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Entanglement generation and Hamiltonian simulation in continuous-variable systems

Barbara Kraus, Klemens Hammerer, Ge´za Giedke, and J. Ignacio Cirac
Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Strasse, D-85748 Garching, Germany

~Received 12 November 2002; published 22 April 2003!

Several recent experiments have demonstrated the promise of atomic ensembles for quantum teleportation
and quantum memory. In these cases, the collective internal state of the atoms is well described by continuous
variables corresponding to the operatorsX1 ,P1 and the interaction with the optical field (X2 ,P2) by a qua-
dratic HamiltonianX1X2. We show how this interaction can be used optimally to create entanglement and
squeezing. We derive conditions for the efficient simulation of quadratic Hamiltonians and the engineering of
all Gaussian operations and states.
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I. INTRODUCTION

After the first experiments@1# on quantum teleportation
using two-mode squeezed states of light@2,3#, as well as
those@4–6# dealing with entanglement in atomic ensemb
@7,8#, a significant amount of work has been devoted to
velop a quantum information theory of continuous-varia
~cv! systems@9#. So far, most of the theoretical work ha
focused on the entanglement properties of the quantum s
involved in all these experiments, the so-calledGaussian
states. Some examples of the achievements in this field
the following. The problem of qualifying entanglement h
been solved in the general bipartite setting@10–13# and in
the three-mode case@14#. The distillation problem has als
been answered in the general case@15#, as well as in the case
in which the class of allowed operations is restricted to th
that conserve the Gaussian form@16–18#. In contrast to all
this theoretical work on~the static! entanglement propertie
of Gaussian states, very few general results have been
tained on the dynamics of entanglement on these syste
i.e., on how to use the interactions provided by the phys
setups in order to entangle the systems in the most effic
way, see, however, Refs.@19–22#. This paper provides a
rather complete theory of the dynamics of entanglemen
these experimental settings.

The dynamics of entanglement has been recently analy
in systems of two or more qubits@23–28#. In that case one
distinguishes between two scenarios. In the first one@23,25#,
the interaction between the qubits is described by a Ha
tonian H. The goal is to determine the sequence of lo
gates for which the increase of entanglement after so
small ~infinitesimal! time is maximal for a given initial state
In the second one@24,26,28#, the interaction is given in term
of a nonlocal gate, which can be applied only once. Ap
from its fundamental interest, these studies give some p
tical ways of creating entanglement in the most efficient w
and may become relevant in several experimental situati
Another interesting and related problem is the one of Ham
tonian and gate simulation@29–34#. Here, one assumes th
the two qubits interact via some given HamiltonianH and
the goal is to determine a sequence of local instantane
gates in order to obtain in minimal time either a comple
time evolution generated by some other Hamiltonian~Hamil-
1050-2947/2003/67~4!/042314~14!/$20.00 67 0423
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tonian simulation! or some desired unitary gate~gate engi-
neering!.

In the present paper, we analyze all these problems
two-mode pure Gaussian states and interaction Hamilton
which preserve the Gaussian character. We also study
generation of squeezing, since although it has no counter
in the qubit case, it is a valuable resource in present exp
ments@35#. Given the fact that we touch on several differe
topics and therefore develop different mathematical tools,
have decided to write a section which explains in detail
different problems we consider and the corresponding
sults. In the following sections, we give detailed derivatio
of these results.

We stress the fact that the problems studied here are
motivated by the experimental situation in which light ge
entangled with an atomic ensemble via a Kerr-like inter
tion @8,36–38#. We expect that the techniques developed
this paper can be easily extended to address other re
problems, like the one of entangling two atomic ensemb
using light.

The paper is organized as follows: Section II should
considered as a survey of the results presented in the p
In Sec. III, we show which Hamiltonians can be simulat
using a given interaction and how to do so optimally. W
also show that, in fact, any general Gaussian operation
be generated in the considered setup. In Sec. IV B, we de
mine the optimal rate of entanglement generation as wel
of squeezing generation for arbitrary input states. Finally
Sec. IV C, we give an optimal entanglement generat
scheme for finite times, starting out from a product~un-
squeezed! state.

II. OVERVIEW

This section gives an overview of the content of this pa
and it is further divided into sections. In the first one, w
explain the physical setup that we are going to analyze
the second one, we collect the main definitions used ther
ter. In the third section, we give the main results of the pa
without proving them. For the detailed derivations, we re
the reader to the following sections.

A. Setup

We consider a continuous-variable system composed
two one-mode systems coupled via some interaction Ha
©2003 The American Physical Society14-1
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tonian. The goal is to analyze which kind of evolutions w
can achieve with such an interaction if certain instantane
local operations can be applied at will. In particular, w
study optimal methods of creating or increasing the entan
ment shared by the two modes.

The interaction Hamiltonian has the general form

H5aX1X21bP1P21cP1X21dX1P2 , ~1!

wherea,b,c, andd are real parameters, andX1,2 andP1,2 are
canonical operators for the first and second mode, res
tively @39#. We use dimensionless units throughout the pa
We assume that local operations, generated by the Ham
nians

H loc,i5g~Xi
21Pi

2!, ~2!

can be applied instantaneously, whereg is a real number tha
can be tuned at will@39#. These operations can neith
change the entanglement nor the squeezing present in
state. Lastly, we assume that the initial state is pure
Gaussian.

Our choice of the Hamiltonian interaction as well as t
instantaneous local operations is motivated by current
periments with atomic ensembles@4–6,40#. In particular, to
those setups in which an atomic ensemble interacts with
modes of the electromagnetic field@41# with different polar-
izations@7,36,42,43#. If the atoms are sufficiently polarize
along some given direction~sayx), we can replace the tota
angular-momentum operators describing the internal stat
the atoms by canonical operators. That is~if the involved
levels have spin61/2), Sy→X1 /AN/2, Sz→P1 /AN/2, Sx
→N/2, with @X1 ,P1#. i (\51), and whereN is the number
of atoms@44#. Similarly, if the electromagnetic field is suffi
ciently polarized along some direction, we can substitute
Stokes operators by canonical ones,X2 andP2 @45#.

For some atomic structures and off-resonant interactio
the Hamiltonian describing the interaction between
atomic ensemble and the light can be written as@36#

H05aX1X2 , ~3!

which is a particular case of Eq.~1!; in the following we will
put the coupling constanta51 when referring toH0. In the
same scenario, simple and fast local operations can be
formed on the atoms and the electromagnetic field. For
ample, a magnetic field or a polarizer gives rise to the lo
Hamiltonians Eq.~2!. Since the interaction between atom
and light is typically weak, with moderate magnetic fiel
the operations generated locally can be regarded as inst
neous. On the other hand, if the atoms and the light
completely polarized, the corresponding state in terms of
continuous-variable description is the tensor product of t
vacuum states, in particular, it is a pure Gaussian state.

We emphasize that even though we have motivated
choices with some particular physical setup, our descrip
is applicable to other physical situations and our results
ply to the general interaction Hamiltonian equation~1!.

Now we consider the following generalstrategyfor state
or gate engineering which can be realized using the to
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described above. Starting with a pure initial state, descri
by the density operatorr(0), we perform fast local opera-
tions V0^ W0 on the state and we then letH act on it for a
time t1. Then we perform again local rotations,V1^ W1 fol-
lowed by the nonlocal interaction generated byH for a time
t2 and so on until(ktk5t. This yields to the total time-
evolution operator

U~ t !5@Vn^ Wn#U~ tn!•••U~ t2!@V1^ W1#U~ t1!@V0^ W0#,
~4!

so thatr(t)5U(t)r(0)U(t)†. HereU(t)5e2 iHt .
First, we want to analyze whichU are achievable with

this strategy. Second, for a givenr(0), we look for the
best choice ofn, $t1 , . . . ,tn%, and the local operations
$V1^ W1 , . . . ,Vn^ Wn% in order to maximize either the cre
ated entanglement or the created squeezing. We conside
different regimes. First, we choose(ktk5dt!t(H) ~the
characteristic time of the interaction! so that we can expand
all the U as well asU(t) in lowest order intk . Second, we
choosetk finite. In the following, we refer to those two re
gimes as infinitesimal and finite, respectively.

