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Tackling systematic errors in quantum logic gates with composite rotations

Holly K. Cummins, Gavin Llewellyn, and Jonathan A. Jones*
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We describe the use of composite rotations to combat systematic errors in single-qubit quantum logic gates
and discuss three families of composite rotations which can be used to correct off-resonance and pulse length
errors. Although developed and described within the context of nuclear magnetic resonance quantum comput-
ing, these sequences should be applicable to any implementation of quantum computation.
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I. INTRODUCTION

Quantum computers@1# are information-processing de
vices that use quantum-mechanical effects to implemen
gorithms that are not accessible to classical computers,
thus to tackle otherwise intractable problems@2#. Quantum
computers are extremely vulnerable to the effects of err
and considerable effort has been expended on alleviating
effects of random errors arising from decoherence proce
@3–5#. It is, however, also important to consider the effects
systematic errors, which arise from reproducible imperf
tions in the apparatus used to implement quantum comp
tions.

The effects of systematic errors are clearly visible
nuclear magnetic resonance~NMR! experiments@6#, which
have been used to implement small quantum compu
@7–12#. Implementing complex quantum algorithms requir
a network of many quantum logic gates, which for an NM
implementation translates into long cascades of pulses
these cases small systematic errors in the pulses~which can
be ignored in many conventional NMR experiments! accu-
mulate and have significant effects.

It makes sense to consider systematic errors as som
them can be tackled relatively easily. In the Bloch pictu
where unitary operations are visualized as rotations of
Bloch vector on the unit sphere, systematic errors are
pressed as rotational imperfections. The sensitivity of
final state to these imperfections can be much reduced
replacing single rotations with composed rotations as
cussed below.

II. SYSTEMATIC ERRORS IN NMR QUANTUM
COMPUTERS

Any implementation of a quantum computer requir
quantum bits~qubits! on which the quantum information i
stored, and quantum logic gates which act on the qubit
process the quantum information. Fortunately, it is only n
essary to implement a small set of quantum logic gates
more complex operations can be achieved by joining th
gates together to form logic circuits. A simple and conv
nient set comprises a range of single-qubit gates toge
with one or more two-qubit gates, which implement con
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tional evolutions and thus logical operations@13#.
NMR quantum computers are implemented@11# using the

two-spin states of spin-1/2 atomic nuclei in a magnetic fi
as the qubits. Transitions between these states, and
single-qubit gates, are achieved by the application of ra
frequency~rf! pulses. Two-qubit gates require some sort
spin-spin interaction, which in NMR is provided by the sc
lar spin-spin coupling (J coupling! interaction. While this
does not have quite the form needed for standard two-q
gates, it can be easily sculpted into the desired form by co
bining free evolution under the background Hamiltoni
~which includes spin-spin coupling terms! with the applica-
tion of single-qubit gates@11#.

As single-qubit gates involve the application of extern
fields, they are vulnerable to systematic errors in these fie
In the ideal case, the application of a rf field in resonan
with the corresponding transition with relative phasef ~in
the rotating frame@6#! will drive the Bloch vector through
some angle about an axis orthogonal to thez axis and at an
anglef to the x axis. The rotation angleu depends on the
nutation rate induced by the rf field, usually writtenn1, and
the duration of the pulse,t. In practice, the rf field is not
ideal, and this leads to two important types of systema
errors, pulse length errors and off-resonance effects@6,14#.

Pulse length errors occur when the duration of the rf pu
is set incorrectly, or~equivalently! when the rf field strength
deviates from its nominal value, so that the rotation an
achieved deviates from its theoretical value. Within NM
this effect is most commonly observed as a result of spa
inhomogeneity in the applied rf field, so that it is impossib
for all the spins within a macroscopic sample to experien
the same rotation angle. Off-resonance effects arise when
rf field is not quite in resonance with the relevant transitio
so that the rotation occurs around some tilted axis.

