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Quantum quincunx in cavity quantum electrodynamics
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We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to
Galton’s quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a
board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical
studies of quantum walks over orthogonal lattice states, we introduce quantum walks overnonorthogonal
lattice states~specifically, coherent states on a circle! to demonstrate that the key features of a quantum walk
are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity
quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a
remarkabledecreasein the position noise, or spread, with increasing decoherence.
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Galton’s quincunx@1# is a valuable device for demonstra
ing the random walk~RW!: gravity draws pellets through
pyramidal structure of pegs, yielding a binomial distributio
The RW is of fundamental importance as the underlying p
cess for dissipation and fluctuation@2# and as a central con
cept in research into computer algorithms, which has m
vated research into the quantum walk~QW! @3–6# as a
quantum counterpart to the RW. The QW exhibits surpris
features such as a quadratic enhancement of fluctuations
possible exponential speedups@7# over the RW. In addition,
the QW could be useful for bench marking the performan
of certain quantum devices@8#. Following Galton’s classica
example, we describe a cavity quantum electrodyna
~CQED! device that exhibits the QW, with controllable d
coherence that can yield a continuous transition from
QW to the RW. Although the~energy-conserving! QW on a
circle has been studied@4#, and a physical realization in th
context of the ion trap has been introduced@8#, ideal lattice
states have always been assumed; however, orthogonal l
ized lattice states are not realized physically—typically th
would be constructed as nonorthogonal Gaussian~e.g., co-
herent! states. We prove here that the QW is viable us
such nonorthogonal lattice states for a restricted range
energies, still exhibiting the dramatic features characteriz
the QW. Moreover, whereas the fluctuation-dissipation th
rem yields increased fluctuations as losses increase,
‘‘quantum quincunx’’ exhibits the counterintuitive result th
fluctuationsdecreaseas losses increase.

Microwave CQED provides an excellent technology f
realizing the quantum quincunx. The combined atom1cavity
system can be effectively isolated from the environment,
decoherence can be controllably introduced@9#; furthermore,
new technologies allow the atom to be struck by a perio
sequence of off-axis microwave pulses@10#. Whereas the
RW utilizes a random number~a coin toss! to determine right
or left steps by the ‘‘walker,’’ the unitary evolution of th
QW demands a ‘‘quantum coin’’ that is rotated from th
heads (1) or tails (2) state into an equal superposition
1050-2947/2003/67~4!/042305~4!/$20.00 67 0423
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these states via the unitary Hadamard transformation@11#. In
the CQED realization discussed here, a two-level atom
versing the cavity serves as the quantum coin, and a peri
sequence ofp/2 pulses implement the ‘‘coin flipping’’ Had-
amard transformations. Between these Hadamard tran
mations, the atom interacts with the initially coherent cav
field via a Raman transition to effect a conditional phase s
on the cavity field that depends on the state of the atom. T
QW corresponds to the quantum version of the RW on
circle @5#. Whereas both walks exhibit increasing phase flu
tuations with time, the QW spreads quadratically faster th
the RW.

A potential realization of the QW for the ion trap@8# has
a comparable mathematical description, but that analysis
plicitly assumes the preparation of harmonic-oscillator ph
states@12,13# of ionic motion ~analogous to the cavity field
state considered here!: such states would correspond to la
tice states on the circle, but preparation of such states is
feasible. We consider the field initially prepared in a coher
state, achievable with existing technology, and consider
consequences of this initial state.

We begin by introducing the formalism of the QW on th
circle embedded in a harmonic oscillator. The discrete Q
corresponding to the RW on the circle, requires a Hilb
space of finite dimensiond. For $u j &, j ,d% the harmonic-
oscillator number states with fewer thand bosons, we intro-
duce the~finite-dimensional! orthonormal phase state repr
sentation@13,14#

uuk52pk/d&5
1

Ad
(
j 50

d21

exp~ i j uk!u j &, kPZd , ~1!

with the Hilbert space for the walker given byHd

5span$uuk&,kPZd%. For N̂ the number operator onHd , de-
fined by N̂u j &5 j u j &, the rotation operatorRl5exp(iu l N̂), l
PZd acts on phase states according toRl uuk&5uuk1 l&. That
is, Rl rotates a phase state by an angleu l . The operatorN̂ is
the generator of these rotations.
©2003 The American Physical Society05-1
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A QW is realized by a sequence of alternating transf
mations, beginning with a Hadamard transformation of
two-level system~the coin! and followed by a conditiona
rotation of the state of the walker. The coin is described b
state in a two-dimensional internal Hilbert spaceH2
with basis statesu6&. The Hadamard transformationH
5(1/A2)(1

1
21

1) acts only on the internal state of the co
~i.e., on H2), and transforms a basis stateu6& into the
superposition (1/A2)(u1&6u2&). For ŝz5(0

1
21

0), the con-
ditional rotation operator

F5expS 2p i

d
N̂^ ŝzD ~2!

rotates the state of the walker by an angle62p/d condi-
tioned on the coin stateu6&; i.e., F(uuk& ^ u6&)5uuk61&
^ u6&, leaving the coin state unchanged. Thus, beginn
with the coin in theu1& state and the walker in the phas
stateuu0&, the evolution is described by repeated, and reve
ible, application of the unitary operationU5FH. Thus, the
coin and walker degrees of freedom become entangled. A
n iterations, with the coin1walker in the stateuCn&
5Unuu0& ^ u1&, the probability that the walker is measure
at angleuk is

Pk5u~^uku ^ ^1u!uCn&u21u~^uku ^ ^2u!uCn&u2. ~3!

