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Tackling systematic errors in quantum logic gates with composite rotations
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We describe the use of composite rotations to combat systematic errors in single-qubit quantum logic gates
and discuss three families of composite rotations which can be used to correct off-resonance and pulse length
errors. Although developed and described within the context of nuclear magnetic resonance quantum comput-
ing, these sequences should be applicable to any implementation of quantum computation.
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I. INTRODUCTION tional evolutions and thus logical operatigris].
NMR guantum computers are implementdd] using the

Quantum computer§l] are information-processing de- two-spin states of spin-1/2 atomic nuclei in a magnetic field
vices that use quantum-mechanical effects to implement als the qubits. Transitions between these states, and thus
gorithms that are not accessible to classical computers, argingle-qubit gates, are achieved by the application of radio
thus to tackle otherwise intractable problef2$. Quantum  frequency(rf) pulses. Two-qubit gates require some sort of
computers are extremely vulnerable to the effects of errorsspin-spin interaction, which in NMR is provided by the sca-
and considerable effort has been expended on alleviating tHar spin-spin coupling J coupling interaction. While this
effects of random errors arising from decoherence processe®es not have quite the form needed for standard two-qubit
[3-5]. Itis, however, also important to consider the effects ofgates, it can be easily sculpted into the desired form by com-
systematic errors, which arise from reproducible imperfechining free evolution under the background Hamiltonian
tions in the apparatus used to implement quantum computgwhich includes spin-spin coupling teringith the applica-
tions. tion of single-qubit gatefl1].

The effects of systematic errors are clearly visible in  As single-qubit gates involve the application of external
nuclear magnetic resonan@dMR) experimentd6], which  fields, they are vulnerable to systematic errors in these fields.
have been used to implement small quantum computeri the ideal case, the application of a rf field in resonance
[7-12. Implementing complex quantum algorithms requireswith the corresponding transition with relative phage(in
a network of many quantum logic gates, which for an NMRthe rotating frame6]) will drive the Bloch vector through
implementation translates into long cascades of pulses. Isome angle about an axis orthogonal to thexis and at an
these cases small systematic errors in the pulsagh can  angle ¢ to thex axis. The rotation angl® depends on the
be ignored in many conventional NMR experimgnagcu-  nutation rate induced by the rf field, usually writtep, and
mulate and have significant effects. the duration of the pulses. In practice, the rf field is not

It makes sense to consider systematic errors as some pfeal, and this leads to two important types of systematic
them can be tackled relatively easily. In the Bloch picture,errors, pulse length errors and off-resonance effg&tA).
where unitary operations are visualized as rotations of the Pulse length errors occur when the duration of the rf pulse
Bloch vector on the unit sphere, systematic errors are exs set incorrectly, ofequivalently when the rf field strength
pressed as rotational imperfections. The sensitivity of thejeviates from its nominal value, so that the rotation angle
final state to these imperfections can be much reduced bychieved deviates from its theoretical value. Within NMR,
replacing single rotations with composed rotations as disthis effect is most commonly observed as a result of spatial

cussed below. inhomogeneity in the applied rf field, so that it is impossible
for all the spins within a macroscopic sample to experience

Il. SYSTEMATIC ERRORS IN NMR QUANTUM the_ same rotatlo_n qngle. Oﬁ-resongnce effects arise Wh_gh the
COMPUTERS rf field is not quite in resonance with the relevant transition,

so that the rotation occurs around some tilted axis.

Any implementation of a quantum computer requires Composite pulse§6,14,13 are widely used in NMR to
guantum bits(qubits on which the quantum information is minimize the sensitivity of the system to these errors by
stored, and quantum logic gates which act on the qubits toeplacing simple rotations with composite rotations that are
process the quantum information. Fortunately, it is only necless susceptible to such effects. However, conventional com-
essary to implement a small set of quantum logic gates, ggosite pulse sequences are rarely appropriate for quantum
more complex operations can be achieved by joining theseomputation because they usually incorporate assumptions
gates together to form logic circuits. A simple and conve-about the initial state of the spins. Such starting states are not
nient set comprises a range of single-qubit gates togethémnown for pulses in the middle of complex quantum compu-
with one or more two-qubit gates, which implement condi-tations, and it is therefore necessary to use fully compensat-

ing (typeA) composite pulse sequencgk5], which work
for any initial state. Composite pulses of this kind, which do
*Electronic address: jonathan.jones@qubit.org not offer quite the same degree of compensation as is found

1050-2947/2003/64)/0423087)/$20.00 67 042308-1 ©2003 The American Physical Society



CUMMINS, LLEWELLYN, AND JONES PHYSICAL REVIEW A67, 042308 (2003

with more conventional sequences, are of little use in conposite pulse, which can then be compared with the quater-

ventional NMR, and have received relatively little study. nion of the ideal system.

