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Distinguishing two-qubit states using local measurements and restricted classical communicatio
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The problem of unambiguous state discrimination consists of determining in which of a set of known
quantum states a particular system is. One is allowed to fail but not to make a mistake. The optimal procedure
is the one with the lowest failure probability. This procedure has been extended to bipartite states where the
two parties Alice and Bob are allowed to manipulate their particles locally and communicate classically in
order to determine which of two possible two-particle states they have been given. The failure probability of
this local procedure is the same as if the two particles were together in the same location. Here we examine the
effect of restricting the classical communication between the parties, either allowing none or eliminating the
possibility that one party’s measurement depends on the result of the other party’s. These issues are studied for
two-qubit states, and optimal procedures are found. In some cases the restrictions cause increases in the failure
probability, but in other cases they do not. Applications of this procedure, in particular to secret sharing, are
discussed.
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I. INTRODUCTION

Suppose that we have a two-qubit state, and we give
of the qubits to Alice and the other to Bob. Alice and Bo
know that the state is eitheruC0& or uC1&, and by making
local measurements and communicating classically, t
want to determine which state they have. We want to c
sider the case of unambiguous discrimination, which me
that Alice and Bob may fail to decide which state they ha
but if they succeed, they will not make an error. That is, th
will never conclude that they haveuC0& when they have
been givenuC1&, and vice versa. Our object is to develop
procedure that Alice and Bob can use to discriminate
tween the states.

One aspect of this problem has already been solved
each state is equally likely and both qubits can be meas
together, then it is known that the states can be success
unambiguously discriminated with a probability ofpidp51
2 z^C0uC1& z @1–3#. It was recently shown that the states c
be discriminated using only local operations and class
communication~LOCC! with the same success probabilit
Walgateet al. proved that if̂ C0uC1&50 then the states ca
be distinguished perfectly using only LOCC@4#. The case
when uC0& and uC1& are not orthogonal was investigate
numerically by Virmaniet al. @5#, and they found strong evi
dence that unambiguous discrimination is possible with
probability of pidp using LOCC. In addition, they found
class of states for which they could prove that this was tr
A proof that this is true for all bipartite states was provid
by Chen and Yang@6#.

The procedure that makes LOCC unambiguous discri
nation with a success probability ofpidp possible is the fol-
lowing. Alice makes a projective measurement on her p
ticle that gives her no information about whether the stat
uC0& or uC1&, and she then communicates her result to B
Based on what Alice has told him, Bob chooses a meas
ment to make on his particle. In particular, he applies
procedure for the optimal unambiguous discrimination
single qubit states to his particle. However, in this proced
1050-2947/2003/67~4!/042304~9!/$20.00 67 0423
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one must know the two states that one is discriminating
tween, and it is this information that is provided by the res
of Alice’s measurement.

What we wish to examine here is how restricting the cl
sical communication between the parties affects their ab
to discriminate between the states. We shall first see w
happens when no classical communication is allowed. In
case each party has three possible measurement resu
corresponding touC0&, 1 corresponding touC1&, and f for
failure to distinguish. IfuC0& is sent, then Alice and Bob
both measure 0 or both measuref, so that they both know
without communicating, thatuC0& was sent or that the mea
surement failed. IfuC1& is sent, then they both measure e
ther 1 orf. We shall then relax the ban on classical commu
cation, and allow Alice and Bob to communicate the
meaurement results to each other. However, conditional m
surements will still be banned, i.e., situations in which t
measurement made by one party depends on the mea
ment results of the other will not be allowed.

One motivation for studying these situations, in additi
to what they tell us about state discrimination, is their po
sible use in communication schemes. State discrimination
single qubits can be used to construct a scheme for quan
cryptography@7#. In this protocol, Alice and Bob wish to
share a secure key. Alice sends single qubits to Bob in on
two nonorthogonal statesuc0& or uc1&, and Bob applies the
unambiguous state discrimination protocol to the states
receives. He then tells Alice whether the procedure s
ceeded or failed, and they keep the instances when it
ceeded and throw out the rest. If Bob’s measurement resu
in uc0&, then that particular key bit is recorded as 0, and i
resulted inuc1&, it is recorded as 1. In this way a binar
string shared by Alice and Bob can be constructed, an
serves as the key. An eavesdropper, Eve, who intercepts
qubits that Alice sends to Bob, and who wishes to find o
which state they are in, has a problem. Because the state
not orthogonal, she will not be able to definitely determi
the state of each qubit she receives. However, she must
a qubit in eitheruc0& or uc1& on to Bob. Since her informa
©2003 The American Physical Society04-1
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tion about the qubit she received is not perfect, Eve w
sometimes send a qubit in the wrong state to Bob. If Al
and Bob publicly compare some of their key bits and fi
discrepancies, then they know an eavesdropper was pre
If they find no discrepancies, then they can conclude t
they share a secure key.

