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Optimal encryption of quantum bits
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We show that 2 random classical bits are both necessary and sufficient for encrypting any unknown state
of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal
protocols in terms of a set of unitary operations that compris@rémnormal basisn a canonical inner
product space. Moreover, a connection is made between quantum encryption and quantum teleportation that
allows for a different proof of optimality of teleportation.
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[. INTRODUCTION The reason thai, must be the totally mixed state is twofold.
First, for security, all inputs must be mapped to the same

A natural generalization of the encryption process for.oUtput density matrixbecause, must be independent of the

classical information in the context of quantum data can b inpud. Second, since the encryption operations are unitary,

described as follows. Alice has a quantum state comprising She totally mixed state is clearly mapped to itself, and hence,

qubits that she intends either to send to Bob, or to store in 8¢ _ (1/2)1. tis easy to verify now that the above scheme is

guantum memory for later use. Eve may intercept the Statlenformanonally secure. Eve could prepareraqubit, totally

during transmission or may access the quantum memory. Ag;;qeg dséitseitOrr]ngterric(()-:-vgr;rgli:?j?smo uﬁ;?}%%?;ii thrﬁao'j{';%'j:t the
ice wants to make sure thaten ifEve receives the entire Y 9 ything

state, she learns nothing. Toward this end, Alice performgan be leamed frorp,, can also be learned from the tot_ally :
ralxed state that she prepares herself. Hence, the design cri-

one of many possible operations on her quantum data, ar‘l[erion for quantum encryption is to find such a distribution of
keeps the identity of the chosen operation secret from Eve. . quan yp X .
nitary operationgp,,U,} that will map all inputs to the

Without loss of generality, we assume the set of all possibl tallv mixed stat
operations that Alice can choose from is known to everyone,0 aly mixed state. : : .
including Eve. The index of the exact operation performed Th? issues we address in the rest of this paper include the
by Alice on her quantum data is thkey, which is used later following. : . . ) .
by Alice or by Bob(in which case, Alice and Bob must have (.1) Design of encrypuon algorithms: What is a ngtural
shared the key at some poirid undo Alice’s operation and choice of _the_encryptlon Sép.k’uk}? In_ Sec. Il, we prOV'de.
retrieve the original data. Note that the set of operations that generallzathn of the classical one time pad,_and (_Jlescnbe a
Alice can perform must be reversible and, hence, unitaly quantum one time pqd that_ uses @ndom classma! bits and
Thus, a quantum encryption scheme consists of such a set Gppgesébg'w'f.f _P_I"’_lu“ rotatlct)ns to entcrypt talrtmublt stgtg: ’
unitary operations, and a protocol for generating the key. (.) pumality. 10 encrypt a quantum state comprisimg

At this point, it is useful to provide a more formal descrip- qubits, how many classical bits would one need to store the

tion of the encryption framework and then introduce the con-keyg ch terizati f th t of optimal i
cepts of security and optimality. For amqubit system, the (3) Characterization of the set of optimal encryption pro-

most general scheme is to have a seMobperationsU,} tocols: Is there a succinct description of the set of all possible
k=1 M. where each elemert. is a 2% 2" unit;rgl optimal (i.e., using the least number of bits for the kepn-
matri’X. .'I.'r,1e ’keyk is chosen with soIFne probability, , and cryption schemes that Alice can use? In Sec. lll, we answer
the input quantum state is encrypted by applying the Correboth these questions; and we show thatrandom classical

) - i
sponding unitary operatiold, . In the decryption stageUI bits are necessary, and that a set.Uid, k=1,...,2"is
. . : . an encryption set if and only if the s}, } forms an ortho-
is applied to the quantum state to retrieve the original state. o o

ormal basis in a canonical inner product space.

