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Polynomial invariants of four qubits
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We describe explicitly the algebra of polynomial functions on the Hilbert space of four-qubit states that are
invariant under the group SL(@* of stochastic local quantum operations assisted by classical communica-
tion. From this description, we obtain a closed formula for the hyperdeterminant in terms of low degree
invariants.
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[. INTRODUCTION quired degrees. The knowledge of the Hilbert series reduces
then the proof of algebraic independence and completeness
Various classifications of states with up to four-qubitsto simple verifications. The values of the invariants on the
have been recently proposed, with the aim of understandingrbits of Ref.[4] are tabulated in the Appendix.
the different ways in which multipartite systems can be en-
tangled[1-5]. However, one cannot expect that such classi- Il. THE HILBERT SERIES
fications will be worked out for an arbitrary numbkrof
qubits, and there is a need for a coarser classification scheme Let Jy be the space dB-invariant homogeneous polyno-
which would be computable for genetal In Ref. [6], Kly- mial functions of degred in the variabled\;,, . Using some
achko proposed to assimilate entanglement with the notioglementary representation theory, it is not difficult to show
of semistabilityof geometric invariant theory. In this context, that 7y is zero ford odd, and that ford=2m even, the
a semistable state is one which can be separated from 0 byddmension of 7, is equal to the multiplicity of the trivial
polynomial invariant of SL(Z;)¥, the point in the geometric character of the symmetric grou@,,, in the fourth power
approach being that explicit knowledge of the invariants is(x™™* of its irreducible character corresponding to the par-
in principle, not necessary to check this property. tition [m,m]. This is the same as the scalar product
In this paper, we construct a complete set of algebraid(x™?/(x™™?2), which can be evaluated by means of the
invariants of four-qubit states. This allows us to identify theformulas of Refs[11,12 giving the decomposition into irre-
semistable states in the classification of Verstrattal. [4], ducible characters of any produgt xy* when\ andu have
and to obtain a simple closed form for the hyperdeterminantat most two parts. This yields the Hilbert series gf

Let V=C2 be the local Hilbert space of a spinparticle, =& 47y in the form[13]
and’H=V®* be the state space of four particles, regarded as
the natural representation of the groBp= SL(2,C)*, known _ § 1
in the context of quantum-information theo(@IT) as the dé:o dim 7 gt :(1—t2)(1—t4)2(1—t6)' @

group of reversible stochastic local quantum operations as-

sisted by classical communicati¢8LOCQO [1,7]. _ .
If j), j=0,1 is any basis oY, a statd¥') can be written This formula shows. that_ the Conjecture 2.6.5.3 of F{é]:
as cannot be correct, since it predicts that the hyperdeterminant,
which is of degree 24, should be one of the generators. Ac-
1 tually, the algebra of invariants is free on generators of de-

_ : . 2,4,4,6, as suggested by the Hilbert series.
V)= Ailidelpelkell 1) 9rees
| > i,j%zo |]k|| > |J> | > | > ( )

. AFUNDAMENTAL SET OF INVARIANTS

and the question of which normal form can be achieved for

| ¥y by varying independently the bases of the four copies of _Indeed, it is possible to construct invariants O.f the.re-
V has been solved only recenti], although the case of quired degrees and to check that they are algebraically inde-

three-qubit states is classical and relatively sinigle pendent. To reduce the size of the expressions, we shall write

In the following, we give a comple{@] description of the the components dt¥') as
polynomial functionsf(Aj,;) which are invariant under the
SLOCC group SL(Z;)*. This amounts to the construction of
a modull space for' four-qubit states. Ou.r stra}tegy IS to flndwherer is the integer whose binary expressiorijisl, that
first the Hilbert series of the algebra of invariafs Next, is r=8i+4i+2ktl. We shall consider them as the coeffi-
we construct by classical methods four invariants of the re-"’ J S

cients of a quadrilinear form

Aijw=a,, r=0,...15, 3)

1
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onVXVXVXV. Such a form is known to have an invariant Each of these biquadratic forms can be interpreted as a bi-
H of degree 2, which is also one of the hyperdeterminantsinear form on the three-dimensional sps8%(?), and one

introduced by Cayley15]. It is given by can define X 3 matrices by
H=apai5—aja14— @813+ azado— a4a11 v5
+asa ot agag—a-ag, (5) by(X,Y) =[X§,XoX1,X71Byy| VoY1 (13
2
and the two independent invariants of degree 4 are any two i

of the three determinants which can be formed by interpret

ing A as a linear map?—(* (see Ref[17]) and similarly for the other pairs. Let, for any pair of vector

variables (,v),
ap a4 ag QA

DuU = de(BUU)' (14
a; a5 a9 a3
L= a, 8 8in 8’ 6) These determinants are sextic invariants Aof Since the
2 6 “10 a4 space of sextic invariants is four dimensional, they must be
a3 a7 an ass linearly dependent. In fact,
dp ag ax Qaj Dyxy=Dy, Dy,=Dy;, and D,=Dy, (15
a; ag ag an . .
M= , (7) butD,y, Dy,, andD,; are linearly independent. One can
s Qdp ag Ay check that
as a;3 a; a
5 13 7 15 HL:DXZ— Dxt, (16)
a, a; ag ag
N— a; az Qapp an ) AM =Dy ny, a7
a.4 a.5 alz a13 ’ H N = ny_ DXZ (18)

