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Entanglement generation and Hamiltonian simulation in continuous-variable systems
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Several recent experiments have demonstrated the promise of atomic ensembles for quantum teleportation
and quantum memory. In these cases, the collective internal state of the atoms is well described by continuous
variables corresponding to the operat¥rs P, and the interaction with the optical fielK¢,P,) by a qua-
dratic HamiltonianX;X,. We show how this interaction can be used optimally to create entanglement and
squeezing. We derive conditions for the efficient simulation of quadratic Hamiltonians and the engineering of
all Gaussian operations and states.
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[. INTRODUCTION tonian simulation or some desired unitary gatgate engi-
neering.
After the first experiment$l] on quantum teleportation  In the present paper, we analyze all these problems for

using two-mode squeezed states of ligRi3], as well as Wo-mode pure Gaussian states and interaction Hamiltonians
those[4—6] dealing with entanglement in atomic ensemblesWhich preserve the Gaussian character. We also study the
[7.8], a significant amount of work has been devoted to deJeneration of squeezing, since although it has no counterpart

velop a quantum information theory of continuous-variable the qubit case, it is a valuable resource in present experi-
paqg y ments[35]. Given the fact that we touch on several different

(cv) systems[9]. So far, most of the theoretical work has ics and therefore develop different mathematical tools, we
focused on the entanglement properties of the quantum statggye decided to write a section which explains in detail the
involved in all these experiments, the so-callé@gussian different pr0b|ems we consider and the Corresponding re-
states Some examples of the achievements in this field argults. In the following sections, we give detailed derivations
the following. The problem of qualifying entanglement hasof these results.

been solved in the general bipartite settii®—-13 and in We stress the fact that the problems studied here are all
the three-mode cadd 4]. The distillation problem has also motivated by the experimental situation in which light gets
been answered in the general cpB8l, as well as in the case entangled with an atomic ensemble via a Kerr-like interac-
in which the class of allowed operations is restricted to thosdion [8,36—-38. We expect that the techniques developed in
that conserve the Gaussian foftt6—18. In contrast to all  this paper can be easily extended to address other related
this theoretical work orthe statig entanglement properties Problems, like the one of entangling two atomic ensembles
of Gaussian states, very few general results have been oHsing light. _ .

tained on the dynamics of entanglement on these systems, '€ Paper is organized as follows: Section Il should be
i.e., on how to use the interactions provided by the physicai:ons'dered as a survey _Of the re;sult; presented |n.the paper.
setups in order to entangle the systems in the most efficie p_Sec. I”.’ we _show Wh'Ch Hamiltonians can be_3|mulated
way, see, however, Ref$19-22. This paper provides a using a given interaction and how to do so optimally. We

rather complete theory of the dynamics of entanglement ir‘\aIISO show tha_t, in fact, any general Gaussian operation can
. . be generated in the considered setup. In Sec. IV B, we deter-
these experimental settings.

The d . f entanal thas b " | ine the optimal rate of entanglement generation as well as
. € dynamics of entangiement has been recently analyz squeezing generation for arbitrary input states. Finally, in
in systems of two or more qubif23—-29. In that case one Se

L7 ; ) c. IVC, we give an optimal entanglement generation
distinguishes between two scenarios. In the first (@325, scheme for finite times, starting out from a produah-

the_ interaction betwe_:en the qubi'gs is described by a Ham”'squeeze)jstate.

tonian H. The goal is to determine the sequence of local

gates for which the increase of entanglement after some II. OVERVIEW

small(infinitesima) time is maximal for a given initial state. _ ) ) ) )

In the second onf24,26,28, the interaction is given interms ~ This section gives an overview of the content of this paper
of a nonlocal gate, which can be applied only once. Aparta”d |'§ is further _d|V|ded into sections. In 'ghe first one, we
from its fundamental interest, these studies give some pra@plain the physical setup that we are going to analyze. In
tical ways of creating entanglement in the most efficient waythe second one, we collect the main definitions used thereaf-
and may become relevant in several experimental situationd€’- In the third section, we give the main results of the paper
Another interesting and related problem is the one of HamilWithout proving them. For the detailed derivations, we refer
tonian and gate simulatiol29—34. Here, one assumes that the reader to the following sections.

the two qubits interact via some given Hamiltonibinand

the goal is to determine a sequence of local instantaneous
gates in order to obtain in minimal time either a complete We consider a continuous-variable system composed of
time evolution generated by some other Hamiltoriidamil-  two one-mode systems coupled via some interaction Hamil-

A. Setup
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tonian. The goal is to analyze which kind of evolutions wedescribed above. Starting with a pure initial state, described
can achieve with such an interaction if certain instantaneouby the density operatags(0), we perform fast local opera-
local operations can be applied at will. In particular, wetions V,®@W, on the state and we then letact on it for a
study optimal methods of creating or increasing the entangletime t;. Then we perform again local rotationg, ® W; fol-

ment shared by the two modes. lowed by the nonlocal interaction generatedHbyor a time
The interaction Hamiltonian has the general form t, and so on untilZ,t,=t. This yields to the total time-
evolution operator
H:aX1X2+bP1P2+CP1X2+dX1P2, (1)

U =[Va,@W,]U (1) - - U(to) [V @ W, JU(t)[Vo® W],
wherea,b,c, andd are real parameters, aXd , andP, , are Va@WalU L, V1eWUt)[Vo 0(]4)

canonical operators for the first and second mode, respec- _

tively [39]. We use dimensionless units throughout the papeiso thatp(t) =U(t) p(0)UU(t)T. HereU(t)=e "M,

We assume that local operations, generated by the Hamilto- First, we want to analyze whicll are achievable with

nians this strategy. Second, for a given(0), we look for the
best choice ofn, {t;, ... t,}, and the local operations

Hioei = 9(X7 + P?), 2  {Vi®W,, ... V,®W,} in order to maximize either the cre-

ated entanglement or the created squeezing. We consider two

can be applied instantaneously, whgris a real number that gifferent regimes. First, we choosB,t,=dt<7(H) (the

can be tuned at wil[39]. These operations can neither characteristic time of the interactipso that we can expand

change the entanglement nor the s_q_u_eezing present in th@ the U as well asA(t) in lowest order int,. Second, we

state. Lastly, we assume that the initial state is pure an@npgoset, finite. In the following, we refer to those two re-

Gaussian. o _ gimes as infinitesimal and finite, respectively.
Our choice of the Hamiltonian interaction as well as the

instantaneous local operations is motivated by current ex-
periments with atomic ensemblg$—6,40. In particular, to
those setups in which an atomic ensemble interacts with two Since all the Hamiltonians we are considering are at most
modes of the electromagnetic figldil] with different polar-  quadratic inX andP, an initial Gaussian state will be Gauss-
izations[7,36,42,43 If the atoms are sufficiently polarized ian at all times. This means that we can fully describeﬁit by
along some given directiofsayx), we can replace the total the first and second moments oR,, with R
angular-momentum operators describing the internal state of (X;,P;,X,,P,)", i.e., the expectation valuesd,

the atoms by canonical operators. That(iisthe involved  =tr(pRy), (also called displacementand tf p(R,—d\) (R,
levels have spint1/2), Sy—>xll\/N_/2, S,—P,/N/2, S, —d;)]. The latter are collected in theorrelation matrix
—N/2, with[X;,P;]=i (A=1), and wheréN is the number (CM) of the statep, the real, symmetric, positive matrix

of atoms[44]. Similarly, if the electromagnetic field is suffi- defined by

ciently polarized along some direction, we can substitute the

Stokes operators by canonical on¥s,and P, [45]. Y= 2Rt p(R—d) (R —d)) ]} ®)

