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Distinguishing two-qubit states using local measurements and restricted classical communication
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The problem of unambiguous state discrimination consists of determining in which of a set of known
guantum states a particular system is. One is allowed to fail but not to make a mistake. The optimal procedure
is the one with the lowest failure probability. This procedure has been extended to bipartite states where the
two parties Alice and Bob are allowed to manipulate their particles locally and communicate classically in
order to determine which of two possible two-particle states they have been given. The failure probability of
this local procedure is the same as if the two particles were together in the same location. Here we examine the
effect of restricting the classical communication between the parties, either allowing none or eliminating the
possibility that one party’s measurement depends on the result of the other party’s. These issues are studied for
two-qubit states, and optimal procedures are found. In some cases the restrictions cause increases in the failure
probability, but in other cases they do not. Applications of this procedure, in particular to secret sharing, are
discussed.
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[. INTRODUCTION one must know the two states that one is discriminating be-
tween, and it is this information that is provided by the result
Suppose that we have a two-qubit state, and we give onef Alice’s measurement.
of the qubits to Alice and the other to Bob. Alice and Bob  What we wish to examine here is how restricting the clas-
know that the state is eithé®¥,) or |¥,), and by making sical communication between the parties affects their ability
local measurements and communicating classically, theyo discriminate between the states. We shall first see what
want to determine which state they have. We want to conhappens when no classical communication is allowed. In that
sider the case of unambiguous discrimination, which meansase each party has three possible measurement results, 0
that Alice and Bob may fail to decide which state they have corresponding td¥,), 1 corresponding t¢W,), andf for
but if they succeed, they will not make an error. That is, theyfailure to distinguish. If|¥) is sent, then Alice and Bob
will never conclude that they havl,) when they have both measure O or both measureso that they both know,
been giveq¥;), and vice versa. Our object is to develop awithout communicating, thdt¥,) was sent or that the mea-
procedure that Alice and Bob can use to discriminate besurement failed. IfW¥,) is sent, then they both measure ei-
tween the states. ther 1 orf. We shall then relax the ban on classical commuin-
One aspect of this problem has already been solved. igation, and allow Alice and Bob to communicate their
each state is equally likely and both qubits can be measuragieaurement results to each other. However, conditional mea-
together, then it is known that the states can be successfulurements will still be banned, i.e., situations in which the
unambiguously discriminated with a probability pfy,=1 measurement made by one party depends on the measure-
—|[(¥o|¥4)| [1-3]. It was recently shown that the states canment results of the other will not be allowed.
be discriminated using only local operations and classical One motivation for studying these situations, in addition
communication(LOCC) with the same success probability. to what they tell us about state discrimination, is their pos-
Walgateet al. proved that if{ W |¥,)=0 then the states can sible use in communication schemes. State discrimination for
be distinguished perfectly using only LOJ@]. The case single qubits can be used to construct a scheme for quantum
when |¥,) and |¥,) are not orthogonal was investigated cryptography[7]. In this protocol, Alice and Bob wish to
numerically by Virmaniet al.[5], and they found strong evi- share a secure key. Alice sends single qubits to Bob in one of
dence that unambiguous discrimination is possible with @wo nonorthogonal statgss,) or |#1), and Bob applies the
probability of p;q, using LOCC. In addition, they found a unambiguous state discrimination protocol to the states he
class of states for which they could prove that this was truereceives. He then tells Alice whether the procedure suc-
A proof that this is true for all bipartite states was providedceeded or failed, and they keep the instances when it suc-
by Chen and Yan{6]. ceeded and throw out the rest. If Bob’s measurement resulted
The procedure that makes LOCC unambiguous discrimiin | i), then that particular key bit is recorded as 0, and if it
nation with a success probability pfy, possible is the fol-  resulted in|¢;), it is recorded as 1. In this way a binary
lowing. Alice makes a projective measurement on her parstring shared by Alice and Bob can be constructed, and it
ticle that gives her no information about whether the state iserves as the key. An eavesdropper, Eve, who intercepts the
| W) or |¥,), and she then communicates her result to Bobqubits that Alice sends to Bob, and who wishes to find out
Based on what Alice has told him, Bob chooses a measurawvhich state they are in, has a problem. Because the states are
ment to make on his particle. In particular, he applies thenot orthogonal, she will not be able to definitely determine
procedure for the optimal unambiguous discrimination ofthe state of each qubit she receives. However, she must send
single qubit states to his particle. However, in this procedure qubit in eithed ¢y) or |,) on to Bob. Since her informa-
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tion about the qubit she received is not perfect, Eve will{Ay,A;,As} for Alice and{B,,B;,B;} for Bob. These op-
sometimes send a qubit in the wrong state to Bob. If Aliceerators satisfy

and Bob publicly compare some of their key bits and find

discrepqncies, th_en they kpow an eavesdropper was present. = 2 Aj‘rAj  lg= E BJ-TB,- , 1
If they find no discrepancies, then they can conclude that j=0.1f j=0.1f

they share a secure key. ) . . ) )

