5 (
k51

M

C̃a,b
k ~C̃g,d

k !* ,

which is the standard inner product of the (a,b)th and the
(g,d)th columns ofC̃ or (C̃†C̃)(a,b),(g,d) . Note $pk ,Uk%
satisfies Eqs.~1! and ~5!. Hence, for every,,m P$0,1%n,
04231
l-

g

al
e

d,,0dm,0I 5 (
k51

M

pkUkX
,ZmUk

†

5 (
k51

M

ŨkX
,ZmŨk

†

5 (
k51

M

(
a,b

(
g,d

C̃a,b
k ~C̃g,d

k !* XaZbX,ZmZdXg

5(
a,b

(
g,d

(21)b,1g~b1d1m!Ca,b,g,d

3Xa1g1,Zb1d1m

5(
p,q

~21!(p1,)qAl ,m,p,qXpZq,

where we have defined

Al ,m,p,q[ (
a,b,g,d

dg,a1p1,dd,b1q1m~21!b,1aqCa,b,g,d .

Using the linear independence of theXpZq, only the identity
component is nonzero:Al ,m,p,q5d,,0dm,0dp,0dq,0 . Hence, se-
curity implies

d,,0dm,0dp,0dq,0

5 (
a,b,g,d

~21!b,1aqdg,a1p1,dd,b1q1mCa,b,g,d . ~8!

The above equation will be used to introduce a linear alge
formulation of the problem. Let

M (,,m,p,q),(a,b,g,d)5~21!b,1aqdg,a1p1,dd,b1q1m .

Equation~8! can now be written as a set of 24n linear equa-
tions: MC5@10, . . . ,0#T, where C is the 24n31 vector
consisting of all the possible inner products of pairs of c
umns ofC̃ andM is a 24n324n matrix with elements from
the set 1,0,21. Next, we observe that a matrixA is orthogo-
nal if and only if ( jAi , jAi 8, j5Ai

2d i ,i 8 , whereAi is the norm
of the i th row ~which must be greater than zero!. One can
easily verify thatM is an orthogonal matrix. In showing tha
M is orthogonal, one finds the inverse ofM . The orthonor-
mality of M means thatMM T522nI , and hence,M21

5MT/22n. Therefore, C5MT@10, . . . ,0#T/22n, which
meansC is the first row ofM renormalized:

Ca,b,g,d5
M (0,0,0,0)(a,b,g,d)

22n
5

1

22n
da,gdb,d .

Since (C̃†C̃)(a,b),(g,d)5Ca,b,g,d , we have
7-3
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C̃†C̃5
1

22n
I 22n322n. ~9!

SinceI 22n322n is a full rank matrix, thenC̃ must have at leas
as many rows as columns. SinceC̃ has 22n columns, it im-
plies thatM>22n.

We are now ready to prove thatone must use at least2n
random classical bitsfor any quantum encryption, and that
set$pk ,Uk% involving only 2n secret classical bitsis a quan-
tum encryption set if and only if the unitary matrix eleme
form an orthonormal basis, and they are all equally like.
That is, we make the following claim: Any given quantu
encryption set$pk ,Uk%, k51, . . . ,M , satisfies

H~p1 , . . . ,pM !5(
i 51

M

pi log2

1

pi
>2n. ~10!

Moreover, if M522n, thenpk51/22n andUk’s form an or-
thonormal basis.

We now provide a proof for Eq.~10! and the above claim
We have already shown that

C̃†C̃5
1

22n
I 22n322n.

Using a singular value decomposition@12# of C̃, we have the
following relationships:

C̃5WLV†,

C̃†C̃5V~L†L!V†,

C̃C̃†5W~LL†!W†,

whereW and V are M3M and 22n322n unitary matrices,
respectively, andL is an M322n diagonal rectangular ma
trix: L( i , j )5l id i , j . Note thatL†L andLL† are real diag-
onal matrices and have the same nonzero elements; he
C̃†C̃ and C̃C̃† have thesamenonzero eigenvalues. Sinc
C̃†C̃ has 22n repeated eigenvalues (51/22n) and M>22n,
C̃C̃† has 22n repeated eigenvalues (51/22n) and the rest of
its M222n eigenvalues are 0. Also note that the diago
entries ofC̃C̃† are the probabilitiespk’s and, hence,

pk5
Tr~ŨkŨk

†!

2n
5~C̃C̃†!k,k5

1

22n (
i 51

22n

uWi ,ku2<
1

22n
.

The above uses the facts that, sinceW is unitary,
( i 51

M uWi ,ku251 and thatM>22n. Hence,

H~p1 , . . . ,pM !5(
i 51

M

pi log2

1

pi
>2n(

i 51

M

pi52n.

If we use exactly 2n unitary matrices to form$Uk% and 2n
classical bits for the key, we haveM522n and C̃C̃†5C̃†C̃
5(1/22n)I 22n322n. Hence
04231
s

ce,

l

Tr~ŨkŨ j
†!

2n
5dk, j

1

22n
,

which givespk51/22n, and the set$Uk% necessarily forms an
orthonormal basis. So we have our main results:one must
use at least2n classical bits, and$pk ,Uk% is an optimal
encryption set, if and only if all the pk’ s are equal and the
set$Uk% forms an orthonormal basis.

