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Polynomial invariants of four qubits
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We describe explicitly the algebra of polynomial functions on the Hilbert space of four-qubit states that are
invariant under the group SL(2,C)4 of stochastic local quantum operations assisted by classical communica-
tion. From this description, we obtain a closed formula for the hyperdeterminant in terms of low degree
invariants.
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I. INTRODUCTION

Various classifications of states with up to four-qub
have been recently proposed, with the aim of understand
the different ways in which multipartite systems can be
tangled@1–5#. However, one cannot expect that such clas
fications will be worked out for an arbitrary numberk of
qubits, and there is a need for a coarser classification sch
which would be computable for generalk. In Ref. @6#, Kly-
achko proposed to assimilate entanglement with the no
of semistabilityof geometric invariant theory. In this contex
a semistable state is one which can be separated from 0
polynomial invariant of SL(2,C)k, the point in the geometric
approach being that explicit knowledge of the invariants
in principle, not necessary to check this property.

In this paper, we construct a complete set of algebr
invariants of four-qubit states. This allows us to identify t
semistable states in the classification of Verstraeteet al. @4#,
and to obtain a simple closed form for the hyperdetermina

Let V5C2 be the local Hilbert space of a spin-1
2 particle,

andH5V^ 4 be the state space of four particles, regarded
the natural representation of the groupG5SL(2,C)4, known
in the context of quantum-information theory~QIT! as the
group of reversible stochastic local quantum operations
sisted by classical communication~SLOCC! @1,7#.

If u j &, j 50,1 is any basis ofV, a stateuC& can be written
as

uC&5 (
i , j ,k,l 50

1

Ai jkl u i & ^ u j & ^ uk& ^ u l & ~1!

and the question of which normal form can be achieved
uC& by varying independently the bases of the four copies
V has been solved only recently@4#, although the case o
three-qubit states is classical and relatively simple@8#.

In the following, we give a complete@9# description of the
polynomial functionsf (Ai jkl ) which are invariant under the
SLOCC group SL(2,C)4. This amounts to the construction o
a moduli space for four-qubit states. Our strategy is to fi
first the Hilbert series of the algebra of invariantsJ. Next,
we construct by classical methods four invariants of the
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quired degrees. The knowledge of the Hilbert series redu
then the proof of algebraic independence and complete
to simple verifications. The values of the invariants on t
orbits of Ref.@4# are tabulated in the Appendix.

II. THE HILBERT SERIES

Let Jd be the space ofG-invariant homogeneous polyno
mial functions of degreed in the variablesAi jkl . Using some
elementary representation theory, it is not difficult to sho
that Jd is zero for d odd, and that ford52m even, the
dimension ofJd is equal to the multiplicity of the trivial
character of the symmetric groupS2m in the fourth power
(xmm)4 of its irreducible character corresponding to the p
tition @m,m#. This is the same as the scalar produ
^(xmm)2u(xmm)2&, which can be evaluated by means of t
formulas of Refs.@11,12# giving the decomposition into irre
ducible characters of any productxlxm whenl andm have
at most two parts. This yields the Hilbert series ofJ
5 % dJd in the form @13#

(
d>0

dimJ dtd5
1

~12t2!~12t4!2~12t6!
. ~2!

This formula shows that the Conjecture 2.6.5.3 of Ref.@6#
cannot be correct, since it predicts that the hyperdetermin
which is of degree 24, should be one of the generators.
tually, the algebra of invariants is free on generators of
grees 2,4,4,6, as suggested by the Hilbert series.