The no-classical-communication scheme would allow aVherela is the identity onfi,, the Hilbert space of Alice’s
third party, Charlie, to distribute a shared key to Alice anddubit, andig is the identity or{g, the space of Bob’s qubit.
Bob. Charlie would send one qubit to Alice and one to Bob,! "€ requirement that Alice and Bob get only the same result
where the qubits are in either the stdt,) or |¥,), and for their measurements imposes the conditions
Alice and Bob would measure them. They would both know , _

AiBy| V) =0, 2
when they had foun¢¥,), when they had founf¥ ), and
when they had failed. Note that Charlie would not know thewherej,k e {0,1f} andj#k, andne{0,1}. In addition, the
key, because he would not know which bits corresponded téact that no errors are made in identifying the states requires
failure. A slight relaxation of the no-classical-communicationthat
condition allows all three parties to share a key. Alice and
Bob simply announce publicly when they failed to distin- AoBo|¥1)=0, A;B;|¥)=0. (€)
guish the state. ) ] N )

A possible use for the second scheme, when Alice and .It is clear S|mply fr(_)m the nu_mb_er of conditions that, if
Bob are allowed to compare their meaurement results, is sébis procedure is possible at all, it will be true only for a very
cret sharing. In this case a third party, Charlie, wants to sharkestricted set of states. In fact, what we find is that the best
a secure key with Alice and Bob, but he wants Alice and Bope can do for two nonorthogonal states is to identify one of
to have to cooperate to determine the key bit. Neither Alicdhe states with a nonzero probability and fail the rest of the
nor Bob, separately, will know the key, but together theyt'me- The d_etalls of the proof of this statement are given in
will. Charlie accomplishes this by sending one qubit to Alicethe Appendix. . . o
and another to Bob. The two qubits are either in the state We_ conclude this section with an example of the situation
|W,) or |¥,), and these states are not orthogonal. Alice and" which one state can be detected. Suppose our two states
Bob then perform a procedure to determine which state the@'€ given by
have, and this procedure must require their cooperation, so
that neither of them by themselves can determine the state. If
they use the optimal procedure in which the measurement 1
Bob makes depends on the result of Alice’s measurement, _
then Alice would measure her particle, and Bob would do V2= \/§(|0>|0>+|1>|1>)’ @)
nothing to his. When they want to determine the key bit,

Alice will tell Bob the result of her measurement, and Bobwhere Alice’s states are first and Bob’s second. In addition,
will make the appropriate measurement on his particle. Thisve have thaf\,=B,=0, so thaj¥) is never detected, and
method, however, requires Bob to store quantum informa-

[Wo)=10)[0),

tion, i.e., keep his particle free from the effects of decoher- A=|1)(1], By=|1)(1],
ence, until the bit is determined. A more practical procedure
would be the restricted-classical-communication scheme in A;=10)(0], B¢=|0)(0|. (5)

which both Alice and Bob make independent measurements,

and are able to determine the state from the results. In thatrom this we see that, indeed ¥ ) is sent, then it will not
case, they each measure their qubit when they receive it, arlRe detected, but if¥ ;) is sent, then we will detect it with a
they record the results of their measurements. This mearRyobability of 1/2 and fail with a probability of 1/2. Thus, we
that it is only classical information that needs to be storedare very limited in distinguishing two states without any
Neither Alice nor Bob should be able to determine the stat&lassical communication between Alice and Bob.

from just their own result, but by putting their results to-

gether they should be able to indentify the state they were . LIMITED CLASSICAL COMMUNICATION

sent with some nonzero probability, and they should never
make an error. It is this kind of procedure we wish to study
here.

The situation becomes more interesting if we allow Alice

and Bob to communicate the results of their measurements to

each other only after both measurements have been made.

We now consider the following situation. Alice and Bob

make measurements on their particles, and each of these

measurements can have one of two outcomes, 0 or 1. Alice’s
As discussed in the Introduction, we shall assume thafeasurement is described by the POYA,A;} and Bob’s

Alice and Bob each has one of three measurement altern&y {Bo,B1}, where

tives, 0, 1, andf. The positive-operator-valued measure N . N .

