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Geometric theory of nonlocal two-qubit operations
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We study nonlocal two-qubit operations from a geometric perspective. By applying a Cartan decomposition
to su~4!, we find that the geometric structure of nonlocal gates is a 3-torus. We derive the invariants for local
transformations, and connect these local invariants to the coordinates of the 3-torus. Since different points on
the 3-torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the
symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence
with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is,
the two-qubit operations that can generate maximally entangled states from some initially separable states. We
provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric
description of perfect entanglers by making use of the tetrahedral representation of nonlocal gates. We find that
exactly half the nonlocal gates are perfect entanglers. We also investigate the nonlocal operations generated by
a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we
explicitly construct a quantum circuit that contains at most three nonlocal gates generated by a two-body
interaction Hamiltonian, together with at most four local gates generated by single-qubit terms. We prove that
such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient
implementation of universal quantum computation and simulation.
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I. INTRODUCTION

Considerable effort has been made on the characteriza
of nonlocal properties of quantum states and operatio
Grasslet al. @1# have computed locally invariant polynomia
functions of density matrix elements. Makhlin@2# has re-
cently analyzed nonlocal properties of two-qubit gates a
presented local invariants for an operationMPU(4). Makh-
lin also studied some basic properties of perfect entang
which are defined as the unitary operations that can gene
maximal entangled states from some initially separa
states. Also shown were entangling properties of gates g
erated by several different Hamiltonian operators. All the
results are crucial for physical implementations of quant
computation schemes.

Determining the entangling capabilities of operations g
erated by a given physical system is another intriguing
complementary issue. Zanardi@3,4# has explored the entan
gling power of quantum evolutions. The most extensive
cent effort to characterize entangling operations is due
Cirac and co-workers@5–12#. Kraus and Cirac@8# focused
on finding the best separable two-qubit input states such
some given unitary transformation can create maximal
tanglement. Vidal, Hammerer, and Cirac@9# developed the
interaction cost for a nonlocal operation as the optimal ti
to generate it from a given Hamiltonian. The same gro
Hammerer, Vidal, and Cirac@12# then extended these consi
erations to characterize nonlocal gates. These works
closely related to time optimal control as addressed rece
by Khaneja, Brockett, and Glaser@13#, who studied systems
described by a Hamiltonian that contains both a nonlo
internal or drift term, and a local control term. All thes
studies assume that any single-qubit operation can
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achieved almost instantaneously. This is a good approxi
tion for the situation when the control terms in the Ham
tonian can be made large compared to the internal coupli

Universality and controllability are issues of crucial im
portance in physical implementations of quantum inform
tion processing@14,15#. A series of important results hav
been obtained since questions of universality were first
dressed by Deutsch in his seminal papers on quantum c
puting @16,17#. Deutsch@17# proved that any unitary opera
tion can be constructed from generalized Toffoli ga
operating on three qubits. DiVincenzo@18# proved universal-
ity for two-qubit gates by reconstructing three-qubit ope
tions using these gates and a localNOT gate. Similarly,
Barenco@19,20# and Sleator and Weinfurter@21# identified
the controlled unitary operation as a universal two-qu
gate. Barenco@22# showed the universality of the controlled
NOT ~CNOT! gate supplemented with any single-qubit unita
ies, and pointed out advantages ofCNOT in the context of
quantum information processing. Lloyd@23# showed that al-
most any quantum gate for two or more qubits is univers
Deutschet al. @24# proved that almost any two-qubit gate
universal by showing that the set of nonuniversal operati
in U~4! is of lower dimension than the U~4! group. Universal
properties of quantum gates acting on ann>2 dimensional
Hilbert space have been studied by Brylinski@25#. Dodd
et al. @26# have pointed out that universal quantum comp
tation can be achieved by any entangling gate suppleme
with local operations. Bremneret al. @27# recently demon-
strated this by extending the results of Brylinski, giving
constructive proof that any two-qubit entangling gate c
generateCNOT if arbitrary single-qubit operations are als
available. Universal sets of quantum gates forn-qubit sys-
©2003 The American Physical Society13-1
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tems have been explored by Vlasov@28,29# in connection
with Clifford algebras.

General results on efficient simulation of any unitary o
eration in SU(2n) by a discrete set of gates are embodied
the Solovay-Kitaev theorem@15,30# and in recent work due
to Harrow, Recht, and Chuang@31#. The Solovay-Kitaev
theorem implies the equivalence of different designs of u
versal quantum computers based on suitable discrete se
single-qubit and two-qubit operations in a quantum circu
An example is the standard universal set of gates includ
CNOT and three discrete single-qubit gates, namely, H
amard, phase, andp/2 gates@15#. Other universal sets hav
also been proposed. According to the Solovay-Kitaev th
rem, every such design can represent a circuit that is for
lated using the standard set of gates. Consequently, all q
tum computation constructions—including algorithms, er
correction, and fault tolerance—can be efficiently simula
by physical systems that can provide a suitable set of op
tions, and do not necessarily need to be implemented by
standard gates. This moves the focus from the study of g
to study of the Hamiltonians whose time evolution gives r
to the gates. In this context, Burkardet al. @32# studied the
quantum computation potential of the isotropic exchan
Hamiltonian. This interaction can generateASWAP gate di-
rectly. However,CNOT cannot be obtained directly from th
exchange interaction. Burkardet al. showed that it can be
generated via a circuit of twoASWAP gates and a single-qub
phase rotation. Bennettet al. @33# discussed the optima
simulation of one two-qubit Hamiltonian by using anoth
Hamiltonian and general local operations. More recen
Whaley and co-workers have shown that the two-particle
change interaction is universal when physical qubits are
coded into logical qubits, allowing a universal gate set to
constructed from this interaction alone@34–39#. This has
given rise to the notion of ‘‘encoded universality,’’ in whic
a convenient physical interaction is made universal by
coding into a subspace@36,37#. Isotropic, anisotropic, and
generalized forms of the exchange interaction have rece
been shown to possess considerable power for efficient
struction of universal gate sets, allowing explicit univers
gate constructions that require only a small number of ph
cal operations@35,38–40#.

In this paper, we analyze nonlocal two-qubit operatio
from a geometric perspective and show that considerable
sight can be achieved with this approach. We are conce
with three main questions here. First, achieving a geome
representation of two-qubit gates. Second, characterizin
quantifying all operations that can generate maximal
tanglement. Third, exact simulation of any arbitrary tw
qubit gates from a given two-body physical interaction
gether with single-qubit gates. The fundamen
mathematical techniques in this paper are Cartan decom
sition and Weyl group in the Lie group representation theo
The application of these theories to the Lie algebra su~4!
provides us with a natural and intuitive geometric approa
to investigate the properties of nonlocal two-qubit ope
tions. This geometric approach reveals the nature of
problems intrinsically and allows a general formulation
solutions to the three issues of interest here.
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Because it is the nonlocal properties that generate
tanglement in quantum systems, we first study the invaria
and geometric representation of nonlocal two-qubit ope
tions. A pair of two-qubit operations are called local
equivalent if they differ only by local operations. We app
the Cartan decomposition theorem to su~4!, the Lie algebra
of the special unitary group SU~4!. We find that the geomet
ric structure of nonlocal gates is a 3-torus. On the other ha
the Cartan decomposition of su~4! derived from the com-
plexification of sl~4! yields an easy way to derive the invar
ants for local transformations. These invariants can be u
to determine whether two gates are locally equivalent. Mo
over, we establish the relation of these local invariants to
coordinates of the 3-torus. This provides with a way to co
pute the corresponding points on the 3-torus for a given g
It turns out that a single nonlocal gate may correspond
finitely many different points on the 3-torus. If we represe
these points in a cube with side lengthp, there is an obvious
symmetry between these points. We then use the Weyl gr
theory to reduce this symmetry. We know that in this case
Weyl group is generated by a set of reflections inR3. It is
these reflections that create the kaleidoscopic symmetr
points that correspond to the same nonlocal gate in the c
We can explicitly compute these reflections, and there
show that the local equivalence classes of two-qubit gates
in one-to-one correspondence with the points in a tetra
dron except on the base. This provides a complete geom
representation of nonlocal two-qubit operations.

The second objective of this paper is to explore the pr
erties of perfect entanglers, that is, the quantum gates
can generate maximally entangled states from some initi
separable states. We start with criteria to determine wheth
given two-qubit gate is a perfect entangler. A condition f
such a gate has been stated in Ref.@2#. We provide here a
proof of this condition and show that the condition can
employed within our geometric analysis to determine wh
fraction of all nonlocal two-qubit gates are perfect enta
glers. We show that the entangling property of a quant
gate is only determined by its geometric representation
the 3-torus. Using the result that every point on the tetra
dron corresponds to a local equivalence class, we then s
that the set of all perfect entanglers is a polyhedron w
seven faces and possessing a volume equal to exactly
that of the tetrahedron. This implies that amongst all
nonlocal two-qubit operations, exactly half of them are c
pable of generating maximal entanglement.