For some atomic structures and off-resonant interaction - . . ]
the Hamiltonian describing the interaction between thjh our description, the displacements are of no importance:

. : : they have no influence on the entanglement and squeezing
atomic ensemble and the light can be writter{ 38} properties of the states and can be brought to zero by local

Ho=aXyX5, 3) displacer_nent operations, which can be eaeily implemented in
our physical setup. Therefore, we tattg=0 in this paper.
which is a particular case of E(L); in the following we will We often write the correlation matrix in the block form
put the coupling constarst=1 when referring tdH,. In the
same scenario, simple and fast local operations can be per- y:( A C)
formed on the atoms and the electromagnetic field. For ex- C' B
ample, a magnetic field or a polarizer gives rise to the local
Hamiltonians Eq.(2). Since the interaction between atoms With 2X2 matricesA,B,C, whereA refers to the first system
and light is typically weak, with moderate magnetic fieldsandB to second system. The mati&describes the correla-
the operations generated locally can be regarded as instanti#ns between both systems and vanishes for product states.
neous. On the other hand, if the atoms and the light are All the states and operations we consider here are pure.
completely polarized, the corresponding state in terms of oufherefore, and since we look at two-mode states only, we
continuous-variable description is the tensor product of twgsan always write their CM in the forrj46]
vacuum states, in particular, it is a pure Gaussian state. i
We emphasize that even though we have motivated our (S0 coshir)l  sinh(r)a, STosD), (@)
choices with some particular physical setup, our description 1 sinhr)o, coskr)l /"t '
is applicable to other physical situations and our results ap-
ply to the general interaction Hamiltonian equatidn. which we refer to as thpure state standard forrof y. Here,
Now we consider the following generatrategyfor state S, , are local symplectic matrices=0, ando, is the Pauli
or gate engineering which can be realized using the toolsnatrix diag(1;-1). The parametar contains all information

B. Some definitions

(6)
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about the entanglement of the state, whei®aandS, con- 2. Gate simulation and state generation
tain information about local squeezing. Given a GMone
can readily find its pure state standard fo47].

Concerning the bilinear interaction Hamiltonians, it is
convenient to rewrite the Hamiltonian of E(.) as follows:

We show that starting from the HamiltonialisandHq ;
of Egs. (1) and (2) it is possible to generate any desired
unitary evolution of the forni/=e~"", whereH is an arbi-
trary self-adjoint operator quadratic ¥X;,P,X5,P,}, if
and only if |s;|#|s,|. In particular, the HamiltoniarH,,
a d) ®) together with the local operations given in Eg) and local

b/’ displacements, allows to generate all unitary linear opera-

tions, and therefore to generate arbitrary Gaussian states out

We denote bys;=a;, s,=sigridet(K)]o, [48] with o,  Of any pure Gaussian state. This shows tigH; gener-
=g,=0 the singular values df. We refer to thes, as the ate a set of universal linear gates for continuous variables
restricted singular valuesf K. Note that, local rotations can Smaller than the one given in R¢#9].

always bring anyH to the diagonal forns;X;X,+s,P;P». Let us analyze some important applications of these re-
sults in the case of atomic ensembles interacting with light.

They imply that with current experiments with atomic en-
sembles one can generate all unitary linear operations, as
We state here the main results of this paper. To give avell as arbitrary Gaussian states. In particular, one can gen-

clear picture of them we do not use more mathematical toolgrate local squeezing operators for whitk X2 — P2 [which
and definitions than necessary. are not included among the Hamiltonians of the fafmand

First, we characterize the interactions which we are ablgherefore cannot be simulated infinitesimally by any of them
to generate within the setting described by E4). In the  and therefore one can generate squeezing in the atomic sys-
infinitesimal regime the problem is usually called Hamil- tem, light system or both independentlyithout performing
tonian simulation, whereas fofinite it is usually called gate measuremen):sOn the other hand’ one can LH@ to gen-

simulation. Then we use these results to fin_d the opt.imaérate the swap operator, whi¢m the Heisenberg pictuye
strategy to generate entanglement or squeezing both in thgansforms

infinitesimal and finite regime.

X2
H=(X{,PpK p. | where K=
2

C. Results

1. Hamiltonian simulation X1-Xz,  P1oPa. (11

Given two HamiltoniandH and H' of the form (1), we
want to see the conditions under whiehcan simulateH’.
That is, for a given sufficiently small we want to find out
if it is possible to have

This operation can be generated in a finite time. Thus, one
can use the interactioH, to realize a perfect interface be-
tween light and atoms, which allows to use the atomic en-
semble as a quantum memory for light, as opposed to the
case in Ref[40], where this result is obtained in the limit of

e MU =[V,@W,]e M- eT [V @ W] very strong interaction.
xe M Vo@ W], C)
3. Optimal entanglement generation: infinitesimal case
with t, small as well. If it is possible to choose=Z,t, The problem that we consider now can be stated as fol-
=t’, we say thaH can simulateH’ efficiently lows. Let us assume that we have some initial pure Gaussian

Defining the matriceX andK’ as in Eq.(8), as well as  state and we have some interaction described by the general
their respective restricted singular valugs, and s} ,, we ~ Hamiltonian (1) at our disposal for a short timét. The
find the following results(i) The HamiltonianH can effi-  initial state at timet, is described by some correlation matrix
ciently simulateH’ if and only if of the form y(tg) and possesses an entanglemeqt,),
whereE is some measure of entanglement. We would like to
(10) increase the entanglement as much as possible. In order to
simplify our notation we choose, without loss of generality,
o ) ) e . to=0. We omit the argument for all quantities referring to
(i) If itis not p_ossnble to S|mulat_él efficiently with H then  ihe initial state, e.g.y=1(0).
the minimal time needed to simulate the evolution COITE~ " Since for the case of two modes in a pure state there is a
sponding toH" for the timet’ is tyn:=min{t:(s;+$)t=(S;  sjngle parameter that describes the entanglerpeitEq.
+),(S—It=(s;—t'}. Thus, except for the cases=  (35)], all entanglement measures are monotonically depen-
* s, every Hamiltonian of the fornil) can simulate all other  dent on each other. One particular measure is the parameter
Hamiltonians of that form(including thes;=*+s; case. In appearing in Eq(7), Eo(y)=r. In fact, E, is the log nega-
particular, with the Hamiltoniakly describing the atom-light tivity [50] of the Gaussian state. Thus, every entanglement
interaction one can simulate every bilinear Hamilton{ah  measureE can be expressed in terms ofWe use the obvi-
and can do so efficiently as long &sj|+|sy|<1. In this  ous notatiorE(t)=E[ y(t)] when considering the time evo-
case, the interaction existing in the physical setup can bkition of E. Mathematically, our goal is to maximize the
considered universal. entanglement ratg23],

