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Bargmann invariants, null phase curves, and a theory of the geometric phase
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We present a theory of the geometric phase based logically on the Bargmann invariant of quantum mechan-
ics, and null phase curves in ray space, as the fundamental ingredients. Null phase curves are themselves
defined entirely in terms of the~third order! Bargmann invariant, and it is shown that these are the curves
natural to geometric phase theory, rather than geodesics used in earlier treatments. The natural symplectic
structure in ray space is seen to play a crucial role in the definition of the geometric phase. Logical consistency
of the formulation is explicitly shown, and the principal properties of geometric phases are deduced as sys-
tematic consequences.
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I. INTRODUCTION

The evolution of our understanding of the geomet
phase~GP! @1# has brought together many aspects of
basic structure of quantum mechanics, both in Hilbert sp
and ray space levels. They include both linear vector sp
features and differential geometric features@2#. During this
development, on one hand, the original assumptions of a
baticity, cyclicity, and unitary evolution were relaxed
stages in significant generalizations@3#. On the other hand
starting from its discovery in an essentially dynamical co
text, it has gradually become clear that the GP is larg
kinematical in content@4#. In the process, important conne
tions to properties of the Bargmann invariants~BI! @5#, and
even to earlier ideas of Pancharatnam in classical optics@6#,
have also been established@7#.

It is well known that the ray space~complex projective
space! associated with the Hilbert space of any quantum s
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tem carries a natural Riemannian metric—the Fubini-Stu
metric @8#—as well as a natural symplectic structure@9#. The
former determines a corresponding family of geodes
which have played an important role in the GP theory in
least two ways. Initially, they were exploited to show how
define the GP for noncyclic evolution governed by the Sch¨-
dinger equation, essentially by converting such an evolut
to a cyclic one by adding on a geodesic to connect the
points @10#. Later they were found to be useful in showin
that phases of BI’s are particular instances of the GP@11#.
The ray space symplectic structure has been known to
intimately involved with GP’s, specially for cyclic evolution

Subsequent work has shown that rather than geode
the really basic geometric objects needed to connect BI’s
GP’s are a family of ray space and Hilbert space cur
which have been named null phase curves~NPC! @12#. It has
been shown that while geodesics are NPC’s, the latter for
vastly larger class of curves having little to do with th
Fubini-Study metric or the notion of geodesics. They a
lead to the most general possible connection between
and GP’s.

The purpose of this paper is to provide a logical basis
defining the GP and understanding its properties. We w
show that the primitive building block is the BI~in particular,
the three-vertex BI! in terms of which NPC’s can be defined
Once this is in hand, the GP~for the noncyclic case in gen
eral! can be defined as a derived object directly as a suita
two-dimensional surface integral of the symplectic two-fo

ev
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on ray space. Thus in this approach, primary importanc
given to BI’s, NPC’s, and ray space symplectic structu
Earlier definitions of the GP, in particular, the kinematic de
nition, are seen to be immediate consequences of the pre
one.

We shall make frequent reference tothegeodesic arc con
necting two given points in state space. By this we sh
always mean theshortergeodesic, which isuniqueassuming
that the given pair of points correspond tononorthogonal
states.

The contents of this paper are arranged as follows. In S
II, we assemble some details of notation relating to the H
bert and ray spaces of a general quantum-mechanical sys
We define in a precise manner various classes of sm
curves needed for further work; recall the natural one-fo
on Hilbert space and the symplectic two-form on ray spa
and then the kinematic definition of the GP. Section III b
gins with the definition and basic properties of the BI, and
terms of them defines the family of NPC’s in Hilbert and r
spaces. Some important formulas connecting the two are
developed. With this preparation, the definition of the GP
a general open~sufficiently smooth! ray space curve is given
and its consistency is demonstrated. The recovery of the
nematic definition of the GP is also shown, and the conn
tions between BI’s and GP’s, mediated by the uses of NP
are brought out. The emphasis in this section is to display
logical structure of ideas. Section IV explores the proper
of NPC’s from various points of view, emphasizing alwa
that it is these curves that are natural and basic to the s
ture of the GP. The fact that they are far more numerous t
geodesics means that their description is very different fr
that of the latter; in particular, they cannot be viewed
solutions to any local finite-order ordinary differential equ
tions at all. Examples of~infinitely many! NPC’s connecting
any two given ray space points; a description of the m
general NPC; of submanifolds every curve in which is
NPC; and examples of such submanifolds; are all develop
Section V contains concluding remarks.

There are two appendixes, devoted to basic differen
geometry of Hilbert and ray spaces and to a complete
scription of geodesics, respectively.

II. NOTATIONAL PRELIMINARIES AND KINEMATIC
DEFINITION OF GEOMETRIC PHASE

We denote byH the complex~separable! Hilbert space
describing the pure states of some quantum system.
complex dimension ofH may be finite, sayn51,2, . . . , or
infinite. The inner product and the norm for vecto
c,f, . . . in H are written as (c,f) and ici , respectively.
The subset of unit vectors inH is defined by

B5$cPHuici51%,H. ~2.1!

For dimensionH5n finite, B is the real Euclidean spher
S2n21 of real dimension (2n21). It is both connected and
simply connected. The space of unit rays associated witH
04211
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andB is denoted byR. It is the quotient ofB with respect to
the equivalence relationc;eiac among unit vectors for all
real phasesa:

R5B/U~1!. ~2.2!