(POVM) operators that characterize the measurements are [a=AgAot+AjAL, 18=BgBo+B1B, (6)

II. NO CLASSICAL COMMUNICATION
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andl 5 andlg are the identity operators in Alice’s and Bob’s  Now let us examine the conditions in EGLO) in more
Hilbert spaces, respectively. The probability isﬂ',(gAlAk), detail. We first expresgV;) in its Schmidt basis
that Alice will obtain the resulk if the two-qubit state is

. . 1
|'W;) wherepa;=Trg(|¥;)('¥;|) is the reduced density ma-
trix of |¥;) in Alice’s space. Similar expressions hold for the |q’l>=j20 VA1j[vaj) © [vg)), (13
probabilities of Bob’s measurements. Note thgt and A;
commute withB, andB;. where{vpg, va1} and{uvgo, vg;} are orthonormal bases for

Together, Alice and Bob have four possible sets of resultyjice’s and Bob’s spaces, respectively, ang for j=0,1 are

(Alice's  result is given first, Bob's second the eigenvalues of the reduced density matrices. The condi-
10,04, {0,1, {1,0}, {1,1}, and we have to decide which sets {jq ABo|¥1)=0 then implies that

correspond tdW ), which to|¥,), and which to failure to

decide. Let us first consider what happens if we assume that VA 1680l a0) ® Bol o) = — VA 12A0| va1) ® Bol vgy)-
none of the sets corresponds to failure. In particular, suppose

that{0,0} and{1,1} correspond t¢¥,) and{0,1} and{1,0}

correspond td¥ ;). This implies that if the state is¥;)  The only way this can be true is io|vao) is parallel to
then the probability of getting0,0} or {1,1} is zero, and if ~ Ag|va,) and By|vgg) is parallel toBg|vg,). Therefore, we
the state i§W,) the probability of getting0,1} or {1,0} is  can write

zero. Therefore, we have

Aolvao) =Col 7a), Bolvgo)=do| 78),
<‘1’0|A5AOBIBl|‘I’0> = <‘I’0|AIAlBgBo|‘I’o> =0,

Aolvar)=ca|7a),  Bolvg1)=0d1|7s), (15
(V1| ASAGBBo| W1) = (W 1|AJABIB,|W1)=0. (7)
_ _ _ wherec; and d; are constants anfiiy,||=|7gl|=1. These
These imply the simpler equations equations imply that
AoB1|Wo)=A1Bg| V) =0, 1
Ag= Ci i|= Fal,
AOBO|‘P1>=AlBl|\If1>=0. ®) 0 ]_ZO J|77A><UA]| |77A>< A|
If we now note that 1
Bo=> djl 7e)(vejl = 78)(rsl, (16)
(V1| Wo)=(Wq|l a® 15[ W) =0 :
=(V,|(AlA+AIA) ®(BiBy+BIB.) W), where
€) . .
we see from the previous equation tdt,| ¥ )=0. There- Ira)=>, cluap), Irg)= > df vg)). (17)
=0 =0

fore, if, using this particular scheme, we are able to distin-

guish the states every time without error, they must be or- .
The conditionAyBy|¥,)=0 can now be expressed as

thogonal.
Now let us suppose that some of the measurement results _
correspond to a failure to distinguish the states. We will fo- ((ral®(rgl)|¥1)=0. (18)

cus on two different cases. In the first we shall assume that

two of the four alternatives correspond to failure, and in the We can now do the. same ”,“”9 with thg condit.ion that
second we shall assume that only one does. ﬁ‘lBlNr:O):O' Expressing|¥o) in its Schmidt basis we
ave that

A. Two failure states

1
Let us assume thd0,0} corresponds t¢W ), {1,1} cor- |Wo)= Z VAojluaj) ® |ug;), (19
responds tdW¥,), and both{0,1} and{1,0 correspond to 1=0

failure to distinguish. The condition of no errors implies thatwhere{uAO, Uny} and{ugo, Ug,} are orthonormal bases for

AoBo|¥1)=0, A;B;|¥;)=0. (100  Alice’s and Bob's spaces, respectively, ang for j=0,1 are
the eigenvalues of the reduced density matrices. Applying
If we apply these conditions to E¢Q), we find that the same reasoning as before, we find that
(V1] Wo)=(W4|F| Vo), (11) Ar=|&a)(sal,  B1=|ég)(sgl, (20)
where where||é4] =] €gl|= 1. We also have that
F=AlABIB; +AJAB{B,. (12) ((sal® (sg])| W) =0. 21)
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We can gain more information about the vectors (ral®{rg))|¥)=0. (28)
[ra), [rg), |Sa), and|sg) by substituting the results of the
previous paragraphs into Eq$). This gives us that We can reduce these conditions to the solution of several

simple equations. First, expandihg;) and|rg) in terms of
La=[ra)(ral+[sa)(sal, 1e=I[re)rg|+[ss)(ssl- 22 luaj) and|ug;), respectively, we have