S1t+s,=s1+s, and s;—S,=S;—S5,.
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dE ] E(to+ ot) —E(tg) Cs(H) is thesqueezing capabilitpf the Hamiltonian and it
dat =lims_o St ' 12 s given bys; —s,, where thes;'s are the restricted singular
Yo values ofK, given in Eq.(8) and
by using the fast local operations. We find the following .
result: 9s(y) =2lx4/l[[x2| <1 17)
dE dE quantifies how “squeezable” the stajeis by interactions of
I =3, FE,opl(')’aH)- (13 ST_(0 o PN 2 _
dtf, o drlie) the type(1). Herex' =(Xy,Xp), with X;,X, e R* is the nor
0’ o

malized eigenvector corresponding to the minimal eigen-

The functionT'¢, which genuinely contains the optimal en- Value ofy.
tanglement increase, is given by ) ) o
5. Optimal squeezing and entanglement: finite case
Teopl v,H)=5s:€'—s007", (14 Finally, we consider the situation in which we start with
) ) i i . both modes in the vacuum state and we have a Hamiltonian

wheres, s, characterize the given interaction Hamiltonian, y tor a finite time(as well as instantaneous local operatjons
while | is a parameter that only depends on the local squeezpe show that the optimal way to create entanglement is to
ing of our state and can be determined through the foIIowingmmy local instantaneous operations flipping %eand P

relation[using the notation of Eqs6) and (7)]: variables of both systems periodically after small tintes
delA) After a finite timet (and for At—0) this producegup to
= L -2ccT local rotation$ a two-mode squeezed state, which is both
cosh2l) tr(A~“CC") C _
—2detC) optimally squeezed and entangled. In particu@¢t) = (s,
1 —s,)t andEy(t)=(s;—S))t.
= Etr[(slsl)—lgzsgszgz]_ (15) We also show that it is not possible to increase the en-

tanglement using Gaussian measurements during the evolu-
. . . tion. We consider a system with CMand ancilla systems in
Note that there is no divergence as @et0 as is seen by \40,ym state. We ailow for linear-passive interactiéte-
the second expression in EQ5) [51] scribed by a symplectic and orthogonal mat@) between
Thus, we see that the entanglement rate depends on t%?le system and the ancillas and show that a Gaussian mea-

I(l)cal symplectic m_atrl;]:esl,sz, "Z" on bgthhthe anlwo%nt of surement does neither increase the squeezing nor the en-
(local) squeezing in the two modes and the angle etwee&mglement. This result implies that our method is optimal

the squeezed quadratur@ehich, e.g., is zero, if botiX, and  gen if we allow for feedback, something which has been

X, are squeezedHowever, it does not depend on the en- o ently considered in the context of spin-squeezing genera-
tanglement of the state. Rewritingg o as (s;—s,)coshl tion [19,27.

+(sitsy)sinhl we see that some Hamiltonians can produce o the case of atomic ensembles our result implies that

entanglement even if there is no local squeezing present ifhere is a method to improve the entanglement generation in
the statgwhich implies thalt =0), while othergnotably the present experimentgt].

beam splitter withs;=s,=1) cannot.
Note that the rate goes to infinity as local squeezing is
increased, in contrast to the case of qubits. Given a M IIl. SIMULATION OF INTERACTIONS

there are typically local rotations that enhance the entangle- | this section, we characterize all the unitary evolutions

ment rate. , . which we can generate within the given setup. That is, we
From these results, we conclude .that'lf.the goal 'S,t(? C'€%efine the set of unitary operators which can be written as
ate as much entanglement as possible it is more efficient {gq, (4) The first part of this section is devoted to the infini-
squeeze the state locally firf possible before using the  oqima| regime, where we will, in general, derive the neces-
interaction; in particular, the use of ;queezed ligtitis ad- sary and sufficient conditions for Hamiltonian simulation. In
vantageous compared to coherent liffg]. the second part, we are concerned with the finite time re-
gime. There we show that wittalmos} any HamiltonianH
as in Eq.(1) and the local operations corresponding to the
Now we consider the problem of optimal squeezing genHamiltonians given in Eq(2) it is possible to generate any
eration in the same setup as in the preceding section. We takmitary gate.
as a measure of squeezing of a correlation magrixS
=S5(Q), any monotonically increasing function & where

Q is minus the logarithm of the smallest eigenvalueyoiVe . o ) )
find A central result in the theory of Hamiltonian simulation

[32] states that an alternating sequence of manipulations and

4. Optimal squeezing generation: infinitesimal case

A. Method of Hamiltonian simulation

ds ds interactions as given in Eq9) is equivalent to a fictitious-
at ~d0 g4 v]Cs(H). (16)  free evolution due to a certain effective Hamiltoniblpg,
to.0pt Q(tp) i.e., produces a unitary transformation
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u:e—iHeﬁt’

and

n

KH e= k; p(VieWHH (Ve W), (18)

n

where k:=t'/t, t:=2;_t;, the py:=t,/t form a probability
distribution and thév;®W; follow uniquely from the inter-
spersed control operationg®W, (and vice versa Obvi-
ously one can in this wagimulatean evolution due to a
HamiltonianH .4 by means of a given Hamiltonia.
Equation(18) has a clear interpretation: A protocol pro-
ceeding in infinitesimal time steps yields a mean Hamil-
tonian which is a weighted sum of locally transformed vari-
ants of the original Hamiltoniakl. The so-calledsimulation
factor « is the ratio of simulated tim&¢' and time of simu-

lation t and, therefore, is a measure for the efficiency of thef

simulation. The case=1 corresponds to thefficient simu-
lation.

B. Necessary and sufficient condition

PHYSICAL REVIEW A 67, 042314 (2003

A P:

P:

FIG. 1. lllustration of the accessible region in thg (s;) plane
or the cases,>0. Coordinates of relevant pointst=(s;,s,), P
[(s1+5,)/2](1,1), Q=[(S1—5S2)/2](1,—1). See the text for an
explanation.

Assume now we want to simulate, in the above sense,
some HamiltoniarH’ by means of some other Hamiltonian

We associate to the general nonlocal interaction HamilH, both of the form(8). Let s;,s, ands;,s; denote their

tonian(1) the real 2<2 matrixK as in Eq.(8). The action of
a local rotationV(¢) = exf —i(X*+P?)¢/2] on the canonical
operatorsX and P can be expressed by

X : X
\% p V'=R bl
o _ Cose —sSing SO2R
R=R = . ).
where (¢) Sing COoSs¢ e SQ )

19

Thus, we can associate to all local rotatiohsW; (2) real

orthogonal 22 matricesR,S, ... with determinant+ 1.
Consequently, we have

X
(V®W)H(VT®WT):(Xl,Pl)RTK§<Pz). (20)
2

Furthermore, we use that for any matkbas given in Eq(8)
there exists a singular-value decompositist=ODO,
whereO,0 € O(2,R), D=diag(c; o) and the singular val-
ueso;=0,=0 of K are unique. If we restrict ourselves on
special orthogonal matrices, we can still find matricBsS

e SO(2R) such that

0

s

2

S1

0 (21)

K= R(
ands;=o,, S,=sign det(K)]o, [48]. Without loss of gen-
erality, we may always assume that

S1=[sy|. (22

respective restricted singular values. Then we have the fol-
lowing result:
H can efficiently simulated’ iff

S1+S,=5;+5,,

S1—S,=S;—S,. (23
The proof is elementary but requires some effort in notation
such that we postpone it to Appendix A.

C. Discussion

Since the number of relevant parameters characterizing an
interaction Hamiltonian is two, one can nicely illustrate the
above result: The Fig. 1 illustrates the following geometrical
relations: PointH=(s;,s,) denotes the original general
Hamiltonian. Linegp, andp, indicate the boundaries where
s;==*s,, respectively, and are due to premise=|s)|.
Linesc, andc, stem, respectively, from the first and second
inequality constituting the necessary and sufficient condition.
The region of accessible Hamiltonians, i.e., poiris
=(s;,s3) is thus contained in the rectandlEPHQ. One can
even visualize how this set deepens with increasing time of
simulation by parametrizingH(t)=(s;t,s,t). Thus, H
moves outward on the dashed line, whteand Q move on
p; andp,, respectively.