They are, however, ideally suited to quantum computation. A quaternion is often thought of as a vector with four
A distinction should be made between composite pulses;oefficients, but when describing a rotation it is more useful

and the more complex approach of shaped puléds Al- to regroup these coefficients as a scalar and a three-vector,
though this distinction is not absolu(shaped pulses can be B e
considered as extremely complex composite pylde® dif- a={s.v},

ferences can be observed. Composite pulses as considergfere
here are assumed to comprise a short train of constant am-
plitude rf pulses, with only the phase and duration of each s=coqg 6/2) 2
subpulse allowed to vary; by contrast shaped pulses com-

prise long trains of amplitude modulated pulses, with thedepends solely on the rotation angleand

duration of each subpulse usually held constant. One conse- v=sin(6/2)a 3
guence of this is that composite pulses are usually simpler to

implement than shaped pulses; this is especially true whege,angs on both the rotation angleand a unit vector along

all the pulse durations are integer multiples of some basigg (otation axisa. Thus the quaternion describing an on-
time. A second consequence is that composite pulses are USksonance pulse with phase angiés

ally of short overall duration, and so it is normally permis-
§|ble to neglect relaxathn du_rlng composite pulses just as it Upe=1C0K 0/2), sin(6/2){cod $), sin(¢p), O}}.  (4)
is usually neglected during simple pulses.

The relative simplicity of composite pulses does result inAn off-resonance pulse is conveniently parametrized by its
some limitations. In particular, shaped pulses are suitable fooff-resonance fractioh= 6/ v, (wheresd is the off-resonance
frequency selective excitatidri4], while the types of com- frequency, andv; is the nutation rate and is described by
posite pulse discussed here cannot be used for this purposke quaternion
Recently, a third hybrid approach, based on “strongly modu-
lated” pulses has been describgbb], which is capable of sin(6'/2) )
selective excitation. This approach uses a small number of ~ des=) COL6'/2), W{Coifl))y sin(¢), f}1, (5
pulses, but allows the amplitude and frequency of each pulse

to be varied as well as the initial phase and length, which arg o o7 = 01+ 12, and 6 is now the nominal rotation
the only adjustable parameters in conventional composngngb, that is, the rotation achieved whien0. The quater-

pulses. This approach has been demonstrated using NMRq, describing a sequence of pulses is obtained by multiply-

[16], although it should be noted that in this case the COM-ing the quaternions for each pulse according to the rule

posite pulse” was in fact implemented as a shaped pulse,

using phase rampind4] to obtain frequency shifts. In prin- 0102={S1S— V1 - Vo, S1VatSpVy+ V1AV, (6)

ciple, this approach should permit the design of robust selec-

tive pulses, but this has not yet been explicitly demonstratedrinally, two quaternions can be compared using the quater-
nion fidelity [15]

Ill. OFF-RESONANCE ERRORS F(Q1,02) =01- 02| = 8182+ V1 - V5 (7

The problem of tackling off-resonance errors was initially (it is necessary to take the absolute value, as the two quater-
studied by Tycko[17]; his results were then extended by nions{s,v} and{—s,—v} correspond to equivalent rotations,
Cummins and Jondd48,19. The influence of off-resonance differing in their rotation angle by integer multiples ofr2.
effects on quantum dynamics in extended spin chains has Following our previous work18], we seek to tackle off-
also been considered by Bermanal. in the context of se- resonance errors in 8,, pulse using a sequence of three
lective [20] and nonselectivg21] excitation. Here we de- pulses applied along the —x andx axes; pulses with any
scribe two families of composite pulses which can be used tother phase angle can then be trivially derived by simply
compensate for off-resonance errors in nonselective excitadding the desired value to the phase angles of all the pulses
tion, and show how they can be derived using quaternions.n the sequence. Such sequences can be described completely