Finally, we explore universality and controllability aspec
of nonlocal properties of given physical interactions and
potential of such specified Hamiltonians to generate per
entanglers. Our motivation is related to that of encoded u
versality, namely, determining the potential for univers
quantum computation and simulation of a given physi
Hamiltonian. However, whereas encoded universality sou
to construct encodings to achieve universality of quant
logic, here we focus on the simulation of any arbitrary tw
qubit gate. Achievement of this, together with our seco
result above, allows generation of maximal entanglemen
well as providing universality. To realize this, we consid
3-2
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here the conventional scenario of a Hamiltonian acting o
physical set of qubits such that any arbitrary single-qu
operation and certain specific two-qubit operations may
turned on for selected time durations in series. Gener
speaking, two-qubit interactions include both local and n
local terms. The nonlocal terms can give rise to not o
well-known entangling gates such asCNOT, but also to many
other classes of gates that may or may not lie in the per
entangling sector. We therefore, seek a systematic wa
construct quantum circuits from a given physical Ham
tonian that can simulateanyarbitrary two-qubit gate exactly
As in the study of encoded universality we start with t
gates that can be directly generated by a given Hamilton
Generally, these gates form a one-dimensional subset on
3-torus. To construct an exact simulation of any arbitra
two-qubit gate, we make use of the quantum circuit mod
We explicitly construct a quantum circuit that contains thr
nonlocal gates generated by a given two-body interac
Hamiltonian for corresponding finite time durations, togeth
with at most four local gates. We prove that such a quan
circuit can simulateanyarbitrary two-qubit operation exactl
and is therefore universal. In particular, it can thereforeeffi-
ciently provide maximal entanglement from any arbitra
Hamiltonian of this form. Such efficient construction fro
any given Hamiltonian is extremely useful for design a
experimental implementation of quantum information p
cessing schemes.

II. PRELIMINARIES

In this section, we briefly review some basic facts ab
Cartan decomposition and the Weyl group within the L
group representation theory@42–45#, and then apply these
results to su~4!, the Lie algebra of the special unitary grou
SU~4!. Applications of Cartan decomposition to quantu
system control can also be found in Ref.@13#.

We concentrate on SU~4! when studying two-qubit gates
It is well-known that an arbitrary two-qubit gateU0PU(4)
can be decomposed as the product of a gateU1PSU(4) and
a global phase shifteia, whereaPR. Because the globa
phase has no significance in quantum mechanics, we
thereby reduce the study of the group U~4! of two-qubit
quantum evolution operators to SU~4!. Extensions of results
from the group SU~4! back to U~4! are made when appropr
ate.

We heuristically introduce a partition of the set of tw
qubit operations represented by the group SU~4!. This set
splits into two subsets, one of local gates SU(2)^ SU(2) and
the other of nonlocal gates SU(4)\SU(2)^ SU(2). Thelat-
ter splits further into a set of perfect entanglers, i.e., th
that can generate maximally entangled states, an examp
which is CNOT, and the complementary set of those nonlo
gates that are not perfect entanglers. This schematic part
is illustrated in Fig. 1. A rigorous definition of perfect enta
glers is presented in Sec. IV.
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A. The Cartan decomposition and the Weyl group

Our first goal is to establish fundamentals for a geome
picture of nonlocal unitary operations with emphasis on th
generators, which are represented by the Hamiltonian op
tors in physical context. We start with a summary of som
basic definitions@42–45#. Consider a Lie groupG and its
corresponding Lie algebrag. The adjoint representation Adg
is a map from the Lie algebrag to g which is the differential
of the conjugation mapag from the Lie groupG to G given
by ag(h)5ghg21. For matrix Lie algebras, Adg(Y)
5gYg21, where g, Y are both represented as matrices
compatible dimensions. The differential of the adjoint rep
sentation is denoted by ad, and adX is a map from the Lie
algebrag to g given by the Lie bracket withX, that is,
adX(Y)5@X,Y#.

We now define an inner product ong by the Killing form
B(X,Y)5tr(adXadY). Let $X1 , . . . ,Xn% be a basis forg. The
numbersCjk

i PC such that

@Xj ,Xk#5(
i 51

n

Cjk
i Xi ~1!

are thestructure constantsof the Lie algebrag with respect
to the basis, wherej, k run from 1 ton. Since

adXj
@X1 , . . . ,Xn#5F(

i 51

n

Cj 1
i Xi , . . . ,(

i 51

n

Cjn
i Xi G

5@X1 ,•••,Xn#F Cj 1
1

••• Cjn
1

A A

Cj 1
n

••• Cjn
n
G ,

~2!

the matrix representation of adXj
with respect to the basis i

F Cj 1
1

••• Cjn
1

A A

Cj 1
n

••• Cjn
n
G . ~3!

FIG. 1. Partition of all the gates in SU~4!.
3-3
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Thus, the trace of adXj
adXk

, which is B(Xj ,Xk), is

(a,b51
n Cjb

a Cka
b , which is also thejkth entry of the matrix of

the quadratic formB(,). The Liealgebrag is semisimple if
and only if the Killing form is nondegenerate, i.e., the det
minant of its matrix is nonzero.

Let K be a compact subgroup ofG, and k be the Lie
algebra ofK. Assume thatg admits a direct sum decompos
tion g5p% k, such thatp5k' with respect to the metric in
duced by the inner product.

Definition 1 (Cartan decomposition of the Lie algebrag).
Let g be a semisimple Lie algebra and let the decomposi
g5p% k, p5k' satisfy the commutation relations

@k,k#,k, @p,k#,p, @p,p#,k. ~4!

This decomposition is called a Cartan decomposition ofg,
and the pair (g,k) is called an orthogonal symmetric Li
algebra pair.

A maximal Abelian subalgebraa contained inp is called a
Cartan subalgebraof the pair (g,k). If a8 is another Cartan
subalgebra of (g,k), then there exists an elementkPK such
that Adk(a)5a8. Moreover, we havep5økPKAdk(a).

Proposition 1 (decomposition of the Lie group G). Given
a semisimple Lie algebrag and its Cartan decompositiong
5p% k, let a be a Cartan subalgebra of the pair (g,k), then
G5Kexp(a)K.

For XPa, let WPg be an eigenvector of adX and a(X)
the corresponding eigenvalue, i.e.,

@X,W#5a~X!W. ~5!
04231
-

n

The linear functiona is called aroot of g with respect toa.
Let D denote the set of nonzero roots, andDp denote the set
of roots inD which do not vanish identically ona. Note that
if aPD, it is also true that2aPD.

Let M andM 8 denote the centralizer and normalizer ofa
in K, respectively. In other words,

M5$kPKuAdk~X!5X for eachXPa%,

M 85$kPKuAdk~a!,a%. ~6!

Definition 2 (Weyl group). The quotient groupM 8/M is
called the Weyl group of the pair (G,K). It is denoted by
W(G,K).

One can prove thatW(G,K) is a finite group. Eacha
PDp defines a hyperplanea(X)50 in the vector spacea.
These hyperplanes divide the spacea into finitely many con-
nected components, called theWeyl chambers. For eacha
PDp , let sa denote the reflection with respect to the hype
planea(X)50 in a.

Proposition 2 (generation of the Weyl group).The Weyl
group is generated by the reflectionssa , aPDp .

This proposition is proved in Corollary 2.13, Chap. VII i
Ref. @42#.

B. Application to su„4…

Now we apply the above results to su~4!, the Lie algebra
of the special unitary group SU~4!. The Lie algebrag
5su(4) has a direct sum decompositiong5p% k, where
k5span
i

2
$sx

1 ,sy
1 ,sz

1 ,sx
2 ,sy

2 ,sz
2%,

p5span
i

2
$sx

1sx
2 ,sx

1sy
2 ,sx

1sz
2 ,sy

1sx
2 ,sy

1sy
2 , sy

1sz
2 ,sz

1sx
2 ,sz

1sy
2 ,sz

1sz
2%. ~7!

Heresx , sy , andsz are the Pauli matrices, andsa
1sb

25sa ^ sb . If we useXj to denote the matrices in Eq.~7!, wherej runs
from left to right in Eq.~7!, we can derive the Lie brackets ofXj andXk . These are summarized in the following:

@Xj , Xk] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X1 0 2X3 X2 0 0 0 0 0 0 2X13 2X14 2X15 X10 X11 X12

X2 X3 0 2X1 0 0 0 X13 X14 X15 0 0 0 2X7 2X8 2X9

X3 2X2 X1 0 0 0 0 2X10 2X11 2X12 X7 X8 X9 0 0 0
X4 0 0 0 0 2X6 X5 0 2X9 X8 0 2X12 X11 0 2X15 X14

X5 0 0 0 X6 0 2X4 X9 0 2X7 X12 0 2X10 X15 0 2X13

X6 0 0 0 2X5 X4 0 2X8 X7 0 2X11 X10 0 2X14 X13 0

X7 0 2X13 X10 0 2X9 X8 0 2X6 X5 2X3 0 0 X2 0 0
X8 0 2X14 X11 X9 0 2X7 X6 0 2X4 0 2X3 0 0 X2 0
X9 0 2X15 X12 2X8 X7 0 2X5 X4 0 0 0 2X3 0 0 X2

X10 X13 0 2X7 0 2X12 X11 X3 0 0 0 2X6 X5 2X1 0 0
X11 X14 0 2X8 X12 0 2X10 0 X3 0 X6 0 2X4 0 2X1 0
X12 X15 0 2X9 2X11 X10 0 0 0 X3 2X5 X4 0 0 0 2X1

X13 2X10 X7 0 0 2X15 X14 2X2 0 0 X1 0 0 0 2X6 X5

X14 2X11 X8 0 X15 0 2X13 0 2X2 0 0 X1 0 X6 0 2X4

X15 2X12 X9 0 2X14 X13 0 0 0 2X2 0 0 X1 2X5 X4 0
3-4
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Now the structure constantsCjk
i can be found from the

above table@see Eq.~1!# so that we can evaluate

B~Xj ,Xk!5 (
a51

15

(
b51

15

Cjb
a Cka

b 528d jk . ~8!

