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Quantum quincunx in cavity quantum electrodynamics
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We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to
Galton’s quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a
board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical
studies of quantum walks over orthogonal lattice states, we introduce quantum walksoovmethogonal
lattice stategspecifically, coherent states on a cijcle demonstrate that the key features of a quantum walk
are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity
guantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a
remarkabledecreasén the position noise, or spread, with increasing decoherence.
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Galton’s quincun) 1] is a valuable device for demonstrat- these states via the unitary Hadamard transformafigh In
ing the random walKRW): gravity draws pellets through a the CQED realization discussed here, a two-level atom tra-
pyramidal structure of pegs, yielding a binomial distribution. versing the cavity serves as the quantum coin, and a periodic
The RW is of fundamental importance as the underlying proSeguence ofr/2 pulses implement the “coin flipping” Had-
cess for dissipation and fluctuati¢] and as a central con- amard transformations. Between these Hadamard transfor-

vated research into the quantum wal®W) [3—6] as a P

quantum counterpart to the RW. The QW exhibits surprisin on the cavity field that depends on the state of the atom. This

i : corresponds to the quantum version of the RW on the
features such as a quadratic enhancement of fluctuations amd e [5]. Whereas both walks exhibit increasing phase fluc-
possible exponential speedupq over the RW. In addition, ' gp

the QW could be useful for bench marking the performanc tuations with time, the QW spreads quadratically faster than

. . . NanCehe R,
of certain quantum d_ewce{ﬁ]. Fcﬂlowmg Galton’s classical A potential realization of the QW for the ion tr4g] has
example, we describe a cavity quantum electrodynamic

(CQED) device that exhibits the QW, with controllable de- alpqmparable mathematical (_jescrlptlon, bu_t that.anaIyS|s im-
) ) s icitly assumes the preparation of harmonic-oscillator phase
coherence that can yield a continuous transition from thé

i ) stateg[12,13 of ionic motion (analogous to the cavity field
Q.W to the RW. AItho_ugh théenergy cpnserwr)gQ_\N ona state considered heresuch states would correspond to lat-
circle has been studidd], and a physical realization in the

context of the ion trap has been introdudéd ideal lattice tice states on the circle, but preparation of such states is not
states have alwavs bgen assumed: however. orthogonal Iocg asible. We consider the field initially prepared in a coherent

; . y med, nowever, orthog State, achievable with existing technology, and consider the
ized lattice states are not realized physically—typically they

would be constructed as nonorthogonal Gauss@ag., co- consequences of this initial state.

herenj states. We prove here that the QW is viable using We begin by introducing the formalism of the QW on the

such nonorthogonal lattice states for a restricted range O(*ircle embedded in a harmonic oscillator. The discrete QW,
9 9 corresponding to the RW on the circle, requires a Hilbert

energies, still exhibiting the dramatic features Characterizin%pace of finite dimension. For {|j),j<d} the harmonic-

the QW. Moreover, whereas the fluctuation-dissipation theobscillator number states with fewer therbosons. we intro-
rem yields increased fluctuations as losses increase, th !

| A i
“guantum quincunx” exhibits the counterintuitive result that tuce the(finite-dimensiongl orthonormal phase state repre-

fluctuationsdecreaseas losses increase. sentatior{13,14

Microwave CQED provides an excellent technology for d-1
realizing the quantum quincunx. The combined atecavity |6=2mkld)=— 2 expij0)li), keZq, (1)
system can be effectively isolated from the environment, and Vd =0

decoherence can be controllably introdug@f furthermore, ; : :
new technologies allow the atom to be struck by a periodicv_vIth the Hilbert space for the walker given bl

sequence of off-axis microwave pulsgkd]. Whereas the —SPat|fi).ke Za}. ForN the number operator oH, de-
RW utilizes a random numbéa coin tossto determine right ~ fined by N|j)=j|j), the rotation operatoR,=exp(i,N), |
or left steps by the “walker,” the unitary evolution of the €Zq acts on phase states accordindRi¢6,)=|6y,). That
QW demands a “quantum coin” that is rotated from the s, R, rotates a phase state by an angle The operatoN is
heads () or tails (—) state into an equal superposition of the generator of these rotations.
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bert space and define the spatial state of the QW to be given
by the projection of the cavity mode state onto the subspace
'Hg4 of states with no more thasth— 1 photons. Also, we wish
to employ a coherent state as an initial state for the QW,
rather than the unphysical phase stpig). To realize the
guantum coin, consider, for example, a Rydberg atom with
two atomic state$|+),|—)}.
To implement a QW on a circle, we must implement the
Hadamard transformationH that places the coin in
a superposition of the basis states
| =), and the conditional rotatioR. The Hadamard transfor-
mation is realized by ar/2 pulse on thé+ )—|—) transition
[10]. For an atom initially in the statp+), this /2 pulse
produces the state ({2)(|+)+|—)). This Hadamard trans-
formation is assumed to act instantaneously and is applied
FIG. 1. Schematic for the proposed experiment. A single atonwith period 7. To implement the conditional rotation opera-
traversing through the cavity is subjected to periodic Hadamardor F, we employ the two-level model including ac-Stark
transformations realized as/2 pulses. Between these pulses, the shifts [15,16). The atomic leveld+) and |—) are highly
cavity field undergoes a phase shift conditioned on the atomic stateletuned from the cavity field, and the Hamiltonian for this