Elements ofR are represented by pure state density ma
ces, or one-dimensional projections,r; and there is a projec
tion p from B to R:

p:B→R:cPB→p~c!5rc5cc†PR. ~2.3!

As is well known,B is a principal U(1) bundle overR,
which in turn for finite dimensions is the complex projectiv
space CPn21. The real dimension ofR in that case is 2(n
21), and it is also connected and simply connected.

For considerations of geometric phases, null phase cur
and geodesics, we need to deal with continuous parametr
curvesC,B, and their projectionsC5p(C),R, obeying
suitable smoothness conditions. They are always direc
curves. We describe them as follows:

C5$c~s!PBus1<s<s2%,B;

C5p~C!5$r~s!5c~s!c~s!†PRus1<s<s2%,R.
~2.4!

In general, we assume that the parameters varies over a
closed finite interval@s1 ,s2#, R, exceptions will be indi-
cated. We permit strictly monotonic reparametrizations
these curves,

s→s85 f ~s!,

d f~s!

ds
.0, ~2.5!

and impose other smoothness conditions as appropriate
described below. We also permit smooth local phase chan
along a curveC to lead to a new curveC 8,

C 85$c8~s!5eia(s)c~s!us1<s<s2%,B ~2.6!

having the same image inR:

p~C 8!5p~C!5C,R. ~2.7!

Thus, bothC andC 8 are lifts, fromR to B, of C.
We now define three classes of curves, with differe

smoothness conditions, as follows.
Class I:

„c~s1!,c~s2!…Þ0

c~s!,r~s! continuous and piecewise once differentiable.
~2.8!

Class II:

„c~s!,c~s8!…Þ0, any s,s8P@s1 ,s2#

c~s!,r~s! continuous once differentiable. ~2.9!
4-2
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Class III:

„c~s1!,c~s2!…Þ0

c~s!, r~s! continuous twice differentiable.~2.10!

It will turn out that class-I curves are those for which ge
metric phases can be defined; class-II curves subject to
ther conditions are null phase curves; and class-III cur
obeying suitable differential equations are geodesics. In e
case, bothC,B andC5p(C),R will be assumed to obey
the same smoothness conditions and both will belong to
same class. Similarly, reparametrizations and local ph
changes will be assumed to preserve the smoothness pr
ties of each class.

The basic differential geometric objects needed for
purposes, with suitable notations, are given in Appendix
@13#. These are a one-formA on B; its exterior derivative
two-form dA on B; and a closed nondegenerate symplec
two-form v on R related todA via pullback

dA5p* v. ~2.11!

The one-formA is essentially defined by giving its integra
along any curveC,B of class I:

E
C
A5ImE

s1

s2
dsS c~s!,

dc~s!

ds D52 i E
s1

s2
dsS c~s!,

dc~s!

ds D .

~2.12!

If C happens to be a closed loop withc(s2)5c(s1) so that
its projectionp(C)5C,R is also a closed loop, we have

R
C
A5E

S
dA5E

S
v, ~2.13!

whereS is any smooth two-dimensional surface inB having
C as boundary, andS is the image ofS in R with C as
boundary:

]S5C,

S5p~S!,]S5C. ~2.14!

The orientations ofS andSare determined by the direction
of C andC, respectively. It is to be emphasized thatv is not
exact, soA is not the pullback viap* of any one-form onR.

Since the two-formv onR will play a primary role in our
definition of the GP, we add the following comments to he
better understand its nature. In the finite-dimensional c
dimensionH5n, we have mentioned thatR5CPn21, the
complex projective space of~complex! dimension (n21);
and it is well known that these spaces are important can
cal examples of symplectic manifolds@9#. This property can
however be also grasped from another point of view. T
unitary group U(n) acting onH via its defining representa
tion has for its Lie algebra u(n), the set of all Hermitian
operators onH. Upon conjugation by elements of U(n)
~which is the adjoint action!, u(n) is mapped onto itself and
broken up into disjoint orbits. Each orbit is essentially
04211
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coset space U(n)/H, whereH is the stability group of any
chosen representative point on the orbit. Most orbits are
neric and of real dimensionn(n21), being the coset spac
U(n)/U(1)3U(1)3•••3U(1) (n factors!. Apart from
these, there are several exceptional or singular orbits of v
ous lower dimensions. From the general Kostant-Kirillo
Souriau theory of coadjoint orbits of Lie groupsG, it is
known that each orbit~generic or exceptional! is a symplec-
tic manifold; the symplectic two-form is obtained by desce
from the Maurer-Cartan two-form on the groupG itself, i.e.,
by quotienting with respect to its kernel@14#. In the case at
hand, the pure state density operators for ann-dimensional
quantum system are elements of u(n). They are clearly acted
upon transitively by conjugation with elements of U(n); and
they form a single nongeneric orbit in the Lie algebra, t
stability groupH in this case being easily seen to be U(
3U(n21). We can then identifyR with the coset space
U(n)/U(1)3U(n21), which is indeed of real dimensio
2(n21); and according to the general theory of coadjo
orbits of Lie groups, it is a symplectic manifold.

Even without appeal to the Kostant-Kirillov-Souria
~KKS! theory and then limiting ourselves to the nongene
orbit of pure state density operators, one can directly disp
the connection between the formsA and dA on B and the
Maurer-Cartan one- and two-forms on U(n).