It is easy to verify that tr(XjXk)52d jk , and thus the Killing
form of su~4! is B(X,Y)58tr(XY). Since k
5span$X1 , . . . ,X6% and p5span$X7 , . . . ,X15%, from the
Lie bracket computation table above, it is clear that

@k,k#,k, @p,k#,p, @p,p#,k. ~9!

Therefore the decompositiong5k% p is a Cartan decompo
sition of su~4!. Note that the Abelian subalgebra

a5span
i

2
$sx

1sx
2 ,sy

1sy
2 ,sz

1sz
2% ~10!

is contained inp and is a maximal Abelian subalgebra, i.e
we cannot find any other Abelian subalgebra ofp that con-
tains a. Hence it is a Cartan subalgebra of the pair (g,k).
Further, since the set of all the local gatesK is a connected
Lie subgroup SU(2)̂ SU(2) of SU~4!, and there is a one
to-one correspondence between connected Lie subgrou
a Lie group and subalgebras of its Lie algebra@45#, it is clear
that k in Eq. ~7! is just the Lie subalgebra corresponding
K. From Proposition 1, anyUPSU(4) can be decompose
as

U5k1Ak25k1expH i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!J k2 ,

~11!

wherek1 , k2PSU(2)^ SU(2), andc1 , c2 , c3PR.
Another more intuitive Cartan decomposition of su~4! can

be obtained via the complexification of sl~4!. ConsiderG
5SL(4), thereal special linear group, andK5SO(4), the
special orthogonal group. The Lie algebra sl~4! is the set of
434 real matrices of trace zero, and so~4! is the set of 4
34 real skew symmetric matrices. Then sl~4! can be decom-
posed as sl~4!5so~4!%p, where p is the set of 434 real
symmetric matrices. This is nothing but the decomposition
a matrix into symmetric and skew symmetric parts, and i
indeed a Cartan decomposition of sl~4!. Consider the follow-
ing subset of the complexification of sl~4!:

gm5so~4!1 ip. ~12!

It can be verified thatgm is exactly su~4!, and thus
(gm ,so(4)) is anorthogonal symmetric Lie algebra pair. Th
isomorphism carryingk in Eq. ~7! into so(4) is just the trans
formation from the standard computational basis of state
the Bell basis in Refs.@2,12#. This procedure is of crucia
importance in computing the invariants for two-qubit ga
under local transformations. See Sec. III for more details

Now let us compute the Weyl groupW(G,K). Let X
5 i /2(c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2)Pa. Identify a with R3,

then X5@c1 ,c2 ,c3#. The roots ofg with respect toa are
eigenvalues of the matrix of adX :
04231
of

f
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to

s

Dp5 i $c12c2 ,2c12c2 ,2c12c3 ,c12c3 ,c22c3 ,c21c3 ,

2c11c2 ,c11c2 ,c11c3 ,2c11c3 ,

2c21c3 ,2c22c3%. ~13!

For a5 i (c12c3)PDp , the planea(X)50 in a is the set
$XPR3uuTX50%, where u5@1,0,21#T. The reflection of
X5@c1 ,c2 ,c3# with respect to the planea(X)50 is

sa~X!5X2
2uuT

iui2
X5@c3 ,c2 ,c1#. ~14!

Similarly, we can compute all the reflectionssa as follows:

si (c32c2)~X!5@c1 ,c3 ,c2#, si (c21c3)~X!5@c1 ,2c3 ,2c2#,

si (c22c1)~X!5@c2 ,c1 ,c3#, si (c11c2)~X!5@2c2 ,2c1 ,c3#,
~15!

si (c12c3)~X!5@c3 ,c2 ,c1#, si (c11c3)~X!5@2c3 ,c2 ,2c1#.

From Proposition 2, the Weyl groupW(G,K) is generated by
sa given in Eq.~15!. Therefore, the reflectionssa are equiva-
lent to either permutations of the elements of@c1 ,c2 ,c3#, or
permutations with sign flips of two elements.

III. NONLOCAL OPERATIONS

We now study nonlocal two-qubit operations within th
group theoretical framework of the preceding section. T
Cartan decomposition of su~4! provides us with a good start
ing point to explore the invariants under local gate ope
tions. It also reveals that the geometric structure of the lo
equivalence classes is none other than a 3-torus. Every p
on this 3-torus corresponds to a local equivalence clas
two-qubit gates. Different points may also correspond to
same equivalence class. To reduce this symmetry, we a
the Weyl group theory. We show that the local equivalen
classes of two-qubit gates are in one-to-one correspond
with the points in a tetrahedron, except on the base wh
there are two equivalent areas. This tetrahedral represe
tion of nonlocal operations plays a central role in our sub
quent discussion of perfect entanglers and the design of
versal quantum circuits.

A. Local invariants and local equivalence classes

Two unitary transformationsU, U1PSU(4) are calledlo-
cally equivalentif they differ only by local operations:U
5k1U1k2, where k1 , k2PSU(2)^ SU(2) are local gates
This clearly defines an equivalence relation on the Lie gro
SU~4!. We denote the equivalence class of a unitary trans
3-5



e

it
to
r

o

-

m

l

s

-

ral

en-
,
it

nse-
t

ZHANG et al. PHYSICAL REVIEW A 67, 042313 ~2003!
mationU as@U#. From the Cartan decomposition of su~4! in
Sec. II B, any two-qubit gateUPSU(4) can be written in the
following form:

U5k1Ak25k1expH i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!J k2 ,

~16!

wherek1 , k2PSU(2)^ SU(2). Because the two-qubit gat
U is periodic inck , the geometric structure of@c1 ,c2 ,c3# is
a 3-torus,T35S13S13S1.

In Ref. @2#, local invariants were given for two-qub
gates. Here we will connect these invariants of Makhlin
the coordinates@c1 ,c2 ,c3# on the 3-torus. We first conside
the case of the two-qubit gates in SU~4!, and then extend the
results to the general case of U~4!.

1. SU(4) Operations

Consider the transformation from the standard basis
states u00&, u01&, u10&, u11& to the Bell basis uF1&
51/A2(u00&1u11&), uF2&5 i /A2(u01&1u10&), uC1&
51/A2(u01&2u10&), uC2&5 i /A2(u00&2u11&). In this basis,
the two-qubit gateU in Eq. ~16! can be written as

UB5Q†UQ5Q†k1Ak2Q, ~17!

where

Q5
1

A2 S 1 0 0 i

0 i 1 0

0 i 21 0

1 0 0 2 i

D . ~18!

Recalling thati /2$sx
1 ,sy

1 ,sz
1 ,sx

2 ,sy
2 ,sz

2% is a basis fork, it
is not hard to verify thati /2Q†$sx

1 ,sy
1 ,sz

1 ,sx
2 ,sy

2 ,sz
2%Q

forms a basis for so(4), the Lie algebra of the special or
thogonal group SO~4!. HenceUB can be written as

UB5O1Q†AQO2 , ~19!

where

O15Q†k1QPSO~4!,

O25Q†k2QPSO~4!. ~20!

Equation~19! can also be obtained from the Cartan deco
position of su~4! derived from the complexification of sl~4!,
as discussed in Sec. II B. An Abelian subalgebraa is gener-
ated by i /2$sx

1sx
2 ,sy

1sy
2 ,sz

1sz
2%, and the transformation to

the Bell basis takes these operators toi /2$sz
1 ,2sz

2 ,sz
1sz

2%.
Therefore, we haveUB5O1FO2, where

F5Q†AQ5expH i

2
~c1sz

12c2sz
21c3sz

1sz
2!J

5diagHei
c12c21c3

2 ,ei
c11c22c3

2 ,e2 i
c11c21c3

2 ,ei
2c11c21c3

2 J .
~21!
04231
f
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m5UB
TUB5O2

TF2O2 , ~22!

whereO2 is defined by Eq.~20!. The complete set of loca
invariants of a two-qubit gateUPSU(4) is given by the
spectrum of the matrixm @2#, and hence by the eigenvalue
of F2,

$ei (c12c21c3), ei (c11c22c3), e2 i (c11c21c3), ei (2c11c21c3)%.
~23!

Sincem is unitary and detm51, the characteristic polyno
mial of m is then

usI2mu5s42tr~m!s31
1

2
@ tr2~m!2tr~m2!#s22tr~m!s11.

~24!

Therefore the spectrum ofm is completely determined by
only the two quantities tr(m) and tr2(m)2tr(m2). For a two-
qubit gateU given in Eq. ~16!, its local invariants can be
derived from Eq.~23! as

tr~m!54 cosc1cosc2cosc314i sinc1sinc2sinc3 ,

tr2~m!2tr~m2!516 cos2c1cos2c2cos2c3

216 sin2c1sin2c2sin2c3

24 cos 2c1cos 2c2cos 2c3 . ~25!

