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Experimental implementation of the quantum random-walk algorithm
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The quantum random walk is a possible approach to construct quantum algorithms. Several groups have
investigated the quantum random walk and experimental schemes were proposed. In this paper, we present the
experimental implementation of the quantum random-walk algorithm on a nuclear-magnetic-resonance quan-
tum computer. We observe that the quantum walk is in sharp contrast to its classical counterpart. In particular,
the properties of the quantum walk strongly depends on the quantum entanglement.
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I. INTRODUCTION present the experimental implementation of the quantum

. he di £ the fi laorith random-walk algorithm on a two-qubit NMR quantum com-
Since the discovery of the first two quantum algorithms, , ier and we believe to the best of our knowledge it is the

Shor’s factoring algorithni1] and Grover’s database search firsi experimental implementation of such quantum algo-
algorithm[2], research in the newborn field of quantum com-rjthms.

putation exploded3]. Mainly motivated by the idea that a We consider continuous-time random-wall&TRW) [6]
computational device based on quantum mechanics might rather than discrete-time random-walkq, on a circle with
(possibly exponentiallymore powerful than a classical one four nodes. We show that the evolution of this quantum walk
[4], great effort has been done to investigate quantum algds periodic and reversible, and yields an exactly uniform
rithms and, more importantly, to experimentally construct aProbability distribution at certain time. While the classical
universal quantum computer. However, finding quantum alC TRW is irreversible and only approximates the uniform dis-
gorithms is a difficult task. It has also been proved extremel3}rIbUtlon at infinite-time limit. Further, we experimentally

o . implement this quantum walk on a two-qubit quantum com-
difficult to experimentally construct a quantum computer, asputer, using a unitary operator which has the right “effec-

well as to carry out quantum computations. tive” Hamiltonian, with good agreements between theory
Recently, several groups have investigated quantum anamg experiment. It is interestingly found that the property of

log of random-walk algorithm§5-10], as a possible direc- the quantum walk strongly depends on the entanglement be-

tion of research to adapt known classical algorithms to theween the two qubits. The uniform distribution could be ob-

quantum case. Random walks on graphs play an essenti@ined only when the two qubits are maximally entangled.

role in various fields of natural science, ranging from as-

tronomy, solid-state physics, polymer chemistry, and biology Il. QUANTUM CTRW ON A CIRCLE

to mathematics and computer scieri@é]. Current investi- The concept of quantum CTRW is proposed in Hél.
gations show that quantum random walks have remarkablpn a circle with four nodes, we denote the set of nodes by
different features to the classical counterpafis10. The  {0,1,2,3. Since the structure of the circle is periodic, only
hope is that a quantum version of the random walk mightwo nodes, k+1)mod 4 and k—1)mod 4, are connected
lead to applications unavailable classically, and to construcio nodek (k=0,1,2,3). In the classical CTRW, lat denote
quantum algorithms. Indeed, the first quantum algorithmshe jumping rate, which is a fixed, time-independent constant
based on quantum walks with remarkable speedup have bedmat represents the probability moving from a given node to a
reported 12]. Further, experimental schemes have also beenonnected one per unit time. The generator md&pof this
proposed to implement such quantum random walks by uswalk can therefore be written as

ing an ion trap quantum computfd] and by using neutral

atoms trapped in optical lattic¢&0]. Up to now, only three 2y —v 0 v

methods have been used to demonstrate quantum logical -y 2y —vy O

gates: trapped ior]4.3], cavity QED[14], and NMR[15]. Of H= 0 —vy 2y —v| 1)
these methods, NMR has been the most successful with re-

alizations of quantum teleportatid6], quantum error cor- -y 0 -—v 2y

rection[17], quantum simulatio18], quantum algorithms Consider a particle walking classically on this circle, let
[19], quantum gamef20], and other$21]. In this paper, we  pC(ty genote the probability of being at nollat timet (the
superscripiC denotes Classicarl ), then we have

. . 3
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This equation conserves the probability in the sense that P
Si-oPr(D=1.

A natural way to the quantum version of this CTRW isto 1
construct a Hilbert space spanned by the four basis
{]0),]1),|2),|3)}, respectively, corresponding to the four 3
nodes{0,1,2,3. The state of a particle walking quantum 4
mechanically on this circle is then denoted|l(t)), which
is generally a superposition of the four basis, rather than = t
classical mixing of the probabilities of being at the four
nodes. The generator matrix in classical walks is now treated 4

as the Hamiltonian of the quantum evoluti@l. Therefore, B

the Schrdinger equation of the state(t)) is 0 T
q 3 S S 3x = !
qréklu(0)= =12 (KHIg(0). ® 47 2y + v

FIG. 1. The probabilities of being at the four nodes in the clas-
If measuring at timd, we can obtain a certain probability sical version of this CTRW. The soligtlotted line corresponds to
distribution on the circle. The probability of being at ndde PS(t) [PS(t)]. The dashed line corresponds R (t) and PS(t),
is PR(t)=|(k|y(t))|? (the superscripiQ denotes Quan-  sinceP(t)=PS(t).
tunT ), and the conservation of probability is obviously guar-
anteed by the normalizatiofy(t)|#(t))=1.