Denote byg,g8, . . . the matrices of the defining repre
sentation of U(n). The actions of U(n) on B and onR given
by

gPU~n!:cPB→gcPB ~2.15!

and

rPR→grg21PR ~2.16!

are both transitive. Therefore, for any choice of a fiduc
vectorc0PB, we have an onto mapm0 :U(n)→B given by

m0 :gPU~n!→gc0PB. ~2.17!

This map can be used to take any~smooth! curve g
5$g(s)%,G to an image C5$m0(g(s)%5$c(s)
5g(s)c0%,B, and in turn to its projectionC5$r(s)
5c(s)c(s)†5g(s)c0c0

†g(s)21%,R. In the reverse direc-
tion, evidently, the pullbackm0* allows us to takeA anddA
on B to appropriate forms on U(n). From Eq.~2.12! A on B
has the expression

A52 ic†dc. ~2.18!

Combining with Eq.~2.17! we get

m0* A52 im0* ~c†dc!52 ic0
†g†dgc052 i Tr~r0g†dg!.

~2.19!

The expressiong†dg is the matrix of left-invariant
Maurer-Cartan one-forms on U(n), so in Eq.~2.19! we have
the expected connection between the one-formA on B and
the Maurer-Cartan one-forms on U(n). A particular linear
4-3
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combination of the latter, determined by the choice ofc0, is
picked out. It also follows by taking the exterior derivative
Eq. ~2.19! that

m0* dA52 i Tr~r0dg†∧dg!5 i Tr~r0g†dg∧g†dg!,
~2.20!

so here the matrix of left-invariant Maurer-Cartan two-form
on U(n) appears. Hence, ifX1 andX2 are two left-invariant
vector fields on u(n) associated with Hermitian matrice
t1andt2 in u(n),

i Xj
g†dg5 i t j , j 51,2, ~2.21!

then a short calculation shows

m0* dA~X1 ,X2!5~dA!„m0* ~X1!,m0* ~X2!…

5 i X2
i X1

m0* dA

5 i Tr~r0@t1 ,t2# !. ~2.22!

In particular, we can chooset1 and t2 to be two elements
r1 ,r2PR and then we get in Eq.~2.22! the result
i Tr(r0@r1 ,r2#) which agrees with Eq.~A.7!. Thus, the con-
nection betweenA,dA on B and the Maurer-Cartan forms o
U(n), mentioned in the previous paragraph, are made
plicit @15#.

We now recall the definition of the GP according to t
kinematic approach@4#. If C is a class-I curve with imageC,
then the GP forC is

wg@C#5arg„c~s1!,c~s2!…2E
C
A. ~2.23!

Clearly, because of the first term on the right, this phas
defined modulo 2p; and as implied by the notation it is
functional ofC independent of the liftC used to compute the
individual terms on the right. Moreover it is unchanged
any permitted reparametrizations.

In a previous work, Eq.~2.23! was adopted as the defin
tion of the GP, and thereafter null phase curves were defi
and used in various ways@12#. Our approach here will be to
regard null phase curves as primitive objects and to de
GP’s in terms of them. This will be done in the followin
section.

If the end pointsc(s1),c(s2) of C are mutually orthogo-
nal, clearly the GPwg@C# becomes undefined. This is th
reason behind the condition of nonorthogonality of e
points in the definition~2.8! of class-I curves. It ensures tha
for any class-I curve the, GP is well-defined modulo 2p.
However, the definition~2.8! does not forbid the possibility
that for somes0P(s1 ,s2),c(s0) may be orthogonal to eithe
c(s1) or c(s2) or both. Assumec(s0) is indeed orthogona
to c(s1), and lets0 be a point onC and C at which these
curves are differentiable. If for sufficiently smalle both
c(s02e) and c(s01e) are not orthogonal toc(s1), then
the GP’s are defined for the portions ofC running froms1 to
s06e, and they obey
04211
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wg@C for s1<s<s01e#2wg@C for s1<s<s02e#56p,
~2.24!

which are equivalent modulo 2p. Thus, in such a situation
we see that the GP is defined upto just before a poin
orthogonality to the initial point, as well as to a point ju
after; and there is a discontinuity of6p as we cross tha
point.

In passing we may mention that even in the context o
real Hilbert space, the GP survives though in a rudiment
form @16#. The dynamical phase is of course absent, howe
the total phase could be an odd multiple ofp. In fact, each
time the inner product„c(s1),c(s2)… passes through zero
we pick up a contribution6p, just as in Eq.~2.24!. The BI
D3(c1 ,c2 ,c3) @see below# can also have a nontrivial phas
namely,6p when it is negative. All these remarks rema
valid also in the case of a complex Hilbert space, if w
restrict ourselves to the real linear span of a set of vec
taken from an orthonormal basis. The role of such ‘‘rea
subspaces will become evident in the sequel.

III. NULL PHASE CURVES AND A DEFINITION
OF THE GEOMETRIC PHASE

Our aim now is to define NPC inB andR as the basic or
primitive objects, then define GP’s in terms of them, a
derive their properties in a logically consistent manner.
begin with, we recall the definition and properties of t
third-order Bargmann invariant, as the NPC definition w
depend on it. For convenience, we divide this section i
further sections.

A. Bargmann invariants „BI …

Given any three mutually nonorthogonal vecto
c1 ,c2 ,c3PB, projecting ontor1 ,r2 ,r3PR, the third-order
BI is defined as

D3~c1 ,c2 ,c3!5~c1 ,c2!~c2 ,c3!~c3 ,c1!5Tr~r1r2r3!.
~3.1!