effect is given byA=%yN&¢,. This Hamiltonian can be

A QW is realized by a sequence of alternating transfory,seq 1o generate the conditional rotation oper&af Eq.

mations, beginning with a Hadamard transformation of the(z) on the subspace(yC Hyo. If the atomt cavity evolve
two-level system(the coin and followed by a conditional  50.4rding to this Hamiltonian for time between application

rotation of the state of the walker. The coin is described by ®f the Hadamard transformations, the angle of conditional
stgte in a two-dimensional internal Hilbert spa_déz rotation of the cavity field is given by= yr.

with baS|ls sltatesit) - The Hadamard transformatioh g jivalently, the conditional rotation can be implemented
f(ll\/z)(l -1) acts only on the internal state of the coin ygjng a three-level system as in the experiment of Rauschen-
(ie., on ), and transforms a basis state) into the  peytelet al. [17]. Let |i), |g), and|e) be the states with
superposition (42)(|+)*|—)). Fora,=(5 _9), the con-  principal quantum number=49, 50, 51, respectively. The
ditional rotation operator state|g) represents the internal basis stpte), and the state

li) represents the internal basis state). Employing an off-
resonant transition betwedg) and |e) (with the state|i)

uninvolved, the effective Hamiltonian is H=#yN
®|g){g|. By moving to a rotating description, this Hamil-
tonian can affect the conditional rotation operator The
Hadamard transformation is realized byr#&2 pulse on the

2mi . .
F=ex TN@O'Z

rotates the state of the walker by an angl®«/d condi-
tioned on the coin staté+); i.e., F(|6)®|=))=|0c~1)
®|=+), leaving the coin state unchanged. Thus, beginninqg>_>|i> transition.

with the coin in the|+) state and the walker in the phase ™t s important that the same quantum céiealized as the
_state| 00>,_the_ evolution is (_jescribed b_y repeated, and reversRydberg atornis used for each step of the QW, because the
ible, application of the unitary operatidd=FH. Thus, the  5tomijc state becomes entangled with the state of the field.
coin and walker degrees of freedom become entangled. Aftg§typarimentally, this constraint requires that the sequence of
n iterations, with the coifrwalker in the state|¥.)  aitematingH and F transformations must be implemented
=U"6y)®|+), the probability that the walker is measured during the passage time of a single atom.

at angledy is The standard initial conditions for the QW would be to
have the fieldthe walkej in the phase stat@,). Construct-

Pi=l((d@(+DIW )+ (ol @(=DIVa)% 3 ing a field state that projects to this phageogtaté{ywis not

feasible. However, it is possible to initiate the cavity in a

coherent statée), with « real and positive, that has a well-

Egefined phase relative to the local oscillator used for homo-

dyne detection. Lefa)y be the projection ofa) onto H .

e require thata), satisfies the overlap condition

This distribution exhibits the quadratic gain in phase diffu-
sion over the corresponding RW.

We present a scheme to implement a QW on a circle in
microwave cavity, where the spatial state of the walker i
represented by the state of a single cavity mode, and the sta
of the coin is represented by the state of a Rydberg atom
passing through the cavity; a diagram of this scheme is pre-

sented in Fig. 1. The field mode in the cavity is described by, . . . .
a harmonic oscillator, with an infinite-dimensional Hilbert For a given dimensiod, the magnitude o must be chosen

spaceHyo. We wish to use states in this Hilbert space toSuch that the coherent stae) has reasonable su.p.porion
model a finite-dimensional QW on a circle with discrete lat-#a-_To ensure this support, we employ the conditirn
tice points. To do this modeling, we employ a truncated Hil-+ \/ﬁ where n=|a|? is the mean photon number in the

<0j|a>d:510, ] EZd. (4)
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coherent statga). Also, to satisfy the overlap conditio@), 7 - T : T
the spacing of the circular lattice must be sufficiently large. [ [— Quanmum Walk without loss

.. . ~ o | antum with g=0.
Defining the standard quadrature phase sgd& with x - gm;‘mii?ﬁ‘(w;ﬁ:ﬁﬁi
=(a+a')/y2 andp=(a—a')/y2i, a coherent state has a 7~ Classical Random Walk

w
T

minimum uncertainty diametemeasured in terms of
guadrature standard deviatigraf unity. For coherent states

with mean photon number of, the circle of radius\/ﬁcan
fit approximately 27\/‘? distinguishable coherent states.