2. Generalization to U(4)

Now let us consider the local invariants for the gene
case of U~4! @2#. An arbitrary two-qubit gateUPU(4) can
be decomposed as the product of a gateU1PSU(4) and a
global phase shifteia, where detU5ei4a. It follows that
m(U1)5e2 i2am(U), where

m~U !5~Q†UQ!TQ†UQ ~26!

and

tr@m~U1!#5e2 i2atr@m~U !#,

tr2@m~U1!#2tr@m2~U1!#5e2 i4a$tr2@m~U !#2tr@m2~U !#%.
~27!

It is clear that the global phase factor just rotates the eig
values ofm(U) along the unit circle in the complex plane
while keeping their relative phase invariant. Therefore,
does not affect the entangling properties and we can co
quently divide by det(U). The local invariants of a two-qubi
gateU are thus given by

G15
tr2@m~U !#

16 detU
,

G25
tr2@m~U !#2tr@m2~U !#

4 detU
, ~28!
3-6
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where the numerical factors are incorporated into the
nominators to provide convenient normalization. IfU is now
written in the following form:

U5eiak1Ak2

5eiak1expH i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!J k2 ,

~29!

we can compute its local invariants as

G15cos2c1cos2c2cos2c32sin2c1sin2c2sin2c3

1
i

4
sin 2c1sin 2c2sin 2c3 ,

G254 cos2c1cos2c2cos2c324 sin2c1sin2c2sin2c3

2cos 2c1cos 2c2cos 2c3 . ~30!

Because the local invariantsG1 and G2 characterize the
nonlocal properties of unitary operations, we can use th
two invariants to check whether a pair of two-qubit gates
locally equivalent. The invariantsG1 and G2 are evaluated
by taking the matrix representation of a gate in the Bell ba
and then using Eqs.~26! and ~28!. For example,CNOT and
controlled-Z @referred as C~Z!# possess identical values o
the local invariants, given byG150 andG251. Therefore,
they belong to the same local equivalence class. We refe
this class as@CNOT#. On the other hand, the local invarian
for ASWAP areG15 i /4 andG250. Hence this gate belong
to a different local equivalence class that we refer to
@ASWAP#. Note that from Eq.~28!, since the local invariants
are functions of eigenvalues of the matrixm, the local
equivalence class can alternatively be defined simply via
set of eigenvalues of the matrixm.

B. Geometric representation of two-qubit gates

Equation~30! reveals the relation between the local i
variantsG1 and G2 and the coordinates@c1 ,c2 ,c3# of the
3-torus structure of nonlocal two-qubit gates. From this re
tion, given a set of coordinates@c1 ,c2 ,c3#, we can easily
compute the local invariants for a local equivalence cla
Vice versa, from a given pair of values of the local invarian
G1 and G2, we can also find the points on the 3-torus th
correspond to a given two-qubit operation. In general,
expect to find multiple points on the 3-torus for a given p
G1 and G2. We now show how this multiple-valued natu
can be removed by using the Weyl group to construct a g
metric representation that allows the symmetry to be
duced.

To visualize the geometric structure of the two-qu
gates, we first consider a cube with side lengthp in the
vector spacea. This provides an equivalent representation
the points on the 3-torus, sinceT3>R3/Z3. Clearly, every
point in this cube corresponds a local equivalence cla
However, different points in the cube may belong to t
same local equivalence class. For example, both the po
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@p/4,p/4,p/4# and @p/4,3p/4,3p/4# correspond to the gate
ASWAP.

We use the theory of the Weyl group to reduce this sy
metry in the cube. From the Lie group representation the
the orbits of local gatesK acting on SU(4)/SU(2)̂ SU(2)
are in one-to-one correspondence with the orbits of the W
group W(G,K) on a @41#. From Proposition 2, the Wey
groupW(G,K) is generated by the reflectionssa as given in
Eq. ~15!. Note that in Eq.~15!, the reflectionssa are either
permutations or permutations with sign flips of two entries
@c1 ,c2 ,c3#. Therefore, if@c1 ,c2 ,c3# is an element in a loca
equivalence class@U#, then@ci ,cj ,ck#, @p2ci ,p2cj ,ck#,
@ci ,p2cj ,p2ck#, and@p2ci ,cj ,p2ck# are also in@U#,
where (i , j ,k) is a permutation of (1,2,3). With the meanin
clear from the context of the discussion, in the remainde
this paper we shall use the triplet@c1 ,c2 ,c3# to denote either
the corresponding local equivalence class of a two-qu
gate, or simply to refer to a specific point on the 3-torus
cube.

Since each orbit of the Weyl groupW(G,K) ona contains
precisely one point in a Weyl chamber, the local equivalen
classes of two-qubit gates are in one-to-one correspond
with the points of a Weyl chamber. Hence, each Weyl cha
ber contains all the local equivalence classes. Recall tha
Weyl chambers are obtained by dividing the vector spaca
by the hyperplanesa(X)50, whereaPDp as given in Eq.
~13!. Therefore, we can obtain the Weyl chambers by div
ing the cube by the planes

$XPa:c12c250%, $XPa:c11c25p%,

$XPa:c12c350%, $XPa:c11c35p%, ~31!

$XPa:c22c350%, $XPa:c21c35p%.

Figure 2~a! shows that after dividing the cube by the plan
c12c350, c11c35p, c22c350, andc21c35p, we ob-
tain six square pyramids. One of these pyramids is show
Fig. 2~b!. Further dividing this pyramid by the planesc1
2c250 and c11c25p, we get a tetrahedronOA1A2A3
such as that shown in Fig. 2~c!. Notice that for any point
@c1 ,c2 ,0# on the base of this tetrahedron, its mirror ima
with respect to the lineLA2, which is @p2c1 ,c2 ,0#, corre-
sponds to the same local equivalence class. Therefore,
the caveat that the basal areasLA2A1 andLA2O are identi-
fied as equivalent, we finally arrive at the identification of t
tetrahedronOA1A2A3 as a Weyl chamber, and we deno
this by a1. There are 24 such Weyl chambers in total, a
each of them has the volumep3/24. Note that every point in
a1 corresponds to a different local equivalence class. C
sequently, the Weyl chambera1 provides a geometric repre
sentation of all the possible two-qubit gates.

For a given two-qubit gate, it is important to find its co
ordinates@c1 ,c2 ,c3# on the 3-torus, and hence in the We
chambera1. With this representation in the tetrahedrona1

we have removed the multiple-valued nature of the coo
nates on the 3-torus and cube and therefore can now tak
coordinates@c1 ,c2 ,c3# as an alternative set of local invar
ants. They provide a useful geometric representation of lo
3-7
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FIG. 2. Illustration of the tetrahedral representation of nonlocal two-qubit operations.~a! Divide the cube by the planesc12c350, c1

1c35p, c22c350, andc21c35p. ~b! One of the six equivalent square pyramids produced from~a!. Further dividing this pyramid by the
planesc12c250 and c11c25p gives ~c!, the tetrahedronOA1A2A3, with A15@p,0,0#, A25@p/2,p/2,0#, and A35@p/2,p/2,p/2#.
OA1A2A3 is a Weyl chamber, denoteda1, with the exception of points on its base where we have an equivalence ofLA2A1 with LA2O,
whereL is the point@p/2,0,0#. Every point ina1 corresponds to a local equivalence class of two-qubit operations.
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invariants that is easy to visualize and is entirely equival
to G1 and G2. They can be used directly to implement th
local equivalence class of particularly prescribed two-qu
gates for a given Hamiltonian. More generally, this altern
tive set of local invariants helps us to gain a better und
standing of the local invariants and geometric representa
of two-qubit gates.

It is clear that the local gatesK correspond to the pointsO
and A1 in Figs. 2~a!–2~c!. We now study several nontrivia
examples of nonlocal gates to determine the correspon
coordinates@c1 ,c2 ,c3# in a1. All the other points of a par-
ticular local equivalence class in the cube can be obtaine
applying the Weyl groupW(G,K) to the corresponding poin
in a1. Note that for a gate@c1 ,c2 ,c3# in a1, its inverse is
just @p/22c1 ,c2 ,c3#.

~1! CNOT: Following the procedure to compute the loc
invariants described above@see Eqs.~26! and ~28!#, we ob-
tain G150 andG251 for the two-qubit gateCNOT. Solving
Eq. ~30!:

cos2c1cos2c2cos2c32sin2c1sin2c2sin2c350,

sin 2c1sin 2c2sin 2c350, ~32!

2cos 2c1cos 2c2cos 2c351,

we find that@p/2,0,0# is the corresponding point forCNOT in
the Weyl chambera1. This is the pointL in Fig. 2~c!.

~2! SWAP: For the gateSWAP, we haveG1521 andG2
523. Solving Eq.~30!, we obtain that the correspondin

point for SWAP is @p/2,p
2 , p

2 #, i.e., the pointA3 in Fig. 2~c!.
~3! ASWAP: The local invariants for the gateASWAP are

G15 i /4 andG250. Solving Eq.~30! for this case, we de-
rive that @p/4,p/4,p/4# is the corresponding point ina1.
This is the midpoint ofOA3 in Fig. 2~c!.