The no-classical-communication scheme would allow
third party, Charlie, to distribute a shared key to Alice a
Bob. Charlie would send one qubit to Alice and one to Bo
where the qubits are in either the stateuC0& or uC1&, and
Alice and Bob would measure them. They would both kn
when they had founduC0&, when they had founduC1&, and
when they had failed. Note that Charlie would not know t
key, because he would not know which bits corresponde
failure. A slight relaxation of the no-classical-communicati
condition allows all three parties to share a key. Alice a
Bob simply announce publicly when they failed to disti
guish the state.

A possible use for the second scheme, when Alice
Bob are allowed to compare their meaurement results, is
cret sharing. In this case a third party, Charlie, wants to sh
a secure key with Alice and Bob, but he wants Alice and B
to have to cooperate to determine the key bit. Neither Al
nor Bob, separately, will know the key, but together th
will. Charlie accomplishes this by sending one qubit to Ali
and another to Bob. The two qubits are either in the s
uC0& or uC1&, and these states are not orthogonal. Alice a
Bob then perform a procedure to determine which state t
have, and this procedure must require their cooperation
that neither of them by themselves can determine the sta
they use the optimal procedure in which the measurem
Bob makes depends on the result of Alice’s measurem
then Alice would measure her particle, and Bob would
nothing to his. When they want to determine the key b
Alice will tell Bob the result of her measurement, and B
will make the appropriate measurement on his particle. T
method, however, requires Bob to store quantum inform
tion, i.e., keep his particle free from the effects of decoh
ence, until the bit is determined. A more practical proced
would be the restricted-classical-communication scheme
which both Alice and Bob make independent measureme
and are able to determine the state from the results. In
case, they each measure their qubit when they receive it,
they record the results of their measurements. This me
that it is only classical information that needs to be stor
Neither Alice nor Bob should be able to determine the st
from just their own result, but by putting their results t
gether they should be able to indentify the state they w
sent with some nonzero probability, and they should ne
make an error. It is this kind of procedure we wish to stu
here.

II. NO CLASSICAL COMMUNICATION

As discussed in the Introduction, we shall assume t
Alice and Bob each has one of three measurement alte
tives, 0, 1, andf. The positive-operator-valued measu
~POVM! operators that characterize the measurements
04230
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$A0 ,A1 ,Af% for Alice and $B0 ,B1 ,Bf% for Bob. These op-
erators satisfy

I A5 (
j 50,1,f

Aj
†Aj , I B5 (

j 50,1,f
Bj

†Bj , ~1!

whereI A is the identity onHA , the Hilbert space of Alice’s
qubit, andI B is the identity onHB , the space of Bob’s qubit
The requirement that Alice and Bob get only the same re
for their measurements imposes the conditions

AjBkuCn&50, ~2!

where j ,kP$0,1,f % and j Þk, andnP$0,1%. In addition, the
fact that no errors are made in identifying the states requ
that

A0B0uC1&50, A1B1uC0&50. ~3!

It is clear simply from the number of conditions that,
this procedure is possible at all, it will be true only for a ve
restricted set of states. In fact, what we find is that the b
we can do for two nonorthogonal states is to identify one
the states with a nonzero probability and fail the rest of
time. The details of the proof of this statement are given
the Appendix.

We conclude this section with an example of the situat
in which one state can be detected. Suppose our two s
are given by

uC0&5u0&u0&,

uC1&5
1

A2
~ u0&u0&1u1&u1&), ~4!

where Alice’s states are first and Bob’s second. In additi
we have thatA05B050, so thatuC0& is never detected, and

A15u1&^1u, B15u1&^1u,

Af5u0&^0u, Bf5u0&^0u. ~5!

From this we see that, indeed, ifuC0& is sent, then it will not
be detected, but ifuC1& is sent, then we will detect it with a
probability of 1/2 and fail with a probability of 1/2. Thus, w
are very limited in distinguishing two states without an
classical communication between Alice and Bob.

III. LIMITED CLASSICAL COMMUNICATION

The situation becomes more interesting if we allow Ali
and Bob to communicate the results of their measuremen
each other only after both measurements have been m
We now consider the following situation. Alice and Bo
make measurements on their particles, and each of th
measurements can have one of two outcomes, 0 or 1. Ali
measurement is described by the POVM$A0 ,A1% and Bob’s
by $B0 ,B1%, where

I A5A0
†A01A1

†A1 , I B5B0
†B01B1

†B1 , ~6!
4-2
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andI A andI B are the identity operators in Alice’s and Bob
Hilbert spaces, respectively. The probability is Tr(rA jAk

†Ak),
that Alice will obtain the resultk if the two-qubit state is
uC j& whererA j5TrB(uC j&^C j u) is the reduced density ma
trix of uC j& in Alice’s space. Similar expressions hold for th
probabilities of Bob’s measurements. Note thatA0 and A1
commute withB0 andB1.