B. Some definitions

Since all the Hamiltonians we are considering are at m
quadratic inX andP, an initial Gaussian state will be Gaus
ian at all times. This means that we can fully describe it
the first and second moments ofRk , with RW
5(X1 ,P1 ,X2 ,P2)T, i.e., the expectation valuesdk
5tr(rRk), ~also called displacements! and tr@r(Rk2dk)(Rl
2dl)#. The latter are collected in thecorrelation matrix
~CM! of the stater, the real, symmetric, positive matrixg
defined by

gkl52Re$tr@r~Rk2dk!~Rl2dl !#%. ~5!

In our description, the displacements are of no importan
they have no influence on the entanglement and squee
properties of the states and can be brought to zero by l
displacement operations, which can be easily implemente
our physical setup. Therefore, we takedk50 in this paper.

We often write the correlation matrix in the block form

g5S A C

CT BD ~6!

with 232 matricesA,B,C, whereA refers to the first system
andB to second system. The matrixC describes the correla
tions between both systems and vanishes for product sta

All the states and operations we consider here are p
Therefore, and since we look at two-mode states only,
can always write their CM in the form@46#

g5~S1% S2!S cosh~r !1 sinh~r !sz

sinh~r !sz cosh~r !1 D ~S1
T

% S2
T!, ~7!

which we refer to as thepure state standard formof g. Here,
S1,2 are local symplectic matrices,r>0, andsz is the Pauli
matrix diag(1,21). The parameterr contains all information
4-2
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about the entanglement of the state, whereasS1 andS2 con-
tain information about local squeezing. Given a CMg, one
can readily find its pure state standard form@47#.

Concerning the bilinear interaction Hamiltonians, it
convenient to rewrite the Hamiltonian of Eq.~1! as follows:

H5~X1 ,P1!KS X2

P2
D , where K5S a d

c bD . ~8!

We denote bys15s1 , s25sign@det(K)#s2 @48# with s1
>s2>0 the singular values ofK. We refer to thesk as the
restricted singular valuesof K. Note that, local rotations ca
always bring anyH to the diagonal forms1X1X21s2P1P2.

C. Results

We state here the main results of this paper. To giv
clear picture of them we do not use more mathematical to
and definitions than necessary.

First, we characterize the interactions which we are a
to generate within the setting described by Eq.~4!. In the
infinitesimal regime the problem is usually called Ham
tonian simulation, whereas fort finite it is usually called gate
simulation. Then we use these results to find the optim
strategy to generate entanglement or squeezing both in
infinitesimal and finite regime.

1. Hamiltonian simulation

Given two HamiltoniansH and H8 of the form ~1!, we
want to see the conditions under whichH can simulateH8.
That is, for a given sufficiently smallt8 we want to find out
if it is possible to have

e2 iH 8t85@Vn^ Wn#e2 iHt n
•••e2 iHt 2@V1^ W1#

3e2 iHt 1@V0^ W0#, ~9!

with tk small as well. If it is possible to chooset[(ktk
5t8, we say thatH can simulateH8 efficiently.

Defining the matricesK andK8 as in Eq.~8!, as well as
their respective restricted singular valuess1,2 and s1,28 , we
find the following results:~i! The HamiltonianH can effi-
ciently simulateH8 if and only if

s11s2>s181s28 and s12s2>s182s28 . ~10!

~ii ! If it is not possible to simulateH8 efficiently withH, then
the minimal time needed to simulate the evolution cor
sponding toH8 for the time t8 is tminªmint$t:(s11s2)t>(s18
1s28)t8,(s12s2)t>(s182s28)t8%. Thus, except for the casess15
6s2 every Hamiltonian of the form~1! can simulate all other
Hamiltonians of that form~including thes1856s28 case!. In
particular, with the HamiltonianH0 describing the atom-ligh
interaction one can simulate every bilinear Hamiltonian~1!
and can do so efficiently as long asus18u1us28u<1. In this
case, the interaction existing in the physical setup can
considered universal.
04231
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2. Gate simulation and state generation

We show that starting from the HamiltoniansH andH loc,i
of Eqs. ~1! and ~2! it is possible to generate any desire
unitary evolution of the formU5e2 iH̃ , whereH̃ is an arbi-
trary self-adjoint operator quadratic in$X1 ,P1 ,X2 ,P2%, if
and only if us1uÞus2u. In particular, the HamiltonianH0,
together with the local operations given in Eq.~2! and local
displacements, allows to generate all unitary linear ope
tions, and therefore to generate arbitrary Gaussian state
of any pure Gaussian state. This shows thatH0,H loc,i gener-
ate a set of universal linear gates for continuous variab
smaller than the one given in Ref.@49#.

Let us analyze some important applications of these
sults in the case of atomic ensembles interacting with lig
They imply that with current experiments with atomic e
sembles one can generate all unitary linear operations
well as arbitrary Gaussian states. In particular, one can g
erate local squeezing operators for whichH̃5X1

22P1
2 @which

are not included among the Hamiltonians of the form~1! and
therefore cannot be simulated infinitesimally by any of the#
and therefore one can generate squeezing in the atomic
tem, light system or both independently~without performing
measurements!. On the other hand, one can useH0 to gen-
erate the swap operator, which~in the Heisenberg picture!
transforms

X1↔X2 , P1↔P2 . ~11!

This operation can be generated in a finite time. Thus,
can use the interactionH0 to realize a perfect interface be
tween light and atoms, which allows to use the atomic
semble as a quantum memory for light, as opposed to
case in Ref.@40#, where this result is obtained in the limit o
very strong interaction.

3. Optimal entanglement generation: infinitesimal case

The problem that we consider now can be stated as
lows. Let us assume that we have some initial pure Gaus
state and we have some interaction described by the gen
Hamiltonian ~1! at our disposal for a short timedt. The
initial state at timet0 is described by some correlation matr
of the form g(t0) and possesses an entanglementE(t0),
whereE is some measure of entanglement. We would like
increase the entanglement as much as possible. In ord
simplify our notation we choose, without loss of generali
t050. We omit the argument for all quantities referring
the initial state, e.g.,g5g(0).

Since for the case of two modes in a pure state there
single parameter that describes the entanglement@cf. Eq.
~35!#, all entanglement measures are monotonically dep
dent on each other. One particular measure is the paramer
appearing in Eq.~7!, E0(g)5r . In fact, E0 is the log nega-
tivity @50# of the Gaussian state. Thus, every entanglem
measureE can be expressed in terms ofr. We use the obvi-
ous notationE(t)[E@g(t)# when considering the time evo
lution of E. Mathematically, our goal is to maximize th
entanglement rate@23#,
4-3
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dE

dt U
t0

5 limdt→0

E~ t01dt !2E~ t0!

dt
, ~12!

by using the fast local operations. We find the followin
result:

dE

dt U
t0 ,opt

5
dE

dr U
r (t0)

GE,opt~g,H !. ~13!

The functionGE , which genuinely contains the optimal en
tanglement increase, is given by

GE,opt~g,H !5s1el2s2e2 l , ~14!

wheres1 ,s2 characterize the given interaction Hamiltonia
while l is a parameter that only depends on the local sque
ing of our state and can be determined through the follow
relation @using the notation of Eqs.~6! and ~7!#:

cosh~2l !5
det~A!

22det~C!
tr~A22CCT!

5
1

2
tr@~S1

TS1!21szS2
TS2sz#. ~15!

Note that there is no divergence as detC→0 as is seen by
the second expression in Eq.~15! @51#.

