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Geometric theory of nonlocal two-qubit operations
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We study nonlocal two-qubit operations from a geometric perspective. By applying a Cartan decomposition
to su4), we find that the geometric structure of nonlocal gates is a 3-torus. We derive the invariants for local
transformations, and connect these local invariants to the coordinates of the 3-torus. Since different points on
the 3-torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the
symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence
with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is,
the two-qubit operations that can generate maximally entangled states from some initially separable states. We
provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric
description of perfect entanglers by making use of the tetrahedral representation of nonlocal gates. We find that
exactly half the nonlocal gates are perfect entanglers. We also investigate the nonlocal operations generated by
a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we
explicitly construct a quantum circuit that contains at most three nonlocal gates generated by a two-body
interaction Hamiltonian, together with at most four local gates generated by single-qubit terms. We prove that
such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient
implementation of universal quantum computation and simulation.
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[. INTRODUCTION achieved almost instantaneously. This is a good approxima-
tion for the situation when the control terms in the Hamil-
Considerable effort has been made on the characterizatidonian can be made large compared to the internal couplings.
of nonlocal properties of quantum states and operations. Universality and controllability are issues of crucial im-
Grasslet al. [1] have computed locally invariant polynomial portance in physical implementations of quantum informa-
functions of density matrix elements. Makhlj2] has re- tion processind14,15. A series of important results have
cently analyzed nonlocal properties of two-qubit gates andeen obtained since questions of universality were first ad-
presented local invariants for an operatire U(4). Makh-  dressed by Deutsch in his seminal papers on quantum com-
lin also studied some basic properties of perfect entanglerguting[16,17]. Deutsch[17] proved that any unitary opera-
which are defined as the unitary operations that can generaign can be constructed from generalized Toffoli gate
maximal entangled states from some initially separableyperating on three qubits. DiVincengd8] proved universal-
states. Also shown were entang_llng properties of gates 9efty for two-qubit gates by reconstructing three-qubit opera-
erated by several different Hamiltonian operators. All thesg;yg using these gates and a locaT gate. Similarly,

results are crucial for physical implementations of q“ant“”\sarenco[lg,zq and Sleator and Weinfurtd@1] identified

computation schemes. . i . the controlled unitary operation as a universal two-qubit
Determining the entangling capabilities of operations gene ate. Barenc$22] showed the universality of the controlled-

erated by a given physical system is another intriguing an . . TR
complementary issue. Zanaildi,4] has explored the entan- %OT (cNoT) gate supplemented with any single-qubit unitar

gling power of quantum evolutions. The most extensive rel€S: and pomted PUt advantgges @ioT in the context of
cent effort to characterize entangling operations is due rguantum information processing. LIoya3] ShOWeP' tha't al-
Cirac and co-worker§5—12). Kraus and Cirad8] focused most any quantum gate for two or more qubits |s_un|vers_al.
on finding the best separable two-qubit input states such th&¥eutschet al. [24] proved that almost any two-qubit gate is
some given unitary transformation can create maximal entniversal by showing that the set of nonuniversal operations
tang|ement_ V|da|, Hammerer, and C”‘M deve|0ped the N U(4) is of lower dimension than the(@) group. Universal
interaction cost for a nonlocal operation as the optimal timgProperties of quantum gates acting onrea2 dimensional

to generate it from a given Hamiltonian. The same groupHilbert space have been studied by Brylingkb]. Dodd
Hammerer, Vidal, and Cirgd 2] then extended these consid- et al. [26] have pointed out that universal quantum compu-
erations to characterize nonlocal gates. These works attation can be achieved by any entangling gate supplemented
closely related to time optimal control as addressed recentlwith local operations. Bremnegt al. [27] recently demon-

by Khaneja, Brockett, and Glasgt3], who studied systems strated this by extending the results of Brylinski, giving a
described by a Hamiltonian that contains both a nonlocatonstructive proof that any two-qubit entangling gate can
internal or drift term, and a local control term. All these generatecNOT if arbitrary single-qubit operations are also
studies assume that any single-qubit operation can bavailable. Universal sets of quantum gates fiequbit sys-
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tems have been explored by Viasf®8,29 in connection Because it is the nonlocal properties that generate en-
with Clifford algebras. tanglement in quantum systems, we first study the invariants
General results on efficient simulation of any unitary op-and geometric representation of nonlocal two-qubit opera-
eration in SU(2) by a discrete set of gates are embodied intions. A pair of two-qubit operations are called locally
the Solovay-Kitaev theorerfl5,30 and in recent work due equivalent if they differ only by local operations. We apply
to Harrow, Recht, and Chuan@1]. The Solovay-Kitaev the Cartan decomposition theorem tq4uthe Lie algebra
theorem implies the equivalence of different designs of uniof the special unitary group S4). We find that the geomet-
versal quantum computers based on suitable discrete sets ¢ structure of nonlocal gates is a 3-torus. On the other hand,
single-qubit and two-qubit operations in a quantum circuit.the Cartan decomposition of @) derived from the com-
An example is the standard universal set of gates includingexification of s(4) yields an easy way to derive the invari-
CNoT and three discrete single-qubit gates, namely, Hadants for local transformations. These invariants can be used
amard, phase, ang/2 gateg15]. Other universal sets have (g determine whether two gates are locally equivalent. More-
also been proposed. According to the Solovay-Kitaev theoger e establish the relation of these local invariants to the

rem, every such design can represent a circuit that is formuys, inates of the 3-torus. This provides with a way to com-

lated using the_: standard set of gates. C_onseque_ntly, all quaBUte the corresponding points on the 3-torus for a given gate.
tum computation constructions—including algorithms, eITor + ms out that a single nonlocal gate may correspond to

correction, and fault tolerance—can be efficiently simulate initely many different points on the 3-torus. If we represent

by physical systems that can provide a suitable set of Oper"jt:@ese points in a cube with side length there is an obvious

tions, and do not necessarily need to be implemented by th .
y P y mmetry between these points. We then use the Weyl group

standard gates. This moves the focus from the study of gat ) o
to study of the Hamiltonians whose time evolution gives riset1€0Y {0 reduce this symmetry. We know that in this case the

to the gates. In this context, Burkaed al. [32] studied the Weyl group is generated by a set of _reﬂectlo_nsmﬁ Itis
quantum computation potential of the isotropic exchangdhese reflections that create the kaleidoscopic symmetry of
Hamiltonian. This interaction can generafewap gate di- points that co_rrgspond to the same nonloc_al gate in the cube.
rectly. However,cNOT cannot be obtained directly from the We can explicitly compute these reflections, and thereby
exchange interaction. Burkaret al. showed that it can be show that the local equivalence classes of two-qubit gates are
generated via a circuit of twg'Swap gates and a single-qubit in one-to-one correspondence with the points in a tetrahe-
phase rotation. Bennett al. [33] discussed the optimal dron except on the base. This provides a complete geometric
simulation of one two-qubit Hamiltonian by using another representation of nonlocal two-qubit operations.
Hamiltonian and general local operations. More recently, The second objective of this paper is to explore the prop-
Whaley and co-workers have shown that the two-particle exerties of perfect entanglers, that is, the quantum gates that
change interaction is universal when physical qubits are encan generate maximally entangled states from some initially
coded into logical qubits, allowing a universal gate set to beseparable states. We start with criteria to determine whether a
constructed from this interaction alof84—39. This has given two-qubit gate is a perfect entangler. A condition for
given rise to the notion of “encoded universality,” in which such a gate has been stated in R&f. We provide here a
a convenient physical interaction is made universal by enproof of this condition and show that the condition can be
coding into a subspack86,37]. Isotropic, anisotropic, and employed within our geometric analysis to determine which
generalized forms of the exchange interaction have recentlfraction of all nonlocal two-qubit gates are perfect entan-
been shown to possess considerable power for efficient comers. We show that the entangling property of a quantum
struction of universal gate sets, allowing explicit universalgate is only determined by its geometric representation on
gate constructions that require only a small number of physithe 3-torus. Using the result that every point on the tetrahe-
cal operation$35,38—44Q. dron corresponds to a local equivalence class, we then show
In this paper, we analyze nonlocal two-qubit operationsthat the set of all perfect entanglers is a polyhedron with
from a geometric perspective and show that considerable irseven faces and possessing a volume equal to exactly half
sight can be achieved with this approach. We are concernatiat of the tetrahedron. This implies that amongst all the
with three main questions here. First, achieving a geometriaonlocal two-qubit operations, exactly half of them are ca-
representation of two-qubit gates. Second, characterizing grable of generating maximal entanglement.
qguantifying all operations that can generate maximal en- Finally, we explore universality and controllability aspects
tanglement. Third, exact simulation of any arbitrary two- of nonlocal properties of given physical interactions and the
qubit gates from a given two-body physical interaction to-potential of such specified Hamiltonians to generate perfect
gether with single-qubit gates. The fundamentalentanglers. Our motivation is related to that of encoded uni-
mathematical techniques in this paper are Cartan decompeersality, namely, determining the potential for universal
sition and Weyl group in the Lie group representation theoryquantum computation and simulation of a given physical
The application of these theories to the Lie algebrédsu Hamiltonian. However, whereas encoded universality sought
provides us with a natural and intuitive geometric approacho construct encodings to achieve universality of quantum
to investigate the properties of nonlocal two-qubit operadogic, here we focus on the simulation of any arbitrary two-
tions. This geometric approach reveals the nature of thgubit gate. Achievement of this, together with our second
problems intrinsically and allows a general formulation of result above, allows generation of maximal entanglement as
solutions to the three issues of interest here. well as providing universality. To realize this, we consider
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here the conventional scenario of a Hamiltonian acting on a
physical set of qubits such that any arbitrary single-qubit
operation and certain specific two-qubit operations may be
turned on for selected time durations in series. Generally
speaking, two-qubit interactions include both local and non-
local terms. The nonlocal terms can give rise to not only
well-known entangling gates such @asorT, but also to many
other classes of gates that may or may not lie in the perfect
entangling sector. We therefore, seek a systematic way to
construct quantum circuits from a given physical Hamil-
tonian that can simulateny arbitrary two-qubit gate exactly.