The input statep is called the message state, and the outpu[1 The concept of quantum encryption, as discussed in this

statgpc s called th? cipher stqte. Now, the protocol is infor- paper, was first introduced in a Los Alamos archive paper
mationally secure if for every input stage the output state [3]. As pointed out in Sec. IV of this paper, previous quan-

pe Is the totally mixed state: tum communication protocols, such as teleportafibhand
superdense codinid], are closely related to the concept of
1 quantum encryption, and in that sense the basic idea of quan-
pe=2 PUppUl=—1. (1)  tumencryption has been around for a while. In fact, we show
k 2" in Sec. IV that the standard teleportation protocol based on
bell-basis measurements is equivalent to the quantum one
time pad procedure, derived in Sec. II. A few other results on
*Electronic address: boykin@ee.ucla.edu quantum encryption have also been reported. Ambainé.
TElectronic address: vwani@ee.ucla.edu [6] show that the bound on the size of the classical key also
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applies in the case where the encryption process involvethe set of 2" unitary matrice§X*Z#} forms an orthonormal

some ancillary qubits. Additionally, many of the connectionsbasis. Expanding any message staten this X¢Z# basis,

between the quantum one-time pad, and teleportation angives:

superdense codin@liscussed in Sec. IWhave been further

examined in Ref[7]. Since any reversible encoding of quan-

tum data has to involve unitary operations, it is natural that p=2 aa‘BX“ZB, ©)

the unitary encoding and decoding sets, introduced here, @B

would be an integral part of any cryptographic protocol, and

indeed,[8,9] use them for their quantum authentication pro-wherea, z=Tr(pZ”X*)/2". Using this formalism, it is clear

tocols. that the given choice op, and U, satisfies Eq.1), and
hence, the underlying protocol is secure:

II. AQUANTUM ONE-TIME PAD

T 1 v78, 75y
For classical information, Shannon defined information- Ek: pkUkpUk—ﬁ % X7Z°pZ°X
ally secure cryptographpl0], using the mutual information ’
between two variabled(M;C), in the following way: 1

_ Syea7 B> 5
oo 2, aa,ﬁ% XYZ°XZPZXY

I(M;C)=H(C)—H(C|M)=0, ©) .
> aa,,;Zé (—1)*0®7Bxazh
Y

~ oo
whereM is the random variable for the messaggjs the 27 ek

random variable for the cipher texte., output of the en-

cryption process and H(X) is the entropy of the random =2 A4,30,,0050X°ZF

variable X given by =,p(X=Xx)log,(1/p(X=Xx)). The above “p

relationship impliesp(c|m)=p(c), i.e., the cipher-text is Tr(p) 1

independent of the message Since one must be able to =agd=——1=_1. (4)
recover the message from the cipher text given the key, one 2 2

must also satisfyl (M;C|K)=H(M). Hence, the secrecy
condition combined with the recoverability condition implies
that H(K)=H(M) and H(C)=H(M) for informationally
secure cryptography. An example of informationally secure
cryptography is the one-time pddl]. The messagen is So far, we have provided one quantum encryption proto-
compressed to its entropy, and then for each bit of the comeol based on bit-wise Pauli rotations, which usesrandom
pressed message, a random key bit is generated. Thus tbkassical bits in order to encrypt quantum bits. Now we
complete keyk is a full-entropy random string of length explore other choices dfp,,U,}, and also investigate if the
H(M). Then, the cipher text is=maKk; i.e., whenever a bit simple quantum one-time pad protocol is optimal. That is,
is 1 in the key, then ar, operation is applied to the corre- can one encrypt-bit quantum states using less tham &n-
sponding message bit. Givenone knows nothing ofn; but  dom secret classical bits?
given c andk, one haam exactly. Since there are a continuum of valid density matriges,
This same one-time pad approach may be applied in thenessage statgsthe quantum security criteriofl) can be
quantum case. For each qubit, two random key bits are genmwieldy to deal with. Hence, we first introduce a modified
erated, instead of a single bit as in the classical one-time pacbndition that is necessary and sufficient for security. An
case. For secret-key quantum encryption, we assume thahcryption se{p,,U,} satisfies Eq(1) if and only if it sat-
these bits are shared between Alice and Bob in advance. iffies the following:
the first bit is 0, then Alice does nothing, else she appligs

Ill. CHARACTERIZATION AND OPTIMALITY
OF QUANTUM ONE-TIME PADS

to the qubit. If the second bit is 0, she does nothing, else she M
applieso,. She continues this protocol for the rest of the 2 PkUkX“Z'BUl: 8a09p0l - (5)
bits. &4 098,