Together, Alice and Bob have four possible sets of res
~Alice’s result is given first, Bob’s second!,
$0,0%, $0,1%, $1,0%, $1,1%, and we have to decide which se
correspond touC0&, which to uC1&, and which to failure to
decide. Let us first consider what happens if we assume
none of the sets corresponds to failure. In particular, supp
that $0,0% and$1,1% correspond touC0& and$0,1% and$1,0%
correspond touC1&. This implies that if the state isuC1&
then the probability of getting$0,0% or $1,1% is zero, and if
the state isuC0& the probability of getting$0,1% or $1,0% is
zero. Therefore, we have

^C0uA0
†A0B1

†B1uC0&5^C0uA1
†A1B0

†B0uC0&50,

^C1uA0
†A0B0

†B0uC1&5^C1uA1
†A1B1

†B1uC1&50. ~7!

These imply the simpler equations

A0B1uC0&5A1B0uC0&50,

A0B0uC1&5A1B1uC1&50. ~8!

If we now note that

^C1uC0&5^C1uI A^ I BuC0&

5^C1u~A0
†A01A1

†A1! ^ ~B0
†B01B1

†B1!C0&,
~9!

we see from the previous equation that^C1uC0&50. There-
fore, if, using this particular scheme, we are able to dis
guish the states every time without error, they must be
thogonal.

Now let us suppose that some of the measurement re
correspond to a failure to distinguish the states. We will
cus on two different cases. In the first we shall assume
two of the four alternatives correspond to failure, and in
second we shall assume that only one does.

A. Two failure states

Let us assume that$0,0% corresponds touC0&, $1,1% cor-
responds touC1&, and both$0,1% and $1,0% correspond to
failure to distinguish. The condition of no errors implies th

A0B0uC1&50, A1B1uC1&50. ~10!

If we apply these conditions to Eq.~9!, we find that

^C1uC0&5^C1uFuC0&, ~11!

where

F5A0
†A0B1

†B11A1
†A1B0

†B0 . ~12!
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Now let us examine the conditions in Eq.~10! in more
detail. We first expressuC1& in its Schmidt basis

uC1&5(
j 50

1

Al1 j uyA j& ^ uyB j&, ~13!

where$yA0 , yA1% and $yB0 , yB1% are orthonormal bases fo
Alice’s and Bob’s spaces, respectively, andl1 j for j 50,1 are
the eigenvalues of the reduced density matrices. The co
tion A0B0uC1&50 then implies that

Al10A0uyA0& ^ B0uyB0&52Al11A0uyA1& ^ B0uyB1&.
~14!

The only way this can be true is ifA0uyA0& is parallel to
A0uyA1& and B0uyB0& is parallel toB0uyB1&. Therefore, we
can write

A0uyA0&5c0uhA&, B0uyB0&5d0uhB&,

A0uyA1&5c1uhA&, B0uyB1&5d1uhB&, ~15!

where cj and dj are constants andihAi5ihBi51. These
equations imply that

A05(
j 50

1

cj uhA&^yA ju5uhA&^r Au,

B05(
j 50

1

dj uhB&^yB ju5uhB&^r Bu, ~16!

where

ur A&5(
j 50

1

cj* uyA j&, ur B&5(
j 50

1

dj* uvB j&. ~17!

The conditionA0B0uC1&50 can now be expressed as

~^r Au ^ ^r Bu!uC1&50. ~18!

We can now do the same thing with the condition th
A1B1uC0&50. ExpressinguC0& in its Schmidt basis we
have that

uC0&5(
j 50

1

Al0 j uuA j& ^ uuB j&, ~19!

where$uA0 , uA1% and$uB0 , uB1% are orthonormal bases fo
Alice’s and Bob’s spaces, respectively, andl0 j for j 50,1 are
the eigenvalues of the reduced density matrices. Apply
the same reasoning as before, we find that

A15ujA&^sAu, B15ujB&^sBu, ~20!

whereijAi5ijBi51. We also have that

~^sAu ^ ^sBu!uC0&50. ~21!
4-3
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We can gain more information about the vecto
ur A&, ur B&, usA&, and usB& by substituting the results of th
previous paragraphs into Eqs.~6!. This gives us that

I A5ur A&^r Au1usA&^sAu, I B5ur B&^r Bu1usB&^sBu.
~22!