1 1
\l:l:g;lolﬁtr b>oth sides of the first of these equations act on the |r,§>=j§o e [uaj), |r§)=j20 flug)). (29
A/
I All2I7 )+ |Sa)(SAlF A) =T A)- 23 The equations in the previous paragraph become
1 1
The only way this can be true is if eith@r,) is parallel to Neef =0 N.cd =0 30
|sa), which violates Eq(22), or (sa|ra)=0 and||rs|=1. ,Zo Rt 120 LB (30

Therefore|s,) is orthogonal tdr ), and both have norm 1.
Henceforth, we shall denofs,) by |r%), and we have that While the conditiongr|ra)=0 and(rg|rg)=0 become
{ra,ra} is an orthonormal basis for Alice’s space. Similarly, 1
we find that{rg,rg}, where|rg)=|sg), is an orthonormal > c; € (va |ua )=0,
basis for Bob’s space. jpla=0 12N,
Now let us examine the failure probabilities. We first ex-

. . 1
ress the operatd¥, defined in Eq(12), as
i " 2 3 d i os,Jus, ) =0, @
F=(rp@lrs)(rale(rs)+(rayelrs) (rale(ra)) e
N . . N Now define the ratios
=l=([rp@[rg))((rale(re)—(ra)@[rg) ((rale(ral).
(24) c} dy
Z1=—, Z=—,
We first note that if Eqs(18) and(21) are satisfied, then the ' cy ? d
condition in Eq.(11) is also satisfied. The failure probability
if Charlie sends the statdd ) is (W |F| W), and if he sends e} f¥
the statg¥,), it is (¥|F|¥,). These probabilities can be 3= AT (32
expressed as €o 0
P E|W)=1— w2, If we now divide Eqs(39)_and(31) by the appropriate prod-
(WolF|¥o) ICraleraDl¥ol uct of expansion coefficients, e.g., the first of E(BO) is
(W |FlW )y =1—|((rk| (i) W) (25) \(/jvl;m;i(; byeof, and the first of Eq931) is divided bycyej ,
If each of the states is equally likely, then the total failure
e Y VA oot VA01Z324=0,

probability p; is given by
VA 1o+ VA 112:2,=0,

1
pf:§(<‘l’o|F|‘I’0>+<‘I’1|F|‘I'1>)- (26)
(vaolUpo) + (v aolUa1)Zat (va1lUao)ZT +(va1lUa1)Zi Z3=0,

We want to minimize this overall failure probability. . .
Note that the failure probabilities are unaffected by the(VsolUso) +(veolUs1)Zat(ve1|Uso)Z5 +(vg1|Us1)Z5 24=0.

choice of the vector§éa),| €g),| 7a), and|ng). If we make 33
the choices Gi o :
iven two specific statda ,) and| ¥, ), these equations can
1E0 =1L, [Ea)=|rb), be solved to find the vectofs,), [rx), [rg), and|rg).
Let us now consider two examples. In the first we shall
I =1ra) | 7e)=Ire), (27)  suppose that¥,) and|¥,) have the same Schmidt bases

while in the second the Schmidt bases of the two states will

then the operator8; andB;, wherej=0,1, are projections be different. , .
and the generalized measurement becomes a von Neumann'Ve begin by assuming that our two states are given by

measurement. _ .
Let us summarize our remaining problem. We want to find |'¥0) = 0S| 00) + sindo| 11),
a basis for Alice’s spacfr »),|rx)} and one for Bob’s space |W,) = cosd| 00) + sindy | 11) (34)

{Irg),|rg)} that satisfy the conditions

N N where 6, and 6, are both between 0 and/2. Solving Egs.
((ral®(rgD|¥e)=0, (33) for these states, we first find the condition #gtané,

042304-4
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=1, which implies thatd,=(=/2)— 6,. We also find ex-
plicit expressions for the vectors

Iray=c5(|0)+24]1)),

e =a 10~ 22 ).

ro=es{l0- ).

=1 10) + cotteet 1) @

where the normalization constants are given by

1
|Co|2: )
1+]z?
|d |2: |Zl|2
% 12,2+ (cotoy)?’
|eo|2— |Zl|2
1+|zy)?
1
|fol?= (36)

1+ (cotd;)?|zy|?

The quantityz, is at the moment undetermined, but it will be

PHYSICAL REVIEW A 67, 042304 (2003

Now let us see what happens if the states have different
Schmidt bases. We shall keé¢j,) as before, but choose
| W) differently,

| W) = cosy|00) + sindg| 11),
| W)= cosd,| +X)| +X) +sind;| — X)| —X), (40

where| = x)=(1/y/2)(|0)*=|1)). Solving Eqs(33) for these
states, we first find a quadratic equation fr

(1—cotfy)Z5— (1—coth ) (1+ cotby)z, — (1— cothy) coth,
—0. (41)

The vectors making up the POVM are given by
Ira)=c (|+x)+ 24| —x)),

cotf,

-2,

Irg)=dg

).
r=et(10)+ z3/1),

cotfy
Z3

=13 ) - <22 2

fixed by requiring the failure probability to be a minimum. The normalization constants are given by

This probability is now given by

|1/ [1—(cot#y)®]* [1—(tandy)*]?