~4! Controlled-U gate: SupposeU is an arbitrary single-
qubit unitary operation,
04231
t

it
-
r-
n

ng

by

U5exp~g1isx1g2isy1g3isz!. ~33!

For the controlled-U gate, the local invariants areG1

5cos2g and G252cos2g11, whereg5Ag1
21g2

21g3
2. By

solving Eq.~30!, we find that@g,0,0# is the corresponding
point in a1. Hence, all the controlled-U gates correspond to
the lineOL in a1, whereL is @CNOT#.

IV. CHARACTERIZATION OF PERFECT ENTANGLERS

Entanglement is one of the most striking quantu
mechanical features that plays a key role in quantum co
putation and quantum information. It is used in many app
cations such as teleportation and quantum cryptography@15#.
In many applications, it is often desired to generate maxim
entanglement from some unentangled initial states. The n
local two-qubit operations that can generate maximal
tanglement are called perfect entanglers. In this section,
study the perfect entanglers using the geometric appro
established in the previous sections. We will prove a theor
that provides a sufficient and necessary condition for a tw
qubit gate to be a perfect entangler. It turns out that whet
a two-qubit gate can generate maximal entanglement is o
determined by its location on the 3-torus, or more spec
cally, in the Weyl chambera1. We show that in the tetrahe
dral representation of nonlocal gates summarized in F
2~c!, all the perfect entanglers constitute a polyhedron w
seven faces, whose volume is exactly half that of the te
hedron. This implies that the among all the nonlocal tw
qubit operations, precisely half of them are capable of g
erating maximal entanglement from some initially separa
states.

For a two-qubit statec, define a quadratic function
E(c)5cTPc, whereP52 1

2 sy
1sy

2 @2#. It can be shown that
maxcuE(c)u51

2, and E(c)50 if and only if c is an unen-
tangled state. This function thus defines a measure of
tanglement for a pure state. IfuE(c)u5 1

2 , we callc a maxi-
3-8
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mally entangled state. It can be proved that the functionE is
invariant under the local operations.

Definition 3 (perfect entangler).A two-qubit gateU is
called a perfect entangler if it can produce a maximally
tangled state from an unentangled one.

Definition 4 (convex hull).The convex hullC of N points
p1 , . . . ,pN in Rn is given by

C5H (
j 51

N

u j pjU u j>0 for all j and (
j 51

N

u j51J .

~34!

Theorem 1 (condition for perfect entangler).A two-qubit
gateU is a perfect entangler if and only if the convex hull
the eigenvalues ofm(U) contains zero.

This result was first mentioned by Makhlin@2# but no
proof was given. We provide here a proof and then go on
develop a geometrical analysis that provides a quantifica
of the relative volume of perfect entanglers in SU~4!.

Proof: From the Cartan decomposition of su~4! in Sec.
II B, any two-qubit gateUPU(4) can be written in the fol-
lowing form,

U5eiak1Ak2

5eiak1expH i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!J k2 ,

~35!

where k1 , k2PSU(2)^ SU(2). For any arbitrary unen-
tangled statec0, we have
04231
-

o
n

E~Uc0!5E~eiak1Ak2c0!5ei2aE~Ac!, ~36!

wherec5k2c0 is again an unentangled state. From Eq.~36!,
it is clear thatuE(Uc0)u5uE(Ac)u. Therefore,U is a perfect
entangler if and only ifA is a perfect entangler. Furthermor
we have

E~Ac!5cTATPAc

5~Q†c!T~Q†AQ!T~QTPQ!~Q†AQ!~Q†c!

5
1

2
~Q†c!TF2~Q†c!, ~37!

whereQ andF are defined as in Eqs.~18! and ~21!, respec-
tively. The last equality in Eq.~37! holds sinceQTPQ
5 1

2 I . Let f5Q†c. Sincec is an unentangled state, we g
E(c)50. Hence,

E~c!5cTPc

5fTQTPQf5
1

2
fTf

5
1

2
~f1

21f2
21f3

21f4
2!50. ~38!

Sincec†c51, we havef†f51, that is,

uf1u21uf2u21uf3u21uf4u251. ~39!

Recall the definition ofF from Eq. ~21!,
F5diag$ei (c12c21c3)/2,ei (c11c22c3)/2,e2 i (c11c21c3)/2,ei (2c11c21c3)/2%. ~40!
of

s of
For simplicity, we denote the eigenvalues ofF as $lk%k51
4 .

Then the eigenvalues ofm(U) are just$lk
2%k51

4 . We have

E~Ac!5
1

2
~Q†c!TF2~Q†c!5

1

2
fTF2f5

1

2 (
k51

4

fk
2lk

2 .

~41!

If A is a perfect entangler, we have

1

2
5uE~Ac!u5

1

2
uf1

2l1
21f2

2l2
21f3

2l3
21f4

2l4
2u

<
1

2
~ uf1

2l1
2u1uf2

2l2
2u1uf3

2l3
2u1uf4

2l4
2u!

5
1

2
~ uf1

2u1uf2
2u1uf3

2u1uf4
2u!5

1

2
. ~42!

The equality in Eq.~42! holds if and only if there exists a
real numberuP@0,2p# such that
f1
2l1

25uf1u2ei2u, f2
2l1

25uf2u2ei2u,

f3
2l1

25uf3u2ei2u, f4
2l1

25uf4u2ei2u. ~43!

From Eq.~38!, we obtain

f1
21f2

21f3
21f4

25ei2uS uf1u2

l1
2

1
uf2u2

l2
2

1
uf3u2

l3
2

1
uf4u2

l4
2 D

50. ~44!

Since 1/lk5lk , it follows that

uf1u2l1
21uf2u2l2

21uf3u2l3
21uf4u2l4

250. ~45!

From the relation in Eq.~39!, we conclude that ifU is a
perfect entangler, the convex hull of the eigenvalues
m(U) contains zero.

Conversely, suppose the convex hull of the eigenvalue
m(U) contains zero, that is, there exist$ak%k51

4 ,@0,1# such
that
3-9
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a1
2l1

21a2
2l2

21a3
2l3

21a4
2l4

250,

a1
21a2

21a3
21a4

251. ~46!

Let

f5S a1

l1
,
a2

l2
,
a3

l3
,
a4

l4
D T

, ~47!

andc5Qf. From Eq.~38!, we have

E~c!5
1

2
fTf5

1

2 S a1
2

l1
2

1
a2

2

l2
2

1
a3

2

l3
2

1
a4

2

l4
2D 50. ~48!

Hencec is an unentangled state. From Eq.~41!, we derive

E~Ac!5
1

2
fTF2f5

1

2
~a1

21a2
21a3

21a4
2!5

1

2
. ~49!

Therefore,U is a perfect entangler. n
We now derive the conditions under which poin

@c1 ,c2 ,c3# in the Weyl chambera1 are perfect entanglers
We begin with two corollaries to Theorem 1.

Corollary 1. If @c1 ,c2 ,c3# is a perfect entangler, the
@p2c1 ,c2 ,c3# and @p/22c1 ,p/22c2 ,p/22c3# are both
perfect entanglers.

Proof: We know that@c1 ,c2 ,c3# and@c1 ,2c2 ,2c3# cor-
respond to the same two-qubit gate. Since the 3-torus ha
minimum positive periodp, @2p1c1 ,2c2 ,2c3# also be-
longs to the same local equivalence class. From Eqs.~44!
and ~45!, if @c1 ,c2 ,c3# is a perfect entangler, so is@2c1 ,
2c2 ,2c3#. Therefore,@p2c1 ,c2 ,c3# is a perfect entangler

From Theorem 1,U is a perfect entangler if and only i
the convex hull of the eigenvalues ofm(U) contains zero,
that is, there exist$ak%k51

4 ,@0,1# such that

a1
2ei (c12c21c3)1a2

2ei (c11c22c3)1a3
2e2 i (c11c21c3)

1a4
2ei (2c11c21c3)50, ~50!

a1
21a2

21a3
21a4

251. ~51!

Substitute the coordinates of the point@p/22c1 ,p/2
2c2 ,p/22c3# into Eq. ~50!:

i $a1
2e2 i (c12c21c3)1a2

2e2 i (c11c22c3)1a3
2ei (c11c21c3)

1a4
2e2 i (2c11c21c3)%50. ~52!

Together with Eq. ~51!, it is clear that @p/22c1 ,p/2
2c2 ,p/22c3# is a perfect entangler. n

Corollary 2. For a two-qubit gateU, if its corresponding
point in the Weyl chambera1 is @c1 ,p/22c1 ,c3#, @c1 ,c1
2p/2,c3#, or @c1 ,c2 ,p/22c2#, U is a perfect entangler.

Proof: For the gate@c1 ,p/22c1 ,c3#, the eigenvalues o
m(U) are
04231
the

$ei (c12c21c3),ei (c11c22c3),e2 i (c11c21c3),ei (2c11c21c3)%

5e2 i (c11c21c3) $ei2(c11c3),ei2(c11c2),1,ei2(c21c3)%.

~53!