Now let both sides of the first of these equations act on
vector ur A&,

ir Ai2ur A&1usA&^sAur A&5ur A&. ~23!

The only way this can be true is if eitherur A& is parallel to
usA&, which violates Eq.~22!, or ^sAur A&50 and ir Ai51.
Therefore,usA& is orthogonal tour A&, and both have norm 1
Henceforth, we shall denoteusA& by ur A

'&, and we have tha
$r A ,r A

'% is an orthonormal basis for Alice’s space. Similar
we find that$r B ,r B

'%, where ur B
'&5usB&, is an orthonormal

basis for Bob’s space.
Now let us examine the failure probabilities. We first e

press the operatorF, defined in Eq.~12!, as

F5~ ur A& ^ ur B
'&)~^r Au ^ ^r B

'u!1~ ur A
'& ^ ur B&!~^r A

'u ^ ^r Bu!

5I 2~ ur A& ^ ur B&)~^r Au ^ ^r Bu!2~ ur A
'& ^ ur B

'&!~^r A
'u ^ ^r B

'u!.
~24!

We first note that if Eqs.~18! and~21! are satisfied, then the
condition in Eq.~11! is also satisfied. The failure probabilit
if Charlie sends the stateuC0& is ^C0uFuC0&, and if he sends
the stateuC1&, it is ^C1uFuC1&. These probabilities can b
expressed as

^C0uFuC0&512 z~^r Au ^ ^r Bu!uC0& z2,

^C1uFuC1&512 z~^r A
'u ^ ^r B

'u!uC1& z2. ~25!

If each of the states is equally likely, then the total failu
probability pf is given by

pf5
1

2
~^C0uFuC0&1^C1uFuC1&!. ~26!

We want to minimize this overall failure probability.
Note that the failure probabilities are unaffected by t

choice of the vectorsujA&,ujB&,uhA&, and uhB&. If we make
the choices

ujA&5ur A
'&, ujB&5ur B

'&,

uhA&5ur A&, uhB&5ur B&, ~27!

then the operatorsAj andBj , where j 50,1, are projections
and the generalized measurement becomes a von Neum
measurement.

Let us summarize our remaining problem. We want to fi
a basis for Alice’s space$ur A&,ur A

'&% and one for Bob’s space
$ur B&,ur B

'&% that satisfy the conditions

~^r A
'u ^ ^r B

'u!uC0&50,
04230
e
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~^r Au ^ ^r Bu!uC1&50. ~28!

We can reduce these conditions to the solution of sev
simple equations. First, expandingur A

'& and ur B
'& in terms of

uuA j& and uuB j&, respectively, we have

ur A
'&5(

j 50

1

ej* uuA j&, ur B
'&5(

j 50

1

f j* uuB j&. ~29!

The equations in the previous paragraph become

(
j 50

1

Al0 jej f j50, (
j 50

1

Al1 j cjdj50, ~30!

while the conditionŝ r A
'ur A&50 and^r B

'ur B&50 become

(
j 1,j 250

1

cj 1
ej 2
* ^vAj 1

uuAj 2
&50,

(
j 1,j 250

1

dj 1
f j 2
* ^vBj 1

uuBj 2
&50. ~31!

Now define the ratios

z15
c1*

c0*
, z25

d1*

d0*
,

z35
e1*

e0*
, z15

f 1*

f 0*
. ~32!

If we now divide Eqs.~30! and~31! by the appropriate prod
uct of expansion coefficients, e.g., the first of Eqs.~30! is
divided bye0f 0 and the first of Eqs.~31! is divided byc0e0* ,
we find

Al001Al01z3z450,

Al101Al11z1z250,

^vA0uuA0&1^vA0uuA1&z31^vA1uuA0&z1* 1^vA1uuA1&z1* z350,

^vB0uuB0&1^vB0uuB1&z41^vB1uuB0&z2* 1^vB1uuB1&z2* z450.
~33!

Given two specific statesuC0& anduC1&, these equations ca
be solved to find the vectorsur A&, ur A

'&, ur B&, andur B
'&.

Let us now consider two examples. In the first we sh
suppose thatuC0& and uC1& have the same Schmidt bas
while in the second the Schmidt bases of the two states
be different.