Let the walking particle start from node 0, it is then easy
to find the probability of being at nodeat any timet in both
the classical walks and the quantum wafky solving Egs.
(2) and(3), respectively. The detailed calculation yields that
for the classical walks the probabilities are

CTRW on a circle with four node are essentially periodic
with a periodT=7/7y. The particle walking quantum me-
chanically on this circle will definitely go back to its original
position, and the evolution is reversible. It is also interesting
to see that at timé= /2y the probability distribution con-
verges to node 2. These phenomena are due to the quantum
interference effects, which allows probability amplitudes
1 1 from different paths to cancel each other.
POC(t)= 4_1+ Ee‘27t+ze‘47‘, To measure how uniform a distribution is, an immediate
way is to use theotal variation distancebetween the given
distribution and the uniform distribution. In our case, the

PS(t)=PS(t)= %_ %eﬂwt, classical and quantum total variation distance as functions of
timet are
11 .1 12
PS()=7—5e 2+ze ™ €) AC()=3 k}_‘,o IPE()—3l, @)

In the quantum case, the initial state of the particle is .

|#(0))=|0), from Eq.(3), we have 1
, A%t =5 2 PR~ . 8
(1) =e"|0) k“’
=e 2"Mcogyt|0) —e 2 st yt[2) P
i . 1
+ Ee—ZW‘sin 2yt(]1) +13)). (5)
3
Therefore, the probabilities of the quantum walks are 4
PR(t)=codt, % i
Q Q L. 1
Pl(t)=P3(t)=Zsm22yt, i

P(t)=sin’yt. (6)

The probabilities in Eqsi4) and (6) are plotted in Fig. 1
(for the classical walksand Fig. 2(for the quantum walks FIG. 2. The probabilities of being at the four nodes in the quan-
as functions of time. From Fig. 1 and Fig. 2, we can see tum version of this CTRW. The solittotted line corresponds to
striking differences between quantum and classical randonPg(t) [P2(t)]. The dashed line correspondsRg(t) and P(t),
walks. Figure 2 shows that the evolution of the quantumsinceP{(t)=P3(t).
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FIG. 3. The quantum and classical probability distributions as FIG. 4. The correlation between the quantum total variation dis-

Q .
functions of timet. The solid line corresponds th%(t) and the tanceA. (t) and th.e entanglemerﬁ(t). The line .cor.responds to
. c ) theoretical calculation. The experimental results in different sets are
dashed line taA*~(t), both in theory. The crosses correspond to the . .
experimental results of the quantum case shown in different shapes. The triangles arerfer{1,2,3}, crosses
’ for ne{4,5,6,, boxes for ne{7,8,9, and circles for n

Figure 3 depicts the dependencesf(t) andA®(t) on time ={10.11.13.

t. From Fig. 3, we can see that the classical version of this , i ,

walking process approaches the uniform distribution expo®f the two-qubit statéi(t)) in Eq. (11) can be directly cal-
nentially as time lapses. In contrast, the quantum processUlated by the Von Neumann entropy

exhibits an oscillating behavior. An intriguing property of

this quantum random-walk is thAR(n=/4y) =0 if nis odd, S(t)= — coS ytlog,(coS yt) — sir’ ytlog,(sir yt).
which means that the probability distribution is exactly uni- (12
form at timet= 7/4y and its odd multiples. While the clas-
sical walk can never reach the exactly uniform distribution

: ; C e 'The correlation between the quantum total variation distance
only approximates it at infinite-time limit.

A®(t) and the entanglemers(t) is illustrated in Fig. 4.
From Fig. 4, we can see that if there is no entanglement
between the two qubitsS=0), AQ is at its maximalA®

For the quantum CTRW on a circle with four node, the = 3, Which corresponds converging at noded node 2).
Hilbert space is four demensional. So it is natural to imple-While if the two qubits are maximally entangle®<1),
ment the quantum walks on a two-qubit quantum computerd°=0, which happens to be the situation that the walking
The direct correspondence is to map the b@€ls, |1), [2),  Particle is uniformly distributed on the four nodes. Therefore,
|3)} of the quantum CTRW into the four computational basisWe can say that the quantum random-walk algorithm is en-
{|0)®]0), [0Y®|1), |1)®|0), |1)®|1)}. This mapping is in hanced by the quantum.er)tanglement mvo_lved. _
fact to rephrase the number of nodes by the binary number The quantum CTRW is implemented using our two-qubit

system. Therefore, the Hamiltonian in E@) can be writen NMR quantum computer. This computer uses a 0.5 ml,
as 200 mM sample of carbon-13 labeled chloroforf@am-