It is therefore just a matter of time to reach any point in
the quadrant enclosed py andp,. It is also quite instruc-
tive to consider certain special casén: For s,=s; (S,=
—s;) the dashed line coincides withy (p,), respectively.
This is a trivial case where we are confined to simulate lo-
cally equivalent variants of the original Hamiltoniesee Ap-

Then these two values are uniquely defined and shall bpendix A). Therefore, Hamiltonians whose restricted singular

calledrestricted singular valuesf K.

values are of equal modulus are nearly useless for the pur-
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pose of Hamiltonian simulatiorii) For s,=0 or, equiva-
lently, detK) =0 the picture gets symmetric with respect to

PHYSICAL REVIEW A 67, 042314 (2003

In order to perform these operations by means of the
X1 X, interaction, we have to determine the restricted singu-

the s; axis. This symmetrization can be interpreted in termdar values ofH,, and H;,s. One finds forH,, s;=1,s,=1

of time efficiencies, as we shall explain in the following.

and for Hy,s S1=1,5,=—1. Since in both cases condition

Based on the criterion above one can ask for time effi{26) is not met, we cannagfficientlysimulate these Hamil-

ciencies and especially faime optimal protocolsTime op-
timal simulation is achieved if the simulation facter=1t'/t
[see Eq.(18)] gets maximal. Without loss of generality, we
sett’=1 such that«=1/. Given nowH andH’ with re-
stricted singular values,,s, ands;,s;, we can determine
the minimal time of simulation ayj,:=mindt:(s;+s)t=(s;
+5),(S1—)t=(s1 )} We find

1TSS S
if —=—
Sl+ Sz Sl Sj_
tmin= , , < (24
$1—%; 2 Sp
if —,<— .
S17S2 s; S1

Thus, the efficiency of simulation depends strongly on
whether sign§,) = sign(s,) or not, the last case being more
time consuming. Only whers,=0 [case(ii) abovq it is
equally expensivein terms of costs of interaction timeo
simulate either kind of Hamiltoniansl’ [sign(s;)s0], a
fact which is reflected in the above-mentioned symmetriza
tion. Correspondingly, the optimal time of simulation or, so
to say, theminimal interaction cost§33] are in this case
uniquely determined by

tmin:(si+|sé|)/sl- (25

D. Application to XX, interaction

Let us outline some conclusions out of this result for the

interactionH = X, X,. The restricted singular values Hfare
obviously s;=1 ands,=0. Therefore, we can efficiently
(k=1, i.e., t'=t) implement all Hamiltoniandd’ whose
restricted singular values fulfill

s;+|sy<1. (26)

As an example as well as to give a basis for further results

we shall consider here two kinds of well known unitary
transformations: thbeam-splitteroperator

Updt):=e Hod  where Hy=X;P,—P;X,, (27
and thetwo-mode squeezer
Uindt) =€ Hmd where Hype=X;Xo— P1P.
(28)

As mentioned already, the actiondf{ 7/2) corresponds

to swapping the states of the first and the second mode, i.e.,

it transformsX; P;— —X,,— P, and X,P,—X;,P;. Note
that the global phase thereby acquired by subsystem 1 can
corrected locally.

Application of U,,{t) squeezes the quadratureX;(
+X,) and (P;—P,) by a factore 2 and therefore also
entangles the two systems, as we shall see.

04231

tonians. But nevertheless, we can determine strategies for
infinitesimal simulations being time optimal. The minimal
time of simulation can be calculated using E5) and
yields a maximal simulation factot= 1/ ,,,=1/2 for both,

the beam splitter and the squeezer. Thus, in order to imple-
mentU,{t") we need at least a time=2t" and to create

squeezing by a factoe~ 2’ it will take a time 2, i.e., to
implementU,{t') we need a tim¢=2t’. Explicit simula-
tion protocols can be constructed following Appendix A.

E. Simulation of unitary operators and state engineering

Until now we have focused on the regime of infinitesimal
times in order to clarify whichunitary evolutionswe can
simulate by means of the given interaction. We found that we
can do so—more or less efficiently—for all evolutions gov-
erned by Hamiltonians of the forr8), but no more. This
leaves open the question whichmitary operationscan, in
general, i.e., for finite times, be realized with a given inter-
action and local rotations.

As we show in the following, any interaction described by
some HamiltoniarH, wheres, #|s,| together with local ro-
tations is sufficient to realizany unitary operationof the
form exp{G) whereG is a quadratic expression in the op-
eratorsX,,P, . That is, any Gaussian unitary transformation
of the two modes can be obtained. This implies, that any
desired pure Gaussian state can be “engineered” starting
from any given(pure Gaussigninput state.

As we show in Appendix B, anyJ=exp(—iG) can be

decomposed as

U=(Vs®Ws)Up{ts5)(V,@W,)
X Uimd(12) (V3®@W3)Updt3) (Vo0 W5) U t5)

X(V1®W1)Updt1) (Vo®@ W), (29

where all ;®W;) are local rotationslJp(t;) is a beam
splitter andU,(t;) a two-mode squeezing operation as de-
fined in Egs.(27) and (28). Since all Hamiltonians witts;
#|s,| can be used to simulate beam splitters and two-mode
squeezers one can reach any desired unitbaynd therefore
also any desired Gaussian state.

IV. ENTANGLEMENT AND SQUEEZING

be In the preceding section, we characterized the time evo-
lutions on the joint system which can be realized using a
given interaction Hamiltonian of the forfl) and the control
operations provided by E@2). In this section, we determine
the optimal way to use these tools for the generation of en-
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tanglement and squeezing between the two subsystems &) are the restricted singular valueslgfwhich clearly coin-

both, the infinitesimal and the finite regime.

cide with those ofK. In particular, the HamiltoniarH,

Our.derivations make ex'gensive use of the formalism of_ X, X, of Eq. (3) generates an time evolution described by
Gaussian states and operations. The necessary concepts g symplectic matrix

notation are introduced in Sec. IV A and then put to work in

the cases of infinitesimdSec. IV B) and finite(Sec. IV Q
times.

A. State transformations and measures of entanglement
and squeezing

We show here how Gaussian states evolve under a general
guadratic Hamiltonian and then introduce some entangle

ment and squeezing measures for Gaussian states.

1. State transformation

A quadratic interaction Hamiltoniafl) characterized by a

matrixK as in Eq.(8) generates a linear time evolution of the

X and P operators. Solving the Heisenberg equationsﬁor
=(X1,P1,X5,P2) T, we find

R(t)=eMR(0)=S(t)R(0), (30)
where
0L
with
C ~
Lz( )zJTK and L=—JLTJT=J"KT,
—a —d
(32
where
0 -1
J= 1 ol (33

Note that for 0% —det(L)=:a, we haveL=«alL 1. Using
the fact thatM?=al, we can easily reexpress EQ0) and
find

S(t) = cosh yat) 1+ sinh \/at)/\/aM.