As in the study of encoded universality we start with the
gates that can be directly generated by a given Hamiltonian.
Generally, these gates form a one-dimensional subset on the

Local Gates
SU(2) @ SU(2)

Perfect Entanglers

CNOT

3-torus. To construct an exact simulation of any arbitrary FIG. 1. Partition of all the gates in SY).
two-qubit gate, we make use of the quantum circuit model.
We explicitly construct a quantum circuit that contains three A. The Cartan decomposition and the Weyl group

nonlocal gates generated by a given two-body interaction oy first goal is to establish fundamentals for a geometric
Hamiltonian for corresponding finite time durations, togetherjcture of nonlocal unitary operations with emphasis on their
with at most four local gates. We prove that such a quantungenerators, which are represented by the Hamiltonian opera-
circuit can simulat@nyarbitrary two-qubit operation exactly tors in physical context. We start with a summary of some
and is therefore universal. In particular, it can therefeffe  basic definitiong42—45. Consider a Lie groufs and its
ciently provide maximal entanglement from any arbitrary corresponding Lie algebra The adjoint representation 4d
Hamiltonian of this form. Such efficient construction from is a map from the Lie algebrgto g which is the differential
any given Hamiltonian is extremely useful for design andof the conjugation magp, from the Lie groupG to G given
experimental implementation of quantum information pro-by ag(h):ghgfl. For matrix Lie algebras, AgY)
cessing schemes. =gYg !, whereg, Y are both represented as matrices of
compatible dimensions. The differential of the adjoint repre-
sentation is denoted by ad, andyad a map from the Lie
Il. PRELIMINARIES algebrag to g given by the Lie bracket withX, that is,
ad(Y)=[X,Y]. N
In this section, we briefly review some basic facts about W€ now define an inner product grby the Killing form
Cartan decomposition and the Weyl group within the LieB(X’Y):tE(a@iadY)' Let{Xy, ... X} be a basis fog. The
group representation theof¢#2—45, and then apply these "UmbPersCj e C such that
results to s(#), the Lie algebra of the special unitary group n
SU(4). Applications of Cartan decomposition to quantum [X; Xil=> C}kxi (1)
system control can also be found in REE3]. =1
We concentrate on S4) when studying two-qubit gates. . .
It is well-known that an arbitrary two-qubit gaté,e U(4)  aré thestrqcture cc_mstantsf the Lie alge_brag with respect
can be decomposed as the product of a ghte SU(4) and  {© the basis, wherg k run from 1 ton. Since
a global phase shife'®, wherea e R. Because the global
phase has no significance in quantum mechanics, we can
thereby reduce the study of the groupg4l of two-qubit
guantum evolution operators to $4). Extensions of results N 1
from the group S(#) back to U4) are made when appropri- Cii - Cp
ate. =[Xy, X ]| § .
We heuristically introduce a partition of the set of two- n cn
qubit operations represented by the group(@UThis set 11 In
splits into two subsets, one of local gates SU$ZU(2) and i)
the other of nonlocal gates SUM3U(2)® SU(2). Thelat-
ter splits further into a set of perfect entanglers, i.e., thoséhe matrix representation of gdwith respect to the basis is
that can generate maximally entangled states, an example of
which iscNoOT, and the complementary set of those nonlocal lel e len
gates that are not perfect entanglers. This schematic partition
is illustrated in Fig. 1. A rigorous definition of perfect entan- N 'n
glers is presented in Sec. IV. i G

n n
adg[ Xy, ... Xol= 21 CiyXi ... ;1 CjoXi

()
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Thus, the trace of e)gjjackk, which is B(Xj,Xy), is  The linear functionx is called aroot of g with respect tau.
A C?bCEa! which is also thgkth entry of the matrix of ~Let A denote the set of nonzero roots, algdenote the set

the quadratic formB(,). The Liealgebrag is semisimple if ~ Of roots inA which do not vanish identically om. Note that
and only if the Killing form is nondegenerate, i.e., the deter-if @€ 4, itis also true that-ae A.

minant of its matrix is nonzero. LetM andM’ denote the centralizer and normalizeroof
Let K be a compact subgroup @, and ¢ be the Lie In K, respectively. In other words,

a_llgebra ofK. Assume thay admits a direct sum decomppsi- M ={ke K|Ady(X)=X for eachX e a},

tion g=p®¢&, such thatp=¢" with respect to the metric in-

duced by the inner product. M’ ={keK|Ad(a)Ca}. (6)

Definition 1 (Cartan decomposition of the Lie algelya o _ I
Let g be a semisimple Lie algebra and let the decomposition Definition 2 (Weyl group)The quotient grougM’/M is

g=pat, p=t" satisfy the commutation relations called the Weyl group of the pairGQ(K). It is denoted by
W(G,K).
[e.¢]CE, [p,E]Cp, [p,p]CE 4 One can prove thatV(G,K) is a finite group. Eachy

This decomposition is called a Cartan decompositiom,of €4, defines a hyperplane(X)=0 in the vector space.
and the pair §,t) is called an orthogonal symmetric Lie These hyperplanes divide the spacato finitely many con-
algebra pair. nected components, called théeyl chambersFor eacha

A maximal Abelian subalgebracontained irp is called a €4, lets, denote the reflection with respect to the hyper-
Cartan subalgebraf the pair @,t). If o’ is another Cartan Planea(X)=0 in a.

subalgebra of {,£), then there exists an elemdnt K such Proposition 2 (generation of the Wey! groufhe Weyl
that Ad,(a)=a’. Moreover, we have= U, _xAd(a). group is generated by the reflectios)s, ac A, . _
Proposition 1 (decomposition of the Lie group Given This proposition is proved in Corollary 2.13, Chap. VIl in

a semisimple Lie algebrg and its Cartan decompositign Ref. [42].

=pd¢t, let a be a Cartan subalgebra of the pair#), then

G=Kexp@K. B. Application to su(4)
For Xe a, let We g be an eigenvector of adand «(X)

the corresponding eigenvalue, i.e., Now we apply the above results to(d)y the Lie algebra

of the special unitary group SY. The Lie algebrag
[X,W]=a(X)W. (5) =su(4) has a direct sum decompositigr p& ¢, where

i
_ 1 1 1 2 2 2
E—spanz{ax,o-y,az,ax,cry,crz},

i
_ 12 12 1.2 12 12 12 12 12 12
p—spalz{o'xax LOX0y 0507 , Oy 05, Ty0y, OTy0y,0,0%,070y,0,05]). (7)

Hereo,, oy, ando, are the Pauli matrices, ararﬁaé:aaég oz . If we useX; to denote the matrices in E(¥), wherej runs
from left to right in Eq.(7), we can derive the Lie brackets Bf andX,. These are summarized in the following:

[X] ’ Xk] Xl X2 X3 X4 x5 X6 X7 X8 X9 x10 Xll X12 X13 Xl4 X15
X, 0 X3 X, O 0 0 0 0 0 —Xiz X —Xis Xio Xi1 X
X, X; 0 =X, 0 0 0 Xi3 X4 Xis O 0 0 —X; —Xg —Xg
Xs ~X, X, 0 0 0 0 —Xio —Xi1 Xz X, Xg Xg O 0 0
X, 0 0 0 0 —Xg Xs 0 —Xo Xg 0 —Xpp Xy 0 —Xgi5 Xpg
Xs 0 0 0 Xs 0 X4, X¢ 0 —X; X 0 —Xpo Xi5 0 —Xig
X6 0 0 0 -Xs X, O ~Xg X7 0 =Xy X 0 —Xy X3 O
X5 0 —Xi3 Xio 0 —Xo Xg 0 —Xs Xs —Xg O 0O X, O 0
Xg 0 —Xy4 Xiu X¢ 0 —X; X¢ 0 =X, 0 -X3 O 0 X, O
Xq 0 —Xi5 Xip —Xg Xy 0 ~Xs X, O 0 0 -X3 O 0 X,
X10 X;3 0 =X, 0  —Xpp Xn Xs 0 0 0 -Xs Xs —-X, O 0
X1 Xza 0 —Xg Xip 0 X0 0 X3 0 X¢ 0 -X, 0 =X O
X1, Xis 0 —Xg =Xy Xp O 0 0 Xs -Xs X, O 0 0 -X
X3 ~Xi0 X; 0 0 —Xi5 Xy —X, O 0 X, O 0 0 —X¢ Xs
X14 ~Xy; Xg 0 X5 0 X3 0 =X, O 0 X, 0 Xg¢ 0 =X,
X5 ~Xp; X¢ 0 =Xy X3 O 0 0 -X, O 0 X, —Xs X, O