The convex hull of the eigenvalues ofm(U) always contains
the origin, and thus@c1 ,p/22c1 ,c3# is a perfect entangler
The other cases can be proved similarly. n

Note that for@c1 ,p/22c1 ,c3#, picking c15p/2 andc3
50, we obtain the perfect entangler@CNOT#; picking c1

5p/4 andc35p/4, we get the perfect entangler@ASWAP#.
With these corollaries in hand, we can proceed to der

the conditions under which a general point@c1 ,c2 ,c3# on the
3-torus is a perfect entangler.

Theorem 2 (perfect entangler on 3-torus).Consider a two-
qubit gateU and its corresponding representation@c1 ,c2 ,c3#
on the 3-torus.U is a perfect entangler if and only if one o
the following two conditions is satisfied:

p

2
<ci1ck<ci1cj1

p

2
<p,

3p

2
<ci1ck<ci1cj1

p

2
<2p, ~54!

where (i , j ,k) is a permutation of (1,2,3).
Proof. Given the eigenvalues ofm(U) in Eq. ~53!, it suf-

fices to study whether the convex hull o
$1,ei2(c11c2),ei2(c11c3)ei2(c21c3)% contains the origin or not.
Suppose that one of the conditions in Eq.~54! is satisfied. In
this case, the points$ei2(c11c2),ei2(c11c3),ei2(c21c3)% have to
be on the unit circle as shown in Figs. 3~a! or 3~b!. It is clear
that the convex hull of these three points contains the orig
From Theorem 1,U is therefore a perfect entangler.

Conversely, suppose thatU is a perfect entangler. The
the convex hull of the eigenvalues ofm(U) contains the
origin. If all the three points$ei2(c11c2),ei2(c11c3),ei2(c21c3)%
are on the upper or lower semicircle, the convex hull
$1,ei2(c11c2),ei2(c11c3),ei2(c21c3)% does not contain the ori
gin. Therefore, we can always pick one point on the up
semicircle and one point on the lower semicircle such t
one of the two conditions in Eq.~54! is satisfied. n

The above analysis shows that whether a two-qubit gat
a perfect entangler or not is only determined by its geome
representation@c1 ,c2 ,c3# on the 3-torus. Recall that in Sec
III B, we show that the local equivalence classes of tw
qubit gates are in one-to-one correspondence with the po
of the Weyl chambera1, which can be represented by
tetrahedron as shown in Fig. 2~c!. We are now ready for the
final stage of the procedure, namely to identify those poi
in the tetrahedronthat correspond to perfect entanglers.

Consider a two-qubit gate@c1 ,c2 ,c3#. As shown in Fig.
4, in the tetrahedronOA1A2A3, we havec1>c2>c3>0.
Hence 2(c11c2)>2(c11c3)>2(c21c3)>0. As in the
proof of Theorem 2, consider the convex hull
$1,ei2(c11c2),ei2(c11c3)ei2(c21c3)%. We can identify the fol-
lowing three cases of the gates that do not provide maxi
entanglement, and are thus not perfect entanglers:
3-10
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FIG. 3. Illustration of the
proof of Theorem 2.
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~1! If c11c2<p/2, that is, all theei2(cj 1ck) are on the
upper semicircle, the gate is not a perfect entangler. In
tetrahedronOA1A2A3 , c11c2<p/2 corresponds to the tet
rahedronLQPO.

~2! If c21c3>p/2, that is, all theei2(cj 1ck) are on the
lower semicircle, the gate is not a perfect entangler eit
This case corresponds to the tetrahedronNPA2A3.

~3! From Theorem 2, we obtain that the gates represen
by points in the set$XPa1u 2(c11c3)>2(c21c3)1p% are
not perfect entanglers. This set is the tetrahedronLMNA1.

The set of perfect entanglers can thus be obtained by
moving these three tetrahedra fromOA1A2A3. This is done
in Fig. 4 where it is thereby evident that the polyhedr
LMNPQA2 is the residual set of perfect entanglers. Here
point P corresponds to the gateASWAP, N corresponds to its
inverse, andL corresponds to theCNOT gate. Computing the
volume of the Weyl chamberOA1A2A3 and of these three
polyhedra, we have

V~OA1A2A3!5
p3

24
,

FIG. 4. Polyhedron LMNPQA2 corresponds to perfect entan
glers in the Weyl chambera1 @see Fig. 2~c!#, whereL, M, N, P, and
Q are the midpoints of the line segmentsA1Q, A1A2 , A1A3 , A3Q,
and A2Q, respectively.P corresponds to the gateASWAP, N to its
inverse, andL to theCNOT gate.
04231
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V~LQPO!5
p3

192
, V~NPA2A3!5

p3

96
,

V~LMNA1!5
p3

192
. ~55!

Therefore, the volume of the polyhedron LMNPQA2 is
p3/48, which is half of the volume ofOA1A2A3. This im-
plies that among all the nonlocal two-qubit gates, half
them are perfect entanglers. Note that the polyhed
LMNPQA2 is symmetric with respect to the planec1
5p/2, which provides a geometric explanation of Corolla
1. The points in Corollary 2 correspond to the triangl
LMN, LPQ, andNPA2, which are three faces of the set o
perfect entanglers. Also recall that the lineOL represents all
the controlled-U gates. HenceCNOT, located atL, is the only
controlled-U gate that is a perfect entangler. Thus we see t
the geometric representation provides an intuitive visual p
ture to understand the nonlocal properties of two-qubit ga
as well as allowing quantification of the weight of perfe
entanglers.

V. PHYSICAL GENERATION OF NONLOCAL GATES

We now investigate the universal quantum computat
and simulation potential of a given physical Hamiltonian. W
first study the gates that can be generated by a Hamilto
directly. Generally speaking, these gates form a o
dimensional subset on the 3-torus geometric representa
of nonlocal gates. For any arbitrary two-qubit gate, we w
explicitly construct a quantum circuit that can simulate
exactly with a guaranteed small number of operations. C
struction of efficient circuits is especially important in th
theoretical design and experimental implementations
quantum information processing. We assume only that
can turn on local operations individually. Our starting po
is thus any arbitrary single-qubit operation and a two-bo
interaction Hamiltonian. The single- and two-qubit oper
tions may be, for example, a sequence of pulses of an op
field that are suitably tuned and focused on each individ
qubit. The qubits may be represented by either a solid-s
system such as a quantum dot in a cavity@45#, or by a gas-
phase system such as an optical lattice@46#.
3-11
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A. Nonlocal operations generated by a given Hamiltonian

In this subsection we investigate the nonlocal gates
can be generated by a given HamiltonianH for a time dura-
tion t, that is,U(t)5exp(iHt). Recall thatk in Eq. ~7! is the
Lie subalgebra corresponding toK, the Lie subgroup of all
the local gates. Therefore,k can be viewed as the local part
su~4!, andp as the nonlocal part. If the HamiltonianH con-
tains the nonlocal part, that is,iH ùpÞB, thenH can gen-
erate nonlocal gates.

We first consider a HamiltonianH for which iH is in the
Cartan subalgebraa, and then extend to the general ca
Assume H5 1

2 (c1sx
1sx

21c2sy
1sy

21c3sz
1sz

2). The local
equivalence classes ofU(t) form a continuous flow on the
3-torus as time evolves. This provides us a geometric pic
to study the properties of the gates generated by a g
Hamiltonian. To illustrate the ideas, we consider the follo
ing examples.

Example 1 (exchange Hamiltonians).~1! Isotropic
~Heisenberg! exchange: H15 1

4 (sx
1sx

21sy
1sy

21sz
1sz

2)—In
this case, the two-qubit gateU(t) generated by the Hamil
tonianH1 is

U~ t !5exp~ iH 1t !5expi
t

4
~sx

1sx
21sy

1sy
21sz

1sz
2!.

~56!

Hence the HamiltonianH1 generates the flow@ t/2,t/2,t/2#
on the 3-torus. The local invariants can thus be compu
from Eq. ~30!:

G1~ t !5
tr2~m!

16 detU
5S cos3

t

2
2 isin3

t

2D 2

5
eit

16
~31e22i t !2,

G2~ t !5
tr2~m!2tr~m2!

4 detU

54S cos6
t

2
2sin6

t

2D2cos3t53 cost. ~57!

We reduce the symmetry of the flow to the Weyl chamb
a1, as shown in Fig. 4. We obtain that fortP@2kp,2kp
1p#, the trajectory is @ t/2,t/2,t/2#; and for tP@2kp
1p,2(k11)p#, the trajectory is @ t/2,p2t/2,p2t/2#.
Therefore, the flow generated by the isotropic Hamilton
H1 evolves alongOA3A1, which corresponds to all the loca
equivalence classes that can be generated byH1. Moreover,
it can easily be seen thatASWAP and its inverse are the onl
two perfect entanglers that can be achieved by this Ha
tonian.

~2! Two-dimensional exchange, i.e.,XY Hamiltonian:
H25 1

4 (sx
1sx

21sy
1sy

2)—The HamiltonianH2 generates the

flow @ t/2,t/2,0# for tP@2kp,2kp1p#, and @ t
2 ,p2 t

2 ,0#
for tP@2kp1p,2(k11)p#. Hence the trajectory evolve
along OA2A1. It is evident thatH2 can generate a set o
perfect entanglers that corresponds to the line segmentsQA2
andA2M in a1. Note thatA2M represents exactly the sam
local equivalence classes asQA2. The local invariants of
U(t) areG1(t)5cos4(t/2) andG2(t)5112 cost.
04231
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~3! One-dimensional exchange, i.e., Ising Hamiltonia
H35 1

4 sy
1sy

2—The trajectory generated by the Hamiltonia
H3 in a1 is @ t/2,0,0#, which evolves along the lineOA1.
Hence the gates generated by the HamiltonianH3 are all the
controlled-U gates. As noted above,CNOT, located atL, is
the only perfect entangler that can be generated by
Hamiltonian. The local invariants ofU(t) are G1(t)
5cos2(t/2) andG2(t)521cost.