ag a; ay a
6 T T os and thatH? is not in the subspace spanned by g . The

©) above results, together with the knowledge of the Hilbert
One has the relation series, allow us now to prove that the algebra of invariants is
free, and that any of thB,’s can be taken as the generator
L+M+N=0, (100 of degree 6. Indeed, it is sufficient to check that the Jacobian
matrix of the chosen generators has rankthis is easily
but it is easily checked that any two of them are linearlyqone using the specializatid®,p,.q of the Appendix.
independent, and also thidf cannot be expressed as a linear e will use in the sequel
combination of them.

To construct a sextic invariant algebraically independent J=C[H,L,M,D]. (19
from the previous ones, we shall apply the methods of clas-
sical invariant theory, and first find some covariants, that is,
homogeneouss-invariant polynomials in the form coeffi-
cientsAj;; and in the original variabletsee, e.g., Re{.18]
for a modern presentatipnThe dimension of the space Here, according to the general formula of Rf9], the
Ca k, k, ky .k, Of COvariants which are of degrekin A, k; in - Cayley hyperdeterminariin the sense of Ref§5,19)) is of
x, and so on, is equal to the multiplicity of the trivial char- degree 24. It must therefore admit an expression in terms of

IV. THE HYPERDETERMINANT IN TERMS OF THE
FUNDAMENTAL INVARIANTS

acter of&y in the product the fundamental invariants, whose explicitation is an inter-
esting question. To answer it, we shall need again the cova-
x'rHielylatkadaylatks laylatka la) (11)  riantsb,,. Let us use, for examplda,;. We can consideA

as a trilinear formT in x,y,z, the fourth variablet being
Whered:2|i+ki for all i. This can still be evaluated from treated as a parameter. The Cay|ey hyperdeterminanﬂ'pet(
the knowledge of the producig'x* of two-part characters, of this trilinear form is homogeneous of degree 4 in its co-
and one can see thathas six covariants of degree 2, which efficients, which are themselves linear formstinHence,
are biquadratic forms in all possible pairs of variables. Suctr(t)=Det(T) is a binary quartic irto,t;, and we can form
covariants are easily constructed, these are the determinangs discriminantA, which will be an invariant ofA. Accord-

of order 2 of the partial derivatives & with respect to the  jng to Schidli [20] (see also Refg5,19)), in this caseA is

complementary pair of variables, e.g., equal to Detd).
2A It follows from the well-understood invariant theory of
b =d 12 binary trilinear forms[21,22 that R(t) is equal to the dis-
xy(X,y) =det ———|. (12 S . ;
Jz;ot; criminant of the quadratic form iR,
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Qi(X)=by(x,1), (20) V. CONCLUSION
that is A fundamental issue in QIT is the understanding of en-
' tanglement. However, as pointed out in R, there is no
9%byy universal agreement on the precise definition of entangle-
R(t)=de( &x-&x-)' (21) " ment and on what should be its proper measure. It is appar-
w ently this lacune which motivated recent attempts to obtain a
Let complete classification dk-qubit states under the SLOCC
groupG [7,1,5.
R(t)=Cotg+4citity +6Cot5ts +4toti +cgt]. (22 Some familiarity with classical invariant theory leaves

little hope that such a classification can be achieved in gen-
eral. If we compare with the somewhat easier classical prob-
lem of binary forms, which, in physical terms, amounts to

It is well known that the algebra of invariants of the binary
quartic is free over the two generators

S= coc4—4clcg+30'§, (23) the classificati(_)n c_)f single spim-states ur_1der SL_(Q), a
complete solution is known only up to sp&+4 (with still
T=CoCyCq— CoCe+2C,CoCq— C2C4— C3, (24) ~ some unsolved questions in the case7/2), and most ex-
perts agree that the other cases will remain out of reach.
and that its discriminant is given by So, it is unlikely that the complete SLOCC classification
of k-qubit states will ever be found f&e=8, and it is prob-
A=s*-27T2, (25  able that formidable computational difficulties will arise well

. ) o before this valud24]. Actually, the orbit structure is still
In.th.e classical _IanguagS,|s the apolar oR with itself, and completely unknown fok>4.
Tis its catalecticantsee Ref[18]). _ . Now, if we adopt the definition of entanglement proposed
The invariantsSandT of R being obviously invariants of iy Ref. [6], that is, to identify entangled states with the semi-
A, the problem of expressing Dé{ is terms of the funda-  gtaple vectors of geometric invariant theory, the main result
mental invariants ofA is reduced to the one of finding the of the present paper can be interpreted as a numerical crite-

expressions of and T [23]. _rion of entanglement for the four-qubit states. Indeed, a
With the help of a computer algebra system, we obtain thgemistable state is by definition a state which can be sepa-
values rated from 0 by some invariant polynomial. Thus, according