This distribution exhibits the quadratic gain in phase dif
sion over the corresponding RW.

We present a scheme to implement a QW on a circle
microwave cavity, where the spatial state of the walker
represented by the state of a single cavity mode, and the
of the coin is represented by the state of a Rydberg a
passing through the cavity; a diagram of this scheme is
sented in Fig. 1. The field mode in the cavity is described
a harmonic oscillator, with an infinite-dimensional Hilbe
spaceHHO. We wish to use states in this Hilbert space
model a finite-dimensional QW on a circle with discrete l
tice points. To do this modeling, we employ a truncated H

FIG. 1. Schematic for the proposed experiment. A single at
traversing through the cavity is subjected to periodic Hadam
transformations realized asp/2 pulses. Between these pulses, t
cavity field undergoes a phase shift conditioned on the atomic s
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bert space and define the spatial state of the QW to be g
by the projection of the cavity mode state onto the subsp
Hd of states with no more thand21 photons. Also, we wish
to employ a coherent state as an initial state for the Q
rather than the unphysical phase stateuu0&. To realize the
quantum coin, consider, for example, a Rydberg atom w
two atomic states$u1&,u2&%.

To implement a QW on a circle, we must implement t
Hadamard transformationH that places the coin in
a superposition of the basis stat
u6&, and the conditional rotationF. The Hadamard transfor
mation is realized by ap/2 pulse on theu1&→u2& transition
@10#. For an atom initially in the stateu1&, this p/2 pulse
produces the state (1/A2)(u1&1u2&). This Hadamard trans
formation is assumed to act instantaneously and is app
with periodt. To implement the conditional rotation opera
tor F, we employ the two-level model including ac-Sta
shifts @15,16#. The atomic levelsu1& and u2& are highly
detuned from the cavity field, and the Hamiltonian for th
effect is given byĤ5\xN̂^ ŝz . This Hamiltonian can be
used to generate the conditional rotation operatorF of Eq.
~2! on the subspaceHd,HHO. If the atom1cavity evolve
according to this Hamiltonian for timet between application
of the Hadamard transformations, the angle of conditio
rotation of the cavity field is given byu5xt.

Equivalently, the conditional rotation can be implement
using a three-level system as in the experiment of Rausc
beutel et al. @17#. Let u i &, ug&, and ue& be the states with
principal quantum numbern549, 50, 51, respectively. The
stateug& represents the internal basis stateu1&, and the state
u i & represents the internal basis stateu2&. Employing an off-
resonant transition betweenug& and ue& ~with the stateu i &
uninvolved!, the effective Hamiltonian is Ĥ5\xN̂
^ ug&^gu. By moving to a rotating description, this Hami
tonian can affect the conditional rotation operatorF. The
Hadamard transformation is realized by ap/2 pulse on the
ug&→u i & transition.

It is important that the same quantum coin~realized as the
Rydberg atom! is used for each step of the QW, because
atomic state becomes entangled with the state of the fi
Experimentally, this constraint requires that the sequenc
alternatingH and F transformations must be implemente
during the passage time of a single atom.

The standard initial conditions for the QW would be
have the field~the walker! in the phase stateuu0&. Construct-
ing a field state that projects to this phase state inHd is not
feasible. However, it is possible to initiate the cavity in
coherent stateua&, with a real and positive, that has a wel
defined phase relative to the local oscillator used for hom
dyne detection. Letua&d be the projection ofua& onto Hd .
We require thatua&d satisfies the overlap condition

^u j ua&d.d j 0 , j PZd . ~4!

For a given dimensiond, the magnitude ofa must be chosen
such that the coherent stateua& has reasonable support o
Hd . To ensure this support, we employ the conditiond.n̄

1An̄, where n̄5uau2 is the mean photon number in th

d

te.
5-2



e

a
f
s

s.