The original method used to develop many type&om- by the nominal rotation angles of the three pulsés, 65,
posite pulse sequencé$7-19 was based on dividing the and#;. The composite quaternion for this composite pulse is
propagator describing the evolution of the quantum systengcomplicated, but the situation can be greatly simplified by
into intended and error components, and then seeking texpanding it as a Maclaurin series imand neglecting alll
minimize the error term. While this approach is effective, itterms above the first power. This gives
is cumbersome, and a much simpler approach can be adopted
for single-qubit gates, which are simply rotations on the 01— 0+ 03
Bloch sphere and so can be modeled by quaternions. The s=¢ 5( 2 ®)
guaternions corresponding to individual pulses can be multi-
plied together to give a quaternion description of the com-and
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0,— 0,+ 04 0, 6,— 64 TABLE I. Pulse rotation angles for a CORPSE composite pulse
v=[ n(T) sin?Sin( 5 ) with a target rotation o, ; CORPSE pulse phases afex, —X,
+X.
0,— 0 0 01— 6,— 6
f(2 c05< 2 5 3) sin?1 — sin( %) )] , (9 0 01 0, 03
30° 367.6 345.1 7.6
while the ideal quaternion has the form 45° 3715 337.9 115
) 90° 384.3 318.6 24.3
{cog6/2),{sin(6/2),0,0}}. (10) 180° 420.0 300.0 60.0

It now remains to choose the three nominal rotation angles
so that these equations agree.

First we note that in order to achieve the correct rotatio
angle,s=cos(@2), we must choose our angles such that
— 6,4 6;= 0+ 2am (wherea is any integer. We also note "
that they component of should equal zero, and that this can tive values off.

be achieved by choosing, = 6+ 2ba (whereb is any in- As expected, all members of our general group of solu-
teged. These two choices give tions result in much better fidelities; in particular, the term in

f2 is always completely removed. The behavior of the term

in f4is much more complicated, but it can be shown that this
91))]- (1) term dependsnly on the value ofn=n;—n,+ng, that is,

the total number oadditional 27 rotations performed by the

Finally, we choose); such that the component of equals composite pulse sequence, and has the smallest absolute

where terms irf4 and higher have been neglected. Note that
nthe fidelity only contains even order termsfimas the com-
posite pulse performs symmetrically for positive and nega-

_ '00f 0 2 si 0
V= smi, , smE s >

zero; this gives value when the three integers are chosen so rtka®. As
our previous valuesn;=1, n,=1, andnz;=0) are the

I [ sin(6/2) smallest numbers that fit this criterion, it seems that the

9125—6“ "’{ 2 ) (12) CORPSE family of pulse sequences is indeed the best mem-

ber of this group. The only other family of interest is that
Combining this value with our previous relations betweenWith n1=0, n;=1, andnz=0, previously referred to as

the angles gives short CORPSE[19]; while this performs less well than
CORPSE, it is somewhat shorter. Numerical values of indi-
0 [ sin(6/2) vidual pulse rotation angles for CORPSE sequences with a
O1=2n 7+ E—arcsn‘( 2 ) (13 variety of target angles are given in Table I.

The performance of the CORPSE sequence for a 180°
sin( 6/2) pulse is demonstrated in Fig. 1; the CORPSE pulse performs
0,=2Nnym—2 arcsirE 5 ) (14 better than a simple pulse as long|&s<0.663. For smaller
values of# the effective range of is reduced, but not dra-
, matically so: for a 30° pulse the CORPSE pulse outperforms
03:2naﬂ+€_arcsi,-( sm(0/2)>, (15) @ simple pulse as Iopg ad|=<0.297. .Much.better off—.
2 2 resonance compensation can be achieved in conventional
NMR experiments by using adiabatic methddg]| such as
wheren;, np, andng are integers subject to the physical wideband, uniform rate, smooth truncatiopVURST)
restriction that the resulting pulse angles must be positive. [22 23, but this approach can only be used for specific ap-
These solutions have the same general form as thosglications, such as decoupling, and cannot be applied in most

found previously[18]. Although they appear to differ in de- guantum computing experiments.
tail, the expressions are, in fact, identical: taking the values

n;=1, n,=1 andn;=0 gives our previous family of solu-
tions[18], referred to by the acronym CORP$&ompensa-
tion for off-resonance with a pulse sequencehis family is
now seen to be just one member of a larger group of fami-
lies. To choose between these it is necessary to look at 0.5
higher-order terms, and this is most conveniently achieved

using the quaternion fidelity, Eq7). As a baseline we take

fche _fldellty of a single off-resonanag, pulse compared with 00335 % 05 1
its (idea) on-resonance form, f