We begin by assuming that our two states are given b

uC0&5cosu0u00&1sinu0u11&,

uC1&5cosu1u00&1sinu1u11&, ~34!

whereu0 andu1 are both between 0 andp/2. Solving Eqs.
~33! for these states, we first find the condition tanu0tanu1
4-4
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51, which implies thatu15(p/2)2u0. We also find ex-
plicit expressions for the vectors

ur A&5c0* ~ u0&1z1u1&),

ur B&5d0* S u0&2
cotu1

z1
u1& D ,

ur A
'&5e0* S u0&2

1

z1
u1& D ,

ur B
'&5 f 0* S u0&1cotu0z1* u1& D , ~35!

where the normalization constants are given by

uc0u25
1

11uz1u2
,

ud0u25
uz1u2

uz1u21~cotu1!2
,

ue0u25
uz1u2

11uz1u2
,

u f 0u25
1

11~cotu1!2uz1u2
. ~36!

The quantityz1 is at the moment undetermined, but it will b
fixed by requiring the failure probability to be a minimum
This probability is now given by

pf512
uz1u2

212uz1u2
@12~cotu1!2#2

11~ uz1ucotu1!2

@12~ tanu1!2#2

11~ uz1utanu1!2
,

~37!

where the conditionu05(p/2)2u1 has been used to elimi
nate u0. Setting the derivative ofpf with respect touz1u2

equal to zero, we find an equation that has only one posi
solution, uz1u25cotu1. Substituting this value into Eq.~37!,
we find

pf5sin~2u1!. ~38!

This failure probability should be compared to that wh
a single joint measurement can be performed on both qu
of the two-qubit states. In that case, if each of the state
equally likely, then the probability of failing to distinguish
ing the states is given by the Ivanovic-Dieks-Peres~IDP!
limit

Pf IDP5u^C0uC1&u5sin~2u1!. ~39!

Note that this expression is identical to that given in t
previous paragraph. Therefore, in this example we can c
clude that the failure probability that is achieved by meas
ing the qubits separately is the same as that when the q
are measured together.
04230
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Now let us see what happens if the states have diffe
Schmidt bases. We shall keepuC0& as before, but choose
uC1& differently,

uC0&5cosu0u00&1sinu0u11&,

uC1&5cosu1u1x&u1x&1sinu1u2x&u2x&, ~40!

whereu6x&5(1/A2)(u0&6u1&). Solving Eqs.~33! for these
states, we first find a quadratic equation forz1:

~12cotu0!z1
22~12cotu1!~11cotu0!z12~12cotu0!cotu1

50. ~41!

The vectors making up the POVM are given by

ur A&5c0* ~ u1x&1z1u2x&),

ur B&5d0* S u1x&2
cotu1

z1
u2x& D ,

ur A
'&5e0* ~ u0&1z3u1&),

ur B&5 f 0* S u0&2
cotu0

z3
u1& D . ~42!

The normalization constants are given by

uc0u25
1

11uz1u2
, ue0u25

1

11uz3u2
,

ud0u25
uz1u2

uz1u21cot2u1

, u f 0u25
uz3u2

uz3u21cot2u0

, ~43!

where

z352
12cotu0cotu11~12cotu0!z1*

12cotu1
. ~44!

The failure probability is given by Eqs.~25! and~26!, where

z(^r Au ^ ^r Bu!C0& z25
uz1u2sin2u0

4~11uz1u2!~ uz1u21cot2u1!

3U~11cotu0!~12cotu1!

1~cotu021!S z1* 2
cotu1

z1*
D U2

,

4-5
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z(^r A
'u ^ ^r B

'u!C0& z25
uz3u2sin2u1

4~11uz3u2!~ uz1u31cot2u0!

3U~11cotu1!~12cotu0!

1~cotu121!S z32
cotu0

z3
D U2

.

~45!

Specializing to the caseu05p/2 we find that there are
two sets of values forz1 , . . . ,z4. One set is obtained from
the other simply by reversing the roles ofur A& andur B&, and
both give the same failure probability, so that we need o
consider one of them. Doing so we have

z15cotu1 , z2521,

z35
11cotu1

cotu121
, z450. ~46!

This gives a value for the failure probability of

pf512
~12cotu1!21~cosu1cotu12sinu1!2

4~11cot2u1!
. ~47!

This can be compared to the failure probability when b
qubits are measured together, which corresponds to the
considered by Ivanovic, Dieks, and Peres,

Pf IDP5 z^C0uC1& z5
1

2
~sinu11cosu1!. ~48!

These probabilities are plotted as a function ofu1 in Fig. 1,
and it can be seen that, as expected,pf>Pf IDP. The prob-
abilities are equal at some isolated points, but, in gene
there is a cost, which manifests itself as a higher fail
probability, associated with determining the state by p
forming independent measurements on the two partic

FIG. 1. Failure probabilities plotted as a function of the an
u1, which is given in radians. The solid curve ispf and the dotted
is Pf IDP . In this case the restriction on classical communicat
causes an increase in the failure probability.
04230
y

h
se

l,
e
r-
s.