-
te

o

n
h
e

s

as
tia

o
th
th
n

te

v
t
te
th
te
n
iz

ste

n
on
a-
ad

t

e
ti
te
m
he
s

m
step
the

the
als

ity
ced
and
lk

idth

l
is

ten
iates

is

tem
ions

nx,
ing
ng
of

tum
en-
can
, as

as
De-
of

he
ss
nx
es

ds a
nce

the

QUANTUM QUINCUNX IN CAVITY QUANTUM . . . PHYSICAL REVIEW A 67, 042305 ~2003!
coherent stateua&. Also, to satisfy the overlap condition~4!,
the spacing of the circular lattice must be sufficiently larg
Defining the standard quadrature phase space@18# with x̂

5(â1â†)/A2 and p̂5(â2â†)/A2i , a coherent state has
minimum uncertainty diameter~measured in terms o
quadrature standard deviations! of unity. For coherent state

with mean photon number ofn̄, the circle of radiusAn̄ can

fit approximately 2pAn̄ distinguishable coherent state

Thus, we require thatd,2pAn̄. Thus the QW can be per
formed only for a range of possibilities for coherent-sta

amplitudes satisfyingn̄,28 and dimensiond,2pAn̄.
The method of measuring a phase shift of an initial c

herent cavity field using a ‘‘homodyning’’ method@17# is
proposed here to measure the resulting phase distributio
the cavity field, and thus analyze the QW. Once the atom
left the cavity, a coherent local oscillator field with amplitud
a and phasew relative to the initial field is injected into the
cavity, which adds coherently to the cavity field and give
resulting amplitude in the range 0 to 2a. This technique can
be utilized to obtain the probability distribution of the QW
a function of angle for a range of angles near the ini
coherent state. Obtaining the phase distribution relies
measuring an ensemble of identical states; it is key to
successful observation of a QW that the conditions of
experiment are identical for each run, and that there is
source of stochasticity that would destroy the quantum in
ference effects.

We investigate numerically the QW as described abo
with a55 ~and thusn̄525) andd531. It is assumed tha
the Hadamard transformation applied to the atomic sta
occurs effectively instantaneously and is independent of
location of the atom in the cavity. Cavity losses are simula
via an interaction between the single-mode cavity field a
an external, low-temperature reservoir and are character
by a loss parameterg. The atom1cavity thus evolves for a
time t between Hadamard transformations by the ma
equation

d

dt
r~ t !5@xa†a^ sz ,r~ t !#

2
g

2
@a†ar~ t !1r~ t !a†a12a†r~ t !a#, ~5!

wherex is chosen such thatxt52p i /d. Note that the spa-
tial dependence ofx on the mode structure of the cavity ca
easily be incorporated into the numerical simulations. A c
stant step sizext could still be maintained with such a sp
tial dependence simply by adjusting the frequency of H
amard transformations accordingly as the atom traverses
cavity.

We can simulate the outcome of homodyne measurem
and thereby obtain the resulting quadrature phase distribu
~QPD! on the orthogonal axis to the initial coherent sta
The simulated variance of the QPD as a function of the nu
ber of steps for a lossless cavity is given in Fig. 2. T
variance of the QPD of a classical RW for the same value
04230
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a andd obtained by allowing a different atom with a rando
atomic state to pass through the cavity during each time
is given for comparison. Also shown are the results for
QW in a lossy cavity with loss termg50.01. Figure 2 shows
clearly the quadratic speedup in phase diffusion given by
QW over the RW beyond three steps. This plot also reve
the transition from the QW to the RW via increasing cav
loss; thus, the addition of decoherence results in redu
phase fluctuations. Note that the variances for the QW
the RW are identical for the first three steps of the wa
~prior to the effects of quantum interference!, and that the
initial values of these variances are not zero due to the w
of the initial coherent state.

The QPD approximates the phase distribution for smalu.
Figure 2 shows that the rate of spreading for the QW
approximately linear from three to ten steps. Beyond
steps, the rate of spreading decreases as the QPD dev
from the actual phase distribution.~For the values ofa andd
used in the simulation, the phase distribution of the QW
localized at6p after ten steps.! For this range where the
QPD approximates the actual phase distribution, the sys
clearly exhibits the quadratically enhanced phase fluctuat
expected of a QW.

In conclusion, we have shown that a quantum quincu
which realizes the QW, can be implemented using exist
experimental techniques in a microwave cavity by taki
advantage of a physically realistic, nonorthogonal basis
coherent states on a circle in phase space. This quan
quincunx demonstrates the remarkable property that
tanglement between the cavity field and a single atom
lead to enhanced phase diffusion over an analogous RW
well as a controllable transition from the QW to the RW
evidenced by a decrease in the rate of phase diffusion.
creased phase diffusion resulting from the introduction
decoherence contrasts sharply with intuition from t
fluctuation-dissipation theorem: that the introduction of lo
~decoherence! yields increased noise. The quantum quincu
is a remarkable tool to demonstrate a QW, which provid
quadratic or even exponential speedups over the RW, yiel
counterintuitive reduction in phase noise as decohere

FIG. 2. Plot of the quadrature phase variance as a function of
number of steps fora55 andd531.
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increases and opens the way to new explorations of quan
information theory and its experimental implementation.
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