We now show that this quantum one-time pad protocol is
secure. First, note that the bit-wise protocol can be expresserhe equivalence of this to E€l) is shown in the Appendix.
in terms of our general quantum encryption setup by choosthus, the condition for security becomes discrete, and only
ing p=1/2" and U,=X“Z”? (a,B€{0,1}"), whereX“= 22" gquations need to be satisfied by the{ggt U} in order
@08 andzf=o"_,0?" . ThusX® corresponds to ap- for the set to be a valid encryption set.
plying o, to the bits in positions given by thebit string «, First, we show a sufficient condition fép, ,U,} to act as
and similarly forZ?. Next, define the inner product of two a quantum encryption protocol. Particularly, we show that
matricesM; andM, as Tr(M;M}). If the set of all 2x2"  any unitary orthonormal basifor the 2"x 2" matricesuni-
matrices is seen as an inner product spaci¢h respect to  formly applied encrypts n quantum hitd/e can always write
the preceding inner prodycthen one can easily verify that the matricedJ, in terms of theX“Z” basis as
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M
UKZEB CK pXzZF. (6) 8 00md = > PUXZ™U]
@, k=1

Since theseU,’s form an orthonormal basis; the?®x 22" Mo .-
transformation matrixC, comprising of the transformation :kZl Ui X‘Z"Uy
coefficients, is a unitary matrix. Hence, the rows and col-

umns ofC are orthonormal:

M=

> > Tk 4(CK )*XazPXtZmZoXY
1 apB v6 ’ ’

X
Il

M
gl CI;,B(CI;,é‘)* = 5a,y5ﬁ,5

(_ 1)B(+'y(ﬁ+5+m)\l,a’ﬁ’y’5

)

R

B
an+'y+€zﬁ’+5+m

and

Ck CI =51, 7
aE,B a.8(Ca,p) kil " :p2 (=10 o (XPZ9,

o)

By substitutingU, in Eg. (1), we obtain the following

desired result: where we have defined
—>u puTzi > Ck CK x| X2zBpzoXY o+
g2n 4/ TKEEK oo o | g T BT Al mpa= BE 5 57,a+p+€55,ﬂ+q+m(_1)ﬁ W py.6-
a,p,7v,
1
~om & 8a,y0p,8X“ZPpZ°XY Using the linear independence of tk8Z9, only the identity
s component is noNzerd m , 4= d¢,00m,09p.09q,0- HeNce, se-
1 curity implies
= azB 7By
o 2, XZBpzPX
8¢,00m,00p,00q,0
1
ER = 2 GV B apras ©)

Since any unitary orthonormal basis will encrypt, then using ) ) ) )
2n bits is the most one needs to use. The above equation will be used to introduce a linear algebra

We next show that one must use at leastits, and in ~ formulation of the problem. Let
the process derive a succinct characterization of all optimal
guantum encryption protocols. As a first step, we prove the
following result: Given any quantum encryption set

{pPk,.Ui}, k=1,... M [i.e, Zpx=1, Uy is unitary, and . ) .
Egs. (1) and (5) are satisfiell let U, = \/_U Equation(8) can now be written as a set ofRlinear equa-
as. k= VPP tions: MW=[10, . ..,0, whereW is the "X 1 vector

v Fk ya = 2 : -V Whe .
=3, 4Cq X ZP and letC be theM x2*" transformation  consisting of all the possible inner products of pairs of col-