III. A FUNDAMENTAL SET OF INVARIANTS

Indeed, it is possible to construct invariants of the
quired degrees and to check that they are algebraically in
pendent. To reduce the size of the expressions, we shall w
the components ofuC& as

Ai jkl 5ar , r 50, . . .,15, ~3!

wherer is the integer whose binary expression isi jkl , that
is, r 58i 14 j 12k1 l . We shall consider them as the coef
cients of a quadrilinear form

A~x,y,z,t!5 (
i , j ,k,l 50

1

Ai jkl xiy jzkt l ~4!
©2003 The American Physical Society03-1
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on V3V3V3V. Such a form is known to have an invaria
H of degree 2, which is also one of the hyperdetermina
introduced by Cayley@15#. It is given by

H5a0a152a1a142a2a131a3a122a4a11

1a5a101a6a92a7a8 , ~5!

and the two independent invariants of degree 4 are any
of the three determinants which can be formed by interp
ing A as a linear mapC4→C4 ~see Ref.@17#!,

L5Ua0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

U , ~6!

M5Ua0 a8 a2 a10

a1 a9 a3 a11

a4 a12 a6 a14

a5 a13 a7 a15

U , ~7!

N5Ua0 a1 a8 a9

a2 a3 a10 a11

a4 a5 a12 a13

a6 a7 a14 a15

U . ~8!

~9!

One has the relation

L1M1N50, ~10!

but it is easily checked that any two of them are linea
independent, and also thatH2 cannot be expressed as a line
combination of them.

To construct a sextic invariant algebraically independ
from the previous ones, we shall apply the methods of c
sical invariant theory, and first find some covariants, that
homogeneousG-invariant polynomials in the form coeffi
cientsAi jkl and in the original variables~see, e.g., Ref.@18#
for a modern presentation!. The dimension of the spac
Cd,k1 ,k2 ,k3 ,k4

of covariants which are of degreed in A, k1 in

x, and so on, is equal to the multiplicity of the trivial cha
acter ofSd in the product

x l 11k1 ,l 1x l 21k2 ,l 2x l 31k3 ,l 3x l 41k4 ,l 4, ~11!

whered52l i1ki for all i. This can still be evaluated from
the knowledge of the productsxlxm of two-part characters
and one can see thatA has six covariants of degree 2, whic
are biquadratic forms in all possible pairs of variables. Su
covariants are easily constructed, these are the determin
of order 2 of the partial derivatives ofA with respect to the
complementary pair of variables, e.g.,

bxy~x,y!5detS ]2A

]zi]t j
D . ~12!
04230
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Each of these biquadratic forms can be interpreted as a
linear form on the three-dimensional spaceS2(C2), and one
can define 333 matrices by

bxy~x,y!5@x0
2 ,x0x1 ,x1

2#BxyF y0
2

y0y1

y1
2
G ~13!

and similarly for the other pairs. Let, for any pair of vect
variables (u,v),

Duv5det~Buv!. ~14!

These determinants are sextic invariants ofA. Since the
space of sextic invariants is four dimensional, they must
linearly dependent. In fact,

Dxy5Dzt , Dxz5Dyt , and Dxt5Dyz, ~15!

but Dxy , Dxz , and Dxt are linearly independent. One ca
check that

HL5Dxz2Dxt , ~16!

HM5Dxt2Dxy , ~17!

HN5Dxy2Dxz ~18!

and thatH3 is not in the subspace spanned by theDuv . The
above results, together with the knowledge of the Hilb
series, allow us now to prove that the algebra of invariant
free, and that any of theDuv’s can be taken as the generat
of degree 6. Indeed, it is sufficient to check that the Jacob
matrix of the chosen generators has rank 4~this is easily
done using the specializationGabcd of the Appendix!.

We will use in the sequel

J5C @H,L,M ,Dxt#. ~19!

IV. THE HYPERDETERMINANT IN TERMS OF THE
FUNDAMENTAL INVARIANTS

Here, according to the general formula of Ref.@19#, the
Cayley hyperdeterminant~in the sense of Refs.@5,19#! is of
degree 24. It must therefore admit an expression in term
the fundamental invariants, whose explicitation is an int
esting question. To answer it, we shall need again the co
riantsbuv . Let us use, for example,bxt . We can considerA
as a trilinear formT in x,y,z, the fourth variablet being
treated as a parameter. The Cayley hyperdeterminant DeT)
of this trilinear form is homogeneous of degree 4 in its c
efficients, which are themselves linear forms int. Hence,
R(t)5Det(T) is a binary quartic int0 ,t1, and we can form
its discriminantD, which will be an invariant ofA. Accord-
ing to Schläfli @20# ~see also Refs.@5,19#!, in this case,D is
equal to Det(A).