IV. DISCUSSIONS

We have presented a quantum one-time pad protocol
uses 2n secret classical bits and bit-wise Pauli rotations
securen quantum bits. We have also shown that 2n random
classical bits are necessary. Furthermore, we have gen
ized the notion of the quantum one-time pad protocol, a
shown that any orthonormal set of 22n unitary matrices can
be used to securely encryptn-qubit quantum states. More
interestingly, perhaps, we have shown that all optimal qu
tum encryption protocols~i.e., using 2n random classical bits
for key generation! must use a uniform distribution of 22n

orthonormal unitary operations.
We next show, how quantum encryption sets are relate

two fundamental quantum information tasks: teleportat
@4# and superdense coding@5#. A general teleportation
scheme can be described as follows: Alice and Bob sha
pure staterAB , comprising 2n qubits such that the traced ou
n-bit states of Alice and Bob satisfy:rA5rB5(1/2n)I . Next,
Alice receives an unknownn-bit quantum stater, and per-
forms a joint measurement~i.e., onr and rA), which pro-
duces one of a fixed set of outcomesmk , k51, . . . ,M , each
with probabilitypk . The particular outcomemk is classically
communicated to Bob usingH(p1 , . . . ,pM) bits. Bob per-
forms a corresponding unitary operationUk on his state to
retrieve r. Hence, after Alice’s measurement~and before
Bob learns the outcome!, Bob’s state can be expressed
rB5(1/2n)I 5(k51

M pkUkrUk
† , which is exactly the en-

crypted state of the messager defined in Eq.~1!. Hence,
every teleportation scheme corresponds to an encryption
$pk ,Uk%. Since we prove that all quantum encryption se
require 2n classical bits, then all teleportation schemes m
also require 2n classical bits. Note that our proof only relie
on the properties of the underlying vector spaces. In
original teleportation paper@4#, a proof that two classical bits
are required to teleport is given. The proof is based o
construction that gives superluminal communication if te
portation can be done with less than two bits. This pro
however, does not imply that all quantum encryption s
require 2n bits. To do so, one would require to prove that
quantum encryption sets correspond to a teleportation pr
col. On the other hand, as we showed above, all teleporta
protocols correspond to a quantum encryption set; hence,our
result provides a different proof of optimality of teleport
tion.

Superdense coding also has a connection to quantum
cryption. Consider the case where Alice asks Bob to encr
something, and then Alice wishes to learn the key that B
used for encryption. In the case of the classical one-time
7-4
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@11# c5m% k, and so, given a message and its accompa
ing cipher text, one learns the key:k5m% c. Quantumly,
each quantum bit has two classical key bits to learn. Due
Holevo’s theorem@13#, it may seem that this implies tha
there is no way to learn the classical key exactly. This in
ition is not correct. Alice can learn Bob’s key in the follow
ing way. Alice preparesn singlets and gives half of eac
singlet to Bob. Bob encrypts them using the simple quant
one-time pad, and returns them to Alice. Alice can learn
key exactly by measuring each former singlet in the b
basis. The outcome would tell Alice exactly which transfo
mation Bob applied. This protocol corresponds exactly to
superdense coding scheme@5#.

We conclude our discussions by pointing out poten
applications of the quantum encryption scheme descri
here. For example, classical one-time pads are almost n
used: Instead of keeping ann-bit message secret, one mu
keep ann-bit key secret. In most cases, there will be
advantage. With the quantum one-time pad, the situatio
different. Instead of keepingn quantum bits secure, one mu
keep 2n classical bits secure. Classical bits have differ
properties than quantum bits, so there may be situat
where this will be of great value. Moreover, encrypting qua
tum data using classical random bits may allow for straig
forward generalizations of many classical protocols to qu
tum data. For instance, rather than using random class
data of size 2n, one could use secret key ciphers@14# or
stream ciphers@14# to keep a small finite classical key, fo
instance 256 bits, to generate pseudorandom bits to enc
quantum data. The ability to secure quantum bits with cl
sical keys may expand the scope of previous work@15#,
which allows users with only classical resources to use qu
tum protocols via a quantum center that stores quantum d
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APPENDIX

We provide a proof of the following claim~see Sec. III!:
an encryption set$pk ,Uk% satisfies Eq.~1! if and only if it
satisfies the following:

(
k51

M

p~k!UkX
aZbUk

†5da,0db,0I . ~A1!
le

9
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To show that the above condition is sufficient, expressr in
the XaZb basis, as was done in Eq.~4!, and apply Eq.~5!

(
k51

M

p~k!UkrUk
†5 (

k51

M

p~k!UkS (
a,b

aa,bXaZbDUk
†

5(
a,b

aa,b(
k51

M

p~k!UkX
aZbUk

†

5(
a,b

aa,bda,0db,0I

5a0,0I 5
Tr~r!

2n
I 5

1

2n
I .

To show that the modified condition, Eq.~5!, is necessary,
is somewhat more involved. First, let us introduce some n
notations

r i5
I 1s i

2
and rmix5

I

2
.

The proof may be obtained by induction. Suppose allXa

with uau<k are mapped to zero by the encryption proce
Now consider the following product state ofn2k21 mixed
states, with exactlyk11 pure statesrx :

r5rmix^ rmix^ , . . . ,^ rmix^ rx^ rx^ , . . . ,^ rx .

By expanding, the above becomes

r5
I

2n
1

1

2n (
a51

2k21

Xa1
1

2n
X2k1121.

In the above, we use decimal numbers where before we
finedXa with a in binary; henceX35X00, . . . ,011. Whenr is
encrypted, we know thatI /2n is mapped to itself. By assump
tion, Xa with uau<k is mapped to zero; hence, the sum in t
expansion ofr disappears. Sincer must be mapped toI /2n,
then the last term in the above, which isXa with uau5k
11, must be mapped to zero. By permuting the initial inp
states, allXa with uau5k11 must be mapped to zero. Th
case wherek51, is our base case. By induction, allXa are
mapped to zero.

If x is replaced byz in the above, then allZb are also
mapped to zero. Ifx is replaced byy and using the fact tha
all Xa andZb are mapped to zero, one sees that allXaZb are
mapped to zero, which proves our claim.
d
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