Its key properties are well known:~i! for dimensionH>,2 it
is in general complex;~ii ! it is cyclically symmetric;~iii ! as
the second form shows, it is invariant under independ
phase changes in each of the vectorsc1 ,c2 ,c3.

Higher-order BI’s can be defined in a similar manner. F
any m vectorsc1 ,c2 ,...,cmPB, such that no two succes
sive ones are mutually orthogonal, we have the gener
complexmth order BI

Dm~c1 ,c2 , . . . ,cm!5~c1 ,c2!~c2 ,c3!•••~cm ,c1!

5Tr~r1r2•••rm!. ~3.2!

For m52 of course,D2(c1 ,c2) is real non-negative.

B. Null phase curves

A curve C,B of class II, with imageC,R, will be said
to be an NPC if for any three vectors on it, the BI is re
positive:
4-4
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C,CNPC⇔D3„c~s!,c~s8!,c~s9!…

5Tr„r~s!r~s8!r~s9!…5real positive

⇔Tr„r~s!@r~s8!,r~s9!#…50,

any s,s8,s9P@s1 ,s2#. ~3.3!

For convenience, when this condition is obeyed, we refe
both C andC as NPC’s.

It is immediately evident that any connected subset
portion of an NPC, say running froms3 to s4, where
@s3 ,s4#,@s1 ,s2#, is also an NPC.

From Eq.~B13! of Appendix B, it follows that every geo
desic inR ~and any lift of it inB) is an NPC. Since any two
pointsr1 ,r2PR can definitely be connected by a geode
@which is moreover unique if Tr(r1r2).0], we can say that
they can definitely be connected by an NPC. However, as
will see in the following section, provided dimensionH
>3, NPC’s are far more numerous than geodesics: there
infinitely many of them connecting anyr1 ,r2PR.

The definition~2.9! of a class-II curve includes the con
dition that no two vectors along it should be mutually o
thogonal. The motivation for this is now understandable:
need the BI appearing in Eq.~3.3! to be nonzero for any
triplet of vectors on the curve. It will soon emerge that
somewhat more economical definition of an NPC, which
however fully equivalent to Eq.~3.3!, is

C,CNPC⇔D3„c~s0!,c~s!,c~s8!…5real positive,

any fixeds0P@s1 ,s2#, anys,s8P@s1 ,s2#. ~3.4!

Let now C be an NPC. We derive a fundamental formu
for the integral ofA along any lift C of C. For any chosen
reference point s0P@s1 ,s2#, choose some c0(s0)
Pp21

„r(s0)…. By definition of class II, for anysP@s1 ,s2#
and any choice ofc(s)Pp21

„r(s)…, the scalar produc
„c0(s0),c(s)… is nonzero. Adjust the phase ofc(s) to get
c0(s)Pp21

„r(s)… such that

„c0~s0!,c0~s!…5real positive, anysP@s1 ,s2#.
~3.5!

This gives us a particular liftC05$c0(s)us1<s<s2% of C
with the property

„c0~s!,c0~s8!…5real positive, anys,s8P@s1 ,s2#.
~3.6!

We see this by settings95s0 in the definition~3.3! and then
using Eq.~3.5!. This means that any two points onC0 are in
phase in the Pancharatnam sense@6#, a nonlocal property;
and furthermoreC0 is horizontal, a local property,

C0 :S c0~s!,
d

ds
c0~s! D50, any sP@s1 ,s2#. ~3.7!

Therefore, for the end points ofC0 and for the integral ofA
alongC0, we have
04211
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arg„c0~s1!,c0~s2!…50,

E
C0

A50. ~3.8!

Now let C5$c(s)5eia(s)c0(s)% be a general lift ofC ob-
tained fromC0 by a ~sufficiently smooth! local phase trans-
formation. ForC we find in place of Eq.~3.8!,

arg„c~s1!,c~s2!…5a~s2!2a~s1!,

E
C
A52 i E

s1

s2
dsS c~s!,

dc~s!

ds D5E
s1

s2
ds

da~s!

ds
, ~3.9!

that is,

E
C
A5arg„c~s1!,c~s2!…. ~3.10!

This is the basic property of NPC’s that we will use repe
edly.

Concerning the construction of the particular ‘‘Panchar
nam lift’’ C0 of the NPCC5$r(s)5c(s)c(s)†%,R, we
may add the following remark. The liftC0 is completely de-
termined once a choice ofc0(s0) at the reference points0 is
made. Any alteration ofc0(s0) by a phase leads to a rigid o
constant phase change of all points alongC0. One can now
see that the rule~3.5! to determinec0(s) for generals has
the following quite explicit solution:

c0~s!5N~s!r~s!c0~s0!5c~s!e2 iarg„c0(s0),c(s)…,
~3.11!

whereN(s) is a real positive normalization factor,

N~s!5u„c0~s0!,c~s!…u21. ~3.12!