M (empa).(pys)=(—DPTAS, (ioi ¢85+ qm-

matrix, comprising of the transformation coefficie@¥ ;. ymns of @ andM is a 2" 24" matrix with elements from
ThenM=2?", and the set 1,0; 1. Next, we observe that a matwxis orthogo-
nal if and only iijAi'in,,j=Ai25iyi, , WhereA,; is the norm
oo il - of the ith Tow (Whi(_:h must be greater than zer(Dn_e can

g2n 2725 easily verify thatM is an orthogonal matrix. In showing that

M is orthogonal, one finds the inverse df. The orthonor-
In order to provide a proof for the above claim, we introducemality 20f M means thatMM '=2"I, and r;ence,M.‘l
the following shorthand notation: =MT/2?".  Therefore, ¥=MT[10,...,07/2°", which

meansW is the first row ofM renormalized:
M

W, p.y,6= > Ch 4(Cs 9
a,B,v,6 a,B\~y, 8
&1 M©oooesrs _ 1

\Ifa’ﬂ"y*{s: 22n 22n 5a,‘y§ﬁ,5
which is the standard inner product of the,)th and the
(7,8)th columns ofC or (C'C)(,.4).(y.¢)- Note {p, Ui} o
satisfies Eqs(1) and (5). Hence, for every,m {0,1}", since €'C)(a.4).(v.0= ¥ w.p..5, We have
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6T6: %I 22nx 22n.

9)

Sincel y2ny 52n is a full rank matrix, ther€ must have at least

as many rows as columns. Sin€ehas 2" columns, it im-
plies thatM =22",
We are now ready to prove thahe must use at leag&n

PHYSICAL REVIEW A67, 042317 (2003

(00" 1
T

which givesp,=1/2*", and the sefU,} necessarily forms an
orthonormal basis. So we have our main resutse must
use at least2n classical bits, andp,,U,} is an optimal

encryption set, if and only if all the ps are equal and the

random classical bit§or any quantum encryption, and that a set{U,} forms an orthonormal basis

set{p,,U,} involving only 2n secret classical bitis a quan-

tum encryption set if and only if the unitary matrix elements
form an orthonormal basis, and they are all equally likely
That is, we make the following claim: Any given quantum

encryption sef{py,U,}, k=1,... M, satisfies
M

1
.,pM)=21 pilogy -=2n. (10)
1= i

H(pq, - -

Moreover, if M=22", thenp,=1/22" andU’s form an or-
thonormal basis.

We now provide a proof for Eq10) and the above claim.
We have already shown that

e 1
ce-

| 22n% 22n.

Using a singular value decompositifit?] of C, we have the
following relationships:

C=WAVT,
CTC=V(ATA)VT,
CCT=w(AAT)W,
whereW andV are M XM and 2"x 22" unitary matrices,

respectively, and\ is an M x 22" diagonal rectangular ma-
trix: A(i,j)=N;8;. Note thatATA andA AT are real diag-

onal matrices and have the same nonzero elements; hen
C'C and CC' have thesamenonzero eigenvalues. Since

C'C has 2" repeated eigenvalues=(1/2>") and M=22",
CC' has 2" repeated eigenvalues=(1/22") and the rest of

IV. DISCUSSIONS

We have presented a quantum one-time pad protocol that
uses 2 secret classical bits and bit-wise Pauli rotations to
securen quantum bits. We have also shown that 2andom
classical bits are necessary. Furthermore, we have general-
ized the notion of the quantum one-time pad protocol, and
shown that any orthonormal set of2unitary matrices can
be used to securely encryptqubit quantum states. More
interestingly, perhaps, we have shown that all optimal quan-
tum encryption protocol§.e., using 21 random classical bits
for key generationmust use a uniform distribution of?2
orthonormal unitary operations.

We next show, how quantum encryption sets are related to
two fundamental quantum information tasks: teleportation
[4] and superdense codinfb]. A general teleportation
scheme can be described as follows: Alice and Bob share a
pure statep,g, comprising 2 qubits such that the traced out
n-bit states of Alice and Bob satisfg, = pg=(1/2")1. Next,
Alice receives an unknown-bit quantum state), and per-
forms a joint measuremerite., onp andp,), which pro-
duces one of a fixed set of outcomeg, k=1, ... M, each
with probability p, . The particular outcomm, is classically
communicated to Bob usingl(p4, ... ,pm) bits. Bob per-
forms a corresponding unitary operatibh on his state to
retrieve p. Hence, after Alice’s measuremefdnd before
Bob learns the outcomeBob’s state can be expressed as
pe=(1U2)1=3M pUpUl, which is exactly the en-
(%}/pted state of the messagedefined in Eq.(1). Hence,
every teleportation scheme corresponds to an encryption set
{pk,Uy}. Since we prove that all quantum encryption sets
require 2 classical bits, then all teleportation schemes must
also require 2 classical bits. Note that our proof only relies