042313-4



GEOMETRIC THEORY OF NONLOCAL TWO-QUBIT OPERATIONS PHYSICAL REVIEW A7, 042313 (2003

i .
Now the structure constant; can be found from the A =i{c;—c,,—c;—cp,—C¢;—C3,61—C3,C,—C3,Co+Cg,

above tabldsee Eq(1)] so that we can evaluate
_Cl+C2,C1+C2,Cl+C3,_Cl+C3,

15 15
B(X; , Xk Z Z C%,CPa= —83j. (8) —Cp+C3,—Cp—Cy). (13
It is easy to verify that tX;X,) = — &k, and thus the Killing  For a=i(c;—c3) €A,, the planea(X)=0 in a is the set

form of su4) is B(X, Y) 8tr(XY). Since ¢t {XeR3u'™X=0}, where u= [1,0-1]". The reflection of
=span Xy, ... Xg} and p=span{X;, ... Xis, from the X=[cy,c,,c3] with respect to the plana(X)=0 is
Lie bracket computation table above, it is clear that
T
[eE]CE [p,E]Cp, [p.p]CE 9 8. (X)=X— 2uu2
Therefore the decomposition=t®p is a Cartan decompo- lu
sition of su4). Note that the Abelian subalgebra

X=[c3,Cy,Cq]. (14)

Similarly, we can compute all the reflectioss as follows:

a= Span—{o'(r 0'),0')2,,0'10'2 (10

, _ , _ , , _ Si(eg-cp)(X)=[C1,C3,C2],  Si(c,+cy)(X)=[C1,—C3,—Ca,

is contained inp and is a maximal Abelian subalgebra, i.e.,

we cannot find any other Abelian subalgebrapahat con-

tains a. Hence it is a Cartan subalgebra of the pairt]. Si(czfcl)(x):[CZvClaCﬂ- Si(cl+cz)(x):[_C21_C11C3]1

Further, since the set of all the local gat€ss a connected (15)

Lie subgroup SU(2% SU(2) of SU4), and there is a one-

to-one correspondence between connected Lie subgroups of

a Lie group and subalgebras of its Lie algeptd], it is clear Si(e,~cy)(X)=[€3,C2,C1],  Si(c,+cy)(X)=[—C3,C2,—C4].

thatt in Eq. (7) is just the Lie subalgebra corresponding to

K. From Proposition 1, any e SU(4) can be decomposed

as From Proposition 2, the Weyl grolfy(G,K) is generated by

_ s, given in Eq.(15). Therefore, the reflectiors, are equiva-
_ _ I 1 2 5 lent to either permutations of the elementd of,c,,c3], or
U_klAKZ_klexi){E(cloxaijcza oyt Caoz0 )] Kz, permutations with sign flips of two elements.

(11)

wherekq, k, e SU(2)® SU(2), andc,, c,, c3eR. I1l. NONLOCAL OPERATIONS
Another more intuitive Cartan decomposition of4ucan
be obtained via the complexification of(4). ConsiderG
=SL(4), thereal special linear group, arkl=S0(4), the
special orthogonal group. The Lie algebrédslis the set of
4x 4 real matrices of trace zero, and(4pis the set of 4
X 4 real skew symmetric matrices. Thefdslcan be decom-

We now study nonlocal two-qubit operations within the
group theoretical framework of the preceding section. The
Cartan decomposition of &) provides us with a good start-
ing point to explore the invariants under local gate opera-
tions. It also reveals that the geometric structure of the local
posed as &#)=sad)@p, wherep is the set of &4 real equivalence classes is none other than a 3-torus. Every point

symmetric matrices. This is nothing but the decomposition ofn tis 3-torus corresponds to a local equivalence class of

a matrix into symmetric and skew symmetric parts, and it Istwo—qublt gates. Different points may also correspond to the

indeed a Cartan decomposition of&l Consider the follow- S&Me equivalence class. To reduce this symmetry, we apply
ing subset of the complexification of(4): the Weyl group theory. We show that the local equivalence

classes of two-qubit gates are in one-to-one correspondence
g,=s0(4)+ip. (12)  Wwith the points in a tetrahedron, except on the base where
there are two equivalent areas. This tetrahedral representa-
It can be verified thatg, is exactly s@4), and thus tion of nonlocal operations plays a central role in our subse-
(9,..50(4)) is arorthogonal symmetric Lie algebra pair. The quent discussion of perfect entanglers and the design of uni-
isomorphism carrying in Eq. (7) into so(4) is just the trans- versal quantum circuits.
formation from the standard computational basis of states to
the Bell basis in Refs[2,12]. This procedure is of crucial
importance in computing the invariants for two-qubit gates
under local transformations. See Sec. Il for more details. Two unitary transformationbl, U; e SU(4) are calledo-
Now let us compute the Weyl group/(G,K). Let X  cally equivalentif they differ only by local operationst

A. Local invariants and local equivalence classes

=i/2(Ciox0%+Cooy05+ Caoy02) ea. Identify a with R, =k U;k,, wherek,, ke SU(2)®SU(2) are local gates.
then X=[cy,C,,C3]. The roots ofg with respect toa are  This clearly defines an equivalence relation on the Lie group
eigenvalues of the matrix of ad SU(4). We denote the equivalence class of a unitary transfor-
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mationU as[U]. From the Cartan decomposition of(4uin Let
Sec. Il B, any two-qubit gats) e SU(4) can be written in the . Teo
following form: m=UgUg=0,F“0,, (22

B B [ 12 12 12 where O, is defined by Eq(20). The complete set of local
U=kiAke=ki€Xp 5 (C10505+ Co0y 0y +C30707) (K, invariants of a two-qubit gat®) e SU(4) is given by the
(16) spectrum of the matrixn [2], and hence by the eigenvalues

of F?,
wherek,, k,e SU(2)®SU(2). Because the two-qubit gate _ _ _ _
U is periodic incy, the geometric structure ¢t;,c,,c5] is {el(camcatca) gi(c1tCamCs) gmi(C1tCatCs) gl(~CrtCategy
a 3-torus,T°=S'x Stx St (23

In Ref. [2], local invariants were given for two-qubit ) . o
gates. Here we will connect these invariants of Makhlin toSincem is unitary and dem=1, the characteristic polyno-
the coordinategc, ,c,,c5] on the 3-torus. We first consider Mial of mis then
the case of the two-qubit gates in @) and then extend the 1
results to the general case of4). |sl—m|=s*—tr(m)s+ E[trz(m)—tr(mz)]sz—tr(m)s+ 1.
1. SU(4) Operations (29

Consider the transformation from the standqrd bilsis Ofrherefore the spectrum oh is completely determined by
states |00), [01), [10), [11) to_the Bell baS|s|<I>+) only the two quantities trf)) and t#(m) — tr(m?). For a two-
:1/\/§(|00>+|11>)’ | }Z'/\/E(|Ol>+|10>)’ ) A > qubit gateU given in Eq.(16), its local invariants can be
=1/2(|01)—[10)), |[¥~)=i/y2(|00)—|11)). In this basis,  derived from Eq.(23) as
the two-qubit gatdJ in Eq. (16) can be written as
tr(m)=4 cosc,c0Sc,c0SC;+ 4i sincsinc,sincs,

Ug=Q'UQ=Q'k;Ak,Q, 17
where tr2(m) — tr(m?) = 16 cogc, cogc,coscy
L0 o i — 16 sirfc;sirfc,sirfc,
110 i 1 0 —4cosXC0sX,c0s ;. (25
Q=—F2= - (18)
y2{0 i -1 0 2. Generalization to U(4)
1 0 0 ~—i

Now let us consider the local invariants for the general
case of W4) [2]. An arbitrary two-qubit gatdJ e U(4) can
be decomposed as the product of a ddte= SU(4) and a
global phase shife'®, where dety=e'**. It follows that
m(U,;)=e '?*m(U), where

Recalling thati/2{oy 0y ,07 0% 05,02} is a basis fott, it

is not hard to verify thati/2Q"{oy .0y .03 ,0%,07,02}Q
forms a basis for 4@), the Lie algebra of the special or-
thogonal group S@). HenceUg can be written as

UBZOlQTAQOQ, (19) m(U):(QTUQ)TQTUQ (26)
where and
0,=Q'k;Qe SO4), t{m(Uy)]=e "*tr[m(U)],
0,=Q'k,Qe SQ4). 20  wrImUp]-tfm*(Uy)]= e etr?(m(U)]—t[m?(U )(?2}7,)