Thus, we see that the entanglement rate depends on
local symplectic matricesS1 ,S2, i.e., on both the amount o
~local! squeezing in the two modes and the angle betw
the squeezed quadratures~which, e.g., is zero, if bothX1 and
X2 are squeezed!. However, it does not depend on the e
tanglement of the state. RewritingGE,opt as (s12s2)coshl
1(s11s2)sinhl we see that some Hamiltonians can produ
entanglement even if there is no local squeezing presen
the state~which implies thatl 50), while others~notably the
beam splitter withs15s251) cannot.

Note that the rate goes to infinity as local squeezing
increased, in contrast to the case of qubits. Given a CMg,
there are typically local rotations that enhance the entan
ment rate.

From these results, we conclude that if the goal is to c
ate as much entanglement as possible it is more efficien
squeeze the state locally first~if possible! before using the
interaction; in particular, the use of squeezed light@7# is ad-
vantageous compared to coherent light@42#.

4. Optimal squeezing generation: infinitesimal case

Now we consider the problem of optimal squeezing g
eration in the same setup as in the preceding section. We
as a measure of squeezing of a correlation matrixg, S
5S(Q), any monotonically increasing function ofQ, where
Q is minus the logarithm of the smallest eigenvalue ofg. We
find

dS
dt U

t0 ,opt

5
dS
dQU

Q(t0)

gS@g#CS~H !. ~16!
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CS(H) is thesqueezing capabilityof the Hamiltonian and it
is given bys12s2, where thesi ’s are the restricted singula
values ofK, given in Eq.~8! and

gS~g!52ixW1iixW2i<1 ~17!

quantifies how ‘‘squeezable’’ the stateg is by interactions of
the type~1!. Here x̂T5(xW1 ,xW2), with xW1 ,xW2PR2 is the nor-
malized eigenvector corresponding to the minimal eig
value ofg.

5. Optimal squeezing and entanglement: finite case

Finally, we consider the situation in which we start wi
both modes in the vacuum state and we have a Hamilton
H for a finite time~as well as instantaneous local operation!.
We show that the optimal way to create entanglement is
apply local instantaneous operations flipping theX and P
variables of both systems periodically after small timesDt.
After a finite time t ~and for Dt→0) this produces~up to
local rotations! a two-mode squeezed state, which is bo
optimally squeezed and entangled. In particular,Q(t)5(s1
2s2)t andE0(t)5(s12s2)t.

We also show that it is not possible to increase the
tanglement using Gaussian measurements during the ev
tion. We consider a system with CMg and ancilla systems in
vacuum state. We allow for linear-passive interactions~de-
scribed by a symplectic and orthogonal matrixO) between
one system and the ancillas and show that a Gaussian
surement does neither increase the squeezing nor the
tanglement. This result implies that our method is optim
even if we allow for feedback, something which has be
recently considered in the context of spin-squeezing gen
tion @19,22#.

For the case of atomic ensembles our result implies
there is a method to improve the entanglement generatio
present experiments@4#.

III. SIMULATION OF INTERACTIONS

In this section, we characterize all the unitary evolutio
which we can generate within the given setup. That is,
define the set of unitary operators which can be written
Eq. ~4!. The first part of this section is devoted to the infin
tesimal regime, where we will, in general, derive the nec
sary and sufficient conditions for Hamiltonian simulation.
the second part, we are concerned with the finite time
gime. There we show that with~almost! any HamiltonianH
as in Eq.~1! and the local operations corresponding to t
Hamiltonians given in Eq.~2! it is possible to generate an
unitary gate.

A. Method of Hamiltonian simulation

A central result in the theory of Hamiltonian simulatio
@32# states that an alternating sequence of manipulations
interactions as given in Eq.~9! is equivalent to a fictitious-
free evolution due to a certain effective HamiltonianHeff ,
i.e., produces a unitary transformation
4-4
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U5e2 iH efft8

and

kHeff5 (
k51

n

pk~Ṽk
†

^ W̃k
†!H~Ṽk^ W̃k!, ~18!

wherekªt8/t, tª( i 51
n t i , the pkªtk /t form a probability

distribution and theṼi ^ W̃i follow uniquely from the inter-
spersed control operationsVj ^ Wj ~and vice versa!. Obvi-
ously one can in this waysimulatean evolution due to a
HamiltonianHeff by means of a given HamiltonianH.

Equation~18! has a clear interpretation: A protocol pro
ceeding in infinitesimal time steps yields a mean Ham
tonian which is a weighted sum of locally transformed va
ants of the original HamiltonianH. The so-calledsimulation
factor k is the ratio of simulated timet8 and time of simu-
lation t and, therefore, is a measure for the efficiency of
simulation. The casek>1 corresponds to theefficient simu-
lation.

B. Necessary and sufficient condition

We associate to the general nonlocal interaction Ham
tonian~1! the real 232 matrixK as in Eq.~8!. The action of
a local rotationV(w)5exp@2i(X21P2)w/2# on the canonical
operatorsX andP can be expressed by

VS X

PDV†5R̄S X

PD ,

where R̄5R~w!5S cosw 2sinw

sinw cosw
D PSO~2,R!.

~19!

Thus, we can associate to all local rotationsVi ,Wi ~2! real
orthogonal 232 matricesR̄,S̄, . . . with determinant11.
Consequently, we have

~V^ W!H~V†
^ W†!5~X1 ,P1!R̄TKS̄S X2

P2
D . ~20!

Furthermore, we use that for any matrixK as given in Eq.~8!

there exists a singular-value decompositionK5ODÕ,
whereO,ÕPO(2,R), D5diag(s1 ,s2) and the singular val-
uess1>s2>0 of K are unique. If we restrict ourselves o
specialorthogonal matrices, we can still find matricesR,S
PSO(2,R) such that

K5RS s1 0

0 s2
DS, ~21!

ands15s1 , s25sign@det(K)#s2 @48#. Without loss of gen-
erality, we may always assume that

s1>us2u. ~22!

Then these two values are uniquely defined and shal
called restricted singular valuesof K.
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Assume now we want to simulate, in the above sen
some HamiltonianH8 by means of some other Hamiltonia
H, both of the form~8!. Let s1 ,s2 and s18 ,s28 denote their
respective restricted singular values. Then we have the
lowing result:

H can efficiently simulateH8 iff

s11s2>s181s28 ,

s12s2>s182s28 . ~23!

The proof is elementary but requires some effort in notat
such that we postpone it to Appendix A.

C. Discussion

Since the number of relevant parameters characterizin
interaction Hamiltonian is two, one can nicely illustrate t
above result: The Fig. 1 illustrates the following geometric
relations: PointH5(s1 ,s2) denotes the original genera
Hamiltonian. Linesp1 andp2 indicate the boundaries wher
s1856s28 , respectively, and are due to premises18>us28u.
Linesc1 andc2 stem, respectively, from the first and seco
inequality constituting the necessary and sufficient conditi
The region of accessible Hamiltonians, i.e., pointsH8
5(s18 ,s28) is thus contained in the rectangleOPHQ. One can
even visualize how this set deepens with increasing time
simulation by parametrizingH(t)5(s1t,s2t). Thus, H
moves outward on the dashed line, whileP andQ move on
p1 andp2, respectively.

It is therefore just a matter of time to reach any point
the quadrant enclosed byp1 andp2. It is also quite instruc-
tive to consider certain special cases:~i! For s25s1 (s25
2s1) the dashed line coincides withp1 (p2), respectively.
This is a trivial case where we are confined to simulate
cally equivalent variants of the original Hamiltonian~see Ap-
pendix A!. Therefore, Hamiltonians whose restricted singu
values are of equal modulus are nearly useless for the

FIG. 1. Illustration of the accessible region in the (s18 ,s28) plane
for the cases2.0. Coordinates of relevant points:H5(s1 ,s2), P
5@(s11s2)/2#(1,1), Q5@(s12s2)/2#(1,21). See the text for an
explanation.
4-5
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pose of Hamiltonian simulation.~ii ! For s250 or, equiva-
lently, det(K)50 the picture gets symmetric with respect
the s18 axis. This symmetrization can be interpreted in ter
of time efficiencies, as we shall explain in the following.

