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Experimental implementation of the quantum random-walk algorithm
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The quantum random walk is a possible approach to construct quantum algorithms. Several groups have
investigated the quantum random walk and experimental schemes were proposed. In this paper, we present the
experimental implementation of the quantum random-walk algorithm on a nuclear-magnetic-resonance quan-
tum computer. We observe that the quantum walk is in sharp contrast to its classical counterpart. In particular,
the properties of the quantum walk strongly depends on the quantum entanglement.
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I. INTRODUCTION

Since the discovery of the first two quantum algorithm
Shor’s factoring algorithm@1# and Grover’s database sear
algorithm@2#, research in the newborn field of quantum co
putation exploded@3#. Mainly motivated by the idea that
computational device based on quantum mechanics migh
~possibly exponentially! more powerful than a classical on
@4#, great effort has been done to investigate quantum a
rithms and, more importantly, to experimentally construc
universal quantum computer. However, finding quantum
gorithms is a difficult task. It has also been proved extrem
difficult to experimentally construct a quantum computer,
well as to carry out quantum computations.

Recently, several groups have investigated quantum
log of random-walk algorithms@5–10#, as a possible direc
tion of research to adapt known classical algorithms to
quantum case. Random walks on graphs play an esse
role in various fields of natural science, ranging from a
tronomy, solid-state physics, polymer chemistry, and biolo
to mathematics and computer science@11#. Current investi-
gations show that quantum random walks have remarka
different features to the classical counterparts@5–10#. The
hope is that a quantum version of the random walk mi
lead to applications unavailable classically, and to const
quantum algorithms. Indeed, the first quantum algorith
based on quantum walks with remarkable speedup have
reported@12#. Further, experimental schemes have also b
proposed to implement such quantum random walks by
ing an ion trap quantum computer@9# and by using neutra
atoms trapped in optical lattices@10#. Up to now, only three
methods have been used to demonstrate quantum lo
gates: trapped ions@13#, cavity QED@14#, and NMR@15#. Of
these methods, NMR has been the most successful with
alizations of quantum teleportation@16#, quantum error cor-
rection @17#, quantum simulation@18#, quantum algorithms
@19#, quantum games@20#, and others@21#. In this paper, we
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present the experimental implementation of the quant
random-walk algorithm on a two-qubit NMR quantum com
puter, and we believe to the best of our knowledge it is
first experimental implementation of such quantum alg
rithms.

We consider continuous-time random-walks~CTRW! @6#
rather than discrete-time random-walks@7#, on a circle with
four nodes. We show that the evolution of this quantum w
is periodic and reversible, and yields an exactly unifo
probability distribution at certain time. While the classic
CTRW is irreversible and only approximates the uniform d
tribution at infinite-time limit. Further, we experimentall
implement this quantum walk on a two-qubit quantum co
puter, using a unitary operator which has the right ‘‘effe
tive’’ Hamiltonian, with good agreements between theo
and experiment. It is interestingly found that the property
the quantum walk strongly depends on the entanglement
tween the two qubits. The uniform distribution could be o
tained only when the two qubits are maximally entangled

II. QUANTUM CTRW ON A CIRCLE

The concept of quantum CTRW is proposed in Ref.@6#.
On a circle with four nodes, we denote the set of nodes
$0,1,2,3%. Since the structure of the circle is periodic, on
two nodes, (k11)mod 4 and (k21)mod 4, are connected
to nodek (k50,1,2,3). In the classical CTRW, letg denote
the jumping rate, which is a fixed, time-independent const
that represents the probability moving from a given node t
connected one per unit time. The generator matrix@6# of this
walk can therefore be written as

H5S 2g 2g 0 2g

2g 2g 2g 0

0 2g 2g 2g

2g 0 2g 2g

D . ~1!