It follows from the well-understood invariant theory o
binary trilinear forms@21,22# that R(t) is equal to the dis-
criminant of the quadratic form inx,
3-2
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POLYNOMIAL INVARIANTS OF FOUR QUBITS PHYSICAL REVIEW A67, 042303 ~2003!
Qt~x!5bxt~x,t!, ~20!

that is,

R~ t!5detS ]2bxt

]xi]xj
D . ~21!

Let

R~ t!5c0t0
414c1t0

3t116c2t0
2t1

214t0t1
31c4t1

4 . ~22!

It is well known that the algebra of invariants of the bina
quartic is free over the two generators

S5c0c424c1c313c2
2 , ~23!

T5c0c2c42c0c3
212c1c2c32c1

2c42c2
3 , ~24!

and that its discriminant is given by

D5S3227T2. ~25!

In the classical language,S is the apolar ofR with itself, and
T is its catalecticant~see Ref.@18#!.

The invariantsSandT of R being obviously invariants o
A, the problem of expressing Det(A) is terms of the funda-
mental invariants ofA is reduced to the one of finding th
expressions ofS andT @23#.

With the help of a computer algebra system, we obtain
values

S5
1

12
H42

2

3
H2L1

2

3
H2M22HDxt1

4

3
~L21LM1M2!

~26!

and

T5
1

216
H62

1

18
H4~L2M !2

1

6
H3Dxt1

1

9
H2~2L22LM

12M2!1
2

3
H~L2M !Dxt2

8

27
~L32M3!

2
4

9
LM ~L2M !1Dxt

2 . ~27!

Setting D5Dxt , U5H224(L2M ), and V512(HD
22LM ), these expressions can be recast into the more
egant form

12S5U222V, ~28!

216T5U323UV1216D2. ~29!

This suggests thatU andV might have a geometric meaning
Actually, similar expressions occur in the course of Schla¨fli’s
calculations@20#. He does not mention their invariant the
retic meaning, however, and prefers to end up with an
pression ofD as a polynomial inH, W5Dxy1Dxz1Dxt ,
S5L21M21N2, and P5(L2M )(M2N)(N2L), which
are invariant under permutations of the indicesi jkl .
04230
e
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V. CONCLUSION

A fundamental issue in QIT is the understanding of e
tanglement. However, as pointed out in Ref.@6#, there is no
universal agreement on the precise definition of entan
ment and on what should be its proper measure. It is ap
ently this lacune which motivated recent attempts to obta
complete classification ofk-qubit states under the SLOCC
groupG @7,1,5#.

Some familiarity with classical invariant theory leave
little hope that such a classification can be achieved in g
eral. If we compare with the somewhat easier classical pr
lem of binary forms, which, in physical terms, amounts
the classification of single spin-s states under SL(2,C), a
complete solution is known only up to spins54 ~with still
some unsolved questions in the cases57/2), and most ex-
perts agree that the other cases will remain out of reach

So, it is unlikely that the complete SLOCC classificatio
of k-qubit states will ever be found fork>8, and it is prob-
able that formidable computational difficulties will arise we
before this value@24#. Actually, the orbit structure is still
completely unknown fork.4.

Now, if we adopt the definition of entanglement propos
in Ref. @6#, that is, to identify entangled states with the sem
stable vectors of geometric invariant theory, the main res
of the present paper can be interpreted as a numerical c
rion of entanglement for the four-qubit states. Indeed
semistable state is by definition a state which can be se
rated from 0 by some invariant polynomial. Thus, accord
to Ref. @6#, an entangled four-qubit state would be one f
which at least one of the four polynomialsH,L,M ,D takes a
nonzero value. As we shall see below, this definition need
be improved. However, it is plausible that refined entang
ment measures for four-qubit states might be built from
absolute values of these invariants. These would be nat
generalizations of the concurrenceC and the three-tanglet
in the two- and three-qubit cases, which are proportion
repectively, to the absolute values of the determinant and
the hyperdeterminant@5#, the only polynomial invariants in
these cases.