Thus, we require thatﬂ<277\/ﬁ Thus the QW can be per-
formed only for a range of possibilities for coherent-state

amplitudes satisfyingn<<28 and dimensiomi<27r\/ﬁ L
The method of measuring a phase shift of an initial co- o s ' : L
herent cavity field using a “homodyning” methdd.7] is Number of steps
proposed here to measure the resulting phase distribution of . .
the cavity field, and thus analyze the QW. Once the atom has FIG. 2. Plot of the quadrature phase variance as a function of the
left the cavity, a coherent local oscillator field with amplitude "UMPer of steps for=5 andd=31.
a and phasep relative to the initial field is injected into the
cavity, which adds coherently to the cavity field and gives ay andd obtained by allowing a different atom with a random
resulting amplitude in the range O ta2This technique can  4iomic state to pass through the cavity during each time step
be utilized to obtain the probability distribution of the QW as ;¢ given for comparison. Also shown are the results for the
a function of angle fpr_ a range of ang!es_ nhear the .initiaIQW in a lossy cavity with loss terg=0.01. Figure 2 shows
coherent state. Obtaining the phase distribution relies Oglearly the quadratic speedup in phase diffusion given by the

measuring an ensemble of identical states; it is key to th .
successful observation of a QW that the conditions of the%) W over the RW beyond three steps. This plot also reveals

Variance of QPD
w IS
T T

— ~
T

experiment are identical for each run, and that there is n he transition from the QW 1o the RW via increasi_ng cavity
source of stochasticity that would destroy the quantum inter'©SS: thus, the addition of decoherence results in reduced
ference effects. phase fluctuations. Note that the variances for the QW and
We investigate numerically the QW as described abovethe_ RW are identical for the firsF three steps of the walk
with a=5 (and thusn= 25) andd=31. It is assumed that (prior to the effects of quantum interferencand that the

the Hadamard transformation applied to the atomic stateizr.1itia| v_aIyes of these variances are not zero due to the width
occurs effectively instantaneously and is independent of th8f the initial coherer_1t state. L

location of the atom in the cavity. Cavity losses are simulated . ' 'e QPD approximates the phase distribution for small

via an interaction between the single-mode cavity field and '9Ure 2 shows that the rate of spreading for the QW is
an external, low-temperature reservoir and are characterizetPProximately linear from three to ten steps. Beyond ten
by a loss parameteg. The atomrcavity thus evolves for a St€PS: the rate of spreading decreases as the QPD deviates

time 7 between Hadamard transformations by the mastefmm the actuel phaee distributiofor Fhe_val_ues ok andd .
equation used in the simulation, the phase distribution of the QW is

localized at* 7 after ten steps.For this range where the
d QPD approximates the actual phase distribution, the system
a”“) —[ya'a®o,,p(t)] Zl;(aarly exhibits the quadratically enhanced phase fluctuations
pected of a QW.
In conclusion, we have shown that a quantum quincunx,
_ g[aTap(t)er(t)aTaJr 2afp(t)a], () Which_ realizes the QW, can be implemented L_Jsing exis‘_[ing
experimental techniques in a microwave cavity by taking
advantage of a physically realistic, honorthogonal basis of
wherey is chosen such thagr=2mwi/d. Note that the spa- coherent states on a circle in phase space. This quantum
tial dependence gf on the mode structure of the cavity can quincunx demonstrates the remarkable property that en-
easily be incorporated into the numerical simulations. A contanglement between the cavity field and a single atom can
stant step sizg 7 could still be maintained with such a spa- lead to enhanced phase diffusion over an analogous RW, as
tial dependence simply by adjusting the frequency of Hadwell as a controllable transition from the QW to the RW as
amard transformations accordingly as the atom traverses thevidenced by a decrease in the rate of phase diffusion. De-
cavity. creased phase diffusion resulting from the introduction of
We can simulate the outcome of homodyne measurememtecoherence contrasts sharply with intuition from the
and thereby obtain the resulting quadrature phase distributioftuctuation-dissipation theorem: that the introduction of loss
(QPD) on the orthogonal axis to the initial coherent state.(decoherencdeyields increased noise. The quantum quincunx
The simulated variance of the QPD as a function of the numis a remarkable tool to demonstrate a QW, which provides
ber of steps for a lossless cavity is given in Fig. 2. Thequadratic or even exponential speedups over the RW, yields a
variance of the QPD of a classical RW for the same values ofounterintuitive reduction in phase noise as decoherence
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increases and opens the way to new explorations of quantunf the U.K. Engineering and Physical Sciences Research

information theory and its experimental implementation.
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