Consider a particle walking classically on this circle, l
Pk

C(t) denote the probability of being at nodek at timet ~the
superscriptC denotes ‘‘Classical’’ !, then we have

d C
3

C

dt
Pk ~ t !52(

l 50
HklPl ~ t !. ~2!
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This equation conserves the probability in the sense
(k50

3 Pk
C(t)[1.

A natural way to the quantum version of this CTRW is
construct a Hilbert space spanned by the four ba
$u0&,u1&,u2&,u3&%, respectively, corresponding to the fo
nodes$0,1,2,3%. The state of a particle walking quantu
mechanically on this circle is then denoted byuc(t)&, which
is generally a superposition of the four basis, rather th
classical mixing of the probabilities of being at the fo
nodes. The generator matrix in classical walks is now trea
as the Hamiltonian of the quantum evolution@6#. Therefore,
the Schro¨dinger equation of the stateuc(t)& is

d

dt
^kuc~ t !&52 i(

l 50

3

^kuHu l &^ l uc~ t !&. ~3!

If measuring at timet, we can obtain a certain probabilit
distribution on the circle. The probability of being at nodek
is Pk

Q(t)5u^kuc(t)&u2 ~the superscriptQ denotes ‘‘Quan-
tum’’ !, and the conservation of probability is obviously gua
anteed by the normalization̂c(t)uc(t)&[1.

Let the walking particle start from node 0, it is then ea
to find the probability of being at nodek at any timet in both
the classical walks and the quantum walks~by solving Eqs.
~2! and~3!, respectively!. The detailed calculation yields tha
for the classical walks the probabilities are

P0
C~ t !5

1

4
1

1

2
e22gt1

1

4
e24gt,

P1
C~ t !5P3

C~ t !5
1

4
2

1

4
e24gt,

P2
C~ t !5

1

4
2

1

2
e22gt1

1

4
e24gt. ~4!

In the quantum case, the initial state of the particle
uc(0)&5u0&, from Eq. ~3!, we have

uc~ t !&5e2 iHt u0&

5e22igtcos2gtu0&2e22igtsin2gtu2&

1
i

2
e22igtsin 2gt~ u1&1u3&). ~5!

Therefore, the probabilities of the quantum walks are

P0
Q~ t !5cos4gt,

P1
Q~ t !5P3

Q~ t !5
1

4
sin22gt,

P2
Q~ t !5sin4gt. ~6!

The probabilities in Eqs.~4! and ~6! are plotted in Fig. 1
~for the classical walks! and Fig. 2~for the quantum walks!
as functions of timet. From Fig. 1 and Fig. 2, we can se
striking differences between quantum and classical rand
walks. Figure 2 shows that the evolution of the quant
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CTRW on a circle with four node are essentially period
with a periodT5p/g. The particle walking quantum me
chanically on this circle will definitely go back to its origina
position, and the evolution is reversible. It is also interest
to see that at timet5p/2g the probability distribution con-
verges to node 2. These phenomena are due to the qua
interference effects, which allows probability amplitud
from different paths to cancel each other.

To measure how uniform a distribution is, an immedia
way is to use thetotal variation distancebetween the given
distribution and the uniform distribution. In our case, t
classical and quantum total variation distance as function
time t are

DC~ t !5
1

2 (
k50

3

uPk
C~ t !2 1

4 u, ~7!

DQ~ t !5
1

2 (
k50

3

uPk
Q~ t !2 1

4 u. ~8!

FIG. 1. The probabilities of being at the four nodes in the cl
sical version of this CTRW. The solid~dotted! line corresponds to
P0

C(t) @P2
C(t)#. The dashed line corresponds toP1

C(t) and P3
C(t),

sinceP1
C(t)5P3

C(t).

FIG. 2. The probabilities of being at the four nodes in the qu
tum version of this CTRW. The solid~dotted! line corresponds to
P0

Q(t) @P2
Q(t)#. The dashed line corresponds toP1

Q(t) and P3
Q(t),

sinceP1
Q(t)5P3

Q(t).
6-2
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Figure 3 depicts the dependence ofDC(t) andDQ(t) on time
t. From Fig. 3, we can see that the classical version of
walking process approaches the uniform distribution ex
nentially as time lapses. In contrast, the quantum proc
exhibits an oscillating behavior. An intriguing property
this quantum random-walk is thatDQ(np/4g)50 if n is odd,
which means that the probability distribution is exactly u
form at timet5p/4g and its odd multiples. While the clas
sical walk can never reach the exactly uniform distributio
only approximates it at infinite-time limit.