Equation(19) can also be obtained from the Cartan decom-
position of s@4) derived from the complexification of (@),
as discussed in Sec. Il B. An Abelian subalgebria gener-
ated byi/2{o}of 0507 0302}, and the transformation to
the Bell basis takes these operators/@{o},— 02,0202},
Therefore, we hav&lg=0,FO,, where

It is clear that the global phase factor just rotates the eigen-
values ofm(U) along the unit circle in the complex plane,
while keeping their relative phase invariant. Therefore, it
does not affect the entangling properties and we can conse-
quently divide by det(). The local invariants of a two-qubit
gateU are thus given by

i 2
F=Q'AQ= exprz(clag—czagﬂt c3a§o§)J l:tf [m(U)]
16detU ’
C1—CyfC3z CjtCy—Cg CitcCptcCy  —CpfCptCy
=diag{e' 2 e 2 ez ¢ 2 tr2[m(U)]—tr[m3(U)]

(21 4 detU '
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where the numerical factors are incorporated into the defw/4,m/4,7w/4] and[ w/4,3w/4,37/4] correspond to the gate
nominators to provide convenient normalizationUlfs now SWAP.

written in the following form: We use the theory of the Weyl group to reduce this sym-
. metry in the cube. From the Lie group representation theory,
U=e'""k;Ak the orbits of local gate& acting on SW4)/SU(2)® SU(2)
i are in one-to-one correspondence with the orbits of the Weyl
:elaklexp[i(claigiJr ng§g§+ ngigg) Ky, group W(G,K) on a [41]. From Proposition 2, the Weyl

groupW(G,K) is generated by the reflectiosg as given in
(29 Eqg. (15). Note that in Eq(15), the reflectionss, are either
permutations or permutations with sign flips of two entries in
we can compute its local invariants as [cy,Cy,C3]. Therefore, iff c;,c,,c3] is an element in a local
equivalence cla , then[¢;,c;,c,], [7—¢;,7m—C;,C],
G, =c0g¢,C0SC,C0SC5— SINPC,SinPC,Sinfc, [gi ¢ ,w—cf]BjUa]nd[q-r—[c: ,c; ,Wk]_ C[k] are also ﬁdﬁ
i where (,],k) is a permutation of (1,2,3). With the meaning
+ —sin 2c4Sin 2c,sin 2c5, clear from the context of the discussion, in the remainder of
4 this paper we shall use the triplet; ,c,,c3] to denote either
the corresponding local equivalence class of a two-qubit
gate, or simply to refer to a specific point on the 3-torus or
—CO0S 2,C0S X,C0S X5. (30  cube. _ _
Since each orbit of the Weyl groify(G,K) ona contains
Because the local invarian®; and G, characterize the Precisely one point in a Weyl chamber, the local equivalence
nonlocal properties of unitary operations, we can use thesglasses of two-qubit gates are in one-to-one correspondence
two invariants to check whether a pair of two-qubit gates aravith the points of a Weyl chamber. Hence, each Weyl cham-
locally equivalent. The invariant§; and G, are evaluated Per contains all the local equivalence classes. Recall that the
by taking the matrix representation of a gate in the Bell basigVeyl chambers are obtained by dividing the vector space
and then using Eq$26) and (28). For examplecnoT and by the hyperplanes(X)=0, whereae A, as given in Eq.
controlledZ [referred as (Z)] possess identical values of (13). Therefore, we can obtain the Weyl chambers by divid-
the local invariants, given bg;=0 andG,=1. Therefore, ing the cube by the planes
they belong to the same local equivalence class. We refer to
this class a$cNOT]. On the other hand, the local invariants
for Jswap areG,=i/4 andG,=0. Hence this gate belongs
to a different local equivalence class that we refer to as
[ VswaP]. Note that from Eq(28), since the local invariants
are functions of eigenvalues of the matnr, the local
equivalence class can alternatively be defined simply via th
set of eigenvalues of the matrir.

G,=4 co€c,c0$C,C08C5— 4 Sirfc,SirPc,sinfc,

{Xeaic;—c,=0}, {Xeaic;t+c,=m},
{Xeaic;—c3=0}, {Xeaic;+cz=m}, (32)
{Xeuaic,—c3=0}, {Xea:c,+C3=m}.

Eigure Za) shows that after dividing the cube by the planes
c,—C3=0, c;+c3=m, C,—Cc3=0, andc,+c3=, we ob-
tain six square pyramids. One of these pyramids is shown in
Fig. 2(b). Further dividing this pyramid by the planes

Equation (30) reveals the relation between the local in- —c,=0 andc;+c,=, we get a tetrahedro®A;A,Az
variantsG,; and G, and the coordinatefc,,c,,c3] of the  such as that shown in Fig.(@. Notice that for any point
3-torus structure of nonlocal two-qubit gates. From this relafc;,c,,0] on the base of this tetrahedron, its mirror image
tion, given a set of coordinatds;,c,,c3], we can easily with respect to the lin& A,, which is[7—c,,c;,0], corre-
compute the local invariants for a local equivalence classsponds to the same local equivalence class. Therefore, with
Vice versa, from a given pair of values of the local invariantsthe caveat that the basal arda&,A; andLA,O are identi-

G, andG,, we can also find the points on the 3-torus thatfied as equivalent, we finally arrive at the identification of the
correspond to a given two-qubit operation. In general, weetrahedronOA;A,A; as a Weyl chamber, and we denote
expect to find multiple points on the 3-torus for a given pairthis by a®. There are 24 such Weyl chambers in total, and
G, andG,. We now show how this multiple-valued nature each of them has the volume’/24. Note that every point in
can be removed by using the Weyl group to construct a geoa™ corresponds to a different local equivalence class. Con-
metric representation that allows the symmetry to be resequently, the Weyl chambei” provides a geometric repre-
duced. sentation of all the possible two-qubit gates.

To visualize the geometric structure of the two-qubit For a given two-qubit gate, it is important to find its co-
gates, we first consider a cube with side lengthin the  ordinatesc,,c,,c3] on the 3-torus, and hence in the Weyl
vector space. This provides an equivalent representation ofchambera™. With this representation in the tetrahedreoh
the points on the 3-torus, sinéd€=R3/73. Clearly, every we have removed the multiple-valued nature of the coordi-
point in this cube corresponds a local equivalence classiates on the 3-torus and cube and therefore can now take the
However, different points in the cube may belong to thecoordinategc,,c,,c3] as an alternative set of local invari-
same local equivalence class. For example, both the poinents. They provide a useful geometric representation of local

B. Geometric representation of two-qubit gates
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(1

(@) (b) (c)

FIG. 2. lllustration of the tetrahedral representation of nonlocal two-qubit operat@nBivide the cube by the planes —c3;=0, c;
+cy3=1, C,—C3=0, andc,+c53= 7. (b) One of the six equivalent square pyramids produced f@mfurther dividing this pyramid by the
planesc;—c,=0 andc;+c,=m gives (c), the tetrahedrorDAA,A;, with A;=[m,0,0], A,=[n/2,7/2,0], and Az=[=/2,7w/2,7/2].
OAA,A; is a Weyl chamber, denotead”, with the exception of points on its base where we have an equivalericA@f; with LA,O,
wherelL is the point[ 7/2,0,0]. Every point ina™ corresponds to a local equivalence class of two-qubit operations.

invariants that is easy to visualize :_;md is ent_irely equivalent U=exp(yiiox+ yaioy+ ysiay). (33
to G, andG,. They can be used directly to implement the
local equivalence class of particularly prescribed two-qubit For the controlledd gate, the local invariants ar&,
gates for a given Hamiltonian. More generally, this alterna-=cosy and G,=2cogy+1, where y= \/y12+ y22+ 732. By
tive set of local invariants helps us to gain a better undersolving Eq.(30), we find that[ y,0,0] is the corresponding
standing of the local invariants and geometric representatiopoint in a*. Hence, all the controllet! gates correspond to
of two-qubit gates. the lineOL in a™, whereL is [cNOT].
It is clear that the local gatd§ correspond to the poin®
andA; in Figs. 2a)—2(c). We now stud)_/ several nontriviaI. IV. CHARACTERIZATION OF PERFECT ENTANGLERS
examples of nonlocal gates to determine the corresponding
coordinateg ¢, ,C,,C3] in a™. All the other points of a par- Entanglement is one of the most striking quantum-
ticular local equivalence class in the cube can be obtained byechanical features that plays a key role in quantum com-
applying the Weyl groupV(G,K) to the corresponding point putation and quantum information. It is used in many appli-
in a®. Note that for a gatéc,,c,,c5] in a™, its inverse is  cations such as teleportation and quantum cryptograpbly
just[m/2—c4,Cy,C3]. In many applications, it is often desired to generate maximal
(1) cNoT: Following the procedure to compute the local entanglement from some unentangled initial states. The non-
invariants described aboysee Eqs(26) and(28)], we ob-  local two-qubit operations that can generate maximal en-

tain G;=0 andG,=1 for the two-qubit gateNoT. Solving  tanglement are called perfect entanglers. In this section, we
Eq. (30): study the perfect entanglers using the geometric approach

established in the previous sections. We will prove a theorem
COSC1COSC,COSC3 — SiNPC SiPe,Sinfes =0, that provides a sufficient and necessary condition for a two-
qubit gate to be a perfect entangler. It turns out that whether
sin 2¢;sin 2¢;sin 2c3=0, (32)  atwo-qubit gate can generate maximal entanglement is only
determined by its location on the 3-torus, or more specifi-
—C0S X1C0S X,c0s X3=1, cally, in the Weyl chambesn™. We show that in the tetrahe-

i ) , , ) dral representation of nonlocal gates summarized in Fig.
we find that[a-r/2,0,9] is the corresponding point f@NOTIn - o) 4l the perfect entanglers constitute a polyhedron with
the Weyl chamben™. This is the point. in Fig. 2(c). seven faces, whose volume is exactly half that of the tetra-

(2) swap: For the gateswap, we haveG;=—1 andG;  nedron. This implies that the among all the nonlocal two-
=—3. Solving Eq.(30), we obtain that the corresponding qupit operations, precisely half of them are capable of gen-
point for swapis [ /2,5, 5], i.e., the pointA; in Fig. 2(c). erating maximal entanglement from some initially separable

(3) VyswAP: The local invariants for the gatgswap are  states.