The vectorc0(s) in Eq. ~3.11! is clearly invariant under
changes in phase ofc(s). Then both Eqs.~3.5! and~3.6! are
obeyed by the expression~3.11!:

„c0~s0!,c0~s!…5N~s!„c0~s0!,r~s!c0~s0!…

5u„c0~s0!,c~s!)u.0,

~c0~s!,c0~s8!…5N~s!N~s8!„r~s!c0~s0!,r~s8!c0~s0!…

5N~s!N~s8!Tr„r~s0!r~s!r~s8!….0,

~3.13!

sinceC is given to be an NPC.
Now let C be an NPC fromr1 to r2, and C8 an NPC

from r2 to r1. Choose vectors c1Pp21(r1),c2
Pp21(r2), and liftsC,C 8 of C,C8 from c1 to c2 andc2 to
c1, respectively. The unionsCøC8,R,CøC 8,B are
closed loops. LetS,R be any smooth two-dimensional su
face with boundary]S5CøC8. Combining Eq.~2.11! with
the basic property~3.10! for both C andC 8, we find

C,NPC r1 to r2 , C8NPC r2 to r1 , ]S5CøC8,
4-5
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E
S
v5 R

CøC 8
A5argD2~c1 ,c2!50. ~3.14!

It is perhaps worth emphasizing that while the curvesC,C8
and their liftsC,C 8 are each of class II, since they are NPC
the closed loopsCøC8 and CøC 8 may not be of class II,
and in any case they are not expected to be NPC’s. They
of course class I which requires only piecewise once diff
entiability.

The generalization of Eq.~3.14! to a string of three or
more successive NPC’s, altogether forming a closed lo
involves the phase of a nontrivial BI. Thus for anym>3, if
r1 ,r2 , . . . ,rmPR and Cj , j 11 are NPC’s fromr j to r j 11
for j 51,2, . . . ,m ~with rm115r1), with lifts Cj , j 11 running
from c j to c j 11, we find using Eq.~3.10! repeatedly

]S5C12øC23ø . . . øCm1 , Cj , j 11 NPC’s r j to r j 11 ;

E
S
v5(

j 51

m E
Cj , j 11

A5argDm~c1 ,c2 , . . . ,cm!.

~3.15!

It is because onlyD2(c1 ,c2) is known to be always rea
positive that we obtain a vanishing right-hand side in
result ~3.14!.

C. Definition of the GP

With this preparation we are able to define the GPwg@C#
for any class-I curveC,R from r1 to r2. We choose any
NPCC8,R from r2 to r1, so thatCøC8 is a class-I closed
loop in R, and then choose any two-dimensional surfa
S,R with ]S5CøC8. Thenwg@C# is defined as the inte
gral of v over S @17#:

C class I r1 tor2 , C8NPC r2 to r1 , ]S5CøC8;

wg@C#52E
S
v. ~3.16!

For consistency, we must show that the integral involv
here is independent of the choice of the NPCC8. Pending
that, we see immediately upon comparing Eq.~3.14! with the
definition ~3.16! that for any NPC, the GP vanishes,

C is NPC⇒wg@C#50. ~3.17!

The proof of the consistency of the definition~3.16! also
rests on the result~3.14!. First, we introduce an item of no
tation. For any curvesC,C, we denote byC̃,C̃ the reversed
curves obtained by traversing them backwards. We note
that the NPC property is preserved while the GP chan
sign:

C,C NPC ⇔C̃,C̃ NPC,

wg@C̃#52wg@C#. ~3.18!

Now turning to the consistency of Eq.~3.16!, let C9 be any
other NPC fromr2 to r1, which could have been used i
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place ofC8 to computewg@C#. Choose any surfaceS8,R
with boundary ]S85C̃8øC9. Then SøS8 has boundary
](SøS8)5CøC9. Using Eq.~3.14! for the pairC̃8,C9 we
have

]S5CøC8, ]S85C̃8øC9, ]~SøS8!5CøC9;

wg@C#52E
S
v52E

S
v2E

S8
v52E

SøS8
v. ~3.19!

Here we used the additivity property for integrals ofv over
~nonoverlapping! surfacesSandS8. Thus, the consistency o
the definition~3.16! is established.

All of the above is applicable for a general class-I cur
C,R which could be open, i.e.,r2Þr1. In caser25r1 and
C is a closed loop, there is no need to append any NPC
before computing its GP. We choose any liftC also in the
form of a closed loop and any two-dimensional surfa
S,R with ]S5C, and directly have

]S5C, ]C5]C50;

wg@C#52E
S
v52 R

C
A. ~3.20!

Going back to the general definition~3.16! of wg@C# for an
openC, we now compare with Eq.~3.20! for closedC and
draw the conclusion

C class I r1 to r2 , C8NPC r2 to r1 , ]~CøC8!

50;

wg@C#5wg@CøC8#. ~3.21!

The kinematic definition~2.23! for wg@C# is immediately
recovered from the present definition~3.16!. With reference
to the latter, letC be any lift ofC from anyc1Pp21(r1) to
any c2Pp21(r2), and letC 8, an NPC, be any lift of the
NPC C8 from c2 to c1. Then using Eqs.~2.11! and ~3.10!,
we obtain

wg@C#52E
S
v52 R

CøC 8
A

52E
C
A2E

C 8
A5arg~c1 ,c2!2E

C
A, ~3.22!

which is Eq.~2.23!.

D. The BI-GP connections

There are two important formulas connecting BI’s a
GP’s. Both of them can be derived from the definition~3.16!
with the property~3.10! for NPC’s.