For any arbitraryH5 1
2 (c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2), the

trajectory on the 3-torus is@c1t,c2t,c3t#. If both c1 /c2 and
c1 /c3 are rational, the trajectory generated by the Ham
tonianH forms a loop on the 3-torus. If eitherc1 /c2 or c1 /c3
is irrational, the trajectory forms a proper dense subse
3-torus.

Next let us consider the case wheniH Pp. Recall that we
havep5økPKAdk(a). Hence for any arbitraryiH Pp, there
exists a local gatekPSU(2)^ SU(2) such that

Adk~ iH !5 iH a , ~58!

whereHa5 1
2 (c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2). It follows that

U~ t !5exp~ iHt !5exp~k†iH akt!

5k†expS i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!t D k.

~59!

Therefore, the trajectory ofU(t) in the Weyl chambera1 is
@c1t,c2t,c3t#. Equation~58! also implies thatH andHa have
the same set of eigenvalues. We can thus use this proper
derive the triplet@c1 ,c2 ,c3# explicitly. The following ex-
ample shows how to find the flow in the Weyl chambera1

for a given HamiltonianH with iH Pp.
Example 2 (generalized exchange with cross-terms).Con-

sider the generalized anisotropic exchange HamiltonianH
5 1

2 (Jxxsx
1sx

21Jyysy
1sy

21Jxysx
1sy

21Jyxsy
1sx

2) discussed in
Ref. @39#. The eigenvalues ofH are

1

2
$A~Jxx1Jyy!

21~Jxy2Jyx!
2,

2A~Jxx1Jyy!
21~Jxy2Jyx!

2,

A~Jxx2Jyy!
21~Jxy1Jyx!

2,

2A~Jxx2Jyy!
21~Jxy1Jyx!

2%, ~60!

whereas the eigenvalues ofHa are

1

2
$2c11c31c2 ,2c12c32c2 ,c11c32c2 ,c12c31c2%.

~61!

SinceH andHa have the same set of eigenvalues, by co
paring Eqs.~60! and ~61! and recalling thatc1>c2>c3
>0, we find
3-12
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FIG. 5. The flow generated byHJ in the Weyl
chambera1.
he

tra
e

ts).

is
c15
1

2
~A~Jxx1Jyy!

21~Jxy2Jyx!
2

1A~Jxx2Jyy!
21~Jxy1Jyx!

2!,

c25
1

2
uA~Jxx1Jyy!

21~Jxy2Jyx!
2

2A~Jxx2Jyy!
21~Jxy1Jyx!

2u, ~62!

c350.

Therefore, the flow generated by this Hamiltonian in t
Weyl chambera1 is @c1t,c2t,0#, which evolves in the plane
OA1A2.

Now we consider the general case wheniH Psu(4) andH
contains both the local and nonlocal part. To derive the
jectory of U(t)5exp(iHt) on the 3-torus, we first comput
the local invariants ofU(t) as in Eqs.~26! and ~28!:

G1~ t !5
tr2

„m~U~ t !!…

16
,

G2~ t !5
tr2~m„U~ t !…!2tr~m2

„U~ t !…!

4
. ~63!

Then from the relation of the local invariants andci , we can
obtain the flow@c1(t),c2(t),c3(t)# on the 3-torus by solving
Eq. ~30!:
04231
-

G15cos2c1cos2c2cos2c32sin2c1sin2c2sin2c3

1
i

4
sin 2c1sin 2c2sin 2c3 ,

G254cos2c1cos2c2cos2c324sin2c1sin2c2sin2c3

2cos 2c1cos 2c2cos 2c3 . ~64!

Example 3 (Josephson junction charge-coupled qubi
For Josephson~charged-coupled! qubits @47#, elementary
two-qubit gates are generated by the HamiltonianHJ5
2 1

2 EJ(sx
11sx

2)1(EJ
2/EL)sy

1sy
2 . If EJ is tuned toaEL , a

PR, the local invariants can be obtained,

G15
1

~11a2!2
~a2~x21y221!1x2!2,

G25
1

11a2
~3a22124y2a218a2x2y214x224x2a2!,

~65!

where

x5cosa2ELt, y5cosA~a211!aELt. ~66!

By solving Eq.~64!, we find that the flow generated by th
Hamiltonian on the 3-torus is

c1~ t !5a2ELt2v~ t !,
3-13
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c2~ t !5a2ELt1v~ t !, ~67!

c3~ t !50,

where v(t)5tan21A(11a2y2)/(a22a2y2). Since c350,
the HamiltonianHJ can reach only those local equivalen
classes on the baseOA1A2, as shown in Fig. 4. Therefore
the HamiltonianHJ is not able to generate the perfect enta
gler @ASWAP#. The trajectory generated byHJ in the Weyl
chambera1 is shown in Fig. 5.

For the HamiltonianHJ to achieve@CNOT#, we need to
solve Eq.~65! for G150 andG251. After some algebraic
derivations, we find

x25
1

2
, y25

a221

2a2
. ~68!

It follows that

t5
~2k11!p

4a2EL

,

2a2cosA11a22
2k11

4
p5a221, ~69!

wherekPZ. WhenEL51, numerical solution of these ex
pressions shows that the minimum time solution for
Hamiltonian HJ to achieve @CNOT# is obtained for a
51.1991, and the minimum time is 2.7309.

Note that when the HamiltonianH contains only the non-
local part, that is,iH Pp, the flow generated by the Hami
tonian on the 3-torus has constant velocity. However, w
the HamiltonianH contains both the local and nonlocal pa
the velocity of the flow on the 3-torus is usually time depe
dent as shown in the above example.
04231
-
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n
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B. Design of universal quantum circuits

Now let us consider how to generateany arbitrary two-
qubit operation from a given two-body Hamiltonian togeth
with local gates. The local gates form the Lie subgro
SU(2)^ SU(2), which also contains all the single-qubit op
erations. We will show that by applying the Hamiltonian
most three times, together with four appropriate local ga
we can exactly simulate any arbitrary two-qubit gate, i.e.,
can implement any SU~4! operation. Consequently, if the ac
cessibility of any local gate is assumed, this results in sa
fying the universality condition needed for quantum comp
tation or simulation in a very efficient manner.

From the discussion in the preceding subsection, we kn
that a given Hamiltonian is not able to generate any arbitr
two-qubit operation simply by turning it on for a certain tim
period. Generally, the set of the gates that can be gener
by a Hamiltonian directly is a one-dimensional subset of
3-torus. For example, we know that@ASWAP# can be directly
generated from the isotropic exchange interaction betw
two physical qubits, whereas@CNOT# cannot be obtained in
this way @2# ~unless encoding into multiple qubits is em
ployed @35#!. @CNOT# can however be achieved by a circu
consisting of twoASWAP and a local gate@32#. We shall
adopt the approach of constructing a quantum circuit t
contain both nonlocal gates generated by a given Ham
tonian and local gates, and show that this quantum cir
can simulate any arbitrary nonlocal two-qubit operation e
actly with only a small number of operations.

Consider a HamiltonianH with iH Pp. The gate gener-
ated by this Hamiltonian for a time durationt is U(t)
5exp(iHt). Consider the following prototype quantum ci
cuit:
ation
wherekj are local gates, andn a given integer. Note that the circuit is to be read from left to right. The matrix represent
of the above quantum circuit is

knU~ tn!kn21•••k2U~ t2!k1U~ t1!k0 . ~70!

We will investigate the nonlocal gates that can be simulated by this quantum circuit. Recall that for this HamiltonianH, there
exists a local gatekPSU(2)^ SU(2) such that Adk( iH )5 iH a , whereHa5 1

2 (c1sx
1sx

21c2sy
1sy

21c3sz
1sz

2). Hence

U~ t !5exp~ iHt !5exp~Adk†iH at !. ~71!

Let l j5(kkj 21•••k0)†, quantum circuit~70! can now be described as
3-14
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and its matrix representation is

knk†l n
†exp~Adl n

iH atn!•••exp~Adl 2
iH at2!exp~Adl 1

iH at1!.
~72!

We can then pickkj such thatl j are in the Weyl group
W(G,K). In that case, we have Adl j

iH at jPa. Sincea is a
maximal Abelian subalgebra, the quantum circuit in Eq.~72!
is locally equivalent to

exp~Adl n
iH atn1Adl 2

iH at21•••1Adl 1
iH at1!. ~73!