G,=i/4 andG,=0. Solving Eq.(30) for this case, we de- For a two-qubit statey;, define a quadratic function
rive that [ 7/4,m/4,m/4] is the corresponding point in*.  E(4)=y¢"Py, whereP=— 30,05 [2]. It can be shown that
This is the midpoint 0fOA; in Fig. 2(c). max,|E(y)|=3, and E(y)=0 if and only if ¢ is an unen-

(4) ControlledU gate: Suppos#) is an arbitrary single- tangled state. This function thus defines a measure of en-
qubit unitary operation, tanglement for a pure state.|E()|=3, we call ¢ a maxi-
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mally entangled state. It can be proved that the funclas
invariant under the local operations.
Definition 3 (perfect entangler)A two-qubit gateU is

PHYSICAL REVIEW A7, 042313 (2003

E(U o) = E(e'*k; Ak o) = €2“E(Ay), (36)

wherey =k, i, is again an unentangled state. From &),

called a perfect entangler if it can produce a maximally enit is clear tha E(U )| = |E(A#)|. ThereforeU is a perfect

tangled state from an unentangled one.
Definition 4 (convex hull)The convex hullC of N points
P1i, .. .,pn in R" is given by

N
C={E 0;p;
=1

N
0;=0 forall j and 121 0;=11.

(34

Theorem 1 (condition for perfect entanglef) two-qubit

gateU is a perfect entangler if and only if the convex hull of

the eigenvalues ah(U) contains zero.
This result was first mentioned by Makhl{i2] but no

proof was given. We provide here a proof and then go on t
develop a geometrical analysis that provides a quantification

of the relative volume of perfect entanglers in @V

Proof: From the Cartan decomposition of(4uin Sec.
Il B, any two-qubit gateJ e U(4) can be written in the fol-
lowing form,

U= eiaklAkz
. i
= elaklexp[ E(Clagl((riﬁ- Cza'>1,0'§+ Cgaia'g) ks,
(35

where ki, k,eSU(2)® SU(2). For anyarbitrary unen-
tangled state),, we have

F= diag{ ei (cp—co+t c3)/2, ei (cptco— c3)/2, e i(cpteot c3)/2, ei (—cqtcot c3)/2} i

For simplicity, we denote the eigenvaluesfas {\}y_;.
Then the eigenvalues of(U) are just{\Z}y_,. We have

1 1 12
E(AY) =3 (Q"TFAQN =5 ¢TF2p=7 2 $AL.
(41)

If Ais a perfect entangler, we have
1 1
5 =[E(AY)|= S| HINT+ BN+ p3N5+ BN
1
= 5N+ SO+ @3N+ pani])

1 1
=5l +leal +l 3l +lgih=5. 42

The equality in Eq(42) holds if and only if there exists a
real numberd e[ 0,27 ] such that

entangler if and only iA is a perfect entangler. Furthermore,

we have

E(Ay)=y"ATPAY
=(Q'WT(QTAQT(Q"PQ)(QTAQ)(Q"y)

1
= >Q"WFAQ'), @7

whereQ andF are defined as in Eq$18) and(21), respec-
tively. The last equality in Eq(37) holds sinceQ"PQ

=1|. Let $=Q"y. Sincey is an unentangled state, we get

‘E(zp):o. Hence,

E(y)=y"Py

1
=¢'Q'PQ¢= > ¢

1
= S(d1+ ¢5+ ¢3+ $2)=0. (38)
Sinceyy=1, we havep'p=1, that is,
| 1|2+ [ ol + | pal>+ | dal*=1. (39
Recall the definition of from Eq. (21),
(40
|
PINI=| 1€, pINT=]g,| %€,
HINT= 3l %e?’,  piNT=|s|?€?. (43)

From Eq.(38), we obtain

2 2 2 2
| 1] +|¢2| Jr|¢3| Jr|<754|

2, 42, 42, 42 i
i+ 5+ 5+ pi=e'?’

A2 A3 A3 \S
=0. (44)
Since 1xk=>\_k, it follows that
|1 2N+ 2l N3+ | dal NS+ [dalPNG=0. (49

From the relation in Eq(39), we conclude that iU is a
perfect entangler, the convex hull of the eigenvalues of
m(U) contains zero.

Conversely, suppose the convex hull of the eigenvalues of
m(U) contains zero, that is, there ex{st,}s_,C[0,1] such
that
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ai)\i-i- a%)\%-i— ag)\g-i- ai)\EZO,
ai-l—a%-f—ag-i-ai:l. (46)
Let
g Oy (X3 Uy T 4
¢= N N2 N3Ny (47)

and ¢y=Qd¢. From Eq.(38), we have

NN AS

1 1 2 2 2
E(y)= §¢T¢=§( e

ag
+—2 =0. (48)

4
Hencey is an unentangled state. From E41l), we derive

1 1 1
E(AY)=5¢F2p=5(ai+ad+ai+al)=5. (49

Therefore,U is a perfect entangler. |

We now derive the conditions under which points
[c1,Cp,C3] in the Weyl chamben™ are perfect entanglers.

We begin with two corollaries to Theorem 1.

Corollary 1. If [cq,C0,c3] is a perfect entangler, then

[7—cCq,Cy,C3] and [w/2—cq,m/2—C,,/2—C3] are both
perfect entanglers.
Proof: We know thaf c,,c,,c3] and[c,,—C,,—C3] cor-

respond to the same two-qubit gate. Since the 3-torus has t

minimum positive periodr, [ —7+¢1,—Cy,—C3] also be-
longs to the same local equivalence class. From E4%.
and (45), if [c4,C,C3] is a perfect entangler, so [s-cq,
—C,,—C3]. Therefore[ m—cq,C5,C3] IS a perfect entangler.

From Theorem 1l is a perfect entangler if and only if
the convex hull of the eigenvalues of(U) contains zero,
that is, there exisfa,}¢_,C[0,1] such that

aiei(clfc2+c3)+agei(c1+027c3)+asefi(c1+c2+c3)

+a‘21ei(*01+C2+C3):0’ (50)

ai-l—a%-i— ag-i-ai:l. (52
Substitute the coordinates of the poifitr/2—cq,m/2
—C,,m/2—c3] into Eq. (50):

i{aie—i(cl—c2+c3)+age—i(cl+c2—c3)+agei(c1+c2+c3)

+ale "t =Q, (52)
Together with Eq.(51), it is clear that[#w/2—cq,7/2
—cC,,m2— 3] is a perfect entangler. |

Corollary 2. For a two-qubit gatéJ, if its corresponding
point in the Weyl chambea™ is [c,,7/2—c4,C3], [C1,C,
—ml2,5], or [¢cq,C,,m/2—C5], U is a perfect entangler.

Proof: For the gatd c,,7/2—c4,c3], the eigenvalues of
m(U) are

PHYSICAL REVIEW A 67, 042313 (2003

{ei(cl—c2+ c3),ei(c1+ c2—03)’e—i(c1+c2+c3),ei(—cl+c2+ c3)}
— e—i(cl+ Cyt+C3) {ei2(cl+ 03),ei2(01+ cz), 1,ei2(c2+ c3)}_

(53

The convex hull of the eigenvalues i U) always contains
the origin, and thu$c,,7/2—c,,c3] is a perfect entangler.
The other cases can be proved similarly. u

Note that for[c,,7/2—cq,C3], picking c;=/2 andcs
=0, we obtain the perfect entanglgeNoT]; picking ¢
= /4 andcy= /4, we get the perfect entangleyswar].

With these corollaries in hand, we can proceed to derive
the conditions under which a general pdint,c,,c3] on the
3-torus is a perfect entangler.

Theorem 2 (perfect entangler on 3-toru€pnsider a two-
qubit gateU and its corresponding representatj@q,c,,C3]
on the 3-torusU is a perfect entangler if and only if one of
the following two conditions is satisfied:

w
$Ci+ck$ci+cl~+§<w,

NS

3 T
7$Ci+ck$Ci+Cj+E$2’ﬂ',

(54)
where (,],k) is a permutation of (1,2,3).