Based on the criterion above one can ask for time e
ciencies and especially fortime optimal protocols. Time op-
timal simulation is achieved if the simulation factork5t8/t
@see Eq.~18!# gets maximal. Without loss of generality, w
set t851 such thatk51/t. Given nowH and H8 with re-
stricted singular valuess1 ,s2 and s18 ,s28 , we can determine
the minimal time of simulation astminªmint$t:(s11s2)t>(s18
1s28),(s12s2)t>(s182s28)%. We find

tmin55
s181s28

s11s2
if

s28

s18
>

s2

s1

s182s28

s12s2
if

s28

s18
,

s2

s1
.

~24!

Thus, the efficiency of simulation depends strongly
whether sign(s28)5sign(s2) or not, the last case being mor
time consuming. Only whens250 @case ~ii ! above# it is
equally expensive~in terms of costs of interaction time! to
simulate either kind of HamiltoniansH8 @sign(s28)"0#, a
fact which is reflected in the above-mentioned symmetri
tion. Correspondingly, the optimal time of simulation or,
to say, theminimal interaction costs@33# are in this case
uniquely determined by

tmin5~s181us28u!/s1 . ~25!

D. Application to X1X2 interaction

Let us outline some conclusions out of this result for t
interactionH5X1X2. The restricted singular values ofH are
obviously s151 and s250. Therefore, we can efficiently
(k51, i.e., t85t) implement all HamiltoniansH8 whose
restricted singular values fulfill

s181us28u<1. ~26!

As an example as well as to give a basis for further res
we shall consider here two kinds of well known unita
transformations: thebeam-splitteroperator

Ubs~ t !ªe2 iH bst where Hbs5X1P22P1X2 , ~27!

and thetwo-mode squeezer

U tms~ t !ªe2 iH tmst, where H tms5X1X22P1P2 .
~28!

As mentioned already, the action ofUbs(p/2) corresponds
to swapping the states of the first and the second mode,
it transformsX1,P1→2X2 ,2P2 and X2,P2→X1 ,P1. Note
that the global phase thereby acquired by subsystem 1 ca
corrected locally.

Application of U tms(t) squeezes the quadratures (X1
1X2) and (P12P2) by a factor e22t and therefore also
entangles the two systems, as we shall see.
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In order to perform these operations by means of
X1X2 interaction, we have to determine the restricted sin
lar values ofHbs and H tms. One finds forHbs s151,s251
and for H tms s151,s2521. Since in both cases conditio
~26! is not met, we cannotefficientlysimulate these Hamil-
tonians. But nevertheless, we can determine strategies
infinitesimal simulations being time optimal. The minim
time of simulation can be calculated using Eq.~25! and
yields a maximal simulation factork51/tmin51/2 for both,
the beam splitter and the squeezer. Thus, in order to im
ment Ubs(t8) we need at least a timet52t8 and to create

squeezing by a factore22t8 it will take a time 2t8, i.e., to
implementU tms(t8) we need a timet52t8. Explicit simula-
tion protocols can be constructed following Appendix A.

E. Simulation of unitary operators and state engineering

Until now we have focused on the regime of infinitesim
times in order to clarify whichunitary evolutionswe can
simulate by means of the given interaction. We found that
can do so—more or less efficiently—for all evolutions go
erned by Hamiltonians of the form~8!, but no more. This
leaves open the question whichunitary operationscan, in
general, i.e., for finite times, be realized with a given int
action and local rotations.

As we show in the following, any interaction described
some HamiltonianH, wheres1Þus2u together with local ro-
tations is sufficient to realizeany unitary operationof the
form exp(iG) whereG is a quadratic expression in the op
eratorsXk ,Pk . That is, any Gaussian unitary transformati
of the two modes can be obtained. This implies, that a
desired pure Gaussian state can be ‘‘engineered’’ star
from any given~pure Gaussian! input state.

As we show in Appendix B, anyU5exp(2iG) can be
decomposed as

U5~V5^ W5!Ubs~ t5!~V4^ W4!

3U tms~ t4!~V3^ W3!Ubs~ t3!~V2^ W2!U tms~ t2!

3~V1^ W1!Ubs~ t1!~V0^ W0!, ~29!

where all (Vi ^ Wi) are local rotations,Ubs(t i) is a beam
splitter andU tms(t i) a two-mode squeezing operation as d
fined in Eqs.~27! and ~28!. Since all Hamiltonians withs1
Þus2u can be used to simulate beam splitters and two-m
squeezers one can reach any desired unitaryU and therefore
also any desired Gaussian state.

IV. ENTANGLEMENT AND SQUEEZING

In the preceding section, we characterized the time e
lutions on the joint system which can be realized using
given interaction Hamiltonian of the form~1! and the control
operations provided by Eq.~2!. In this section, we determine
the optimal way to use these tools for the generation of
4-6



s

o
ts
in

ne
gl

e
r

be

-

by

n

ort

s
the

l

the

d to
ates
e.

t is

he

en-

st

ENTANGLEMENT GENERATION AND HAMILTONIAN . . . PHYSICAL REVIEW A 67, 042314 ~2003!
tanglement and squeezing between the two subsystem
both, the infinitesimal and the finite regime.

Our derivations make extensive use of the formalism
Gaussian states and operations. The necessary concep
notation are introduced in Sec. IV A and then put to work
the cases of infinitesimal~Sec. IV B! and finite~Sec. IV C!
times.

A. State transformations and measures of entanglement
and squeezing

We show here how Gaussian states evolve under a ge
quadratic Hamiltonian and then introduce some entan
ment and squeezing measures for Gaussian states.

1. State transformation

A quadratic interaction Hamiltonian~1! characterized by a
matrix K as in Eq.~8! generates a linear time evolution of th
X and P operators. Solving the Heisenberg equations foRW
5(X1 ,P1 ,X2 ,P2)T, we find

RW ~ t !5eMtRW ~0!5S~ t !RW ~0!, ~30!

where

M5S 0 L

L̃ 0D , ~31!

with

L5S c b

2a 2dD 5JTK and L̃52JLTJT5JTKT,

~32!

where

J5S 0 21

1 0 D . ~33!

Note that for 0Þ2det(L)5:a, we haveL̃5aL21. Using
the fact thatM25a1, we can easily reexpress Eq.~30! and
find

S~ t !5cosh~Aat !11sinh~Aat !/AaM . ~34!

Thus, every evolution generated by a Hamiltonian~1! is
uniquely characterized by a symplectic transformationS(t)
of the form ~34!. Note that any such transformation can
written in its standard form

S~ t !5cosh~Aat !~O1% O2!S 1 0 h1 0

0 1 0 2h2

h2 0 1 0

0 2h1 0 1

D
3~O1% O2!T, ~35!

where O1 ,O2PSO(2,R) perform the restricted singular
value decomposition ofL, andhk5tanh(Aat)/Aask , where
04231
in
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sk are the restricted singular values ofL, which clearly coin-
cide with those ofK. In particular, the HamiltonianH0
5X1X2 of Eq. ~3! generates an time evolution described
the symplectic matrix

S0~ t !5S 1 0 0 0

0 1 2t 0

0 0 1 0

2t 0 0 1

D , ~36!

i.e., a50,(s1 ,s2)5(1,0), andO15J @see Eq.~33!# andO2
521.

In the Schro¨dinger picture a linear time evolution as i
Eq. ~30! transforms the CMg as

g~ t !5S~ t !gS~ t !T. ~37!

In the following section, we address the case of very sh
interaction time, i.e., we considerS(dt) for an infinitesimally
short-time stepdt. In this case, we obtain

S~dt !511dtM , ~38!

and the correlation matrixg(t) transforms to first order as

g~ t1dt !5g~ t !1dt@Mg~ t !1g~ t !MT#. ~39!