This example differs from our previous one in that here th
is a difference betweenpf and Pf IDP , whereas there was
none in the example in which the two states we were try
to distinguish shared the same Schmidt basis.

B. One failure state

Let us now consider the case in which only one of t
four measurement alternatives corresponds to failure. In
ticular, suppose that$0,0% and $1,1% correspond to
uC0&, $1,0% corresponds touC1&, and $0,1% corresponds to
failure. We now have the conditions for our POVM operato

A0B0uC1&50, A1B1uC1&50,

A1B0uC0&50. ~49!

Using the same methods as before, we find that

A05ur A&^r Au, A15ur A
'&^r A

'u,

B05ur B&^r Bu, B15ur B
'&^r B

'u. ~50!

Where we previously had two conditions on the orthonorm
bases$ur A&,ur A

'&% and$ur B&,ur B
'&%, we now have three:

~^r Au ^ ^r Bu!C1&50, ~^r A
'u ^ ^r B

'u!C1&50,

~^r A
'u ^ ^r Bu!C0&50. ~51!

Let us now consider an example. Let us assume that
states we are trying to distinguish are given by Eq.~34!, that
is, they have the same Schmidt basis. Employing the s
methods and notation as before, we find first thatu1
52p/4, and that

z152z4* 5Atanu0,

z252z3* 5Acotu0. ~52!

The failure operatorF is now

F5A0
†A0B1

†B15ur A&^r Au ^ ur B
'&^r B

'u, ~53!

where

ur A&5S 1

11tanu0
D 1/2

~ u0&1Atanu0u1&),

ur B
'&5S 1

11tanu0
D 1/2

~ u0&2Atanu0u1&). ~54!

If both states are equally probable, then the failure proba
ity for this procedure is given by

pf5
1

2
~^C0uFuC0&1^C1uFuC1&!

5
1

2
~cosu02sinu0!21

1

4
. ~55!
4-6
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This probability andPf IDP are plotted as functions ofu0(u1
has been set equal to2p/4) in Fig. 2.

IV. SECRET SHARING

There have been a number of theoretical proposals
quantum secret sharing, and one experimental demon
tion. The proposals fall into two categories. In the first, qua
tum mechanics is used to securely distribute a class
shared key. One of these protocols is based on the us
Greenberger-Horne-Zeilinger~GHZ! states@8# and another
makes use of pairs of Bell states in different bases@9#. An
experiment based on the GHZ state protocol was carried
by Tittel, Zbinden, and Gisin@10#. The second category con
sists of protocols in which the secret information that is s
among several parties is quantum information@11#. The pro-
cedure we are considering here is of the first type.

Let us suppose that a third party, Charlie, sends one
two states to Alice and Bob, one qubit to Alice and one
Bob,

uC0&5sinuu00&1cosuu11&,

uC1&5cosuu00&1sinuu11&. ~56!

The procedure we are discussing here is based on the
example in the preceding section. Initially we shall suppo
that Alice measures her state in the basis given by

ur A&5
1

~11cotu!1/2
~ u0&1Acotuu1&),

ur A
'&5

1

~11tanu!1/2
~ u0&2Atanuu1&), ~57!

and that Bob measures his particle in the basis

ur B&5
1

~11cotu!1/2
~ u0&2Acotuu1&),

FIG. 2. Failure probabilities plotted as a function of the angleu0

~in radians! for the case of one failure state. The solid curve ispf

and the dotted one isPf IDP .
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ur B
'&5

1

~11tanu!1/2
~ u0&1Atanuu1&). ~58!

By comparing their measurement results, Alice and Bob
determine what state Charlie sent, or that the procedure
failed. Individually, however, they will not be able to mak
this determination. Hence, Alice and Bob together will sha
a key with Charlie, but individually they will not.

Let us now examine the security of this scheme with
gard to eavesdropping, and we will quickly see that we ha
to modify the simple procedure in the previous paragra
The reason is that an eavesdropper, Eve, has a perfect c
ing strategy. Eve simply captures the particles, and perfo
the same measurement on them that Alice and Bob wo
perform. She then sends particles to Alice and Bob consis
with her measurement results. For example, if she findsur A&
and ur B&, she knows the state isuC0&, and she sends a pa
ticle in ur A& to Alice and a particle inur B& to Bob. Using this
approach, Eve will know the key and Alice, Bob, and Char
will not be aware of her presence.