Let r1 ,r2 ,r3PR be images ofc1 ,c2 ,c3PB, no two in
either triplet being mutually orthogonal. Join them pairwi
by NPC’s: C12 from r1 to r2, andC23 from r2 to r3, and
C31 from r3 to r1, their lifts C12 from c1 to c2 , C23 from c2
to c3,andC31 from c3 to c1. Now bothC12øC23øC31 and
4-6
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C12øC23øC31 are closed loops, so we can use Eq.~3.20! to
get

C’s,C ’s NPC’s;

wg@C12øC23#5wg@C12øC23øC31#

52 R
C12øC23øC31

A52E
C12

A2E
C23

A2E
C31

A

52argD3~c1 ,c2 ,c3!. ~3.23!

This is in fact the most general connection between GP’s
~phases of! BI’s, as discussed elsewhere@12#. It takes the
known connection~3.15! between NPC’s and BI’s one ste
further and brings in the GP. Equation~3.23! goes with Eq.
~3.15! for m53. Form>4, we have, using the notations o
Eq. ~3.15!,

C’s,C ’sNPC’s;

wg@C12øC23ø•••øCm1#52E
C12

A2E
C23

A2 . . . 2E
Cm1

A

52argDm~c1 ,c2 , . . . ,cm!.

~3.24!

The second formula brings out the role of BI’s in showi
the nonadditivity of GP’s and its derivation exploits E
~3.23!. For triplets of pointsr1 ,r2 ,r3PR,c1 ,c2 ,c3PB as
before, letC12 andC23 be any class-I curves, not necessar
NPC’s from r1 to r2 and r2 to r3, respectively. Next let
C218 ,C328 ,C318 be NPC’s fromr2 to r1 , r3 to r2, andr3 to
r1, respectively. These are needed to define the GP’s w
appear below. Finally, we choose two-dimensional surfa
S1 ,S2 ,S3 with boundaries

]S15C12øC218 , ]S25C23øC328 ,

]S35C̃218 øC̃328 øC318 ,

]~S1øS2øS3!5C12øC23øC318 . ~3.25!

Then repeatedly using the definition~3.16! and at the last
step appealing to the result~3.23!, we find

wg@C12øC23#2wg@C12#2wg@C23#

52E
S1øS2øS3

v1E
S1

v1E
S2

v52E
S3

v

5wg@C̃218 øC̃328 øC318 #

52argD3~c1 ,c2 ,c3!,

i.e., wg@C12øC23#5wg@C12#1wg@C23#

2argD3~c1 ,c2 ,c3!. ~3.26!

This is a known result, the purpose here was to derive it a
logical consequence of Eq.~3.16!.
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An exception to the general lack of additivity express
by Eq. ~3.26! occurs when we taker35r2 because BI
D3(c1 ,c2 ,c1)5D2(c1 ,c2) is real positive. In this case, w
have

]S5C12øC21;

wg@C12øC21#5wg@C12#1wg@C21#

5wg@C12#2wg@C̃21#

52E
S
v. ~3.27!

This will be used in the sequel.

IV. EXAMPLES AND PROPERTIES OF NULL
PHASE CURVES

We have mentioned that for any two pointsr1 ,r2PR,
there is a geodesic connecting them, which is unique w
Tr(r1r2).0, and that geodesics are NPC’s. In this secti
we explore NPC’s from several points of view, so as to
sualize them better. We will show by explicit constructio
that for dimensionH>3, given r1 ,r2PR with Tr(r1r2)
.0, there are infinitely many~in a quite nontrivial sense!
NPC’s connectingr1 to r2. We follow this up by developing
an explicit analytical description, as far as is possible, of
most general NPC fromr1 to r2. Finally, we explore the
differential geometric properties and characterization
smooth submanifoldsM,R with the property that every
continuous once-differentiable curveC,M is an NPC, and
give examples of such submanifolds.

It is instructive to see how the condition dimH>3 for the
existence of nontrivial NPC’s arises. For dimH52, the ray
spaceR is the Poincare´ sphereS2. If now three points
r1 ,r2 ,r3PR correspond to respective unit vecto
n̂1 ,n̂2 ,n̂3PS2, then, as is known, arg Tr(r1r2r3) is one-half
of the solid angle subtended at the center ofS2 by the spheri-
cal triangle with verticesn̂1 ,n̂2 ,n̂3 @18#. Thus, for condition
~3.3! to be obeyed for any three points on an NPC, this so
angle must always vanish, so the NPC must be contai
within some great circle. More explicitly,r is expressible in
terms of its representative pointn̂PS2 as

r5
1

2
@11n̂•sW #, ~4.1!

and then

Tr$r~s!@r~s8!,r~s9!#%5
i

2
n̂~s!•n̂~s8!3n̂~s9!. ~4.2!

Parametrizing then̂’s with spherical polar anglesu,f on S2

in the usual way, and assuming with no loss of genera
n̂(s)5(0,0,1), the vanishing ofn̂(s)•n̂(s8)3n̂(s9) for all
independents8,s9 amounts to
4-7
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x2~s8!

x1~s8!
5tanf~s8!5const. ~4.3!

Hence, the NPC condition corresponds, after rotating to
configurationn̂(s)5(0,0,1), tof5const; and we find tha
NPC’s are great circle arcs or geodesics onS2. Given any
two nonantipodal points onS2, then an NPC connecting
them is either the corresponding geodesic, or it may exp
some more extended portion of the corresponding g
circle. The vast generalization involved in going from ge
desics to NPC’s really shows up only for dimH>3.

For convenience, as in the preceding section, the pre
one is also divided into further sections.