FIG. 1. Fidelity (F) of simple (dashed linpand CORPSE com-
(16) posite pulsegsolid line) as a function of the off-resonance fraction

F~1+f2 : \
f for pulses with a target rotation angle of 180°.

cosf—1
4 1
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IV. PULSE LENGTH ERRORS TABLE II. Pulse rotation and phase angles for a SCROFU-

L . LOUS composite pulse with a target rotation @f; note thatés
A similar approach can be used to develop composite_ 6, and dh3= by

pulses to tackle pulse length errors. As before we begin with

a sequence of three pulses, but the subsequent development, 0, b, 0, b,
is quite different. In particular, we allow the three pulses to
have arbitrary phase angles, as well as arbitrary rotation 30° 93.0 78.6 180.0 273.3
angles, thus giving us six variable parameters, although this 45° 96.7 73.4 180.0 274.9
number is soon reduced to three. 90° 115.2 62.0 180.0 280.6

The quaternion corresponding to each pulse takes the 180° 180.0 60.0 180.0 300.0
simple form

Jpyp=1c0g 6'/2),siN(6'/2){cog ¢),sin(¢),0},  (17) ¢o= ¢p4—arccos$— m/26,), (23

where ¢’ = 6(1+g) is theactual rotation angle achieved by where sinck) is defined as sixj/x. We refer to this as a
a pulse with nominal rotation anglg andg is the fractional ~ short composite rotation for undoing length over and under
error in the pulse power. The quaternion describing the comshoot or SCROFULOUS sequence.
posite pulse is very complicated, but can be simplified by Numerical values of individual pulse rotation and phase
restricting attention to the time symmetric case, whéfe angles for a variety of target angles are given in Table Il. The
= 05 and ¢, = ¢5. This automatically ensures that the com- performance of SCROFULOUS and plain 180° pulses are
posite quaternion has rmcomponent, as any time symmet- compared in Fig. 2.
ric sequence of rotations about axes in dyeplane is itself
a rotation about an axis in they plane. V. THE BROADBAND NUMBER 1 (BB1) FAMILY

Even after this simplification, the composite quaternion
remains extremely complicated. To make further progress we
note that a composite pulse of this kind has been previousl|
described for the case of a 180° rotation: the sequence

Another approach to composite pulse design has been de-
cribed by Wimperis[25]. While sequences such as
ORPSE and SCROFULOUS seek a single composite pulse

that performs the desired rotation with reduced sensitivity to

18055-18035-18050 (18  errors, an alternative approach is to combine a naive pulse,

which performs the desired rotation, with a sequence of
will perform a 18Q rotation with compensation for pulse error-correcting pulses, which partially compensate for im-
length errors(see Ref.[24], but note the corrected phase perfections. This approach appears to simplify the design of
angles. It seems likely that other members of this family composite pulse sequences, and for the case of pulse length
will have either 6,=m or 6,=; both possibilities were errors produces excellent results.
initially explored, but the second choice seemed more pro- The form of the error-correcting pulse sequence is quite
ductive and forms the basis of our subsequent work. tightly constrained, as it must have no overall effect in the

As before, the composite quaternion can be expanded asa®sence of errors, but it must also retain sufficient flexibility

Maclaurin series irg, and it is most useful to concentrate on that it can act against errors when they do occur. Here we
the first-order error term. This can be set equal to zero by[zorﬁcentrate on one particular form suggested by Wimperis
choosing 25],

b,= ¢y = arcco$ — m/26,) (19) 180,,-360,,-180;,, (24)

and, for consistency with Eq18), we will use the minus Wwhere the values ot; and ¢, remain to be determined.
sign in future. Sequences obeying this equation will be inWhen placed in front of &, pulse, Wimperis refers to the
sensitive to pulse length errors; the rotation and phase angkntire sequence as BH25], but as we will generalize his
can then be adjusted by choosing suitable value®faand  approach we refer to the error-correcting sequeicg (24)]
¢1. As before we will derive values for &, pulse; pulses as W1

with other phase angles can be obtained by offsetting all the

phase angles by the desired amount. 1 RN
Solving these equations is complex, but the solutions are
fairly straightforward: F
o5 //
[ 2co0g6/2)
0,= 63=arcsin¢ ———|, (20
ar /// \\\
005 0 .05 1
02: T, (21) &