 2+42|24]? 1+ (|z|cotd;)? 1+ (|zy|tand;)?’
(37

pi=1

where the conditiorfy= (7/2)— 6, has been used to elimi-

nate 6,. Setting the derivative op; with respect to|z,|?

equal to zero, we find an equation that has only one positive

solution, |z,|?=coté;. Substituting this value into Eq37),
we find

pr=sin(26,). (39

1
2_ 2_
Col“= . |eoe= :
|col RAAE |&| FYPE
|2,|? |5/
do/’=————. e (43
1ol |24|%+ cot 6, Ifo |z5|%+ cot 6,
where
1—cotfycotd, + (1— cotby) z}
24— — 0COl0, 0)Z1 (44)

1—coth,

This failure probability should be compared to that when
a single joint measurement can be performed on both qubi
of the two-qubit states. In that case, if each of the states
equally likely, then the probability of failing to distinguish-
ing the states is given by the Ivanovic-Dieks-Pe(H3P)
limit

Priop=[(Wo|W¥1)|=sin(26,). (39

Note that this expression is identical to that given in the
previous paragraph. Therefore, in this example we can con-
clude that the failure probability that is achieved by measur-

ing the qubits separately is the same as that when the qubits
are measured together.

042304-5
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1F This example differs from our previous one in that here there

o is a difference betweep; and Ppp, Whereas there was
£20.9 none in the example in which the two states we were trying
- to distinguish shared the same Schmidt basis.
ﬁ 0.8
o B. One failure state
; 0.7 Let us now consider the case in which only one of the
E four measurement alternatives corresponds to failure. In par-
= 0.6 ticular, suppose that{0,0 and {1,1} correspond to
= |Wq), {1,0 corresponds t¢¥,), and{0,1} corresponds to

0.5} failure. We now have the conditions for our POVM operators

0 0.25 0.5 0.75 1 1.25 1.5
angle AOBO|\I’1>:01 AlBl|\I’1>:0v
FIG. 1. Failure probabilities plotted as a function of the angle A1Bo| W) =0. (49

61, which is given in radians. The solid curveps and the dotted _ .
is Pspp. In this case the restriction on classical communicationUsing the same methods as before, we find that

causes an increase in the failure probability. Lo
Ao=IraXral,  Ar=|ra)(ral,

n n 5 |23|23in261 B.— B, = 1 1 0
|((ral®(rgh¥o)l*= > 3 o=Ire)(rsl, 1=rg)(rsl. (50)
A(1+]|235]%)(|z4|3+ cofby)
Where we previously had two conditions on the orthonormal
x | (1+ cotfy)(1— cotdy) based|r),|ra)} and{|rg),|rg)}, we now have three:
cotg. | 2 ((ral®(re)¥1)=0, ((rale(rg))¥1)=0,
+(C0t01_1)(23_ O) 1
Z3 ((ral®(rg|)¥o)=0. (51)

49 Let us now consider an example. Let us assume that the
Specializing to the casé,= /2 we find that there are States we are trying to distinguish are given by &4), that
two sets of values for,, . ..,z,. One set is obtained from is, they have the same Schmidt basis. Employing the same
the other simply by reversing the roles|of,) and|rg), and ~methods and notation as before, we find first tht
both give the same failure probability, so that we need only=— 7/4, and that
consider one of them. Doing so we have

z,=— 1z = Jtand,,
z,= — 2z} = \/cotb,. (52

z,=cotfy, z,=—1,

1+ coto,
7 cotg,— 1" 2,=0. (46 The failure operatoF is now
This gives a value for the failure probability of F=AiABIB =|ra)(ral®|rg)(rgl, (53
(1—cot;)?+ (cosf,coth; — sind;)? where
pr=1- (47)
4(1+cot6,) 12
Ira)= 1T tandn (|0)+ Vtangy| 1)),

This can be compared to the failure probability when both 0
gubits are measured together, which corresponds to the case 12
considered by Ivanovic, Dieks, and Peres, Iy~ _f

y |rB> l+tan00 (|0> tan90|1)) (54)

1
Piiop= [ Wo| V)= E(sin01+ cosh,). (48 If both states are equally probable, then the failure probabil-

ity for this procedure is given by

These probabilities are plotted as a functiondgfin Fig. 1, 1
and it can be seen that, as expectegdz P;pp. The prob- pi==((Wo|F| o)+ (W |F|¥,))
abilities are equal at some isolated points, but, in general, 2
there is a cost, which manifests itself as a higher failure
probability, associated with determining the state by per-

1 1
H 2
. A ) =— H— + —.
forming independent measurements on the two particles. 2(CO 0~ Sinfo) (55

4
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Failure Probability
o
IS

N/
0.75 1 1.25 1.5
angle

0 0.25 0.5

FIG. 2. Failure probabilities plotted as a function of the arfigle
(in radians for the case of one failure state. The solid curvepis
and the dotted one iBspp .