Composite pulses@6,14,15# are widely used in NMR to
minimize the sensitivity of the system to these errors
replacing simple rotations with composite rotations that
less susceptible to such effects. However, conventional c
posite pulse sequences are rarely appropriate for quan
computation because they usually incorporate assumpt
about the initial state of the spins. Such starting states are
known for pulses in the middle of complex quantum comp
tations, and it is therefore necessary to use fully compen
ing ~type-A) composite pulse sequences@15#, which work
for any initial state. Composite pulses of this kind, which
not offer quite the same degree of compensation as is fo
©2003 The American Physical Society08-1
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with more conventional sequences, are of little use in c
ventional NMR, and have received relatively little stud
They are, however, ideally suited to quantum computatio

A distinction should be made between composite puls
and the more complex approach of shaped pulses@14#. Al-
though this distinction is not absolute~shaped pulses can b
considered as extremely complex composite pulses!, two dif-
ferences can be observed. Composite pulses as consid
here are assumed to comprise a short train of constant
plitude rf pulses, with only the phase and duration of ea
subpulse allowed to vary; by contrast shaped pulses c
prise long trains of amplitude modulated pulses, with
duration of each subpulse usually held constant. One co
quence of this is that composite pulses are usually simple
implement than shaped pulses; this is especially true w
all the pulse durations are integer multiples of some ba
time. A second consequence is that composite pulses are
ally of short overall duration, and so it is normally permi
sible to neglect relaxation during composite pulses just a
is usually neglected during simple pulses.

The relative simplicity of composite pulses does result
some limitations. In particular, shaped pulses are suitable
frequency selective excitation@14#, while the types of com-
posite pulse discussed here cannot be used for this purp
Recently, a third hybrid approach, based on ‘‘strongly mo
lated’’ pulses has been described@16#, which is capable of
selective excitation. This approach uses a small numbe
pulses, but allows the amplitude and frequency of each p
to be varied as well as the initial phase and length, which
the only adjustable parameters in conventional compo
pulses. This approach has been demonstrated using N
@16#, although it should be noted that in this case the ‘‘co
posite pulse’’ was in fact implemented as a shaped pu
using phase ramping@14# to obtain frequency shifts. In prin
ciple, this approach should permit the design of robust se
tive pulses, but this has not yet been explicitly demonstra

III. OFF-RESONANCE ERRORS

The problem of tackling off-resonance errors was initia
studied by Tycko@17#; his results were then extended b
Cummins and Jones@18,19#. The influence of off-resonanc
effects on quantum dynamics in extended spin chains
also been considered by Bermanet al. in the context of se-
lective @20# and nonselective@21# excitation. Here we de-
scribe two families of composite pulses which can be use
compensate for off-resonance errors in nonselective ex
tion, and show how they can be derived using quaternio

The original method used to develop many type-A com-
posite pulse sequences@17–19# was based on dividing the
propagator describing the evolution of the quantum sys
into intended and error components, and then seeking
minimize the error term. While this approach is effective
is cumbersome, and a much simpler approach can be ado
for single-qubit gates, which are simply rotations on t
Bloch sphere and so can be modeled by quaternions.
quaternions corresponding to individual pulses can be m
plied together to give a quaternion description of the co
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posite pulse, which can then be compared with the qua
nion of the ideal system.

A quaternion is often thought of as a vector with fo
coefficients, but when describing a rotation it is more use
to regroup these coefficients as a scalar and a three-vec

q5$s,v%, ~1!

where

s5cos~u/2! ~2!

depends solely on the rotation angleu and

v5sin~u/2!a ~3!

depends on both the rotation angleu and a unit vector along
the rotation axis,a. Thus the quaternion describing an o
resonance pulse with phase anglef is

quf5$cos~u/2!, sin~u/2!$cos~f!, sin~f!, 0%%. ~4!

An off-resonance pulse is conveniently parametrized by
off-resonance fractionf 5d/n1 ~whered is the off-resonance
frequency, andn1 is the nutation rate!, and is described by
the quaternion

quf5H cos~u8/2!,
sin~u8/2!

A11 f 2
$cos~f!, sin~f!, f %J , ~5!

where u85uA11 f 2, and u is now the nominal rotation
angle, that is, the rotation achieved whenf 50. The quater-
nion describing a sequence of pulses is obtained by multi
ing the quaternions for each pulse according to the rule

q1q25$s1s22v1•v2 , s1v21s2v11v1`v2%. ~6!

Finally, two quaternions can be compared using the qua
nion fidelity @15#

F~q1 ,q2!5uq1•q2u5us1s21v1•v2u ~7!