FIG. 2. Fidelity(F) of simple(dashed lineand SCROFULOUS
(22) composite pulsegsolid line) as a function of the fractional pulse

— 1 C0S6,
' length errorg for pulses with a target rotation angle of 180°.

$1= b= arcco% 20,5in 612)
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TABLE lll. Pulse phase angles for a W1 correction sequence
with a target rotation of), ; pulse rotation angles a =180° and
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Numerical values of pulse phase angles for a variety of
target angles are given in Table Ill. The performance of the

6,=360°. BB1 and plain 180° pulses are compared in Fig. 3. For all
target angles below 180°, the BB1 composite pulse outper-
o b1 b2 forms a simple pulse whejg|<1.
30° 92.4 277.2 Anot_her simple variation is to use two or more error- _
45° 93.6 280.8 correcting sequences; as before these can be placed at vari-
90° 97.2 2915 ous different points around or within th& pulse. For sim-
180° 104.5 313.4 plicity we assume that all the error-correcting sequences are

identical to one another, and have the same general form as
W1. In this case it can be shown that the correction se-

As before we evaluate the quaternion for the compositéluénces, which we call Wn, have phase angles given by
rotation(W1 followed by aé, pulse in the presence of pulse $2=3¢, and
length errors, and then expand this quaternion as a Maclaurin
series ing, the fractional error in the pulse power. Thend
z components in the first-order error term are easily removed
by setting¢,=3¢4; the remaining components can then be
eliminated by choosing

0
P1==* arccos{ - —) , (27)

dnr

wheren is the total number of sequences used. As before the
fidelity is independent of where the Wn sequences are
(25 placed, but it does depend on the valueofhe second- and
fourth-order error terms are canceled in all cases, and the
size of the sixth-order error term now depends on kbénd
n. The smallest sixth-order term is achieved wimen2, but

0
= + PR —
b1 _arccos( anl

The positive solution is then identical to that previously de-
scribed[25]. Examining higher-order error terms shows thatthe term is not completely removed. The gain ouer1 is

this pulse sequence is even better than it first appears, "flgirly small, and in practice the simpler composite pulses

these choic_es also completely_remove the second-order €MBhsed on the w1 sequence are likely to be the most effective.
terms. As discussed below, this effect appears to be a prop- Having varied the position and number of the error-

ert?/t ?; tQSSW%Os?rﬂgeir;]cee aanrgr']tsecgssa{ﬁ;?ité%gsbf the BBlcorrecting pulse sequences the next logical step is to vary
y 9 9 their form. In principle, any sequence that has no overall

quu|gzg;fﬁﬁ?;np%f2§ Yxitgggro?cg{;g:gﬂ Sﬁggspi?;a&fect in the absence of errors could be used. In practice we
b x P ' ' P find that many possible sequences allow the second-order

ingly this has no effect: the solution is the same as b(:‘.‘foreci:rror term in the fidelity expression to be removed, but the
and the performance of this reversed sequence is identical

that of BB1. More surprisingly, the W1 sequence can bets‘?multaneous cancellation of second- and fourth-order errors

. . seems to be a special feature of the Wn family of sequences.
placed in the middle of thej, pulse, so ihat the overall The performance of the Wn family is remarkably good: in-
seéquence deed the Wn family performs better than many conventional
composite pulses do when implementing the specific actions
for which they have been designed.

Given the success of this approach to tackling pulse
length errors, it seems obvious to apply the method to tackle

point within the 6, pulse, with almost identical effects. The off-resonance effects. As yet, however, this approach has had
form of the composite quaternion depends slightly on wher%0 SUCCesS ' ' '

the W1 pulse is placed, but the fidelity of the pulse sequence
is unchanged: all error terms below sixth order are canceled,
with the size of the sixth-order term depending on the value
of .