This strategy of Eve’s can be eliminated if Alice and Bo
sometimes measure in the$0,1% basis. Each of them choose
randomly, with some predetermined probability, in which b
sis to measure. When they compare their results, they loo
the instances in which they both measured in the$0,1% basis,
to see if their results were ever different. If they were, th
can conclude that an eavesdropper was present. This de
the attack proposed for Eve in the previous paragraph,
cause while the statesuC0& and uC1& have no components
along the vectorsu01& and u10&, states such asur A&ur B& do.
That means that in order to avoid detection, Eve must s
states lying in the subspace spanned byu00& andu11&, which
also means that she will not be able to control the results
Alice and Bob get. This leads to her detection. When s
measures the state she receives from Charlie and fails,
she has to guess which state to send on to Alice and B
Sometimes she will guess incorrectly, and if Alice, Bob, a
Charlie publicly compare some fraction of their data, th
will notice discrepancies, e.g., Charlie will have sentuC0&,
but Alice and Bob will have detecteduC1&. These discrep-
ancies would not exist if Eve were not present, and th
presence gives her away.

Next, let us see whether this procedure protects aga
cheating. Suppose that Bob is able to capture both qubits
by Charlie. He first chooses a basis. If it is$0,1%, he sends a
particle to Alice in one of these two states, and throws
the two-qubit state from Charlie~because of his basis choic
the results from this state will not contribute to the key!.
When it comes time to compare results with Alice, if Alic
measured the particle Bob sent in the other basis, the re
are thrown out, and if she also measured in the$0,1% basis,
Bob simply announces the result corresponding to the p
ticle he sent her. If Bob chose to measure in the$r A ,r A

'% and
$r B ,r B

'% bases, then, if he findsuC0& he sends Aliceur A&, if
uC1&, he sendsur A

'&, and if he fails he sends eitherur A& or
ur A

'&. If this is one of the results that is publicly compare
then if Bob’s measurement succeeded, he announces
same state as the one he sent to Alice, and if it failed,
4-7
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opposite state. Using this method, he knows the key bits,
Alice and Charlie do not know that he knows.

It is possible to fix this somewhat if, instead of sendi
the particles to Alice and Bob simultaneously, Charlie fi
sends one particle to one party, who measures it and
Charlie over a public channel that he or she has received
measured the particle. Charlie alternates sending the first
ticle to Alice and Bob. Now, supposing as before that Bob
the cheater, let us see what happens when the particle is
to Alice first. Bob grabs the particle that has been sen
Alice, but then he must send her a substitute. If he sends
a particle in one of the statesu0& or u1&, there is no problem
but he cannot do this all of the time, because then no key
would be generated. If he sends her a particle in eitherur A&
or ur A

'&, he can run into a difficulty. Suppose he sent h
ur A&, and when he receives the second particle from Cha
he finds that the state Charlie sent wasuC1&, which should
correspond to Alice measuringur A

'&. If he is to avoid creating
a detectable error, he must claim, if this is one of the b
which is publicly revealed, that he measuredur B

'&, which
corresponds to failure to distinguish. This, however, me
that there will be more cases of failure to distinguish th
there should be, and Alice and Charlie would be alerted
the fact that the security of the key is questionable.

Instead of sending Alice a single particle in a spec
state, Bob can send Alice one of two particles in a sing
state. This, however, does not help him. From the part
remaining in his possession, he cannot determine which m
surement Alice made, because his particle could be in on
four possible states, and these cannot all be orthogonal.

In summary, the procedure outlined here provides pro
tion against eavesdropping, and some protection aga
cheating. The presence of an eavesdropper leads to e
~misidentification of states! while the presence of a cheat
leads to an increased failure rate.

V. CONCLUSION

We have examined the problem of distinguishing betwe
two two-qubit states without error by using local measu
ments and either no or limited classical communication.
the first case we found that only one of the two states can
identified; the other generates a failure indication. In the s
ond case, for some pairs of states it is possible to identify
states with the lowest possible failure probability~the IDP
limit !, and for others the failure probability with limited clas
sical communication is higher than the optimal value.
nally, we proposed a secret sharing scheme based on
procedure using limited classical communication.

Natural generalizations of this work are to higher dime
sions, to more than two states, and to states with more
two particles. Many of our results rely explicitly on the fa
that we are considering qubits, and the extension to qudi
not straightforward. For example, we found that with bip
tite qubit states it is not possible to distinguish two non
thogonal states without using classical communication.
could tell if we had one of the two, but if the other state w
sent our procedure would always fail. However, if we co
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sider qutrits, whose basis states areu0&, u1&, and u2&, then
the two bipartite states

uC0&5
1

A2
~ u0&u0&1u2&u2&),

uC1&5
1

A2
~ u1&u1&1u2&u2&), ~59!