its M —22" eigenvalues are 0. Also note that the diagonalon the properties of the underlying vector spaces. In the

entries of CC' are the probabilitiep,’s and, hence,
22n

~~ 1 1
:(CCT)k,k:ﬁ ;1 |Wi zgﬁ-

(0,0,

P on

The above uses the facts that, sint® is unitary,
=MW, |2=1 and thatM=22". Hence,

M 1 M
H(py, ... ’pM):iEl pi|092522ni21 pi=2n.

= : <
If we use exactly B unitary matrices to forjU,} and

classical bits for the key, we hawd =22" andCCT=C'C
= (1/22")1 520y 52n. Hence

original teleportation papg¢#], a proof that two classical bits
are required to teleport is given. The proof is based on a
construction that gives superluminal communication if tele-
portation can be done with less than two bits. This proof,
however, does not imply that all quantum encryption sets
require 2 bits. To do so, one would require to prove that all
quantum encryption sets correspond to a teleportation proto-
col. On the other hand, as we showed above, all teleportation
protocols correspond to a quantum encryption set; henae,
result provides a different proof of optimality of teleporta-
tion.

Superdense coding also has a connection to quantum en-
cryption. Consider the case where Alice asks Bob to encrypt
something, and then Alice wishes to learn the key that Bob
used for encryption. In the case of the classical one-time pad
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[11] c=mak, and so, given a message and its accompany¥o show that the above condition is sufficient, express
ing cipher text, one learns the kek=m®c. Quantumly, the X“Z” basis, as was done in E@), and apply Eq(5)
each quantum bit has two classical key bits to learn. Due to
Holevo's theorem13], it may seem that this implies that M

there is no way to learn the classical key exactly. This intu- >, P(K)UpUl= >, p(k)U,
ition is not correct. Alice can learn Bob's key in the follow- k=t k=1

M

Zﬁ a,, ﬁxazﬂ) U/

ing way. Alice prepares singlets and gives half of each M
singlet to Bob. Bob encrypts them using the simple quantum => aHYBZ p(k)UXZPU/
one-time pad, and returns them to Alice. Alice can learn the @B k=1

key exactly by measuring each former singlet in the bell
basis. The outcome would tell Alice exactly which transfor- => Q4,504,008
mation Bob applied. This protocol corresponds exactly to the ap
superdense coding scherf.
We conclude our discussions by pointing out potential _agd - Tr(p) | 1 |

applications of the quantum encryption scheme described ' 2" 2"

here. For example, classical one-time pads are almost never

used: Instead of keeping anbit message secret, one must  To show that the modified condition, EG), is necessary,
keep ann-bit key secret. In most cases, there will be nois somewhat more involved. First, let us introduce some new
advantage. With the quantum one-time pad, the situation igotations

different. Instead of keeping quantum bits secure, one must

keep 2h classical bits secure. Classical bits have different |+ o |

properties than quantum bits, so there may be situations Pi=—% and Pmix=75 -

where this will be of great value. Moreover, encrypting quan-

tum data using classical random bits may allow for stralght-_l_he proof may be obtained by induction. Suppose>4l

forward generalizations of many classical protocols to quan- ith |« <k are mapped to zero by the encryption process.

tum data. For instance, rather than using random classic ow consider the followina oroduct state ok k— 1 mixed
data of size &, one could use secret key ciphdfst] or ) gp :
states, with exactlk+1 pure statep,:

stream cipher$14] to keep a small finite classical key, for
instance 256 bits, to generate pseudorandom bits to encrypt

quantum data. The ability to secure quantum bits with clas- P~ Pmix®Pmix®, - - - @ Pmix®Px@Px@, .-, & P
sical keys may expand the scope of previous wptk], .

which allows users with only classical resources to use quarBY €xpanding, the above becomes

tum protocols via a quantum center that stores quantum data.

|12} 1

k+1
=—+— > X+ —x¥ 1L
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