~it is necessary to take the absolute value, as the two qu
nions$s,v% and$2s,2v% correspond to equivalent rotation
differing in their rotation angle by integer multiples of 2p).

Following our previous work@18#, we seek to tackle off-
resonance errors in aux , pulse using a sequence of thre
pulses applied along thex, 2x andx axes; pulses with any
other phase angle can then be trivially derived by sim
adding the desired value to the phase angles of all the pu
in the sequence. Such sequences can be described comp
by the nominal rotation angles of the three pulses,u1 , u2,
andu3. The composite quaternion for this composite pulse
complicated, but the situation can be greatly simplified
expanding it as a Maclaurin series inf and neglecting all
terms above the first power. This gives

s5cosS u12u21u3

2 D ~8!

and
8-2
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TACKLING SYSTEMATIC ERRORS IN QUANTUM LOGIC . . . PHYSICAL REVIEW A 67, 042308 ~2003!
v5H sinS u12u21u3

2 D , sin
u2

2
sinS u12u3

2 D ,

f X2 cosS u22u3

2 D sin
u1

2
2sinS u12u22u3

2 D CJ , ~9!

while the ideal quaternion has the form

ˆcos~u/2!,$sin~u/2!,0,0%‰. ~10!

It now remains to choose the three nominal rotation ang
so that these equations agree.

First we note that in order to achieve the correct rotat
angle,s5cos(u/2), we must choose our angles such thatu1
2u21u35u12ap ~wherea is any integer!. We also note
that they component ofv should equal zero, and that this ca
be achieved by choosingu15u312bp ~whereb is any in-
teger!. These two choices give

v5H sin
u

2
, 0, f Xsin

u

2
22 sinS u

2
2u1D CJ . ~11!

Finally, we chooseu1 such that thez component ofv equals
zero; this gives

u15
u

2
2arcsinS sin~u/2!

2 D . ~12!

Combining this value with our previous relations betwe
the angles gives

u152n1p1
u

2
2arcsinS sin~u/2!

2 D , ~13!

u252n2p22 arcsinS sin~u/2!

2 D , ~14!

u352n3p1
u

2
2arcsinS sin~u/2!

2 D , ~15!

where n1 , n2, and n3 are integers subject to the physic
restriction that the resulting pulse angles must be positiv

These solutions have the same general form as th
found previously@18#. Although they appear to differ in de
tail, the expressions are, in fact, identical: taking the val
n151, n251 andn350 gives our previous family of solu
tions @18#, referred to by the acronym CORPSE~compensa-
tion for off-resonance with a pulse sequence!. This family is
now seen to be just one member of a larger group of fa
lies. To choose between these it is necessary to loo
higher-order terms, and this is most conveniently achie
using the quaternion fidelity, Eq.~7!. As a baseline we take
the fidelity of a single off-resonanceuf pulse compared with
its ~ideal! on-resonance form,

F'11 f 2S cosu21

4 D , ~16!
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where terms inf 4 and higher have been neglected. Note th
the fidelity only contains even order terms inf, as the com-
posite pulse performs symmetrically for positive and ne
tive values off.

As expected, all members of our general group of so
tions result in much better fidelities; in particular, the term
f 2 is always completely removed. The behavior of the te
in f 4 is much more complicated, but it can be shown that t
term dependsonly on the value ofn5n12n21n3, that is,
the total number ofadditional2p rotations performed by the
composite pulse sequence, and has the smallest abs
value when the three integers are chosen so thatn50. As
our previous values (n151, n251, and n350) are the
smallest numbers that fit this criterion, it seems that
CORPSE family of pulse sequences is indeed the best m
ber of this group. The only other family of interest is th
with n150, n251, and n350, previously referred to as
short CORPSE@19#; while this performs less well than
CORPSE, it is somewhat shorter. Numerical values of in
vidual pulse rotation angles for CORPSE sequences wi
variety of target angles are given in Table I.

The performance of the CORPSE sequence for a 1
pulse is demonstrated in Fig. 1; the CORPSE pulse perfo
better than a simple pulse as long asu f u<0.663. For smaller
values ofu the effective range off is reduced, but not dra
matically so: for a 30° pulse the CORPSE pulse outperfor
a simple pulse as long asu f u<0.297. Much better off-
resonance compensation can be achieved in conventi
NMR experiments by using adiabatic methods@14# such as
wideband, uniform rate, smooth truncation~WURST!
@22,23#, but this approach can only be used for specific a
plications, such as decoupling, and cannot be applied in m
quantum computing experiments.