Proposition 2 tells us that the Weyl groupW(G,K) is gener-
ated by the reflectionssa given in Eq. ~15!. Hence for a
given sa , whereaPDp , there exists a local gateka such
that for anyXPa, Adka

(X)5sa(X). Following the proce-

dure in Lemma 2.4, Chap. VII in Ref.@42#, we obtainka as
in the following:

a sa(@c1 ,c2 ,c3#) ka

i (c32c2) @c1 ,c3 ,c2#
exp

p

2 S i

2
sx

11
i

2
sx

2D
i (c22c1) @c2 ,c1 ,c3#

exp
p

2 S i

2
sz

11
i

2
sz

2D
i (c12c3) @c3 ,c2 ,c1#

expp
2 S i

2
sy

11
i

2
sy

2D
i (c21c3) @c1 ,2c3 ,2c2#

expp
2 S i

2
sx

12
i

2
sx

2D
i (c11c2) @2c2 ,2c1 ,c3#

expp
2 S i

2
sz

12
i

2
sz

2D
i (c11c3) @2c3 ,c2 ,2c1#

exp
p

2 S i

2
sy

12
i

2
sy

2D
Recall that the flow generated by exp(iHat) on the 3-torus is
@c1t,c2t,c3t#. By choosing some appropriatel j from the
Weyl groupW(G,K), we can steer the flow generated by t
Hamiltonian. For example, if we want to change the flo
from @c1t,c2t,c3t# into @c1t,2c3t,2c2t#, we can simply
apply the reflectionki (c21c3) ,

Adki (c21c3)
~ iH at !5exp

p

2 S i

2
sx

12
i

2
sx

2D ~ iH at !

3exp
p

2 S 2
i

2
sx

11
i

2
sx

2D
5

i

2
~c1sx

1sx
22c3sy

1sy
22c2sz

1sz
2!t.

~74!

The following example exemplifies this idea.
Example 4 (construction ofCNOTfrom isotropic exchange

Hamiltonian). Consider the isotropic HamiltonianH1

5 1
4 (sx

1sx
21sy

1sy
21sz

1sz
2). Our goal is to simulate@CNOT#

by a quantum circuit containing local gates and two-qu
gates generated byH1. As shown in Fig. 6, the flow gener
04231
it

ated by U(t)5exp(iH1t) in the Weyl chambera1 is
@ t/2,t/2,t/2#, which evolves alongOA3 for tP@0,p#. In the
Weyl chambera1, the pointL (@p/2,0,0#) corresponds to
@CNOT#. We then want to switch the flow from@ t/2,t/2,t/2# to
@ t/2,2t/2,2t/2# at a certain time instant so that the flow ca
reach the pointL. In order to do that, we can simply appl
the reflectionssi (c21c3) and si (c32c2) in series. The corre-
sponding local gate is thus

kx5ki (c32c2)ki (c21c3)

5exp
p

2 S i

2
sx

11
i

2
sx

2Dexp
p

2 S i

2
sx

12
i

2
sx

2D
5exp

ip

2
sx

1 , ~75!

and we have

kxexp~ iH 1t !kx
†5exp~Adkx

iH 1t !

5exp
i

4
~sx

1sx
22sy

1sy
22sz

1sz
2!t. ~76!

Now consider the following quantum circuit:

The flow generated by this quantum circuit evolves along
line OA3 for tP@0,t1#, and then switches into a directio
parallel to the linePL in the planeOA3A1 for t>t1. The
matrix representation of this quantum circuit is

kxexp~ iH 1t2!kx
†exp~ iH 1t1!

5exp
i

4
~sx

1sx
22sy

1sy
22sz

1sz
2!t2

3exp
i

4
~sx

1sx
21sy

1sy
21sz

1sz
2!t1

FIG. 6. The flow generated by the quantum circu
kxexp(iH1t2)kx

†exp(iH1t1) in the Weyl chambera1.
3-15
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5expS t11t2

2

i

2
sx

1sx
21

t12t2

2

i

2
sy

1sy
2

1
t12t2

2

i

2
sz

1sz
2D . ~77!

Hence the terminal point of the flow is@(t11t2)/2,(t1
2t2)/2,(t12t2)/2#. If we chooset15p/2 andt25p/2, the
terminal point is none other than@p/2,0,0#, and thus the
quantum circuit simulates@CNOT#. As shown in Fig. 6, the
flow generated by this quantum circuit isOPL, which goes
along the lineOP first, and after hitting the pointP, it turns
to the pointL along the linePL. Since P is nothing but
-

04231
ASWAP, andt25t15p/2, we arrive at the known result tha
@CNOT# can be simulated by a circuit consisting of tw
ASWAP and a local gate@32#.

We now derive the following theorem which asserts th
when n53 quantum circuit~70! can simulateany arbitrary
nonlocal two-qubit gate. This theorem provides a geome
approach to construct a quantum circuit to simulate any
bitrary two-qubit gate from a two-body interaction Ham
tonian.

Theorem 3 (universal quantum circuit).Given a Hamil-
tonian H with iH Pp, any arbitrary two-qubit gateU
PSU(4) can be simulated by the following quantum circu
wherekj are local gates.
Proof. From Cartan decomposition of su~4! in Sec. II B,

any arbitrary two-qubit gateUPSU(4) can be written in the
following form:

U5klexpH i

2
~g1sx

1sx
21g2sy

1sy
21g3sz

1sz
2!J kr , ~78!

wherekl andkr are local gates, andg1 , g2 , g3PR. We also
know that for any giveniH Pp, there exists a local gatek
such that Adk( iH )5 iH a , where Ha5 1

2 (c1sx
1sx

21c2sy
1sy

2

1c3sz
1sz

2) and c1>c2>c3>0. Therefore, the flow gener
ated byiH on the 3-torus is@c1t,c2t,c3t#. The matrix rep-
resentation of the above quantum circuit is

k3exp~ iHt 3!k2exp~ iHt 2!k1exp~ iHt 1!k0 . ~79!

Let

l 15~kk0kr
†!†,

l 25~kk1k0kr
†!†, ~80!

l 35~kk2k1k0kr
†!†;

the quantum circuit~79! can be written as

k3k†l 3
†exp~Adl 3

iH at3!exp~Adl 2
iH at2!exp~Adl 1

iH at1!kr .
~81!

Choose some appropriate local gatesk0 , k1, andk2 such that

l 15I ,

l 25ki (c32c2)ki (c11c3) , ~82!

l 35ki (c22c1)ki (c32c2)ki (c11c2) ,
and letk35kl l 3k. It follows that the quantum circuit~79! is
now

klexp~Adl 3
iH at3!exp~Adl 2

iH at2!exp~Adl 1
iH at1!kr

5klexpS i

2
~c3sx

1sx
22c2sy

1sy
22c1sz

1sz
2!t3D

3expS i

2
~2c3sx

1sx
22c1sy

1sy
21c2sz

1sz
2!t2D

3expS i

2
~c1sx

1sx
21c2sy

1sy
21c3sz

1sz
2!t1D kr

5klexpF ~c1t12c3t21c3t3!
i

2
sx

1sx
21~c2t12c1t2

2c2t3!
i

2
sy

1sy
21~c3t11c2t22c1t3!

i

2
sz

1sz
2D kr .

~83!

To simulate the two-qubit gateU in Eq. ~78!, we only need to
solve the following equation:

S c1 2c3 c3

c2 2c1 2c2

c3 c2 2c1

D S t1

t2

t3

D 5S g1

g2

g3

D . ~84!

Since

detS c1 2c3 c3

c2 2c1 2c2

c3 c2 2c1

D 5c1~c1
22c2c3!1~c11c2!c3

2

1~c11c3!c2
2.0, ~85!
3-16
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we can always find a solution for Eq.~84!. Therefore, quan-
tum circuit ~79! can simulate any arbitrary two-qubit gate.n

From the above constructive proof, it is clear that toget
with four appropriate local gates, we can simulate any a
trary two-qubit gate by turning on a two-body interactio
Hamiltonian for at most three times. Also note that in t
proof, the way to choose the local gatesk0 , k1, andk2 is not
unique. There are many different ways to choose the lo
gates and time parameters so as to construct the qua
circuit that achieves the same two-qubit operation. We the
fore can pick the one that is optimal in terms of some c
index such as time.

VI. CONCLUSION

In this paper we have derived a geometric approach
study the properties of nonlocal two-qubit operations, st
ing from the Cartan decomposition of su~4! and making use
of the Weyl group. We first showed that the geometric str
ture of nonlocal gates is a 3-torus. By further reducing
symmetry, the geometric representation of nonlocal ga
was seen to be conveniently visualized as a tetrahedron. E
point inside this tetrahedron corresponds to a differ
equivalent class of nonlocal gates. We then investigated
properties of those two-qubit operations that can gene
maximal entanglement. We provided a proof of the condit
of Makhlin for perfect entanglers@2# and then derived the
ys

v.

t

t

-
e,
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corresponding geometric description of these gates wi
the tetrahedral representation. It was found that exactly
of the nonlocal two-qubit operations result in maximal e
tanglement, corresponding to a seven-faced polyhedron
volume equal to one half of the tetrahedron. Lastly, we
vestigated the nonlocal operations that can be generated
given Hamiltonian. We proved that given a two-body inte
action Hamiltonian, it is always possible to explicitly con
struct a quantum circuit for exact simulation of any arbitra
nonlocal two-qubit gate by turning on the two-body intera
tion for at most three times, together with four local gat
This guarantees that a highlyefficientsimulation of nonlocal
gates can be made with any Hamiltonian consisting of a
trary two-qubit interactions and allowing control of singl
qubit operations.
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