bridge Isotopesin dg acetone. In a magnetic field, the two
H=2y1®1— y(I® o+ oy@0y), (9)  spin states of'H and *3C nuclei in the molecular can be
described as four nodes of two qubits, while radio-frequency
wherel ando, are the identity operator and the Pauli opera-(rf) fields and spin-spin couple constahare used to imple-
tor of a Slngle qublt The evolution operator of the tWO'quitment guantum network of CTRW. Experimenta”y, we per-
system Is form 12 separate sets of experiments with various selection
i i . . of time t which is distinguished byyt=(nz/12)(n
Uh=e M=e"Mexdirt(ox@ oy lexdin(ieoy]. ={0,1,2...,12). In the following, we replace the jumping
ratey with 77J (J=215 Hz). In each set, the full process of

And the state of a particle performing this quantum CTRW isthe quantum CTRW is executed. We describe this experi-
mental process as follows.

IIl. EXPERIMENTAL IMPLEMENTATION

| (1)) =e 2 "cod yt|00) — e~ 2"'sirPyt| 10) Firstly, prepare effective pure statg(0)): The initial
: state in NMR is thermally equilibrium statpqu4I%+I§
+ '_e—zi 7sin 2yt(|01)+|11)). (11  rather than a true pure statg(0)). However, it is possible
2 to create an effective pure state, which behaves in an equiva-

.. . . ) ) _ lent manner. This is implemented as
It is interesting to investigate the relations between the dis-

tribution of the implemented quantum CTRW and the en- N 1 N
tanglement of the two-qubit stafe/(t)). The entanglement Ry(13) = G, = Ry(m/4) — 7= Ry(— 7/4) = G,
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to be read from left to right, radio-frequency pulses are indi-nology of China. Figure 3 show the quantum total variation
cated byRSPI"Yangle), and are applied to the spins in the distanceA®(t) as a function of time and Fig. 4 show the
superscript, along the axis in the subscript, by the angle iguantum total variation distana®(S) as a function of en-

the brackets. For exampl®.(/3) denotesw/3 selective tanglement of |y(t)) shown in Eq.(11). From Figs. 3 and
pulse that acts on the first qubit aboytand so forthG, is 4, it is clearly seen the good agreement between theory and
the pulsed field gradient along tlzeaxis to annihilate trans- €Xperiment. However, there exist small errors which increase
verse magnetizations, dashes are for readability only,7and When timet increase, we think that the most errors are pri-

represents a time interval of 1/{p. Therefore, after the state Marily due to decoherence, because the time used to imple-
+21412 from equilibrium statep, =411+ 12 eral tens milliseconds approximately, while the decoherence
e . . .

Séczondly, perform quantum CTRW with different time  fime T,~0.3 and 0.4 s for carbon and proton, respectively.
As shown above in Eq(10), quantum CTRW can be de- The other errors are due to inhomogeneity of magnetic field,
scribed as unitary operatdd(t), this is performed with imperfect pulses, and the variability over time of the mea-
pulse sequence shown in the followitigote that the global ~SUr€ment process.
phasee 2" of U(t) is safely ignored in our experiments,

since p(t)=U(t)p(0)U(t)", this global phase is meaning- V. CONCLUSION

less and has no effect on the result of experiment We present the experimental implementation of the quan-
( ¢ tum random-walk algorithm on a two-qubit nuclear-

R2(0)— R 7/2)— — —R2(7) — — — R — 7/2). magnetic-resonance quantum computer. For the quantum

x(0) =Ry (/2) 2 X () 2 Y (= ml2) CTRW on a circle with four nodes, we observe that the quan-

. tum walk behaves greatly differently from its classical ver-
Here,R:(6) is equal toe™ "%+ that act on the second spin, sion. The quantum CTRW can yield an exactly uniform dis-
where 6=nw/6 and t=n/(6J)=n=/(6y) for n tribution, and is reversible and periodic, while the classical
€{1,2,...,12, R ) denotesw nonselective pulse that walk is essentially dissipative. Further, we find that the prop-
acts on both qubits about It is obviously that the final state €rty of this quantum walk strongly depends on the quantum
p(t) of the quantum CTRW prior to measure is given by €ntanglement between the two qubits. The uniform distribu-
p()=U)p(0)U(). tion could be obtained only when the two qubits are maxi-

Finally, readout the resufi(t) and calculate quantum to- m_ally entang!ed. In this paper, only the relatively simple case
tal variation distance\?(t): In NMR experiment, it is not with two qubits are considered. However, Ol_Jr_schem_e could
practical to determine the final state directly, but an equivaP® extended to the case of a graph containing arbitkary
lent measurement can be made by so-called quantum Sta@@des, and the quantum random-walk could be carried out by
tomography to recover the density matrixp(t)  USing IogN qubits.
=|(t))(¥(t)|. However, as only the diagonal elements of
the final density operators are needed in our experiments, the ACKNOWLEDGMENTS
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