TABLE I. Pulse rotation angles for a CORPSE composite pu
with a target rotation ofux ; CORPSE pulse phases are1x, 2x,
1x.

u u1 u2 u3

30° 367.6 345.1 7.6
45° 371.5 337.9 11.5
90° 384.3 318.6 24.3
180° 420.0 300.0 60.0

FIG. 1. Fidelity~F! of simple~dashed line! and CORPSE com-
posite pulses~solid line! as a function of the off-resonance fractio
f for pulses with a target rotation angle of 180°.
8-3
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IV. PULSE LENGTH ERRORS

A similar approach can be used to develop compo
pulses to tackle pulse length errors. As before we begin w
a sequence of three pulses, but the subsequent develop
is quite different. In particular, we allow the three pulses
have arbitrary phase angles, as well as arbitrary rota
angles, thus giving us six variable parameters, although
number is soon reduced to three.

The quaternion corresponding to each pulse takes
simple form

quf5$cos~u8/2!,sin~u8/2!$cos~f!,sin~f!,0%%, ~17!

whereu85u(11g) is theactual rotation angle achieved b
a pulse with nominal rotation angleu, andg is the fractional
error in the pulse power. The quaternion describing the co
posite pulse is very complicated, but can be simplified
restricting attention to the time symmetric case, whereu1
5u3 andf15f3. This automatically ensures that the com
posite quaternion has noz component, as any time symme
ric sequence of rotations about axes in thexy plane is itself
a rotation about an axis in thexy plane.

Even after this simplification, the composite quaterni
remains extremely complicated. To make further progress
note that a composite pulse of this kind has been previo
described for the case of a 180° rotation: the sequence

18060-180300-18060 ~18!

will perform a 180x rotation with compensation for puls
length errors~see Ref.@24#, but note the corrected phas
angles!. It seems likely that other members of this fami
will have either u15p or u25p; both possibilities were
initially explored, but the second choice seemed more p
ductive and forms the basis of our subsequent work.

As before, the composite quaternion can be expanded
Maclaurin series ing, and it is most useful to concentrate o
the first-order error term. This can be set equal to zero
choosing

f25f16arccos~2p/2u1! ~19!

and, for consistency with Eq.~18!, we will use the minus
sign in future. Sequences obeying this equation will be
sensitive to pulse length errors; the rotation and phase a
can then be adjusted by choosing suitable values foru1 and
f1. As before we will derive values for aux pulse; pulses
with other phase angles can be obtained by offsetting all
phase angles by the desired amount.

Solving these equations is complex, but the solutions
fairly straightforward:

u15u35arcsincS 2cos~u/2!

p D , ~20!

u25p, ~21!

f15f35arccosS 2p cosu1

2u1sin~u/2! D , ~22!
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f25f12arccos~2p/2u1!, ~23!

where sinc(x) is defined as sin(x)/x. We refer to this as a
short composite rotation for undoing length over and un
shoot or SCROFULOUS sequence.

Numerical values of individual pulse rotation and pha
angles for a variety of target angles are given in Table II. T
performance of SCROFULOUS and plain 180° pulses
compared in Fig. 2.

V. THE BROADBAND NUMBER 1 „BB1… FAMILY

Another approach to composite pulse design has been
scribed by Wimperis @25#. While sequences such a
CORPSE and SCROFULOUS seek a single composite p
that performs the desired rotation with reduced sensitivity
errors, an alternative approach is to combine a naive pu
which performs the desired rotation, with a sequence
error-correcting pulses, which partially compensate for i
perfections. This approach appears to simplify the design
composite pulse sequences, and for the case of pulse le
errors produces excellent results.

The form of the error-correcting pulse sequence is qu
tightly constrained, as it must have no overall effect in t
absence of errors, but it must also retain sufficient flexibil
that it can act against errors when they do occur. Here
concentrate on one particular form suggested by Wimp
@25#,

180f1
-360f2

-180f1
, ~24!

where the values off1 and f2 remain to be determined
When placed in front of aux pulse, Wimperis refers to the
entire sequence as BB1@25#, but as we will generalize his
approach we refer to the error-correcting sequence@Eq. ~24!#
as W1.