Thus, every evolution generated by a Hamilton{dnis
uniquely characterized by a symplectic transformatggt)

(39

1 0 0 O
0O 1 -t O

SO=| o o 1 ol (30
-t 0 0 1

i.e., a=0,(s1,8,)=(1,0), andO;=J [see Eq.(33)] and O,
=—1.
In the Schrdinger picture a linear time evolution as in

Eq. (30) transforms the CMy as
y(1)=S(t)yS()". (37)

In the following section, we address the case of very short
interaction time, i.e., we consid&( 6t) for an infinitesimally
short-time stepst. In this case, we obtain

S(6t)=1+ 6tM, (39

and the correlation matrix(t) transforms to first order as

y(t+8t)=y(t) + StLMy(t) + ()M T]. (39

Let us in the following write the X4 CM of the two-
mode Gaussian state as a block matrix as in(Bgwith 2
X 2 matricesA,B,C. ThenA refers to the first system and is
the CM belonging to the reduced density operators of the
system 1. Note that for all CMs det{=1, and equality
holds if and only if(iff) the state is pure. Since our initial
state is pure and we consider unitary transformati@ml,
later, complete Gaussian measuremgtitis implies that we
are only concerned with pure states at all times.

2. Entanglement and squeezing of Gaussian states

As one can see in E(dY7), the single parameter which
characterizes the nonlocal properties of a pure state is the
two-mode squeezing parameteiThis automatically implies
that any monotonic function of this parameter can be used to
quantify the entanglement of pure Gaussian two-mode states
and we are free to choo$B3] the most convenient measure.

One such quantity iEp(‘y)IdetAICOSh()Z, the deter-
minant of the CM corresponding to the reduced density. It is

of the form (34). Note that any such transformation can berelated to thepurity of the reduced density matrp5]. As

written in its standard form

1 0 h, O
0 —h,

h, 0 1 0

0 -h, 0 1

S(t)=cost{yat)(0,®0,)

X (0,90, (39

where O4,0,e SO(2R) perform the restricted singular-

value decomposition df, andh,=tanh/at)/yas,, where

mentioned before, the determinant of a CM is one, iff the
state is pure, which implies th&t,(y) =1 iff the state is not
entangled, i.e., iff =0.

For the last part of this section another measure of en-
tanglement, namely, theegativity V introduced in Ref[50]
is most convenient to use. For ax1l Gaussian state with
CM 1y the negativity is given by the inverse of the smallest

symplectic eigenvalue of the partially transposed GM
=AyA, which can easily be calculat¢80] as

N(y)=[min{sisngular valugs] yJ,y)}1 Y2 (40
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Here A is the 4x 4 diagonal matrix diag(1,1,%,1) (which
implements partial transposition, see REf1l]) and J,=
J®J is the symplectic matrix for two modes.

The other interesting quantity that characterizes Gaussi
states besides the entanglement is dfgeezingnherent in
the state, i.e., by how much the variance of sqpassive-

PHYSICAL REVIEW A 67, 042314 (2003

where we define®; :=6iT6i and omitted the irrelevant final

local rotations coming fronS(st). Writing y(5t) in the
form (6) and using Eq(39) it is straightforward to determine

e CcMm corresponding to the reduced state,

A(8t)=0,A0]+ 8t(L,0,CTO] +H.c.), (44)

linearly transformeg quadrature is reduced below the stan-
dard quantum limit. The reduced variance is given by the _ . _ o
smallest eigenvaluk,,(y) of y and we define the squeezing WhereLo=diag(s;,—s,) is determined by the Hamiltonian

of a state with CMy as the inverse ok in(7),

S(y)=min{eig(y)} = Amin( ¥~ (41

In a situation like the one we consider here where only or-

thogonal operations are freely available, the squeezing of

state represents a valuable resource which can be used, e

for the creation of entanglemef35] and which should be
created as efficiently as possible.

B. Optimal entanglement and squeezing rates

The goal of this section is to determine the optimal strat-

egy for the generation of entanglemdsgueezingin an
(infinitesimally) small time stepést. That is, given a pure
Gaussian statp with CM y and an interaction Hamiltonian
H as in Eq.(1), we look for the best choice of the local
rotationsV® W such thae™ (Ve W) p(Ve W) e is as
entangled squeezefas possible. Stating this problem math-
ematically: We maximize thentanglemenfsqueezingjrate,

that is the time derivative of the chosen entanglemen

[squeezing measures [S] under the time evolutions ob-
tainable in the given setting.

1. Maximizing the entanglement rate

As measure of entanglement we Usg whereEqy(vy) is
the two-mode squeezing parametdb3] defined in Eq(7).
The entanglement rate is then simply given by

_dE,

r(ét)—r
T -

FE 5t ’

li=o= lim (42

ot—0

wherer=r(0) is the entanglement of the initial CM.
In order to determiné’r we use, following Eq(13), the

formula FEpzsinh(?r)FEzz\/—det(A)det(C)FE, where

H, cf. Egs.(35) and (31). One quickly sees that de&(5t) ]
=det(A)[ 1+ 25t tr(L,0,C"TA"10])], where we used the
simple relation for 22 matrices: def{+ 6tY)=det(X)[1
+ 8t tr(X 1Y) ]+ o(4t?) and the fact thak is symmetric and
invertible.

For the entanglement rate corresponding g we obtain
%_E’pzz det(d)tr(L,O,CTA~10]). As mentioned before, we
can from this easily determine the rdfg corresponding to
the two-mode squeezing parameter, namely, we have

de(A) _
Te= /mtr(LOOZCTA 10)=tr(LoO,Y O)),

(45)

where we have defined:=/det(A)/[ —det(C)]CTA™ L.

Our aim is to maximize this expression with respect to the
special orthogonal matrice®,; and O,. Note that de¥ =
—1, which can be easily verified using B@). ThereforeY
has the restricted singular values—e™',|=0. Using that
{_0 is diagonal it is straightforward to verify that the maxi-
mum of Eq.(45) is achieved when choosir@, ,O, such that
they diagonalizeY such thatO,Y O] =diag(e',—e™"). Then
the optimal choice fo; is

O op=0i0;, (46)

with O; given byS(ét). The best state to léd act on is thus
Yopt=(01,0p@ O2,0p) ¥(O1,0p® O20p) - Note that! which
determines the singular valuestan be easily determined
by Eq.(15) [51].

In summary, given an interaction Hamiltonidh corre-
sponding to a matriXX and an initial state with CMy the
optimal state preparation by local rotatiofiefore lettingH
ach can be understood as a two-step procedure. First trans-
form y locally such thatCTA™! is diagonal[restricted

I'e, denotes the entanglement rate corresponding to th§ingular-value decomposition, cf. EQ1)]. If K was already

purity-related measurg,, .
LetH as in Eq.(8) be the given Hamiltonian. It generates

an evolution given by the symplectic transformatg(rﬁt),
which we write in its standard form35) as S(ot):=
(0,©0,)S(6t)(0,@0,)". Since local operations cannot

in its restricted singular-value decomposition, we are done.
Otherwise, the second step of the state preparation can be
viewed (in the Heisenberg pictuyeas the restricted singular-
value decomposition oK. Then the optimal entanglement
rate (entanglement is measured By) is given by Eq.(14)

in terms of the singular valueg of the Hamiltonian matrix

mcr;aalse the (intanglemenrt] tre 9”'3{ Wayt '? WR:Ch t?et Io%a and the local squeezing parameltaf the given statey.
control operations may €lp 1S 1o rotate the s'a € Inthe Fig. 2, we compare the entanglement rates and the
0,® 0, before applyingH. Thus, the best strategy yields a entanglement obtained for different strategies using the
y(ét) that can be written as “natural Hamiltonian” H,. As initial state, we consider the
product of the vacuum state in the first system and the
squeezed vacuum in the second system, i.e.,