Let us in the following write the 434 CM of the two-
mode Gaussian state as a block matrix as in Eq.~6! with 2
32 matricesA,B,C. ThenA refers to the first system and i
the CM belonging to the reduced density operators of
system 1. Note that for all CMs det(g)>1, and equality
holds if and only if ~iff ! the state is pure. Since our initia
state is pure and we consider unitary transformations~and,
later, complete Gaussian measurements! this implies that we
are only concerned with pure states at all times.

2. Entanglement and squeezing of Gaussian states

As one can see in Eq.~7!, the single parameter which
characterizes the nonlocal properties of a pure state is
two-mode squeezing parameterr. This automatically implies
that any monotonic function of this parameter can be use
quantify the entanglement of pure Gaussian two-mode st
and we are free to choose@53# the most convenient measur

One such quantity isEp(g)5detA5cosh(r)2, the deter-
minant of the CM corresponding to the reduced density. I
related to thepurity of the reduced density matrix@55#. As
mentioned before, the determinant of a CM is one, iff t
state is pure, which implies thatEp(g)51 iff the state is not
entangled, i.e., iffr 50.

For the last part of this section another measure of
tanglement, namely, thenegativityN introduced in Ref.@50#
is most convenient to use. For a 131 Gaussian state with
CM g the negativity is given by the inverse of the smalle
symplectic eigenvalue of the partially transposed CMg̃
5LgL, which can easily be calculated@50# as

N~g!5@min$sisngular values~J2
Tg̃J2g̃ !%#21/2. ~40!
4-7



si

n
th
g

o
of
, e

at

l

h-

en
-

th

s

t
ca
b
a

l

the

i-

d

ans-

ne.
n be
-
t

the
the

the

KRAUS et al. PHYSICAL REVIEW A 67, 042314 ~2003!
HereL is the 434 diagonal matrix diag(1,1,1,21) ~which
implements partial transposition, see Ref.@11#! and J25
J% J is the symplectic matrix for two modes.

The other interesting quantity that characterizes Gaus
states besides the entanglement is thesqueezinginherent in
the state, i.e., by how much the variance of some~passive-
linearly transformed! quadrature is reduced below the sta
dard quantum limit. The reduced variance is given by
smallest eigenvaluelmin(g) of g and we define the squeezin
of a state with CMg as the inverse oflmin(g),

S~g!5min$eig~g!%215@lmin~g!#21. ~41!

In a situation like the one we consider here where only
thogonal operations are freely available, the squeezing
state represents a valuable resource which can be used
for the creation of entanglement@35# and which should be
created as efficiently as possible.

B. Optimal entanglement and squeezing rates

The goal of this section is to determine the optimal str
egy for the generation of entanglement@squeezing# in an
~infinitesimally! small time stepdt. That is, given a pure
Gaussian stater with CM g and an interaction Hamiltonian
H as in Eq.~1!, we look for the best choice of the loca
rotationsV^ W such thate2 iHdt(V^ W)r(V^ W)†eiHdt is as
entangled@squeezed# as possible. Stating this problem mat
ematically: We maximize theentanglement@squeezing# rate,
that is the time derivative of the chosen entanglem
@squeezing# measuresE @S# under the time evolutions ob
tainable in the given setting.

1. Maximizing the entanglement rate

As measure of entanglement we useE0, whereE0(g) is
the two-mode squeezing parameterr @53# defined in Eq.~7!.
The entanglement rate is then simply given by

GE5
dE0

dt
u t505 lim

dt→0

r ~dt !2r

dt
, ~42!

wherer[r (0) is the entanglement of the initial CMg.
In order to determineGE we use, following Eq.~13!, the

formula GEp
5sinh(2r)GE52A2det(A)det(C)GE , where

GEp
denotes the entanglement rate corresponding to

purity-related measureEp .
Let H as in Eq.~8! be the given Hamiltonian. It generate

an evolution given by the symplectic transformationS̄(dt),
which we write in its standard form~35! as S̄(dt)ª
(Ō1% Ō2)S(dt)(Ō1% Ō2)T. Since local operations canno
increase the entanglement the only way in which the lo
control operations may help is to rotate the state
Õ1% Õ2 before applyingH. Thus, the best strategy yields
g(dt) that can be written as

g~dt !5S~dt !~O1% O2!g~O1% O2!TS~dt !T, ~43!
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where we definedOiªŌi
TÕi and omitted the irrelevant fina

local rotations coming fromS̄(dt). Writing g(dt) in the
form ~6! and using Eq.~39! it is straightforward to determine
the CM corresponding to the reduced state,

A~dt !5O1AO1
T1dt~L0O2CTO1

T1H.c.!, ~44!

whereL05diag(s2 ,2s1) is determined by the Hamiltonian
H, cf. Eqs.~35! and ~31!. One quickly sees that det@A(dt)#
5det(A)@112dt tr(L0O2CTA21O1

T)#, where we used the
simple relation for 232 matrices: det(X1dtY)5det(X)@1
1dt tr(X21Y)#1o(dt2) and the fact thatA is symmetric and
invertible.

For the entanglement rate corresponding toEp , we obtain
GEp

52 det(A)tr(L0O2CTA21O1
T). As mentioned before, we

can from this easily determine the rateGE corresponding to
the two-mode squeezing parameter, namely, we have

GE5A det~A!

2det~C!
tr~L0O2CTA21O1

T!5tr~L0O2YO1
T!,

~45!

where we have definedYªAdet(A)/@2det(C)#CTA21.
Our aim is to maximize this expression with respect to

special orthogonal matricesO1 and O2. Note that detY5
21, which can be easily verified using Eq.~7!. ThereforeY
has the restricted singular valuesel ,2e2 l ,l>0. Using that
L0 is diagonal it is straightforward to verify that the max
mum of Eq.~45! is achieved when choosingO1 ,O2 such that
they diagonalizeY such thatO2YO1

T5diag(el ,2e2 l). Then

the optimal choice forÕi is

Õi ,opt5ŌiOi , ~46!

with Ōi given byS̄(dt). The best state to letH act on is thus
gopt5(Õ1,opt% Õ2,opt)g(Õ1,opt% Õ2,opt)

T. Note that l which
determines the singular values ofY can be easily determine
by Eq. ~15! @51#.

In summary, given an interaction HamiltonianH corre-
sponding to a matrixK and an initial state with CMg the
optimal state preparation by local rotations~before lettingH
act! can be understood as a two-step procedure. First tr
form g locally such thatCTA21 is diagonal @restricted
singular-value decomposition, cf. Eq.~21!#. If K was already
in its restricted singular-value decomposition, we are do
Otherwise, the second step of the state preparation ca
viewed~in the Heisenberg picture! as the restricted singular
value decomposition ofK. Then the optimal entanglemen
rate ~entanglement is measured byE0) is given by Eq.~14!
in terms of the singular valuessk of the Hamiltonian matrix
K and the local squeezing parameterl of the given stateg.

In the Fig. 2, we compare the entanglement rates and
entanglement obtained for different strategies using
‘‘natural Hamiltonian’’ H0. As initial state, we consider the
product of the vacuum state in the first system and
squeezed vacuum in the second system, i.e.,
4-8
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g in512% S e2r 0

0 er D , ~47!

with squeezing parameterr 52.5. We compare the strateg
in which the rate of entanglement creation is optimized
each time to two simpler ones, namely, to just apply
natural HamiltonianH0 or to simulate the two-mode squee
ing Hamiltonian H tms5X1X22P1P2 using the optimal
scheme of Sec. III. The rate-optimization strategy leads
fact to combination of the other two: one applies first t
natural Hamiltonian for a finite time and then~when the
‘‘local squeezing’’ l has all been converted to two-mod
squeezing! one simulatesH tms. Having initially local
squeezing available clearly helps with entanglement gen
tion: for an initial unsqueezed state the optimal rate is c
stantGE51 .