which are not orthogonal, can be distinguished without cl
sical communication. Measuring in the basis$u0&,u1&,u2&%,
Alice and Bob will always obtain the same result, and if th
obtainu0&, they know thatuC0& was sent, if they obtainu1&,
then uC1& was sent, and if they obtainu2&, then they have
failed. Note that for these two states,PIDP51/2, and that the
success probability of the above scheme is also 1/2. Th
fore, the above two states provide an example of a situa
in which the optimal success probability can be achieved
local measurements without any classical communication

The extension to more than two states also introduces
elements. For example, Ghoshet al.have shown that it is no
possible to deterministically distinguish either three or fo
orthogonal two-qubit states using only local operations a
classical communication@12#, and a general condition fo
when orthogonal, bipartite 23d states~one of the particles is
a qubit and the other a qudit! can be distinguished by LOCC
was found recently by Walgate and Hardy@13#. This suggests
that there is much still to be learned about distinguish
multipartite states using local operations and classical c
munication.
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APPENDIX

We now want to show that, if no classical communicati
is permitted, then at most one state can be identified.
begin by using the conditions on the states and POVM
erators to derive additional, simpler ones. For example,
have that

A0B0uC1&50, A0B1uC1&50. ~A1!

Acting on the first of these withB0
† , the second withB1

† ,
adding, and making use of Eq.~1!, we find that

05A0~ I B2Bf
†Bf !uC1&

5A0uC1&, ~A2!

where, in going from the first to the second line, we not
that A0Bf uC1&50. Similarly, we find that

B0uC1&50, A1uC0&50,

B1uC0&50. ~A3!
4-8
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The next step is to express the statesuC j&, where j
50,1, in terms of their Schmidt bases~see Sec. III!

uC0&5(
j 50

1

Al0 j uuA j& ^ uuB j&,

uC1&5(
j 50

1

Al1 j uvA j& ^ uvB j&. ~A4!

Application of the two conditions onuC1& in the previous
paragraph implies the following.~i! if l10Þ0 andl11Þ0,
then A0uvA j&50, for j 50,1, and this implies thatA050.
We also have thatB050. ~ii ! If one of thel1 j ’s is zero, and
we can assume, without loss of generality, thatl1150, then
we have thatA0uvA0&5B0uvB0&50.

Similarly, the two conditions onuC0& give us~iii ! if l00
Þ0 and l01Þ0, then A15B150; ~iv! If l0150, then
A1uuA0&5B1uuB0&50.

We now have a number of cases to examine. If conditi
~i! and ~iii ! are true, the only nonzero operators are the f
ure operators, so that the procedure fails all the time. If c
ditions ~ii ! and ~iv! are satisfied we have that the POV
operatorsAj andBj must be of the form

A05ujA&^vA1u, B05ujB&^vB1u,

A15uhA&^uA1u, B15uhB&^uB1u, ~A5!

where the vectorsujA&,ujB&,uhA&, anduhB& are as yet unde
termined.

We now examine the consequences of the conditi
A0Bf uC0&50 andA1Bf uC1&50, or

A0uuA0& ^ Bf uuB0&50,

A1uvA0& ^ Bf uvB0&50. ~A6!
tt

,

04230
s
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The first of these equations implies that either^vA1uuA0&
50, which further implies that, up to a constant of modul
1, uvA0&5uuA0&, or Bf uuB0&50. If the first alternative is
true, then bothA0 andA1 acting on either vectoruC j& give
zero, and the measurement always fails. If this alternativ
to be avoided, then we must haveBf uuB0&50. However, the
second equation tells us that, if the measurement does
always fail, Bf uvB0&50. These conditions imply thatBf
50 ~assuming thatuuB0&ÞuvB0&; if this is not true the mea-
surement always fails!. We then have thatI B5B0

†B0

1B1
†B1, which can only be true ifuvB1&5uuB0& or uvB0&

5uuB1&, so that̂ C0uC1&50. Summarizing, we can say tha
if ~ii ! and ~iv! are satisfied, which implies thatuC0& and
uC1& are product states, then either they are orthogonal
the measurement always fails.

Finally, let us see what happens if~i! and~iv! are true@the
final alternative,~ii ! and ~iii ! being true, is equivalent#. This
implies thatA05B050, so thatuC0& is never detected, and
that uC0& is a product state. Using techniques similar
those in the previous paragraphs, we find that

A15uhA&^uA1u, B15uhB&^uB1u,

Af5ujA&^uA0u Bf5ujB&^uB0u, ~A7!

where the vectorsujA&, ujB&, uhA&, and uhB& are undeter-
mined unit vectors. The final conditions are given by usi
the above expressions in the equationsA1Bf uC1&50 and
AfB1uC1&50 to give

~^uA1u ^ ^uB0u!uC1&50,

~^uA0u ^ ^uB1u!uC1&50. ~A8!

An example satisfying these conditions is given in Sec. I
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