Y(8t)=S(8)(0180,) ¥(0:®0,)"S(81)", (43

042314-8
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FIG. 2. (8 The entanglement rate obtained for the squeezed FIG. 3. (8) The entanglement rate obtained for the initial state
state y;, Eq. (47) as initial state and various strategies. The solid ¥in2=Sr, r,Ymdto/2)S ,,,  where S, =diag(e’’*e "?,
line represents the optimal-rate strategy derived in this section; the'??,e™"2?) andr,=r,=21t,=10"3. The solid linel'z=1 is ob-
dotted line represents the rate obtained by simulating the two-modeined with the strategy that optimizes the entanglement rate at each
squeezing Hamiltoniakl,s; the “dot-dot-dashed” line represents time; the dotted line represents the rate obtained for optimal simu-
the rate obtained for the natural Hamiltonibly=X,X,. For the lation of H,,s; the “dot-dot-dashed” line represents the rate ob-
vacuum state as initial state we obtain the constant rdigathed tained for the natural Hamiltoniad ;= X, X,. The inset shows that
line). (b) The entanglement created by the different stratelgiesie  one has to “pay” with initial entanglement rates smaller than the
styles as in(a) for the different scenarigsThe dashed line repre- optimal value of 1 to reach a state that allows for the large rates

sents the upper bound E6). later on.(b) The entanglement created by the different strategies
[same styles for different scenarios as(@| and the upper bound
ot 0) Eq. (56).
=1, , 4 . .
Yin= 12 0 e “7 Note that we use the logarithm ¢finstead ofS for conve-

nience. It simplifies the formulas but since In is a monotonic

, . function maximizing the rate of 1§ implies a maximal rate
with squeezing parameter=2.5. We compare the strategy for S as well[53]

in which the rate of entanglement creation is optimized at
each time to two simpler ones, namely, to just apply theC
natural HamiltoniarH, or to simulate the two-mode squeez-
ing Hamiltonian H,—=X;X,—P;P, using the optimal

scheme of Sec. lll. The rate-optimization strategy leads i
fact to combination of the other two: one applies first the
natural Hamiltonian for a finite time and thdwhen the

“local squeezing”| has all been converted to two-mode

After applying the general strategy to the input state with
M y, we obtainy(ét) as in Eq.(39). Doing first-order
perturbation theory, we find that\ [ ()= min(y)

i X (MTy+ yM)X= N[ 14 X (MT+M)X], whereX is the
normalized eigenvector corresponding to the smallest eigen-
value \ nin(7y) of y. We obtain for the squeezing rate

squeez?ng one simulatesHys. Having initially local FS:)\ _ )[;(T(MT+ M)X], (49)
squeezing available clearly helps with entanglement genera- min( Y

tion: for an initial unsqueezed state the optimal rate is con- o - “

stantl'g=1 . which is maximized wher-x'(M '+ M)x is as large as pos-

Figure 2b) shows that the optimization strategy can leadSible. Note that
to noticeably more entanglement in the resulting state after 0 N
finite time: when the entanglement rate is optimized at each T —
; ) . MT+M=| : (50)
point, more entanglement is produced than, e.g., with the N' O
interactionsH, or Hy,,s. However, optimizing the rate is, in ~
general, not the best strategy for the creation of entanglewhereN=L+LT=J'KT+K"J, wherel is the SO(2) matrix

ment, see Fig. 3. of Eqg. (33) and we have used the definitiof32) and (8).
One quickly sees thaN=NT. Writing K in its restricted
2. Maximizing the squeezing rate singular-value decompositionK=SKyR, where SR

. . . . . . SO(2R dKy=di , in Eq.(21), and usi

As in the preceding section we are given an mteractlon[‘f]at I(? E) (?onmmate '@?tﬁlfzgveass'ge (t:]hgt&:aST(JuTs&ng

Hamiltonian of the form(1), an initial Gaussian state with LK J)’ST_C (H)RT3"o,ST, where 0
0 - S yA ’

CM v, and we consider the case of infinitesimal interactions.
Our goal is here to determine for eathand y the strategy Cq(H)=s,—5, (51)
which maximizes the squeezing rate. We measure squeezing

by Q(y)=In[S(y)], whereS was defined in Eq(41) as the s the squeezing capabilitpf the HamiltonianH. Note that
inverse of the smallest eigenvalue ¢f The rate we are ine matrix()::RTJTUZST is orthogonal with deﬁ))=—l

interested in is and that we can obtain any suc® choosing R,S

e SO(2R), i.e., by the local operations applied to the initial
e d NS y(0)]]o -1 im Ninl ¥(6) 1= N pin( ¥) state. Using the notatior’=(x],X5), where x;,X,e R?,
STt Y 0T ) s B " we  find  I's=2Cg(H)x]Ox,<2Cg(H)maxg|x;Ox,)

(48)  =2C4H)|Ixy %], which gives an upper bound
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T's=<2Co(H)|[Xq/l[| %] wheres; ,s, are the restricted singular values of the makix
' [cf. Eq. (8)] corresponding tdH.

for I's. This maximum can be reached f&x,, such that SinceS(t)=S(t/2)Sz(t/2)(S=1 1}31:15(”’\‘) we see immedi-
T : ; ViV = ately that @, [St)))*=e 1", which implies that the
(—OgpX2)|[X1. Giveny (i.e., x1,X;) we can calculatd . LN . -
2 squeezing capability o8(t) is bounded byels1~ %2, Now
with detO,,= —1 which satisfies this condition. This then d g cap y 08(1) ye

consider a strategy as in E@), alternating the use df for
determines the optimal choice BfSe SO(2R), i.e., how to d ) g

" ) ; . time t, with local rotationsV,®W,. Note that thet, ,k
transform the initial state with CM before lettingH actin =~ _4 " N \which sum tct. are not assumed to be infinitesi-

order to maximize the squeezing rate. One simple choicg,5 The time-evolution effected by this strategy is described
yielding O= Qg is S=1, i.e., nothing has to be done on the py a symplectic map
second system arRy,=J"0,05,c SO(R,2). Thus, the op- N
timal input state is given byop= (Rgy@1) ¥(Rop@1). S(t) =11,S, (54)

In summary, we have shown that the maximal squeezing -
rate is given by Eq(16) as a product of the squeezing capa-Where S,=0,S(t,)Oy and Oy ,O, are the local rotations
bility Cg(H) of the given Hamiltonian and the squeezability corresponding ~ to Vi ®W,.  Clearly,  omi[St)]
gs(7y) of the given state. The optimal CM to letact onis ~ =Ile v 2W2=g~ (5175212, Hence,  S[S(t)S(1)]

Yop= (Rl 1) ¥(Rop@1), Where <els17%)t je. we have an upper bound to the amount of
squeezing that can be produced from an initially unsqueezed
Rop= J70,07, (52) pure state by applying for a total timet.