Proof. Given the eigenvalues of(U) in Eq. (53), it suf-
fices to study whether the convex hull of

e'2(cate) gi2ertes)gi2(c2c3)l contains the origin or not.

uppose that one of the conditions in Egd) is satisfied. In

this case, the pointge'?(¢17¢2) gi2(C1t¢3) gl2(C2¥ 3} have to
be on the unit circle as shown in FiggaBor 3(b). It is clear
that the convex hull of these three points contains the origin.
From Theorem 1U is therefore a perfect entangler.

Conversely, suppose thét is a perfect entangler. Then
the convex hull of the eigenvalues af(U) contains the
origin. If all the three pointge'2(c1c2) gl2(c1+Cs) gl2(C2*Ca))
are on the upper or lower semicircle, the convex hull of
{1,e2(1tc2) gi2(c1tCs) @i2(22¥ )\ does not contain the ori-
gin. Therefore, we can always pick one point on the upper
semicircle and one point on the lower semicircle such that
one of the two conditions in Ed54) is satisfied. u

The above analysis shows that whether a two-qubit gate is
a perfect entangler or not is only determined by its geometric
representatiofic,,c,,c3] on the 3-torus. Recall that in Sec.
Il B, we show that the local equivalence classes of two-
qubit gates are in one-to-one correspondence with the points
of the Weyl chambem™, which can be represented by a
tetrahedron as shown in Fig(@. We are now ready for the
final stage of the procedure, namely to identify those points
in the tetrahedronthat correspond to perfect entanglers.

Consider a two-qubit gatec,,c,,c3]. As shown in Fig.
4, in the tetrahedro©OA;A,A;, we havec;=c,=c53=0.
Hence 2¢,+c,)=2(c,+c3)=2(c,+c3)=0. As in the
proof of Theorem 2, consider the convex hull of
{1,121t gi2(C1tCa)gi2(C27C3}  \We can identify the fol-
lowing three cases of the gates that do not provide maximal
entanglement, and are thus not perfect entanglers:
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ei2(°j+°k)
ei2(cite;)
ei2(°*+°j)
FIG. 3. lllustration of the
proof of Theorem 2.
et2(citei
i2(ci+ck)
€ k ei2(c;tex)
(@) {b)
(1) If c+c,<m/2, that is, all thee'?(i*%) are on the 3 3
upper semicircle, the gate is not a perfect entangler. In the V(LQPO)= 192 V(NPAA3)= 96"
tetrahedrorOA;A,A3, ¢1+Cyo<m/2 corresponds to the tet-
rahedronLQPO. _ 3
(2) If c,+cy=m/2, that is, all thee'?¢i* %) are on the V(LMNA,)= 7o, (55)
lower semicircle, the gate is not a perfect entangler either.
This case corresponds to the tetrahedidPA,A;. Therefore, the volume of the polyhedron LMNPQAs

(3).Fror_n Theorem 2, Xve obtain that the gates representegrsm& which is half of the volume 0®A,A,As. This im-
by points in the sefX e a”| 2(c,+¢5)=2(Co+Cs) + 7} & jies that among all the nonlocal two-qubit gates, half of
not perfect entanglers. This set is the tetrahedrM1_\lA1. them are perfect entanglers. Note that the polyhedron

The set of perfect entanglers can thus be obtained by rq_'MNPQAz is symmetric with respect to the plang
moving these three tetrahedra frd\ AxAs. This is done  _ 75 \yhich provides a geometric explanation of Corollary
in Fig. 4 where it is thereby evident that the polyhedrony ~the points in Corollary 2 correspond to the triangles
LMNPQA2 is the residual set of perfect entanglers. Herg theLMN, LPQ, andNPA,, which are three faces of the set of
point P corresponds to the gatgswap, N corresponds to its  herfect entanglers. Also recall that the li@d represents all
inverse, and. corresponds to thenot gate. Computing the - {he controlledd gates. Hencenor, located at., is the only
volume of the Weyl chambeDAjA,A; and of these three  onyrolledy gate that is a perfect entangler. Thus we see that

polyhedra, we have the geometric representation provides an intuitive visual pic-
3 ture to understand the nonlocal properties of two-qubit gates,
V(OAAAZ) = =, as well as allowing quantification of the weight of perfect
24 entanglers.

V. PHYSICAL GENERATION OF NONLOCAL GATES

We now investigate the universal quantum computation
and simulation potential of a given physical Hamiltonian. We
first study the gates that can be generated by a Hamiltonian
directly. Generally speaking, these gates form a one-
dimensional subset on the 3-torus geometric representation
of nonlocal gates. For any arbitrary two-qubit gate, we will
explicitly construct a quantum circuit that can simulate it
exactly with a guaranteed small number of operations. Con-
struction of efficient circuits is especially important in the
theoretical design and experimental implementations of
quantum information processing. We assume only that we
can turn on local operations individually. Our starting point
is thus any arbitrary single-qubit operation and a two-body
interaction Hamiltonian. The single- and two-qubit opera-

FIG. 4. Polyhedron LMNPQA corresponds to perfect entan- tions may be, for example, a sequence of pulses of an optical
glers in the Weyl chamber" [see Fig. 20)], whereL, M, N, P, and  field that are suitably tuned and focused on each individual
Q are the midpoints of the line segme’sQ, A A,, AA;, A3Q, qubit. The qubits may be represented by either a solid-state
and A,Q, respectivelyP corresponds to the gatéswap, N to its ~ System such as a quantum dot in a cayi$|, or by a gas-
inverse, and_ to thecNoT gate. phase system such as an optical latfi8].
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A. Nonlocal operations generated by a given Hamiltonian (3) One-dimensional exchange, i.e., Ising Hamiltonian:

112 : . .
In this subsection we investigate the nonlocal gates thdf's=70y0y—The trajectory generated by the Hamiltonian

can be generated by a given Hamiltonldrfor a time dura- Hs in a' is [t/2,0,0], which evolves along the liN©A;.
tion t, that is,U(t) = exp(Ht). Recall thatt in Eq. (7) is the Hence the gates generated by the Hamiltorarare all the
Lie subalgebra corresponding K the Lie subgroup of all controlledy gates. As noted aboveNOT, located atL, is _
the local gates. Thereforecan be viewed as the local part in the only perfect entangler that can be generated by this
su4), andp as the nonlocal part. If the Hamiltoniah con-  Hamiltonian.  The local invariants ofU(t) are G(t)
tains the nonlocal part, that it Np#J, thenH can gen- = COS(t/2) andGy(t) =2+ cost.
erate nonlocal gates. For any arbitranH = 3 (Ciox0; + Co0y0y + C30305), the

We first consider a HamiltoniaH for whichiH is in the  trajectory on the 3-torus ifc,t,c,t,cst]. If both ¢, /¢, and
Cartan subalgebra, and then extend to the general case.C1/Cs are rational, the trajectory generated by the Hamil-
Assume H= %(Clgig§+ C20)1/U§+ 03(,%05)_ The local ftorylanl_—| forms a Ioop on the 3-torus. If eithef/c, orcq/cs
equivalence classes tf(t) form a continuous flow on the IS irrational, the trajectory forms a proper dense subset of
3-torus as time evolves. This provides us a geometric picturé-torus. _ .
to study the properties of the gates generated by a given Nextlet us consider the case whidhe p. Recall that we
Hamiltonian. To illustrate the ideas, we consider the follow-havep= Uy Adi(a). Hence for any arbitrariH e p, there

ing examples. exists a local gaté& e SU(2)® SU(2) such that
Example 1 (exchange Hamiltonians)l) Isotropic
(Heisenbery exchange: H,= 3 (0,05 + oyo5+aro2)—In Adi(iH)=iH,, (58
this case, the two-qubit gatd(t) generated by the Hamil-
tonianH is whereH,= 3 (Ci050%+Co0y05+ C3o307). It follows that

t — ; — ti
U(t)=expliH 1t) = expi 7 (o%0+ oyos+ o). U (1) =exp(iHt) =exp(kTiH k1)
i
(56) :kTex;<5(010)1(0)2(+C2031,U§+C3U%0'§)t k.
Hence the Hamiltoniaid,; generates the flowt/2,t/2,t/2]
on the 3-torus. The local invariants can thus be computed (59

from Eq. (30):
Therefore, the trajectory dfi(t) in the Weyl chambeun™ is

tr2(m) t _t\? et , [cyt,Cot,cat]. Equation(58) also implies thaH andH, have
Gi(t)= 16dety ( COSQE— ISIHBE) =1—6(3+e‘2”)2, the same set of eigenvalues. We can thus use this property to
derive the triplet[c,,c,,Cc53] explicitly. The following ex-
tr2(m) — tr(m?) ample shows how to find the flow in the Weyl chamér
Gy(t)= for a given HamiltoniarH with iH e p.