Figure 2~b! shows that the optimization strategy can le
to noticeably more entanglement in the resulting state a
finite time: when the entanglement rate is optimized at e
point, more entanglement is produced than, e.g., with
interactionsH0 or H tms. However, optimizing the rate is, in
general, not the best strategy for the creation of entan
ment, see Fig. 3.

2. Maximizing the squeezing rate

As in the preceding section we are given an interact
Hamiltonian of the form~1!, an initial Gaussian state with
CM g, and we consider the case of infinitesimal interactio
Our goal is here to determine for eachH andg the strategy
which maximizes the squeezing rate. We measure squee
by Q(g)5 ln@S(g)#, whereS was defined in Eq.~41! as the
inverse of the smallest eigenvalue ofg. The rate we are
interested in is

GS5
d

dt
ln S@g~ t !#u t505

21

lmin~g!
lim

dt→0

lmin@g~dt !#2lmin~g!

dt
.

~48!

FIG. 2. ~a! The entanglement rate obtained for the squee
stateg in Eq. ~47! as initial state and various strategies. The so
line represents the optimal-rate strategy derived in this section
dotted line represents the rate obtained by simulating the two-m
squeezing HamiltonianH tms; the ‘‘dot-dot-dashed’’ line represent
the rate obtained for the natural HamiltonianH05X1X2. For the
vacuum state as initial state we obtain the constant rate 1~dashed
line!. ~b! The entanglement created by the different strategies@same
styles as in~a! for the different scenarios#. The dashed line repre
sents the upper bound Eq.~56!.
04231
t
e

n

a-
-

er
h
e

e-

n

.

ing

Note that we use the logarithm ofS instead ofS for conve-
nience. It simplifies the formulas but since ln is a monoto
function maximizing the rate of lnS implies a maximal rate
for S as well @53#.

After applying the general strategy to the input state w
CM g, we obtaing(dt) as in Eq.~39!. Doing first-order
perturbation theory, we find thatlmin@g(dt)#5lmin(g)
1dtx̂T(MTg1gM)x̂5lmin@11dtx̂T(MT1M)x̂#, where x̂ is the
normalized eigenvector corresponding to the smallest eig
valuelmin(g) of g. We obtain for the squeezing rate

GS5
21

lmin~g!
@ x̂T~MT1M !x̂#, ~49!

which is maximized when2 x̂T(MT1M ) x̂ is as large as pos
sible. Note that

MT1M[S 0 N

NT 0 D , ~50!

whereN5L̃1LT5JTKT1KTJ, whereJ is the SO(2) matrix
of Eq. ~33! and we have used the definitions~32! and ~8!.
One quickly sees thatN5NT. Writing K in its restricted
singular-value decompositionK5SK0R, where S,R
PSO(2,R) and K05diag(s1 ,s2) as in Eq.~21!, and using
that R,S commute with J we see that N5RT(JTK0
1K0J)ST5CS(H)RTJTszS

T, where

CS~H !5s12s2 ~51!

is the squeezing capabilityof the HamiltonianH. Note that
the matrix ÕªRTJTszS

T is orthogonal with det(Õ)521
and that we can obtain any suchÕ choosing R,S
PSO(2,R), i.e., by the local operations applied to the initi
state. Using the notationx̂T5(xW1

T ,xW2
T), where xW1 ,xW2PR2,

we find GS52CS(H)xW1
TÕxW2<2CS(H)maxÕuxW1

TÕxW2u
52CS(H) ixW1i ixW2i, which gives an upper bound

d

he
de

FIG. 3. ~a! The entanglement rate obtained for the initial sta
g in,25Sr 1 ,r 2

g tms(t0/2)Sr 1 ,r 2

T , where Sr 1 ,r 2
5diag(er 1/2,e2r 1/2,

er 2/2,e2r 2/2) and r 15r 252,t051023. The solid lineGE51 is ob-
tained with the strategy that optimizes the entanglement rate at
time; the dotted line represents the rate obtained for optimal si
lation of H tms; the ‘‘dot-dot-dashed’’ line represents the rate o
tained for the natural HamiltonianH05X1X2. The inset shows tha
one has to ‘‘pay’’ with initial entanglement rates smaller than t
optimal value of 1 to reach a state that allows for the large ra
later on. ~b! The entanglement created by the different strateg
@same styles for different scenarios as in~a!# and the upper bound
Eq. ~56!.
4-9
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GS<2CS~H !ixW1iixW2i ,

for GS . This maximum can be reached forÕopt such that
(2ÕoptxW2)uuxW1. Given g ~i.e., xW1 ,xW2) we can calculateÕopt

with detÕopt521 which satisfies this condition. This the
determines the optimal choice ofR,SPSO(2,R), i.e., how to
transform the initial state with CMg before lettingH act in
order to maximize the squeezing rate. One simple cho
yielding Õ5Õopt is S51, i.e., nothing has to be done on th
second system andRopt5JTszÕopt

T PSO(R,2). Thus, the op-
timal input state is given bygopt5(Ropt

T
% 1)g(Ropt% 1).

In summary, we have shown that the maximal squeez
rate is given by Eq.~16! as a product of the squeezing cap
bility CS(H) of the given Hamiltonian and the squeezabil
gS(g) of the given state. The optimal CM to letH act on is
gopt5(Ropt

T
% 1)g(Ropt% 1), where

Ropt5JTszÕ
T, ~52!

and2Õopt parallelizesxW1 andxW2. Note that the fact thatx̂ is
normalized implies thatGS<CS(H) for any input state.
Since we look at the logarithm of the squeezing this impl
that (dS(g)/dt)<S(g)CS(H).

C. Optimal entanglement generation from the vacuum state

In practice, we are interested in creating the larg
amount of entanglement whenH acts for afinite total timet.
Optimizing the rate of entanglement creation at each t
does lead to a local but not necessarily, as we saw, the gl
maximum of the entanglement at timet @24#.

We now show how to employ the interactionH to create
the most entanglement in a given timet. To this end, we
make use of thesqueezingof g which was introduced in Eq
~41! as the smallest eigenvalue ofg. The squeezing ofg is
known @35# to give an upper bound for the amount of e
tanglement ofg, with N(g)<S(g). We proceed as follows
First, we calculate the strongest squeezing that can
achieved after timet. This also gives an upper bound for th
entanglement that can be obtained during this time. Then
point out a strategy that achieves the optimal squeezing
at the same time the strongest entanglement compatible
the given squeezing, thus being optimal on both counts.

The squeezing capability of a symplectic mapS, i.e., the
factor by which the squeezing in a CM can be increased
the application ofS, is given by the inverse square of th
smallest singular value of S, since S(SgST)
<@smin(S)#22S(g). Here, and in the following we use tha
for the smallest singular value of a productAB we have
smin(AB)>smin(A)smin(B). Now consider the symplectic ma
S(t) corresponding to the unitary evolution generated by
interaction HamiltonianH after timet, cf. Eq. ~34!. The sin-
gular values ofS(t) can easily be calculated analytically. W
need them only for small times to first order int, in which
case we find

s6@S~ t !#5A16
1

2
~s12s2!t1o~ t !2, ~53!
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wheres1 ,s2 are the restricted singular values of the matrixK
@cf. Eq. ~8!# corresponding toH.

SinceS(t)5S(t/2)S(t/2)5Pk51
N S(t/N) we see immedi-

ately that (smin@S(t)#)2>e2(s12s2)t, which implies that the
squeezing capability ofS(t) is bounded bye(s12s2)t. Now
consider a strategy as in Eq.~4!, alternating the use ofH for
time tk with local rotationsVk^ Wk . Note that thetk ,k
51, . . . ,N, which sum tot, are not assumed to be infinites
mal. The time-evolution effected by this strategy is describ
by a symplectic map

S~ t !5PkS̃k , ~54!

where S̃k5OkS(tk)Ok8 and Ok ,Ok8 are the local rotations
corresponding to Vk^ Wk . Clearly, smin@S(t)#
>Pke

2(s12s2)tk/25e2(s12s2)t/2. Hence, S@S(t)S(t)T#
<e(s12s2)t, i.e., we have an upper bound to the amount
squeezing that can be produced from an initially unsquee
pure state by applyingH for a total timet.