A. Examples of null phase curves

Let two distinct pointsr1 ,r2PR with Tr(r1r2).0 be
given. We will construct examples of class-II curvesC,R
from r1 to r2 which are NPC’s. Since by Eq.~2.9! every
point r(s)PC must obey Tr@r1r(s)#.0, it follows thatC
must lie entirely in the neighborhoodR(r1),R of r1 de-
fined in the manner of Eq.~A.8!. We can therefore use a loca
description ofR(r1) as set up in Appendix A.

Let c1Pp21(r1) and choosec2Pp21(r2) such that
(c1 ,c2) is real positive. Introduce an angleu0 by

~c1 ,c2!5cosu0 , u0P~0,p/2!. ~4.4!

Let us when convenient writec15e1. According to Eq.
~A.10! we can expressc2 in the form

c25e1 cosu01e2 sinu0 ,

~e1 ,e2!50, ie2i51, ~4.5!

so c15e1 ,e2 form an orthonormal pair. As in Appendix A
we supplemente1 ,e2 by further vectorse3 ,e4 , . . . PB, ter-
minating withen if dimensionH5n is finite, such that$c1
5e1 ,e2 ,e3 , . . . % is an orthonormal basis forH. Let C
5$c(s)us1<s<s2% be a lift of C from c1 to c2. For c(s),
we write

c~s!5x1~s!e11x2~s!e21x3~s!e31•••,

x1~s!Þ0, x1~s!cosu01x2~s!sinu0Þ0,

ux1~s!u21ux2~s!u21ux3~s!u21•••51, s1<s<s2 .
~4.6!

The coefficientsx1(s),x2(s), . . . must be continuous onc
differentiable. At the end points, they have real values

x~s1!5~1,0,0,0, . . . !,

x~s2!5~cosu0 ,sinu0,0,0, . . . !. ~4.7!

Now choose any integermP(3,4, . . . ,n) and consider
the real unit sphereSm21,Rm. Assumex(s) to have real
components, with xm11(s)5xm12(s)5•••50 for s
P@s1 ,s2#. Thus the firstm components ofx(s) describe a
moving point on Sm21, with x1(s) and x1(s)cosu0
04211
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1x2(s)sinu0 nonzero throughout. Let us further limit ou
selves whens1,s,s2 to vectors onSm21 with all compo-
nents strictly positive. That is, generalizing the positi
quadrant and octant in two and three dimensions, we de

S1
m215$xPSm21ux1 ,x2 , . . . ,xm.0%,Sm21, ~4.8!

and choose

x~s!PS1
m21 , s1,s,s2 . ~4.9!

Then the vectors

c~s!5x1~s!e11x2~s!e21x3~s!e31•••1xm~s!em
~4.10!

obey

„c~s!,c~s8!…5x~s!•x~s8!5real positive, s,s8P@s1 ,s2#.
~4.11!

Condition ~3.3! for C,C to be an NPC is clearly satisfied
so we have succeeded in constructing infinitely ma
NPC’s from r1 to r2. In this construction, the intege
mP(3,4, . . . ,n), and the vectorse3 ,e4 , . . . ,em forming
along withc15e1 ande2 an orthonormal set inB may each
be freely chosen; and thenx(s) for s1,s,s2 is any once-
differentiable curve onS1

m21 obeying the boundary condi
tions ~4.7! at the end points.

This great profusion of NPC’s as compared to geodes
available only when dimensionH>3, is an indication that
the former are not solutions to any system of local ordin
differential equations with some boundary conditions, in t
way familiar with geodesics. It is also clear from the dedu
tive development in Sec. III that it is NPC’s that are basic
the theory of the GP, and in a sense it is incidental t
geodesics are NPC’s. These remarks lead to the follow
interesting questions: given any two distinct nonorthogo
points r1 ,r2PR, how can we describe in a constructiv
sense the most general NPC fromr1 to r2; and how can we
characterize a smooth submanifoldM,R if it has the prop-
erty that every continuous once-differentiable curveC,M is
an NPC ? The latter kind of question is clearly not meanin
ful in the case of geodesics. We will find that here again
third-order BI plays a key role.

B. Description of a general null phase curve

Now we develop a description of the most gene
NPC C5$r(s)us1<s<s2% connecting two given points
r1 ,r2PR with Tr(r1r2).0. We assume vector
c1,2Pp21(r1,2) obeying Eqs.~4.4! and~4.5! have been cho-
sen. LetC05$c0(s)usP@s1 ,s2#% be the particular lift ofC,
from c1 to c2, obeying the condition~3.6! so

c0~s1!5c1 , c0~s2!5c2 ,

„c0~s8!,c0~s!…5real positive, s8,sP@s1 ,s2#.
~4.12!
4-8
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We expandc0(s) as

c0~s!5x1~s!e11x2~s!e21x~s!,

„e1 ,x~s!…5„e2 ,x~s!…50, sP@s1 ,s2#. ~4.13!

At this stage,x1(s) andx2(s) are complex continuous once
differentiable functions ofs, while x(s) is a continuous
once-differentiable vector in the subspaceH'(c1 ,c2),H
orthogonal to the pairc1 ,c2 i.e., toe1 ,e2. At the end points,
we have

x1~s1!51, x2~s1!5x~s1!50;

x1~s2!5cosu0 , x2~s2!5sinu0 , x~s2!50. ~4.14!