A strategy to achieve this optimum is the following: we

and — O, parallelizesc; andx,. Note that the fact thatis ~ choose the local rotationg, , Wi as /2 rotation in system 1
normalized implies thaf's<Cg(H) for any input state. and 3m/2in system 2, the timetg all equal, and consider the
Since we look at the logarithm of the squeezing this impliedimit t,—0. This corresponds to the situation considered in
that (dS(y)/dt)<S(y)Cs(H). Sec. Il and simulates the Hamiltonian related K6= (K
+JKJ)/2. Let K=0O,diag(s;,s,)0,, then we have that
K’'=3 O,[diag(s;,s,) +diag(—s,,—s;)]0,, since rota-
. . ] ] tions commute with). That is, apart from local rotations the
In practice, we are interested in creating the largesktrategy, which simulates the two-mode squeezing Hamil-
amount of entanglement whehacts for afinite total imet.  tonjan with an efficiency ¢, —s,)/2, which is the optimal
Optimizing the rate of entanglement creation at each tim§actor according to Eq(24). Letting Hyp act for a timet’
does lead to a local but not necessarily, as we saw, the global{(g, —s,)/2 (using up an interaction timg transforms the

C. Optimal entanglement generation from the vacuum state

maximum of the entanglement at tir¢24]. vacuum state into the two-mode squeezed state with CM
We now show how to employ the interactiéhto create

the most entanglement in a given timeTo this end, we cosh2z'l sinh2'o,

make use of thequeezin@f y which was introduced in Eq. Yimdt') = (55

(41) as the smallest eigenvalue ¢f The squeezing o¥ is sinh 2", - cosh2’l

known [35] to give an upper bound for the amount of en-\yhich saturates the bounds derived above, since
tanglement ofy, with M{(y)<S(vy). We proceed as follows: S yumdt)]= 51792,

First, we calculate the strongest squeezing that can be Now we show thaty,, in Eq. (55) is also the most en-
achieved after timé This also gives an upper bound for the tangled state that can be obtained after lettihact for a
entanglement that can be obtained during this time. Then Wgyta) timet. Using Eq.(40) for the negativity of a Gaussian

point out a strategy that achieves the optimal squeezing angate with CMy=S(t)S(t)T (i.e., an arbitrary strategy ap-
at the same time the strongest entanglement compatible wWithieq to the vacuum statewe get

the given squeezing, thus being optimal on both counts.

The squeezing capability of a symplectic mgp.e., the Ny) =[S(IT737) ] Y2<S(5) = S(y) =els17 5,
factor by which the squeezing in a CM can be increased by
the application ofS is given by the inverse square of the gjnce M yindt')]=€G17%2t the simulation of two-mode
smallest singular value of S since S(SyS")  squeezing is the optimal strategy for both squeezing and en-
<[omin(9]%S(7). Here, and in the following we use that tanglement generation. Note that even a rough approxima-
for the smallest singular value of a produB we have tion of the optimal strategy, i.e., a strategy consisting of just
Tmin(AB)=0min(A) omin(B). Now consider the symplectic map two or three steps already yields a marked improvement in
S(t) corresponding to the unitary evolution generated by aryenerated squeezing and entanglement.
interaction HamiltoniarH after timet, cf. Eq.(34). The sin- Up to now, we have only considered the unitary evolution
gular values of5(t) can easily be calculated analytically. We of the initial state. There are, however, further tools available
need them only for small times to first ordertinin which  in current experiments. There might be additional light
case we find modes(ancillag in the vacuum state on which passive linear

optical operationgdescribed by orthogonal and symplectic

oL [S(H)]= lli (51— Sy)t+0(1)2, (53) transformations as well as complete or partial homodyne

measurements can be performed. In principle, these

N| -

042314-10



ENTANGLEMENT GENERATION AND HAMILTONIAN . .. PHYSICAL REVIEW A 67, 042314 (2003

might help to increase the entanglementqin but in the One might think that in order to optimize the entangle-
following we show that this is not the case. We consider thenent after some finite timeit always suffices to optimize
following general setup: consider system with GMancilla  the rate at each time as for the case of a vacuum input. For
systems in vacuum state, i.@,,=1, linear passive interac- qubit systems this was indeed shown to be {2@&. In con-
tions (described by a symplectic and orthogonal ma@ix trast, it does not hold for cv systems as the counterexample
between the system light mode and the ancilag., beam depicted in Fig. 3 shows: We start with a slightly entangled
splitter between light and ancillary modesuch that the state with CM y;,, which can be obtained from the two-
whole system is described by the CM=0"(y® y4,0O; mode squeezed stajg,{to/2) squeezing botl; andX, by
clearly, S(v")=8(y) and now we show that a Gaussian r;=r,. Then the “local squeezing parametdris zero and

measurement does not increa¥{ey). We write y’ as the optimal rate, thereforEg=1. If ty is small andr,r,
large it is possible to sacrifice some entanglement in order to
, AT C “activate” the local squeezing thus enhancing the rate later
Yl g on and obtaining significantly more entanglement at time

>t,. The difference to the qubit case is related to the fact

where the block matriB’ refers to the ancillary modes to be that in the cv context not all local transformations are avail-
measured. Then the resulting state is described by the CMble and hence not all equally entangled states are locally
You=A'—C’'B’1C’T [16]. Using the following character- equivalent.
ization of the smallest eigenvalugs7] it is straightforward
tS(:a\:,ee.e that measurement has reduced the squeezing of the V. DISCUSSION AND CONCLUSION

We have investigated how a quadratic interaction between
two continuous-variable systenfas it occurs naturally in
certain quantum optical systejnsan be optimally used to
perform several quantum information tasks when certain
XT(AI_C/BllclT)X] -1 simple local control operationphase-space rotationsan

xf(A’—c'B'"1c' x| *

xx

S(Yout) =Mingcn

be implemented as well. First, we have given necessary and
sufficient conditions for the simulation of a Hamiltonian evo-
”1 lution given a fixed interaction and fast local rotations. In

<min,

x'(1+C'B'~2C'T)x

particular, we have shown that the naturally occurring
Hamiltonian equation(3) allows to simulate all bilinear
Hamiltonians and is in fact of the most versatile kind for this
) Ty'y , purpose. Moreover, we have seen that almost all the Hamil-
=miny . czn) ——— =8(7"). tonians of the forn{1) (and, in particularH,) allow to gen-
yy erate all symplectic transformations on two modes, i.e., the
Consequently, unsqueezed ancilla systems and Gaussi§AMPléte group SP(R) can be generated starting from no

measurements are of no help in increasing the squeezing 8tore than the three Hamiltoniafty,Hioc 1,Hioc 2- .
entanglement in a Gaussian state. With these results, we have addressed the questions of

The preceding discussion does not completely solve th@Ptimal creation of entanglement and squeezing for a two-
problem of optimal entanglement generation with a Hamil-mode Gaussian state using a given mtera;cﬂor; of the fayim
tonianH, since only one particular initial statthe vacuumn ~ @nd local rotations of the forrh,c;=g(X{'+P7), both of
has been considered. If, e.g., the initial state of the light fielgvhich are available in current experiments. For the case of
is squeezed, we have seen in Sec. IV B that better rates cg&mall (infinitesima) interaction times, we have determined
be achievedsee Fig. 2 which will translate into larger en- the optimal strategy to increase entanglement or squeezing
tanglement after finite times. The methods used above easif@r any input state, i.e., we have derived the maximal en-
yield an upper bound for the entanglement that can be odanglement and squeezing rates and determined the strategies
tained from initially squeezed states: Consider an initiawhich lead to these maxima. For the general ddiséte in-
product state with squeezirgj: ande'2 in systems 1 and 2 teraction time, we have derived the optimal strategy for the
and letr,=r,. By the same arguments as above, dftdras creation of entanglement and squeezing starting with the
acted for a timet the squeezing in the final state and thevacuum state. We have also shown ttiatcontrast to qubit
negativity are bounded bg(51 52" "1, We can find a better systemsy for continuous variables optimizing the entangle-
bound on the achievable entanglement drawing on result§i€nt rate is not necessarily the best way to generate a finite
from Ref.[35], where it was shown that the negativity of a @mount of entanglement. o
two-mode CMy is bounded by X/\;\,, wherexy,\, are There are several interesting applications of our results for

the two smallest eigenvalues of the This implies that quantum information processing. In particular, we have seen
that the beam-splitter Hamiltoniadt,;= X, P,— P X, can be