TABLE II. Pulse rotation and phase angles for a SCROF
LOUS composite pulse with a target rotation ofux ; note thatu3

5u1 andf35f1.

u u1 f1 u2 f2

30° 93.0 78.6 180.0 273.3
45° 96.7 73.4 180.0 274.9
90° 115.2 62.0 180.0 280.6
180° 180.0 60.0 180.0 300.0

FIG. 2. Fidelity~F! of simple~dashed line! and SCROFULOUS
composite pulses~solid line! as a function of the fractional puls
length errorg for pulses with a target rotation angle of 180°.
8-4
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TACKLING SYSTEMATIC ERRORS IN QUANTUM LOGIC . . . PHYSICAL REVIEW A 67, 042308 ~2003!
As before we evaluate the quaternion for the compo
rotation~W1 followed by aux pulse! in the presence of puls
length errors, and then expand this quaternion as a Macla
series ing, the fractional error in the pulse power. They and
z components in the first-order error term are easily remo
by settingf253f1; the remaining components can then
eliminated by choosing

f156arccosS 2
u

4p D . ~25!

The positive solution is then identical to that previously d
scribed@25#. Examining higher-order error terms shows th
this pulse sequence is even better than it first appears
these choices also completely remove the second-order
terms. As discussed below, this effect appears to be a p
erty of the W1 sequence and its close relations.

It is easy to imagine a range of variations of the BB
sequence. Most simply the W1 error correction sequence
be placedafter the ux pulse, instead of before it. Unsurpris
ingly this has no effect: the solution is the same as befo
and the performance of this reversed sequence is identic
that of BB1. More surprisingly, the W1 sequence can
placed in the middle of theux pulse, so that the overa
sequence

~u/2!x-W1-~u/2!x ~26!

is time symmetric. Indeed the W1 pulse can be placed atany
point within theux pulse, with almost identical effects. Th
form of the composite quaternion depends slightly on wh
the W1 pulse is placed, but the fidelity of the pulse seque
is unchanged: all error terms below sixth order are cance
with the size of the sixth-order term depending on the va
of u.

TABLE III. Pulse phase angles for a W1 correction sequen
with a target rotation ofux ; pulse rotation angles areu15180° and
u25360°.

u f1 f2

30° 92.4 277.2
45° 93.6 280.8
90° 97.2 291.5
180° 104.5 313.4

FIG. 3. Fidelity~F! of simple~dashed line! and BB1 composite
pulses~solid line! as a function of the fractional pulse length errorg
for pulses with a target rotation angle of 180°.
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Numerical values of pulse phase angles for a variety
target angles are given in Table III. The performance of
BB1 and plain 180° pulses are compared in Fig. 3. For
target angles below 180°, the BB1 composite pulse outp
forms a simple pulse whenugu,1.

Another simple variation is to use two or more erro
correcting sequences; as before these can be placed at
ous different points around or within theux pulse. For sim-
plicity we assume that all the error-correcting sequences
identical to one another, and have the same general form
W1. In this case it can be shown that the correction
quences, which we call Wn, have phase angles given
f253f1 and

f156arccosS 2
u

4np D , ~27!

wheren is the total number of sequences used. As before
fidelity is independent of where the Wn sequences
placed, but it does depend on the value ofn. The second- and
fourth-order error terms are canceled in all cases, and
size of the sixth-order error term now depends on bothu and
n. The smallest sixth-order term is achieved whenn52, but
the term is not completely removed. The gain overn51 is
fairly small, and in practice the simpler composite puls
based on the W1 sequence are likely to be the most effec

Having varied the position and number of the erro
correcting pulse sequences the next logical step is to v
their form. In principle, any sequence that has no ove
effect in the absence of errors could be used. In practice
find that many possible sequences allow the second-o
error term in the fidelity expression to be removed, but
simultaneous cancellation of second- and fourth-order er
seems to be a special feature of the Wn family of sequen
The performance of the Wn family is remarkably good: i
deed the Wn family performs better than many conventio
composite pulses do when implementing the specific acti
for which they have been designed.

Given the success of this approach to tackling pu
length errors, it seems obvious to apply the method to tac
off-resonance effects. As yet, however, this approach has
no success.