III. EXPERIMENTAL IMPLEMENTATION

For the quantum CTRW on a circle with four node, t
Hilbert space is four demensional. So it is natural to imp
ment the quantum walks on a two-qubit quantum compu
The direct correspondence is to map the basis$u0&, u1&, u2&,
u3&% of the quantum CTRW into the four computational ba
$u0& ^ u0&, u0& ^ u1&, u1& ^ u0&, u1& ^ u1&%. This mapping is in
fact to rephrase the number of nodes by the binary num
system. Therefore, the Hamiltonian in Eq.~1! can be written
as

H52gI ^ I 2g~ I ^ sx1sx^ sx!, ~9!

whereI andsx are the identity operator and the Pauli ope
tor of a single qubit. The evolution operator of the two-qu
system is

U~ t !5e2 iHt5e22igtexp@ igt~sx^ sx!#exp@ igt~ I ^ sx!#.
~10!

And the state of a particle performing this quantum CTRW

uc~ t !&5e22igtcos2gtu00&2e22igtsin2gtu10&

1
i

2
e22igtsin 2gt~ u01&1u11&). ~11!

It is interesting to investigate the relations between the
tribution of the implemented quantum CTRW and the e
tanglement of the two-qubit stateuc(t)&. The entanglemen

FIG. 3. The quantum and classical probability distributions
functions of timet. The solid line corresponds toDQ(t) and the
dashed line toDC(t), both in theory. The crosses correspond to
experimental results of the quantum case.
04231
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of the two-qubit stateuc(t)& in Eq. ~11! can be directly cal-
culated by the Von Neumann entropy

S~ t !52cos2gt log2~cos2gt !2sin2gt log2~sin2gt !.
~12!

The correlation between the quantum total variation dista
DQ(t) and the entanglementS(t) is illustrated in Fig. 4.
From Fig. 4, we can see that if there is no entanglem
between the two qubits (S50), DQ is at its maximalDQ

5 3
4 , which corresponds converging at node 0~or node 2).

While if the two qubits are maximally entangled (S51),
DQ50, which happens to be the situation that the walki
particle is uniformly distributed on the four nodes. Therefo
we can say that the quantum random-walk algorithm is
hanced by the quantum entanglement involved.

The quantum CTRW is implemented using our two-qu
NMR quantum computer. This computer uses a 0.5
200 mM sample of carbon-13 labeled chloroform~Cam-
bridge Isotopes! in d6 acetone. In a magnetic field, the tw
spin states of1H and 13C nuclei in the molecular can b
described as four nodes of two qubits, while radio-frequen
~rf! fields and spin-spin couple constantJ are used to imple-
ment quantum network of CTRW. Experimentally, we pe
form 12 separate sets of experiments with various selec
of time t which is distinguished bygt5(np/12)(n
5$0,1,2, . . . ,12%). In the following, we replace the jumping
rateg with pJ (J5215 Hz). In each set, the full process
the quantum CTRW is executed. We describe this exp
mental process as follows.

Firstly, prepare effective pure stateuc(0)&: The initial
state in NMR is thermally equilibrium statereq[4I z

11I z
2

rather than a true pure stateuc(0)&. However, it is possible
to create an effective pure state, which behaves in an equ
lent manner. This is implemented as

Rx
1~p/3!2Gz2Rx

1~p/4!2t2Ry
1~2p/4!2Gz ,

s
FIG. 4. The correlation between the quantum total variation d

tanceDQ(t) and the entanglementS(t). The line corresponds to
theoretical calculation. The experimental results in different sets
shown in different shapes. The triangles are fornP$1,2,3%, crosses
for nP$4,5,6%, boxes for nP$7,8,9%, and circles for n
P$10,11,12%.
6-3
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to be read from left to right, radio-frequency pulses are in
cated byRaxis

spins(angle), and are applied to the spins in th
superscript, along the axis in the subscript, by the angle
the brackets. For example,Rx