A strategy to achieve this optimum is the following: w
choose the local rotationsVk ,Wk asp/2 rotation in system 1
and 3p/2 in system 2, the timestk all equal, and consider the
limit tk→0. This corresponds to the situation considered
Sec. III and simulates the Hamiltonian related toK85(K
1JKJ)/2. Let K5O1 diag(s1 ,s2)O2, then we have that
K85 1

2 O1@diag(s1 ,s2)1diag(2s2 ,2s1)#O2, since rota-
tions commute withJ. That is, apart from local rotations th
strategy, which simulates the two-mode squeezing Ham
tonian with an efficiency (s12s2)/2, which is the optimal
factor according to Eq.~24!. Letting H tms act for a timet8
5t(s12s2)/2 ~using up an interaction timet) transforms the
vacuum state into the two-mode squeezed state with CM

g tms~ t8!5S cosh 2t81 sinh 2t8sz

sinh 2t8sz cosh 2t81 D ~55!

which saturates the bounds derived above, si
S@g tms(t8)#5e(s12s2)t.

Now we show thatg tms in Eq. ~55! is also the most en-
tangled state that can be obtained after lettingH act for a
total time t. Using Eq.~40! for the negativity of a Gaussian
state with CMg5S(t)S(t)T ~i.e., an arbitrary strategy ap
plied to the vacuum state!, we get

N~g!5@S~JTg̃Jg̃ !#21/2<S~ g̃ !5S~g!5e(s12s2)t.

Since N@g tms(t8)#5e(s12s2)t the simulation of two-mode
squeezing is the optimal strategy for both squeezing and
tanglement generation. Note that even a rough approxi
tion of the optimal strategy, i.e., a strategy consisting of j
two or three steps already yields a marked improvemen
generated squeezing and entanglement.

Up to now, we have only considered the unitary evoluti
of the initial state. There are, however, further tools availa
in current experiments. There might be additional lig
modes~ancillas! in the vacuum state on which passive line
optical operations~described by orthogonal and symplect
transformations! as well as complete or partial homodyn
measurements can be performed. In principle, th
4-10
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might help to increase the entanglement ing, but in the
following we show that this is not the case. We consider
following general setup: consider system with CMg, ancilla
systems in vacuum state, i.e.,ganc51, linear passive interac
tions ~described by a symplectic and orthogonal matrixO)
between the system light mode and the ancillas~e.g., beam
splitter between light and ancillary modes!, such that the
whole system is described by the CMg85OT(g % ganc)O;
clearly, S(g8)5S(g) and now we show that a Gaussia
measurement does not increaseS(g). We writeg8 as

g85S A8 C8

C8T B8
D ,

where the block matrixB8 refers to the ancillary modes to b
measured. Then the resulting state is described by the
gout5A82C8B821C8T @16#. Using the following character
ization of the smallest eigenvalues@57# it is straightforward
to see that measurement has reduced the squeezing o
state:

S~gout!5minxPCnH x†~A82C8B821C8T!x

x†x
J 21

<minxH x†~A82C8B821C8T!x

x†~11C8B822C8T!x
J 21

5minxH y†g8y

y†y
:y5S x

2B821C8TxD J 21

<minyPC2nH y†g8y

y†y
J 5S~g8!.

Consequently, unsqueezed ancilla systems and Gau
measurements are of no help in increasing the squeezin
entanglement in a Gaussian state.

The preceding discussion does not completely solve
problem of optimal entanglement generation with a Ham
tonianH, since only one particular initial state~the vacuum!
has been considered. If, e.g., the initial state of the light fi
is squeezed, we have seen in Sec. IV B that better rates
be achieved~see Fig. 2!, which will translate into larger en
tanglement after finite times. The methods used above ea
yield an upper bound for the entanglement that can be
tained from initially squeezed states: Consider an ini
product state with squeezinger 1 ander 2 in systems 1 and 2
and letr 1>r 2. By the same arguments as above, afterH has
acted for a timet the squeezing in the final state and t
negativity are bounded bye(s12s2)t1r 1. We can find a better
bound on the achievable entanglement drawing on res
from Ref. @35#, where it was shown that the negativity of
two-mode CMg is bounded by 1/Al1l2, wherel1 ,l2 are
the two smallest eigenvalues of theg. This implies that

N~gout!<e(s12s2)t1(r 11r 2)/2, ~56!

which yields the dashed curve in Fig. 2~b!. This bound is
most probably not tight forr kÞ0, not even ast→`.
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One might think that in order to optimize the entang
ment after some finite timet it always suffices to optimize
the rate at each time as for the case of a vacuum input.
qubit systems this was indeed shown to be true@23#. In con-
trast, it does not hold for cv systems as the counterexam
depicted in Fig. 3 shows: We start with a slightly entangl
state with CMg in,2 which can be obtained from the two
mode squeezed stateg tms(t0/2) squeezing bothX1 andX2 by
r 15r 2. Then the ‘‘local squeezing parameter’’l is zero and
the optimal rate, thereforeGE51. If t0 is small andr 1 ,r 2
large it is possible to sacrifice some entanglement in orde
‘‘activate’’ the local squeezing thus enhancing the rate la
on and obtaining significantly more entanglement at timt
@t0. The difference to the qubit case is related to the f
that in the cv context not all local transformations are ava
able and hence not all equally entangled states are loc
equivalent.

V. DISCUSSION AND CONCLUSION

We have investigated how a quadratic interaction betw
two continuous-variable systems~as it occurs naturally in
certain quantum optical systems! can be optimally used to
perform several quantum information tasks when cert
simple local control operations~phase-space rotations! can
be implemented as well. First, we have given necessary
sufficient conditions for the simulation of a Hamiltonian ev
lution given a fixed interaction and fast local rotations.
particular, we have shown that the naturally occurri
Hamiltonian equation~3! allows to simulate all bilinear
Hamiltonians and is in fact of the most versatile kind for th
purpose. Moreover, we have seen that almost all the Ha
tonians of the form~1! ~and, in particular,H0) allow to gen-
erate all symplectic transformations on two modes, i.e.,
complete group SP(2,R) can be generated starting from n
more than the three HamiltoniansH0 ,H loc,1,H loc,2.

With these results, we have addressed the question
optimal creation of entanglement and squeezing for a tw
mode Gaussian state using a given interaction of the form~1!
and local rotations of the formH loc,i5g(Xi

21Pi
2), both of

which are available in current experiments. For the case
small ~infinitesimal! interaction times, we have determine
the optimal strategy to increase entanglement or squee
for any input state, i.e., we have derived the maximal
tanglement and squeezing rates and determined the strat
which lead to these maxima. For the general case~finite in-
teraction time!, we have derived the optimal strategy for th
creation of entanglement and squeezing starting with
vacuum state. We have also shown that~in contrast to qubit
systems! for continuous variables optimizing the entangl
ment rate is not necessarily the best way to generate a fi
amount of entanglement.

There are several interesting applications of our results
quantum information processing. In particular, we have s
that the beam-splitter HamiltonianHbs5X1P22P1X2 can be
simulated with an efficiency factor 1/2 byH0. When acting
for a time t5p the HamiltonianHbs generates the swap op
eration between the systems 1 and 2, thus performing
‘‘write-in’’ and ‘‘read-out’’ operations needed when th
4-11
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atomic ensemble is to be used as aquantum memoryfor the
state of the light mode@58#.