From a geometric point of view, our results show that t
moduli space of entangled states is the weighted projec
spaceP(1,2,2,3), which can be embedded as a rational thr
fold in 13-dimensional projective space. Of course, the
proach to semistability and moduli spaces by explicit co
struction of the polynomial invariants has its limits, and it
unlikely that this can be done for more that five qubits.

Note also that the notion of semistability can be used o
to characterize some generic kind of entanglement. Inde
even in the three-qubit cases, the so-calledW state
(1/A3)(u001&1u010&1u100&) is not semistable~its hyperde-
terminant is zero!, although it should certainly be considere
as entangled~even in a strong sense, according to Ref.@1#!.
The natural candidates for constructing further measure
entanglement appropriate to such states are the covarian
classical invariant theory, which are completely known in t
three-qubit case@22#.

We expect to be able to describe in a forthcoming pa
the algebra of covariants in the four-qubit case, which wo
3-3
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not only reproduce the complete classification of the orb
but also to give the equations of their closures, which
algebraic varieties, and provide new insights about entan
ment measures for unstable states. Another case wh
seems to be readily tractable is the case of three spin-1 st
The geometric classification of the orbits was known
1938@25#, and numerical calculation of the Hilbert series
invariants up to degree 108 indicates that it should be

h~ t !5
1

~12t6!~12t9!~12t12!
. ~30!

Since independent invariantsI 6 ,I 9 ,I 12 of the appropriate de
grees are known@26#, one can consider that the SLOC
classification and the semistability problems are essent
solved in this case.

Other cases of less practical importance, such as th
including two spin-12 particles and one particle of spins
>1, are easily solved. Fors51, there is only one invarian
of degree 6, the hyperdeterminant. Fors53/2, the hyperde-
terminant is identically zero, but there is still one invariant
degree 4, which is the only determinant that can be form
by displaying the components ofuC& in a 434 matrix. Fi-
nally, for s>2, there are no invariant polynomials.
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APPENDIX: APPLICATION TO THE CLASSIFICATION
OF VERSTRAETE et al.

To conclude, let us discuss the semistability of the orb
obtained in Ref.@4# ~see this reference for notation!. For the
family Gabcd, the values of the fundamental invariants a
@27#

H5
1

2
~a21b21c21d2!, ~A1!

L5abcd, ~A2!

M5F S c2d

2 D 2

2S a2b

2 D 2GF S a1b

2 D 2

2S c1d

2 D 2G ,
~A3!

D52
1

4
~ad2bc!~ac2bd!~ab2cd!, ~A4!
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and the hyperdeterminant is1256V(a2,b2,c2,d2)2, where V
denotes the Vandermonde determinant. ForLabc2

,

H5
1

2
~a21b212c2!, ~A5!

L5abc2, ~A6!

M5Fc22S a1b

2 D 2G S a2b

2 D 2

, ~A7!

D52
1

4
c2~a2b!2~ab2c2!, ~A8!

andD50. ForLa2b2
,

H5a21b2, ~A9!

L5a2b2, ~A10!

M50, ~A11!

D50, ~A12!

andD50. ForLab3
,

H5
1

2
~3a21b2!, ~A13!

L5a3b, ~A14!

M5Fa22S a1b

2 D 2G S a2b

2 D 2

, ~A15!

D5
1

4
a3~a2b!3, ~A16!

andD50. ForLa4
,

H52a2, ~A17!

L5a4, ~A18!

M50, ~A19!

D50, ~A20!

andD50. ForLa203% 1̄
, there is still one nonzero invariant

H5a2, ~A21!

so that all the above six families of orbits are semistab
whilst the remaining three are unstable.
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