4 detU Example 2 (generalized exchange with cross-ter@ep-

t t sider the generalized anisotropic exchange Hamiltomian
:4(0056§—sin6§) —cost=3cost.  (57)  =3(Ioroi+dyyovoi+deoroo+dyoyor) discussed in
Ref.[39]. The eigenvalues dfl are
We reduce the symmetry of the flow to the Weyl chamber
a®, as shown in Fig. 4. We obtain that foe [ 2k, 2k
+], the trajectory is[t/2t/2t/2]; and for te[2kw
+m,2(k+1)7], the trajectory is [t/2,7—1t/2,m—1/2].

1
E{ \/(‘]xx+ 'Jyy)2+ (ny_ Jyx)zy

Therefore, the flow generated by the isotropic Hamiltonian - \/(Jxx+~]yy)2+(~]xy_3yx)2’

H, evolves alongd AzA,, which corresponds to all the local

equivalence classes that can be generated pyMoreover, V3= Iyy) 2+ (gt Jyy)?

. . . yy xy yx/ 1

it can easily be seen thafswap and its inverse are the only . >

two perfect entanglers that can be achieved by this Hamil- — V3= dyy) 2+ Iy + Iy %} (60)
tonian.

(2) Two-dimensional exchange, i.eXY Hamiltonian: whereas the eigenvalues Kf, are
H,=4(0oxo%+ oy05)—The HamiltonianH, generates the
flow [t/2t/2,0] for te[2km,2km+ 7], and[5,7— 5,0]
for te[2kw+m,2(k+1)7]. Hence the trajectory evolves
along OAA,. It is evident thatH, can generate a set of (61)
perfect entanglers that corresponds to the line segnigAss

andA,M in a*. Note thatA,M represents exactly the same SinceH andH, have the same set of eigenvalues, by com-
local equivalence classes &8A,. The local invariants of paring Eqgs.(60) and (61) and recalling thatc,=c,=c;
U(t) areG,(t) =cog(t/2) andG,(t)=1+2 cost. =0, we find

1
517 C1HCsHCa,—C1—C5—Cp, L1+ Ca— C2,C1— CatCo}.
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T . . ™

0 w2 WA x O  wfA w2 3i/d T x

a=1.1991, t = 2.7309 a=1.1991, ¢t =20 FIG. 5. The flow generated ki in the Weyl
7f : ; ; n : : chambera™.

o
b

I3

3

c2
[NE]

ol

0 /4 72]12 /A r O /4 a2 /A 7w
a=0.5,1t=20 a=05,t=80

1 G, =C08¢,C0SC,C0SC3— SINPC,SINPC,Sinfc,
Clzi(\/(\]xx—’_\)yy)z"’_(\)xy_ Jyx)z .
i
+ —sin 2c4Sin 2c,Ssin 2c4,
+ \/(Jxx_\]yy)2+(‘]xy+‘]yx)2)a 4 ! 2 8

G,=4c02¢,c0%C,C0SC3— 4Sirfc,Sinfc,sirfcy

1
Co= 2 | \/(‘Jxx+ ‘]yy)2+ (‘ny_ Jyx)z

—C0S X4C0S X,C0S X3. (64)
_\/(Jxx_Jyy)2+(‘]xy+Jyx)2|! (62) Example 3 (Josephson junction charge-coupled qubits).
For Josephsor(charged-coupled qubits [47], elementary
c3=0. two-qubit gates are generated by the Hamiltonidp=

—3E (ot 0f) +(ES/E) oyor . If Eyis tuned toaE, , a

Therefore, the flow generated by this Hamiltonian in thec R the local invariants can be obtained,
Weyl chambela™ is[c;t,c,t,0], which evolves in the plane
OAlAz. 1

Now we consider the general case whikne su(4) ancH Gi=———5(P(XP+y*—1)+x%)%,
contains both the local and nonlocal part. To derive the tra- (1+a%)
jectory of U(t) =exp(Ht) on the 3-torus, we first compute
the local invariants ofJ(t) as in Eqs.(26) and(28):

G,= 2(30[2—1—4y2012+80{2x2y2+4x2—4x2a2),
r(m(U(1))) the
()= 16 (69)
where
2 _ 2
Gy(t)= tr(m(U (D))~ tr(m (U(t)))_ (63 x=cosa’E t, y=cosy(a’+1)aE,t. (66)

4
. . . By solving Eq.(64), we find that the flow generated by this
Then from the relation of the local invariants ald we can  Hamiltonian on the 3-torus is

obtain the flow c,(t),c,(t),c5(t)] on the 3-torus by solving

Eq. (30): ci(t)=a’E t—w(t),

042313-13
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Co(t)=a’E t+ (1),

c3(t)=0,

(67)

where w(t)=tan }\/(1+ a?y?)/(a’— a?y?). Sincecz;=0,

PHYSICAL REVIEW A 67, 042313 (2003
B. Design of universal quantum circuits
Now let us consider how to generaa@y arbitrary two-

qubit operation from a given two-body Hamiltonian together
with local gates. The local gates form the Lie subgroup

the HamiltonianH ; can reach only thqse !ocal equivalence SU(2)® SU(2), which also contains all the single-qubit op-
classes on the bag®AA;, as shown in Fig. 4. Therefore, erations. We will show that by applying the Hamiltonian at

the HamiltonianH is not able to generate the perfect entan-most three times, together with four appropriate local gates,
gler [swaP]. The trajectory generated by in the Weyl

chambera™ is shown in Fig. 5.

For the HamiltonianH; to achieve[cNOT], we need to
solve Eq.(65) for G;=0 andG,=1. After some algebraic fying the universality condition needed for quantum compu-

derivations, we find

1
2_7
X*=3

It follows that

- (2k+1)7
40°E,

2k+1

2a%cosyl+a~? 7

T=a’-1,

(68)

(69

whereke Z. WhenE; =1, numerical solution of these ex-

pressions shows that the minimum time solution for th
Hamiltonian H; to achieve [cNOT] is obtained for «

=1.1991, and the minimum time is 2.7309.
Note that when the Hamiltoniad contains only the non-
local part, that isjH e p, the flow generated by the Hamil-

tonian on the 3-torus has constant velocity. However, whef®

€,

we can exactly simulate any arbitrary two-qubit gate, i.e., we
can implement any S4) operation. Consequently, if the ac-
cessibility of any local gate is assumed, this results in satis-

tation or simulation in a very efficient manner.

From the discussion in the preceding subsection, we know
that a given Hamiltonian is not able to generate any arbitrary
two-qubit operation simply by turning it on for a certain time
period. Generally, the set of the gates that can be generated
by a Hamiltonian directly is a one-dimensional subset of the
3-torus. For example, we know thiatswar] can be directly
generated from the isotropic exchange interaction between
two physical qubits, whered€NOT] cannot be obtained in
this way [2] (unless encoding into multiple qubits is em-
ployed[35]). [cNOT] can however be achieved by a circuit
consisting of twoyswaApP and a local gatd32]. We shall
adopt the approach of constructing a quantum circuit that
contain both nonlocal gates generated by a given Hamil-
tonian and local gates, and show that this quantum circuit
can simulate any arbitrary nonlocal two-qubit operation ex-
actly with only a small number of operations.

Consider a Hamiltoniatd with iH e p. The gate gener-
ted by this Hamiltonian for a time durationis U(t)

the HamiltoniarH contains both the local and nonlocal part, = €XP(HY). Consider the following prototype quantum cir-
the velocity of the flow on the 3-torus is usually time depen-CUlt:

dent as shown in the above example.

ko U(ty)

k1 Ults)

ks ... ko1

U(ty) kn

wherek; are local gates, anda given integer. Note that the circuit is to be read from left to right. The matrix representation

of the above quantum circuit is

KnU(tn)Kn—1- - - KU (to)kU(ty)Ko.

(70

We will investigate the nonlocal gates that can be simulated by this quantum circuit. Recall that for this Hamkitothiare
exists a local gatée SU(2)® SU(2) such that AQiH)=iH,, whereH,=3(c,040%+ C,0y05 +C30,02). Hence

U(t)=exp(iHt)=exp Ad,+iH ;t).

(71)

LetIj=(kkj_,- - -ko)", quantum circuit70) can now be described as

exp (Adl1 iHatl)

exp ( Ady, iHgt)

exp (Ady, iHgts)| | kaktI
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and its matrix representation is

Knk'l Texp(Ady iH aty)- - - exp(Ady iH 5to)exp(Ady iH aty).
(72)
We can then pickk; such thatl; are in the Weyl group
W(G,K). In that case, we have Ajd—l aljea. Sincea is a

maximal Abelian subalgebra, the quantum circuit in &)
is locally equivalent to

exXp(Ad) iH atg+Ady iH oto+ - +Ady iHaty).  (73)

Proposition 2 tells us that the Weyl gromiy(G,K) is gener-
ated by the reflections, given in Eq.(15). Hence for a
givens,, whereae A, there exists a local gate, such
that for anyX e a, Adka(X):sa(X). Following the proce-
dure in Lemma 2.4, Chap. VIl in Reff42], we obtaink, as
in the following:

FIG. 6. The flow generated by the quantum circuit
kxeprHltz)kIexpaHltl) in the Weyl chambet.™.