This probability andP;pp are plotted as functions afy( 6,
has been set equal te/4) in Fig. 2.

IV. SECRET SHARING

There have been a number of theoretical proposals f
guantum secret sharing, and one experimental demonstr
tion. The proposals fall into two categories. In the first, quan-

or:

PHYSICAL REVIEW A 67, 042304 (2003

1

—r]0)1/2(|0> +/tang|1)).

(1+ta (58

Irg)=

By comparing their measurement results, Alice and Bob can
determine what state Charlie sent, or that the procedure has
failed. Individually, however, they will not be able to make
this determination. Hence, Alice and Bob together will share
a key with Charlie, but individually they will not.

Let us now examine the security of this scheme with re-
gard to eavesdropping, and we will quickly see that we have
to modify the simple procedure in the previous paragraph.
The reason is that an eavesdropper, Eve, has a perfect cheat-
ing strategy. Eve simply captures the particles, and performs
the same measurement on them that Alice and Bob would
perform. She then sends particles to Alice and Bob consistent
with her measurement results. For example, if she fings
and|rg), she knows the state |¥,), and she sends a par-
ticle in |r ») to Alice and a particle ifrg) to Bob. Using this
approach, Eve will know the key and Alice, Bob, and Charlie
will not be aware of her presence.

This strategy of Eve’s can be eliminated if Alice and Bob
sometimes measure in th8,1} basis. Each of them chooses
randomly, with some predetermined probability, in which ba-
gis to measure. When they compare their results, they look at
the instances in which they both measured in{thd} basis,

tum mechanics is used to securely distribute a classicdP S€€ If their results were ever different. If they were, they

shared key. One of these protocols is based on the use &f
Greenberger-Horne-ZeilingdlGHZ) states[8] and another

makes use of pairs of Bell states in different bass An

experiment based on the GHZ state protocol was carried o
by Tittel, Zbinden, and Gisifil0]. The second category con-

n conclude that an eavesdropper was present. This defeats
the attack proposed for Eve in the previous paragraph, be-
cause while the statd¥,) and|¥,) have no components

@long the vector$01) and|10), states such als »)|rg) do.

That means that in order to avoid detection, Eve must send

sists of protocols in which the secret information that is splitStates lying in the subspace spannedaf) and|11), which

among several parties is quantum informatiam]. The pro-
cedure we are considering here is of the first type.

also means that she will not be able to control the results that
Alice and Bob get. This leads to her detection. When she

Let us suppose that a third party, Charlie, sends one diéasures the state she receives from Charlie and fails, then
two states to Alice and Bob, one qubit to Alice and one toShe has to guess which state to send on to Alice and Bob.

Bob,
| W o) = sinA|00) + cosv|11),

| W) =cos9|00) + sing|11). (56)

The procedure we are discussing here is based on the firs
example in the preceding section. Initially we shall suppos

that Alice measures her state in the basis given by

(|0)+ \cotg|1)),

[y =——
") (1+coth) 2

1
|rj>=—)1/2(|0)—vtan0|1>), (57)

(1+tand

and that Bob measures his particle in the basis

Ire)=————(|0y— Go|1)),

(1+ cot)?

Sometimes she will guess incorrectly, and if Alice, Bob, and
Charlie publicly compare some fraction of their data, they
will notice discrepancies, e.g., Charlie will have séfi),
but Alice and Bob will have detectddl’;). These discrep-
ancies would not exist if Eve were not present, and their
presence gives her away.
Next, let us see whether this procedure protects against
eating. Suppose that Bob is able to capture both qubits sent
y Charlie. He first chooses a basis. If it{3,1}, he sends a
particle to Alice in one of these two states, and throws out
the two-qubit state from Charligecause of his basis choice
the results from this state will not contribute to the key
When it comes time to compare results with Alice, if Alice
measured the particle Bob sent in the other basis, the results
are thrown out, and if she also measured in{{ig} basis,
Bob simply announces the result corresponding to the par-
ticle he sent her. If Bob chose to measure infthe,r;} and
{rg,rg} bases, then, if he findsl' ;) he sends Alicér ), if
|W,), he sendgry), and if he fails he sends eithér,) or
[ra). If this is one of the results that is publicly compared,
then if Bob’s measurement succeeded, he announces the
same state as the one he sent to Alice, and if it failed, the
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opposite state. Using this method, he knows the key bits, ansider qutrits, whose basis states ¢, |1), and|2), then