Another interesting application for atomic ensembles
enabled by the so-called spin-squeezed states@59# which
have been prepared experimentally in settings similar to
one described in this paper@4,6#. It has been shown tha
these states allow for a significant increase in the precisio
atomic clocks@60#. While the methods presented above sh
efficient ways to create squeezed atomic states~e.g., by using
the interaction to create squeezing or entanglement optim
and then project the atoms into a pure squeezed stat
measuring the light!, it would also be interesting to find th
optimal such procedure.

Note that the argument in Sec. IV C is easily adapted
similar circumstances. For example, it was shown in R
@60# that the interaction between the atoms of a suitably p
pared Bose-Einstein condensate~BEC! can be described by
the quadratic HamiltonianJz

2'P2, which can be used to
drive the BEC into a spin-squeezed state. By the same
soning as in Sec. IV C, we see that after an interaction t
t a squeezing ofet is the maximum achievable. This show
optimality of the procedure suggested in Ref.@60# ~which
employs effectively the so-called ‘‘two-axes countertwi
ing’’ Hamiltonian!.

In summary, we have investigated the capabilities of
interaction HamiltoniansH. We have shown which othe
Hamiltonians can be simulated with such anH and the avail-
able control operations and how to do so efficiently. Then
have derived the optimal entanglement generation r
achievable with this Hamiltonian and given an optimal p
tocol for the generation of entanglement between the
modes for finite times.

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Euge
Polzik. This work was supported in part by the Europe
Union under the project EQUIP~Contract No. IST-1999-
11053!.

APPENDIX A: PROOF OF THE NECESSARY AND
SUFFICIENT CONDITION

FOR HAMILTONIAN SIMULATION

First, we prove necessity. IfH can simulateH8 efficiently
Eq. ~18! has to hold fork51 andHeff5H8. Therefore, and
because of Eqs.~8! and ~20! there must exist a probability
distribution $pi% i 51

n and special orthogonal matrice
$Ri ,Si% i 51

n such that

S s18 0

0 s28
D 5(

i 51

n

piRi S s1 0

0 s2
DSi . ~A1!

Rotation matrices which should, in principle, appear on
left-hand side can be removed by left and right multiplicati
with corresponding transposed matrices. In Eq.~A1!, we as-
sume these ones to be already included in theRi ,Si on the
right-hand side.
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By using the fact that the vector of the diagonal eleme
of a product R diag(s1 ,s2) S can be written as (R+ST)
3(s1 ,s2)T, where R+ST denotes the component-wise~so-
called Hadamard! product of matrices we can express the la
equation in compact form as

S s18

s28
D 5(

i 51

n

pi~Ri+Si
T!S s1

s2
D 5:NS s1

s2
D . ~A2!

The definition of the matrixN in Eq. ~A2! is obvious. Using
that all matricesRi ,Si are elements of SO(2,R) it can be
seen easily that

N115N22, N125N21

and uN116N21u<1.

Conditions~23! follow now directly from ~A2! and these
properties ofN,

s181s285~N111N21!~s11s2!<s11s2 .

The same holds identically for all plus signs replaced
minus signs proving necessity.

To demonstrate sufficiency, we show that conditions~23!
guarantee the existence of a matrixN as in Eq.~A2! which in
turn admits to connect the primed and unprimed restric
singular values as in Eq.~A1!. This provides an efficient
simulation protocol of the form~9!.

Givens1 ,s2 ands18 ,s28 fulfilling ~23!, we can for the time
being assume thats1Þus2u and define

NªS e f

f eD ,

where e5
s1s182s2s28

s1
22s2

2
, f 5

s1s282s2s18

s1
22s2

2
.

With this definition we have (s18 ,s28)
T5N(s1 ,s2)T. Next we

have to show thatN can be written as a convex sum o
Hadamard products of rotation matrices which is in fact e
actly what inequalities~23! ensure.

It is again easy to check that ifueu1u f u<1, we can find
probabilities$pi :pi>0,( i 51

4 pi% i 51
4 such thate5p12p2 and

f 5p32p4 and therefore

N5p1S 1 0

0 1D +S 1 0

0 1D 1p2S 1 0

0 1D +S 21 0

0 21D
1p3S 0 1

21 0D +S 0 1

21 0D 1p4S 0 1

21 0D +S 0 21

1 0 D .

~A3!

This decomposition ofN allows to pass from~A2! to ~A1!
conserving the diagonal structure as can be checked ea
4-12
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Thus, it suffices to show how~23! implies ueu1u f u<1. Mul-
tiplying the first @second# line of Eq. ~23! by (s12s2) @(s1
1s2)# yields, respectively,

s1
22s2

2>~s1s182s2s28!1~s1s282s2s18!,

s1
22s2

2>~s1s182s2s28!2~s1s282s2s18!.

The first term on the right-hand sides is non-negative du
premise~22! such that these inequalities are equivalent to

s1
22s2

2>us1s182s2s28u1us1s282s2s18u,

which is, regarding the definition ofe andf, exactly what we
had to show and proves sufficiency for the cases1Þus2u.

The complementary casess15us2u turn out to be trivial,
since conditions~23! then requires185s285s1 or s1852s28
5s1, respectively, and this means that we can exclusiv
simulate Hamiltonians, whereH85(U ^ V)H(U†

^ V†) for
some local rotationsU ^ V, i.e., H8 has to be—in this
sense—locally equivalent toH. Hence, nothing has to b
shown in this case.

We point out that this proof provides the possibility
construct simulation protocols explicitly. GivenH and H8
one has to calculate the decomposition in Eq.~A3!. Then the
probabilities and rotations appearing there will fix the tim
stepst i and control operationsUi ^ Vi in Eq. ~9!. As can be
seen such a protocol will contain at most three intervals
interaction and control operations being rotations ab
6p/2 andp.

APPENDIX B: GATE SIMULATION

To show that any unitaryU5exp(2iG) whereG is qua-
dratic expression in the operatorsXk ,Pk can be decompose
as given in Eq.~29! we will proceed in three steps.

~i! As shown in Refs.@46,61# any suchU can be decom-
.J.

ev

v

ett
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t

posed into a sequence of one passive transformation, si
mode squeezing and another passive transformation. Th
to say the symplectic matrixS corresponding to the unitary
transformationU can be decomposed asS5ODÕ, where
O,Õ are orthogonal, symplectic and, therefore, passive tra
formations and the diagonal matrix D
5diag(ea1b,e2(a1b),ea2b,e2(a2b)) amounts to local
squeezing. Note that this is basically a singular-value dec
position ofS.

~ii ! Passive transformations contain essentially bea
splitter transformations and local rotations and it is w
known from quantum optics that any such transformation
two modes can be decomposed into a sequence of a pa
local rotations, one beam-splitter operation and another
of local rotations. Thus, a unitaryUO corresponding to a
orthogonal symplectic transformationO can be decompose
as UO5(V^ W)Ubs(t0)(Ṽ^ W̃) whereUbs(t) is defined in
Eq. ~27!.

~iii ! What is left to show is how to attain single-mod
squeezing. For this we split the matrixD into two compo-
nents, D5diag(ea,e2a,ea,e2a)diag(eb,e2b,e2b,eb) and
show how each of them can be attained by me
of beam splitters and two-mode squeezing. Let us den
by Ūbs(t) and Ū tms(t) the variants of beam splitte
and two-mode squeezing operators which are attai
from Eqs. ~27! and ~28!, respectively, by locally
rotating X2→P2 ,P2→2X2. Then it can be easily shown
that the sequenceŪbs(2p/4)U tms(a)Ūbs(p/4) generates
a symplectic transformation diag(ea,e2a,ea,e2a)
and Ubs(2p/4)Ū tms(b)Ubs(p/4) correspondingly
diag(eb,e2b,e2b,eb).

Collecting things together and ordering all passive co
ponents as in~ii !, i.e., such that it contains only one applic
tion of a beam-splitter operation, decomposition~29! follows
immediately.
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ev.
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