My <els1stH(ratra)/2, (56) simulated with an efficiency factor 1/2 By,. When acting
for a timet= 7 the HamiltonianH 5 generates the swap op-
which yields the dashed curve in Fig(b2 This bound is eration between the systems 1 and 2, thus performing the
most probably not tight for, #0, not even as— . “write-in” and “read-out” operations needed when the

Tar X
=miny W-y:< _B'1c' T
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atomic ensemble is to be used agumntum memorfor the By using the fact that the vector of the diagonal elements

state of the light mod€58]. of a productR diag(s;,s,) S can be written as ReS')
Another interesting application for atomic ensembles isx(s;,s,)", where R-S" denotes the component-wigeo-

enabled by the so-called spin-squeezed stE® which  called Hadamandproduct of matrices we can express the last

have been prepared experimentally in settings similar to thequation in compact form as

one described in this papé#,6]. It has been shown that

these states allow for a significant increase in the precision of (Si) n S, S,

atomic clockg60]. While the methods presented above show = pi(RioSﬁT)( ) =:N( ) (A2)

efficient ways to create squeezed atomic stédeag, by using =1 S2

the interaction to create squeezing or entanglement optimalg/?“

Sz

and then project the atoms into a pure squeezed state e definitiop of the matriN in Eq. (A2) is obvio'us. Using
measuring the light it would also be interesting to find the that all matricesR;,S; are elements of SO(R) it can be

optimal such procedure. seen easily that
Note that the argument in Sec. IV C is easily adapted to
similar circumstances. For example, it was shown in Ref. N11=Nzz, Npp=Npy
[60] that the interaction between the atoms of a suitably pre-
pared Bose-Einstein condens@BEC) can be described by and |[Nj;=Ny <1

the quadratic Hamiltoniad?~P?, which can be used to

drive the BEC into a spin-squeezed state. By the same rea- Conditions(23) follow now directly from(A2) and these
soning as in Sec. IV C, we see that after an interaction timgroperties of\,

t a squeezing o€' is the maximum achievable. This shows

optimality of the procedure suggested in RE#0] (which S1+5,=(Ng3+ Ny (s;+85)<S;+5,.
employs effectively the so-called “two-axes countertwist-
ing” Hamiltonian). The same holds identically for all plus signs replaced by

interaction HamiltoniansH. We have shown which other 1o gemonstrate sufficiency, we show that conditi¢2®
able control operations and how to do so efficiently. Then w&,rn admits to connect the primed and unprimed restricted

have derived the optimal entanglement generation rategingular values as in EqA1). This provides an efficient
achievable with this Hamiltonian and given an optimal pro-sjmylation protocol of the fornf9).

tocol for the generation of entanglement between the two gjyen s;,s, ands, s, fulfilling (23), we can for the time

modes for finite times. being assume tha, # |s,| and define
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APPENDIX A: PROOF OF THE NECESSARY AND
SUFFICIENT CONDITION
FOR HAMILTONIAN SIMULATION

With this definition we haveg;,s;)"=N(s;,s,)". Next we

have to show thaiN can be written as a convex sum of

Hadamard products of rotation matrices which is in fact ex-
First, we prove necessity. H can simulated’ efficiently  actly what inequalitie$23) ensure.

Eqg. (18) has to hold forc=1 andHs=H’. Therefore, and It is again easy to check that fi|+|f|<1, we can find

because of Eqg8) and (20) there must exist a probability probabilities{p; :p;=0,="_,p;}{, such thaie=p,—p, and

distribution {p;}{_, and special orthogonal matrices f=p;—p, and therefore

{R;,S}_; such that
10 (10 10 /-1 0
N—plolool—i—pzoloo _1

0 1) ( 0 1 0 1) (0 - 1)
Rotation matrices which should, in principle, appear on the -1 0i-1 0 -10\l 0
left-hand side can be removed by left and right multiplication (A3)
with corresponding transposed matrices. In &ll), we as-

sume these ones to be already included inRheS; on the  This decomposition oN allows to pass fron{A2) to (A1)

right-hand side. conserving the diagonal structure as can be checked easily.

s; O " s; O
(O Sé>:2 piRi<O sz)si- (A1)

+Ps3 + P4
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Thus, it suffices to show how23) implies|e|+|f|<1. Mul-  posed into a sequence of one passive transformation, single
tiplying the first[second line of Eq. (23) by (s;—s,) [(s;  mode squeezing and another passive transformation. That is
+5,)] yields, respectively, to say the symplectic matri® corresponding to the unitary

transformationU can be decomposed &=O0DO, where

0,0 are orthogonal, symplectic and, therefore, passive trans-
formations and the diagonal matrix D
=diage**# e (@"P) ea=B e~ («=A)  amounts to local
The first term on the right-hand sides is non-negative due t§9u€ezing. Note that this is basically a singular-value decom-

premise(22) such that these inequalities are equivalent to Position ofS _ _ _
(i) Passive transformations contain essentially beam-

s?—s5=|s;S] — 5,55 + 5,55 — 5,54, splitter transformations and local rotations and it is well
known from quantum optics that any such transformation on
which is, regarding the definition & andf, exactly what we  two modes can be decomposed into a sequence of a pair of
had to show and proves sufficiency for the casg# |s,|. local rotations, one beam-splitter operation and another pair
The complementary casas=|s,| turn out to be trivial, of local rotations. Thus, a unitary) corresponding to a
since conditions(23) then requires;=s,=s, or s;=—5, orthogonal symplectic transformatidh can be decomposed
=s,, respectively, and this means that we can exclusivellgs U= (Vo W)U, {to) (Vo W) whereU,Jt) is defined in
simulate Hamiltonians, wherel’=(UaV)H(UT@V") for  gq. (27
some local rotationdJ®V, i.e., H' has to be—in this  (jii) What is left to show is how to attain single-mode
sense—locally equivalent tél. Hence, nothing has to be squeezing. For this we split the matrix into two compo-
shown in this case. nents, D=diag(e®, e *,e% e %)diage’ e #,e 4 ef) and
We point out that this proof provides the pOSSIbI'Ity t0 show how each of them can be attained by means
construct simulation protocols explicitly. Giverd andH’  of beam splitters and two-mode squeezing. Let us denote
one has to calculate the decomposition in &8). Then the by Ubs(t) and Ut (t) the variants of beam splitter
probabilities and rotations appearing there will fix the timegnq  two-mode sqnl]eezing operators which are attained
stepst; and control operations;®V; in Eqg. (9). As can be £, Egs. (270 and (28), respectively, by locally
seen such a protocol will contain at most three intervals OJPotating X,—P,,P,——X,. Then it can be easily shown

interaction and control operations being rotations abou%hat the sequencegs( 7/4)U S(a)US(ﬂ'M) generates
bs\ tm b

2 — 5= (5;5]— S,85) + (5155 — S,S1),

ST 55=(515]— $,57) — (515, $,51).

+
*ml2 and. a symplectic transformation  diagf{,e” “,e“,e™ %)
APPENDIX B: GATE SIMULATION and Upd — 74U i B)Upd 7/4) correspondingly
diage?,e e A ef).
To show that any unitary) =exp(—iG) whereG is qua- Collecting things together and ordering all passive com-
dratic expression in the operatotg, P, can be decomposed ponents as iffii), i.e., such that it contains only one applica-
as given in Eq(29) we will proceed in three steps. tion of a beam-splitter operation, decomposit{@8) follows

(i) As shown in Refs[46,61] any suchU can be decom- immediately.
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