(012)~-W1-(6/2), (26)

is time symmetric. Indeed the W1 pulse can be placezhgt

VI. SIMULTANEOUS ERRORS

So far we have only considered the caseedher off-
resonance effectsr pulse length errors being present. In
reality, both problems may well occur simultaneously. It is
therefore important to consider how such simultaneous errors
might be tackled. Ideally, we would like to design pulse se-

0.5 quences which can compensate for both problems at the

same time; this, however, is a complicated and as yet unre-

solved problem, and here we simply analyze the sensitivity
T35 0 -~ 053 1 of each of our pulse sequences to tither kind of error.

We proceed as before, calculating composite pulse and
simple pulse quaternions in the presence of errors, and deter-
mining the quaternion fidelity. This fidelity can then be ex-
panded as a Maclaurin series in the error, and the lower-order

FIG. 3. Fidelity(F) of simple(dashed linpand BB1 composite
pulses(solid line) as a function of the fractional pulse length ergor
for pulses with a target rotation angle of 180°.
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] e

FIG. 4. Fidelity of (a) plain, (b) CORPSE,(c) SCROFULOUS, andd) BB1 180° pulses as a function of simultaneous off-resonance
effects,f, and fractional pulse length erray, Contours are plotted at 5% intervals.

terms examined. Note that this procedure still assumes that VII. CONCLUSIONS

only one type of error is present at a t|m_e, in order to _detall Composite pulses show great promise for combatting sys-
with the case where both errors are premmjlta_mequslmt tematic errors in NMR quantum computers. Sequences have
would be possible to use a Maclaurin expansion in both erg,,, peen developed which correct for both off-resonance
rors, but this is unlikely to lead to much insight. Instead Weg -5 and pulse length errors, although the problem of cor-
will simply plot the fidelity as function of both errors for recting simultaneouserrors remains. More generally, any
some chosen target angle. implementation of a quantum computer must ultimately be
We begin by considering the response of the CORPSEqncerned with rotations on the Bloch sphere, and so com-
pulse sequence to pulse length errors. In the absence of offosite pulse techniques may find broader application in
resonance effects, the behavior of CORPSE is trivial to Ca|quantum computing. Composite pulses are not, however, a
culate, as the three pulses are applied alongttke—x, and  panacea, and some caution must be exercised in their use.
+X axes, so that the behavior is identical to that of a simple The CORPSE pulse sequence appears to be the best ap-
pulse. The behavior of a 180° pulse in the presence of simulproach for tackling small off-resonance erroffer large
taneous errors is shown in Fig. 4. knownoff-resonance effects the resonance offset tailored, or
The behavior of the SCROFULOUS pulse sequence igesonance offset tailoring to enhance nutatiGROTTEN),
difficult to calculate for general target rotation angles, due toscheme{26] is preferablg Conventional composite pulses
the dependence of; on the arcsinc function, and so we with better off-resonance compensation are known, but these
concentrate on the case of 180° pulses. For this case tf@nnot be used for quantum computing. For pulse length

dependence of the fidelity on off-resonance effects is give§TOrs variations on the BB1 scheme of Wimpg@s] give
by F~1—2f2, while a simple pulse has a fidelitfF~1 the best results; indeed BB1 performs better than many con-

—f2/2 [see Eq(16)]. In general, SCROFULOUS is consid- ventional composite pulses. The SCROFULOUS family of

erably more sensitive to off-resonance effects than plair‘f’ljlse.S Is less effective, t.JUt does have the adyantage . bglng

pulses. con5|derably. shorter. This could prove usef_ul in systems with
Finally, we consider the BB1 family of pulse sequences,Short relaxation times where relaxation during the pulse can-

taking the time-symmetrized version of BB1, E86), as our not be neglected; this effe(_:t, however, is relatively unimpor-
standard. In this case we can solve the problem for any targé?r.‘t for quantum computing as such systems are poorly
rotation angle, and up to second order the result is identicasfUIted to this task.

to that of a plain pulse, Eq.16). Thus, unlike SCROFU-
LOUS, the BB1 sequence achieves its impressive tolerance
to pulse length errors at little or no cost in sensitivity to  H.K.C. thanks NSERGCanada and the TMR program
off-resonance effects. This is confirmed for simultaneous er¢EU) for their financial assistance. J.A.J. thanks the Royal
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