VI. SIMULTANEOUS ERRORS

So far we have only considered the case ofeither off-
resonance effectsor pulse length errors being present.
reality, both problems may well occur simultaneously. It
therefore important to consider how such simultaneous er
might be tackled. Ideally, we would like to design pulse s
quences which can compensate for both problems at
same time; this, however, is a complicated and as yet u
solved problem, and here we simply analyze the sensiti
of each of our pulse sequences to theother kind of error.

We proceed as before, calculating composite pulse
simple pulse quaternions in the presence of errors, and d
mining the quaternion fidelity. This fidelity can then be e
panded as a Maclaurin series in the error, and the lower-o

e
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FIG. 4. Fidelity of ~a! plain, ~b! CORPSE,~c! SCROFULOUS, and~d! BB1 180° pulses as a function of simultaneous off-resona
effects,f, and fractional pulse length error,g. Contours are plotted at 5% intervals.
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terms examined. Note that this procedure still assumes
only one type of error is present at a time; in order to de
with the case where both errors are presentsimultaneously, it
would be possible to use a Maclaurin expansion in both
rors, but this is unlikely to lead to much insight. Instead
will simply plot the fidelity as function of both errors fo
some chosen target angle.

We begin by considering the response of the CORP
pulse sequence to pulse length errors. In the absence o
resonance effects, the behavior of CORPSE is trivial to c
culate, as the three pulses are applied along the1x, 2x, and
1x axes, so that the behavior is identical to that of a sim
pulse. The behavior of a 180° pulse in the presence of sim
taneous errors is shown in Fig. 4.

The behavior of the SCROFULOUS pulse sequence
difficult to calculate for general target rotation angles, due
the dependence ofu1 on the arcsinc function, and so w
concentrate on the case of 180° pulses. For this case
dependence of the fidelity on off-resonance effects is gi
by F'122 f 2, while a simple pulse has a fidelityF'1
2 f 2/2 @see Eq.~16!#. In general, SCROFULOUS is consid
erably more sensitive to off-resonance effects than p
pulses.

Finally, we consider the BB1 family of pulse sequenc
taking the time-symmetrized version of BB1, Eq.~26!, as our
standard. In this case we can solve the problem for any ta
rotation angle, and up to second order the result is ident
to that of a plain pulse, Eq.~16!. Thus, unlike SCROFU-
LOUS, the BB1 sequence achieves its impressive tolera
to pulse length errors at little or no cost in sensitivity
off-resonance effects. This is confirmed for simultaneous
rors by Fig. 4.
on

04230
at
il

r-

E
ff-
l-

e
l-

is
o

he
n

in

,

et
al

ce

r-

VII. CONCLUSIONS

Composite pulses show great promise for combatting s
tematic errors in NMR quantum computers. Sequences h
now been developed which correct for both off-resonan
errors and pulse length errors, although the problem of c
recting simultaneouserrors remains. More generally, an
implementation of a quantum computer must ultimately
concerned with rotations on the Bloch sphere, and so c
posite pulse techniques may find broader application
quantum computing. Composite pulses are not, howeve
panacea, and some caution must be exercised in their u

The CORPSE pulse sequence appears to be the bes
proach for tackling small off-resonance errors~for large
knownoff-resonance effects the resonance offset tailored
resonance offset tailoring to enhance nutations~ROTTEN!,
scheme@26# is preferable!. Conventional composite pulse
with better off-resonance compensation are known, but th
cannot be used for quantum computing. For pulse len
errors variations on the BB1 scheme of Wimperis@25# give
the best results; indeed BB1 performs better than many c
ventional composite pulses. The SCROFULOUS family
pulses is less effective, but does have the advantage of b
considerably shorter. This could prove useful in systems w
short relaxation times where relaxation during the pulse c
not be neglected; this effect, however, is relatively unimp
tant for quantum computing as such systems are po
suited to this task.
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@23# Ē. Kupc̆e and R. Freeman, J. Magn. Reson. A117, 246~1995!.
@24# R. Tycko, H.M. Cho, E. Schneider, and A. Pines, J. Mag

Reson.61, 90 ~1984!.
@25# S. Wimperis, J. Magn. Reson. A109, 221 ~1994!.
@26# H.K. Cummins and J.A. Jones, J. Magn. Reson.148, 338

~2001!.
8-7