Alice and Charlie do not know that he knows. the two bipartite states
It is possible to fix this somewhat if, instead of sending
the particles to Alice and Bob simultaneously, Charlie first B i
sends one particle to one party, who measures it and tells Vo) = \/§(|0>|0>+|2>|2>)’

Charlie over a public channel that he or she has received and

measured the particle. Charlie alternates sending the first par- 1

ticle to Alice and Bob. Now, supposing as before that Bob is |V)y=—=(|1)|1)+]2)|2)), (59
the cheater, let us see what happens when the particle is sent \/E

to Alice first. Bob grabs the particle that has been sent to hich t orth | be distinauished without clas-
Alice, but then he must send her a substitute. If he sends he&F Ich are not orthogonay, can be distnguisned without clas
a particle in one of the staté8) or |1), there is no problem, sical communication. Measuring in the bafi8),|1),|2)},

: . ~Alice and Bob will always obtain the same result, and if they
but he cannot do this all of the time, because then no key bné‘ i . .
would be generated. If he sends her a particle in either Obtain|0), they know tha{'V o) was sent, if they obtaift.),

or |rz), he can run into a difficulty. Suppose he sent herthenl\l’l> was sent, and if they obtaif2), then they have
A/ . Y- SUPPo - failed. Note that for these two statd®dpp=1/2, and that the
[rA), and when he receives the second particle from Charlie

he finds that the state Charlie sent Wais,), which should success probability of the above scheme is also 1/2. There-

d 1o Ali gk ). If he is t i i fore, the above two states provide an example of a situation
correspond to Alice measurir) A>.’ 1ei1stoavoid crealing i, \yhich the optimal success probability can be achieved by
a detectable error, he must claim, if this is one of the bit

o . X Socal measurements without any classical communication.
which is publicly revealed, that he measureg), which The extension to more than two states also introduces new
corresponds to failure to distinguish. This, however, meang ements. For example, Ghoshal. have shown that it is not
that there will be more cases of failure to distinguish thanysssible to deterministically distinguish either three or four
there should be, and Alice and Charlie would be alerted tQythogonal two-qubit states using only local operations and
the fact that the security of the key is questionable. _ classical communicatiofil2], and a general condition for
Instead of sending Alice a single particle in a specific\ hen orthogonal, bipartite:2d statesione of the particles is
state, Bop can send Alice one of two_parncles in a smgleta qubit and the other a quilitan be distinguished by LOCC
state. Th|sl, hqwever, do.es not help him. From the paruclq,vas found recently by Walgate and Hafdy]. This suggests
remaining in his possession, he cannot determine which megsat there is much still to be learned about distinguishing

surement Alice made, because his particle could be in one f, jiipartite states using local operations and classical com-
four possible states, and these cannot all be orthogonal. |\, nication.

In summary, the procedure outlined here provides protec-
tion against eavesdropping, and some protection against
cheating. The presence of an eavesdropper leads to errors
(misidentification of statgswhile the presence of a cheater  This research was supported by the National Science
leads to an increased failure rate. Foundation under Grant No. PHY-0139692 and by a PSC-

CUNY grant.
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V. CONCLUSION APPENDIX

We have examined the problem of distinguishing between We now want to show that, if no classical communication
two two-qubit states without error by using local measure-is permitted, then at most one state can be identified. We
ments and either no or limited classical communication. Inbegin by using the conditions on the states and POVM op-
the first case we found that only one of the two states can berators to derive additional, simpler ones. For example, we
identified; the other generates a failure indication. In the sechave that
ond case, for some pairs of states it is possible to identify the
states with the lowest possible failure probabilithe IDP AoBo|W1)=0, AgB|V;)=0. (A1)
limit), and for others the failure probability with limited clas-
sical communication is higher than the optimal value. Fi
nally, we proposed a secret sharing scheme based on t