1 5 5 4 to Ref. [6], an entangled four-qubit stgte would be one for
S= —H*— ZH2L+ =H2M —2HD+ = (L2+ LM + M?) which at least one of the four polynomidisL,M,D takes a
12 3 3 3 nonzero value. As we shall see below, this definition needs to
(260 be improved. However, it is plausible that refined entangle-

ment measures for four-qubit states might be built from the

and absolute values of these invariants. These would be natural
1 1 1 1 generalizations of the concurren€eand the three-tangle
T= 2_16H6_ FSH“(|_—|\/|)— 6H3DxpL §H2(2L2—LM in the two- and three-qubit cases, which are proportional,

repectively, to the absolute values of the determinant and of
2 3 the hyperdeterminan6], the only polynomial invariants in

+2M?)+ §H(L—M)Dxt— 2—7(L3—M3) these cases.

From a geometric point of view, our results show that the

4 moduli space of entangled states is the weighted projective

—gtM(L-M )+D%. (27)  spaceP(1,2,2,3), which can be embedded as a rational three-

fold in 13-dimensional projective space. Of course, the ap-

Setting D=D,,, U=H2—4(L—M), and V=12(HD proach to semistability and moduli spaces by explicit con-

—2LM), these expressions can be recast into the more eptruction of the polynomial invariants has its limits, and it is
’ unlikely that this can be done for more that five qubits.

egant form _ ) o
Note also that the notion of semistability can be used only
12S=U2-2V, (28)  to characterize some generic kind of entanglement. Indeed,
even in the three-qubit cases, the so-calldd state
216T=U3-3UV+216D2. (29 (1/\/5)(|OO]>+|010>+|100>) is not semistabléits hyperde-

terminant is zerp although it should certainly be considered
This suggests thal andV might have a geometric meaning. as entangledeven in a strong sense, according to R&f).
Actually, similar expressions occur in the course of Sittda  The natural candidates for constructing further measures of
calculations[20]. He does not mention their invariant theo- entanglement appropriate to such states are the covariants of
retic meaning, however, and prefers to end up with an exelassical invariant theory, which are completely known in the

pression ofA as a polynomial inH, W=D, +D,,+D;, three-qubit casg22].
3=L2+M?+N?, andII=(L—M)(M—N)(N—L), which We expect to be able to describe in a forthcoming paper
are invariant under permutations of the indi¢gd . the algebra of covariants in the four-qubit case, which would
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not only reproduce the complete classification of the orbitsand the hyperdeterminant igsV(a?b?c?,d?)2, whereV
but also to give the equations of their closures, which arelenotes the Vandermonde determinant. EgQyc,.
algebraic varieties, and provide new insights about entangle-
ment measures for unstable states. Another case whichs
seems to be readily tractable is the case of three spin-1 states.
The geometric classification of the orbits was known by
1938[25], and numerical calculation of the Hilbert series of L=abd?, (AB)
invariants up to degree 108 indicates that it should be

1
H=§(a2+b2+2c2), (A5)

, [atb\%]/a—b)|?
) 1 M= =) |\ 2] (A7)
© (1-t%)(1-t9(1-tH 30 .
Since independent invarianitg, 1 9,1 1, of the appropriate de- D=- Zcz(a— b)*(ab—c?), (A8)
grees are knowr26], one can consider that the SLOCC
classification and the semistability problems are essentiallpndA=0. ForlL,, ,
solved in this case.
Other cases of less practical importance, such as those H=a’+b?, (A9)
including two spins particles and one particle of spim 912
=1, are easily solved. Fa@=1, there is only one invariant L=a"b%, (A10)
of degree 6, the hyperdeterminant. Bt 3/2, the hyperde- M=0 (A1D)
terminant is identically zero, but there is still one invariant of '
degree 4, which is the only determinant that can be formed D=0 (A12)
by displaying the components ¢¥) in a 4x4 matrix. Fi- '
nally, for s=2, there are no invariant polynomials. andA=0. ForlL,, ,
3
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APPENDIX: APPLICATION TO THE CLASSIFICATION
OF VERSTRAETE et al. 1
. . . D=za%(a—b)*, (A16)
To conclude, let us discuss the semistability of the orbits 4
obtained in Ref[4] (see this reference for notatipriFor the dA=0. ForL
family G,pcq, the values of the fundamental invariants are@NdA =Y. FOrLa,,
[27] H=2a2, (A17)
1
H=5(a?+b?+c?+d?), (A1) L=a%, (A18)
M =0, (Al19)
L=abcd (A2)
D=0, (A20)
[[e—d|\* [a=b\?|[{atb|® [c+d|? o o
M= 5> 712 > 13 , andA=0. ForLazos@? there is still one nonzero invariant
(A3) H=a2 (A21)

_ 1 so that all the above six families of orbits are semistable
D=~ Z(ad—bc)(ac—bd)(ab—cd), (Ad) whilst the remaining three are unstable.
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