@ Sa([C1,C2,Cs]) Ka ated by U(t)=exp(H;t) in the Weyl chambera™ is
i(c3—C,) [C1,C3,Co] i i [t/21/2t/2], which evolve§ alon@®A; for te[0,7]. In the
exp; |5 ot 504 Weyl chambera™, the pointL ([7/2,0,0]) corresponds to
i(C—C1) [Cp.C1iC] , , [cNOT]. We then want to switch the flow frofit/2,t/2t/2] to
2t Lh2:510 expf(l(,#'_og) [t/2,—t/2,—t/2] at a certain time instant so that the flow can
. 21277 2 reach the point.. In order to do that, we can simply apply
i(c;—c3) [c3,C2,¢4] expt %o‘i-&—%oﬁ) the reflectlonssi(02+c?) and sjc, c,) in series. The corre-
sponding local gate is thus
i(cotcg) [C1,—C5,—C] - i
expz éai—zof) kxzki(c3—cz)ki(c2+c3)
i(citcy) [—ca,—Cq,C3] [ [ ) i i i i
exp; —o’%——of _ o1, 2 o1 2
! - : 212 2 expi(za'x—i-za'x)expi(za'x za'x)
i(ci+cg) [—C3,Cp,—Cy ali L0
exvy 304 5]

i 1
= exp? oy, (75)

Recall that the flow generated by edft) on the 3-torus is
[cat,cot,cst]. By choosing some appropriate from the
Weyl groupW(G,K), we can steer the flow generated by the
Hamiltonian. For example, if we want to change the flow
from [cqt,cot,ct] into [cqt,—cat,—Cot], we can simply
apply the reflectiorki(62+c3) ,

and we have

KueXp(iH 1t)ki=exp(Ady iH t)

[
= eXpZ(O')l(O'i— 0'31,032/— 0'%0'3)'{. (76)

. w0 L) Now consider the following quantum circuit:
(IHt)=expz| s oy— 0% | (iH ;1)
at) 2127x 92%x a

Ad,,

i(cytcy) —— E— — —
' . exp(iHit1) ki exp(iHitp) ke
xexp%( — IEG')l(-i- %of)
The flow generated by this quantum circuit evolves along the
i 1o 1o 1o line OA; for te[0t,], and then switches into a direction
= §(C1Ux0x—CszUy—CzUzUz)t- parallel to the linePL in the planeOA3A; for t=t;. The
matrix representation of this quantum circuit is

(74 ,
The following example exemplifies this idea. KuexRiH tz)kexpiM L)
Example 4 (construction @fNOT from isotropic exchange

Hamiltonian). Consider the isotropic HamiltonianH,
=i(oyoi+ 0,05+ 0y0%). Our goal is to simulat¢cNOT]

by a quantum circuit containing local gates and two-qubit
gates generated byt;. As shown in Fig. 6, the flow gener-

[
- 12 1.2 12
—exp—4(0'Xa'X—0y0'y—(TZO'Z)t2

[
X expi(a'}(a')z(-l— 0'&0')2,-!— olodt,
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ti—t, i
2 EO'ZO'Z .

Hence the terminal point of the flow if(t;+1,)/2,(t;

—15)/2,(t;—t,)/2]. If we chooset;= /2 andt,=n/2, the
terminal point is none other thanr/2,0,0], and thus the
guantum circuit simulatefcNOT]. As shown in Fig. 6, the
flow generated by this quantum circuit@PL, which goes
along the lineOP first, and after hitting the poir, it turns

to the pointL along the linePL. SinceP is nothing but

(77

PHYSICAL REVIEW A 67, 042313 (2003

VSWAP, andt,=t,= /2, we arrive at the known result that
[cNOT] can be simulated by a circuit consisting of two
VSWAP and a local gat¢32].

We now derive the following theorem which asserts that
whenn=3 quantum circuif70) can simulateany arbitrary
nonlocal two-qubit gate. This theorem provides a geometric
approach to construct a quantum circuit to simulate any ar-
bitrary two-qubit gate from a two-body interaction Hamil-
tonian.

Theorem 3 (universal quantum circuigiven a Hamil-
tonian H with iH ep, any arbitrary two-qubit gateU
e SU(4) can be simulated by the following quantum circuit:

ko exp(iHt) k1

exp(tHtz) ks

exp (Z H t3 ) k3

wherek; are local gates.
Proof. From Cartan decomposition of @) in Sec. Il B,

any arbitrary two-qubit gatt) e SU(4) can be written in the

following form:
i
U= lqexp[ 5 (MO0 ¥20300+ v30707) (ke (78)

wherek, andk, are local gates, angl;, v», vz R. We also

know that for any giveriH e p, there exists a local gate

such that Ag(iH)=iH,, where H,=3(c,ox0%+Co0y07

+cyot0?) andc,;=c,=c3=0. Therefore, the flow gener-

ated byiH on the 3-torus i§c,t,c,t,c5t]. The matrix rep-
resentation of the above quantum circuit is

ksexpiHt3)kexp(iHt,)kiexp(iHt )Kg. (79
Let
1= (kkok!),
| 2= (Kkgkok)T, (80)

| 3= (Kkokkok!);
the quantum circuif79) can be written as

ksk'ljexp(Ad) iH ats)exp(AdyiH at2)exp(Ady iH 5tp)K; .
(81)

Choose some appropriate local gatgsk;, andk, such that

(82

l2= ki(cs—cz)ki(c1+c3) )

l3= ki(cz—cl)ki(c3—cz)ki(cl+cz) )

and letkz=kl3k. It follows that the quantum circuif79) is
now

k,exp(Ad|3i H 61tg)exp(Ad|2i H atz)exp(Ad|li Hat)k,
= k|eXF{i§(C30')]('O')2(_ C20>1,0')2/— C]_O'%O'i)tg,)
X ex;{iﬁ( - C30')J('0'§_ Cla')l,a'i-l— Cza'ia'g)tz)
X eX[{%(Claia’i%— 020')1,0')2,-!- Cgo'%(r;)tl) k,
= k,ex;{ (Cqt;—Caty+ 03t3)i§ olol+(Coty—Cqty

i 1 .2 i 1 .2
_C2t3)§O'y(Ty+(C3t1+02t2_clt3)50'20'z kr.
(83)

To simulate the two-qubit gaté in Eq. (78), we only need to
solve the following equation:

C; —C3 C3 ty Y1
C —Ci —Cof|taf=]| 7 (84)
C3 C, —Cy/ \13 Y3
Since
C; —C3 Cg
def Co —C; —Cp|=cy(ci—CyC3)+(Cy+Cy)CH
C3 C —C

+(cq1+c3)c3>0, (85)
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we can always find a solution for E(B4). Therefore, quan- corresponding geometric description of these gates within
tum circuit (79) can simulate any arbitrary two-qubit gae. the tetrahedral representation. It was found that exactly half
From the above constructive proof, it is clear that togetheof the nonlocal two-qubit operations result in maximal en-
with four appropriate local gates, we can simulate any arbitanglement, corresponding to a seven-faced polyhedron with
trary two-qubit gate by turning on a two-body interaction volume equal to one half of the tetrahedron. Lastly, we in-
Hamiltonian for at most three times. Also note that in thevestigated the nonlocal operations that can be generated by a
proof, the way to choose the local gates k;, andk, isnot  given Hamiltonian. We proved that given a two-body inter-
unique. There are many different ways to choose the locakction Hamiltonian, it is always possible to explicitly con-
gates and time parameters so as to construct the quantustruct a quantum circuit for exact simulation of any arbitrary
circuit that achieves the same two-qubit operation. We thereaonlocal two-qubit gate by turning on the two-body interac-
fore can pick the one that is optimal in terms of some costion for at most three times, together with four local gates.
index such as time. This guarantees that a highgfficientsimulation of nonlocal
gates can be made with any Hamiltonian consisting of arbi-
VI. CONCLUSION trary two-qubit interactions and allowing control of single-

. . , qubit operations.
In this paper we have derived a geometric approach to

study the properties of nonlocal two-qubit operations, start-
ing from the Cartan decomposition of(dand making use

of the Weyl group. We first showed that the geometric struc-
ture of nonlocal gates is a 3-torus. By further reducing the We acknowledge helpful discussions with Dr. Markus
symmetry, the geometric representation of nonlocal gateGrassel. We thank the NSF for financial support under ITR
was seen to be conveniently visualized as a tetrahedron. Ea€rant No. EIA-0205641(S.S. and K.B.W. J.V. and
point inside this tetrahedron corresponds to a differenK.B.W.’s effort was also sponsored by the Defense Advanced
equivalent class of nonlocal gates. We then investigated thResearch Projects Agen¢pARPA), the Air Force Labora-
properties of those two-qubit operations that can generattory, Air Force Materiel Command, USAF, under Contract
maximal entanglement. We provided a proof of the conditionNo. F30602-01-2-0524, and the Office of Naval Research
of Makhlin for perfect entanglerg2] and then derived the under Grant No. FDN 00014-01-1-0826.
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