1(p/3) denotesp/3 selective
pulse that acts on the first qubit aboutx̂, and so forth.Gz is
the pulsed field gradient along theẑ axis to annihilate trans
verse magnetizations, dashes are for readability only, ant
represents a time interval of 1/(2J). Therefore, after the stat
preparation, we obatin effective pure stater(0)[I z

11I z
2

12I z
1I z

2 from equilibrium statereq[4I z
11I z

2 .
Secondly, perform quantum CTRW with different timet:

As shown above in Eq.~10!, quantum CTRW can be de
scribed as unitary operatorU(t), this is performed with
pulse sequence shown in the following~Note that the global
phasee22igt of U(t) is safely ignored in our experiments
sincer(t)5U(t)r(0)U(t)†, this global phase is meaning
less and has no effect on the result of experiment!:

Rx
2~u!2Ry

12~p/2!2
t

2
2Rx

12~p!2
t

2
2Ry

12~2p/2!.

Here,Rx
2(u) is equal toe2 iuŝx/2 that act on the second spin

where u5np/6 and t5n/(6J)5np/(6g) for n
P$1,2, . . . ,12%, Rx

12(p) denotesp nonselective pulse tha

acts on both qubits aboutx̂. It is obviously that the final state
r(t) of the quantum CTRW prior to measure is given
r(t)5U(t)r(0)U(t)†.

Finally, readout the resultr(t) and calculate quantum to
tal variation distanceDQ(t): In NMR experiment, it is not
practical to determine the final state directly, but an equi
lent measurement can be made by so-called quantum
tomography to recover the density matrixr(t)
5uc(t)&^c(t)u. However, as only the diagonal elements
the final density operators are needed in our experiments
readout procedure is simplified by applying gradient pu
before readout pulse to cancel the off-diagonal eleme
Here, we shall note that, the gradient pulse can remove
diagonal terms since we use heteronuclear systems in
experiment. Then quantum total variation distanceDQ(t) is
determined by the equationDQ(t)5 1

2 (k50
3 uPk

Q(t)2 1
4 u,

wherePk
Q(t)5^kur(t)uk& is certain probability on the nod

uk&. Finally, DQ(S) is determined with Eq.~12!.
All experiments are conducted at room temperature

pressure on Bruker Avance DMX-500 spectrometer in La
ratory of Structure Biology, University of Science and Tec
on
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nology of China. Figure 3 show the quantum total variati
distanceDQ(t) as a function of timet and Fig. 4 show the
quantum total variation distanceDQ(S) as a function of en-
tanglementS of uc(t)& shown in Eq.~11!. From Figs. 3 and
4, it is clearly seen the good agreement between theory
experiment. However, there exist small errors which incre
when timet increase, we think that the most errors are p
marily due to decoherence, because the time used to im
ment quantum CTRWU(t) is increased from several to sev
eral tens milliseconds approximately, while the decohere
time T2'0.3 and 0.4 s for carbon and proton, respective
The other errors are due to inhomogeneity of magnetic fie
imperfect pulses, and the variability over time of the me
surement process.

IV. CONCLUSION

We present the experimental implementation of the qu
tum random-walk algorithm on a two-qubit nuclea
magnetic-resonance quantum computer. For the quan
CTRW on a circle with four nodes, we observe that the qu
tum walk behaves greatly differently from its classical ve
sion. The quantum CTRW can yield an exactly uniform d
tribution, and is reversible and periodic, while the classi
walk is essentially dissipative. Further, we find that the pro
erty of this quantum walk strongly depends on the quant
entanglement between the two qubits. The uniform distri
tion could be obtained only when the two qubits are ma
mally entangled. In this paper, only the relatively simple ca
with two qubits are considered. However, our scheme co
be extended to the case of a graph containing arbitrarN
nodes, and the quantum random-walk could be carried ou
using log2N qubits.
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