_Acting on the first of these witlB,, the second witHB]
Rgdding, and making use of E({), we find that

procedure using limited classical communication. 0=An(la— BB W
Natural generalizations of this work are to higher dimen- olle=B{B)|Wy)
sions, to more than two states, and to states with more than _
=Ao| V), (A2)

two particles. Many of our results rely explicitly on the fact

that we are considering qubits, and the extension to qudits ighere, in going from the first to the second line, we noted
not straightforward. For example, we found that with bipar-that A B(|W,)=0. Similarly, we find that

tite qubit states it is not possible to distinguish two nonor-

thogonal states without using classical communication. We Bo|¥1)=0, A|¥)=0,
could tell if we had one of the two, but if the other state was
sent our procedure would always fail. However, if we con- B4|Wy)=0. (A3)
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The next step is to express the statds;), where j The first of these equations implies that eitR@ermn|uag)
=0,1, in terms of their Schmidt basésee Sec. Il =0, which further implies that, up to a constant of modulus
N 1, |vao)=|Ung), OF Bflugg)=0. If the first aItTrnative is
true, then botM\, andA; acting on either vector¥;) give
|\P0>:j20 Nojluaj)® us)), zero, and the measurement always fails. If this allt>ernative is
to be avoided, then we must haBg ug,)=0. However, the
1 second equation tells us that, if the measurement does not
W)= \/A_ljlvAj)®|ij). (A4)  always fail, Bf{jugg)=0. These conditions imply thaB;
=0 =0 (assuming thatugg) # |vgo); if this is not true the mea-

Application of the two conditions ofi¥;) in the previous suriment always fails We then have thatl g=BBy
paragraph implies the followingi) if Ayg#0 andr,;#0, T BiB1, which can only be true "Ui_31_>:|UBo> or [vgo)
then Aglvaj)=0, for j=0,1, and this implies thaf,=0. =|ugy), so that{Wo|¥,)=0. Summarizing, we can say that
We also have thaBy=0. (ii) If one of the);'s is zero, and  If (i) and (iv) are satisfied, which implies thaw,) and
we can assume, without loss of generality, that=0, then |W,) are product states, thgn either they are orthogonal, or
we have that\o|v a0) = Bo|vgo) =0. the measurement always fails. . '

Similarly, the two conditions ofi¥ o) give us(iii) if Agy .. Fin@lly, let us see what happendiif and(iv) are truefthe
#0 and Ap;#0, then A;=B,=0: (iv) If \g;=0, then fmallalternatlve,(n) and (iii ) being trge, is equivalehtThis
Aq|Upo)=B1|ugg)=0. implies tha_ltAoz By,=0, so thalj‘l’o_) is never detectgd,_ and

We now have a number of cases to examine. If conditiondat [ Vo) is a product state. Using techniques similar to
(i) and(iii) are true, the only nonzero operators are the fail-tN0Se in the previous paragraphs, we find that
ure operators, so that the procedure fails all the time. If con-
ditions (i) and (iv) are satisfied we have that the POVM Ar=[7a)XUnl,  B1=[7g)(Ugal,
operatorsA; andB; must be of the form

Ai=|€a)(Unol  Bi=|&g){Ugol, (A7)

Ao=Ea)(va1l, Bo=|&s)(veal,
where the vectors$éa), |€g), |7a), and|ng) are undeter-
Ar=|na)(Unsl,  B1=|ms)(Ugal, (A5)  mined unit vectors. The final conditions are given by using

the above expressions in the equatighd;|V;)=0 and
where the vector,),| €g),| 74), and|»g) are as yet unde- AB,|¥ ) =0 to give W)

termined.
We now examine the consequences of the conditions
u u v,)=0,
AoBi|Wo)=0 andA,B,|W,)=0, or ((uaz|®(ugo))[¥1)
Ao|uA0>®Bf|uBo>:o, (<UAO|®<UB].|)|\P1>:O' (A8)
A1|v p0) ®Bs|vgo) =0. (AB) An example satisfying these conditions is given in Sec. Il.
[1] I. D. Ivanovic, Phys. Lett. AL23 257 (1987). 1829(1999.
[2] D. Dieks, Phys. Lett. AL26, 303 (1988. [9] A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev58, 162
[3] A. Peres, Phys. Lett. A28 19 (1988. (1999.
[4] J. Walgate, A. Short, L. Hardy, and V. Vedral, Phys. Rev. Lett.[10] W. Tittel, H. Zbinden, and N. Gisin, Phys. Rev.68, 042301
85, 4972(2000. (2001.
[5] S. Virmani, M. F. Sacchi, M. B. Plenio, and D. Markham, [11] R. Cleve, D. Gottesman, and H.-K. Lo, Phys. Rev. L8&8.
Phys. Lett. A288, 62 (2001). 648 (1999.
[6] Yi-Xin Chen and Dong Yang, Phys. Rev.65, 022320(2002. [12] S. Ghosh, G. Kar, A. Roy, D. Sarkar, A. S8®), and U. Sen,
[7] C. H. Bennett, Phys. Rev. Le#8, 3121(1992. Phys. Rev. A65, 062307(2002.

[8] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. 39, [13] J. Walgate and L. Hardy, Phys. Rev. Le38, 147901(2002.

042304-9