Now we draw out step by step the implications of the r
positivity condition~4.12!, and ofc0(s)PB for all s. From
the real positivity of„c1 ,c0(s)… and„c2 ,c0(s)…, we get

x1~s!5real positive,

x1~s!cosu01x2~s!sinu05real positive, sP@s1 ,s2#.
~4.15!

These imply

x2~s!5real,

x1~s!cos
u0

2
1x2~s!sin

u0

2
5real positive, sP@s1 ,s2#.

~4.16!

Thus,x1(s) can never vanish, whilex2(s) could vanish, as it
does ats5s1, or even sometimes be negative. Next from t
normalization ofc0(s), we have

ic0~s!i51⇔x1~s!21x2~s!21ix~s!i251, sP@s1 ,s2#.
~4.17!

We therefore parametrizex1(s) andx2(s) by

x1~s!5s~s!cosu~s!, x2~s!5s~s!sinu~s!,

0,s~s!<1, sP@s1 ,s2#;

s~s1!5s~s2!51, u~s1!50, u~s2!5u0 . ~4.18!

Both s(s) andu(s) are continuous once differentiable, an
for the norm ofx(s) we have

ix~s!i5„12s~s!2
…

1/2P@0,1!. ~4.19!

The positivity conditions~4.15! lead to the allowed range fo
u(s),

2p/21u0,u~s!,p/2, ~4.20!

which exceedsp/2 in extent. The permitted region in th
x1-x2 plane is thus a segmentOAB of the unit disk subtend-
ing an angle (p2u0) at the center, as shown in Fig. 1. Th
open arcA to B is included, while the end pointsA,B, and
the radiiOA, OB are excluded. At this point,s(s) andu(s),
04211
l

hencex1(s) and x2(s), can be chosen freely subject to th
bounds and conditions given in Eqs.~4.18! and ~4.20!.

Now we turn to the more comprehensive positivity co
dition ~4.12!,

„c0~s8!,c0~s!…5real positive

⇔s~s8!s~s!cos„u~s8!2u~s!…

1„x~s8!,

x~s!…5real positive,

s8, sP@s1 ,s2#. ~4.21!

An immediate conclusion is that for alls8 and
s,„x(s8),x(s)… is real. One can show quite easily that th
means the following: there is some orthonormal ba
$e3 ,e4 , . . . % for the subspaceH'(c1 ,c2),H such that

x~s!5 (
r 53,4, . . .

xr~s!er ,

xr~s!5real,

„x~s8!,x~s!…5 (
r 53,4, . . .

xr~s8!xr~s!5real,

ix~s!i25 (
r 53,4, . . .

xr~s!2512s~s!2P@0,1!. ~4.22!

The orthonormal set$e3 ,e4 , . . . %, defined of course upto a
real orthogonal transformation, depends in general on
particular NPCC from r1 to r2 that we are describing; i
need not be the same for all NPC’s fromr1 to r2. The
information on ix(s)i leads via the Cauchy-Schwartz in
equality to a bound on the magnitude of the last term on
right-hand side of the condition~4.21!:

FIG. 1. The allowed region in thex1-x2 plane is the segmen
OAB of the unit disc, excluding the radii OA and OB.
4-9
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u„x~s8!,x~s!…u<$„12s~s8!2
…„12s~s!2

…%1/2. ~4.23!

Since, as already mentioned, the range foru(s) in Eq. ~4.20!
exceedsp/2 in extent, the differenceu(s8)2u(s) can some-
times exceedp/2 in magnitude; this would make the firs
term in the inequality ~4.21! negative. In that case
„x(s8),x(s)… must be positive and large enough to compe
sate for this, while still subject to Eq.~4.23!. We are thus led
to an interesting nonlocal condition ons(s) andu(s):

s~s8!s~s!

$„12s~s8!2
…„12s~s!2

…%1/2
ucos„u~s8!2u~s!…u<1

if uu~s8!2u~s!u.p/2. ~4.24!

This condition, being nonlocal, cannot be translated in a
simple way to a further restriction on the so-far allow
ranges fors(s) and u(s), but must be carried along as
nontrivial condition to be obeyed by them. For such allow
choices ofs(s) andu(s),x(s) must then be chosen as in E
~4.22! ensuring that the inequality~4.21! is obeyed.

This is the extent to which an explicit constructive d
scription of a general NPC fromr1 to r2 can be given.
Admittedly, it is much less ‘‘complete’’ than the descriptio
we can give for a geodesic, again an indication that NP
form a much larger family of curves than do geodesics.
can now see that the examples of NPC’s given in the prec
ing section correspond to the special simplifying assump
that the functions x1(s),x2(s),x3(s), . . . are all non-
negative. Thenuu(s8)2u(s)u never exceedsp/2, and the
nonlocal conditions~4.21! and ~4.24! are automatically
obeyed as even„x(s8),x(s)… is throughout real non-
negative.

C. Submanifolds of null phase curves

Now we enlarge the scope of our analysis of NPC’s a
ask the question: how can we characterize a smooth
manifold M,R if every once-differentiable curveC,M is
to be an NPC? For brevity let us call such a submanifold
NPM. To answer this question we first assemble the ba
formula which generalizes Eq.~3.26! and connects GP’s
BI’s, and two-dimensional surface integrals of the two-fo
v. Let C,R be any closed class-I curve, andS,R any
two-dimensional surface with]S5C. Let r1 ,r2 ,r3 be any
three pairwise nonorthogonal points chosen in seque
alongC. Denote the successive portions ofC from r1 to r2 ,
r2 to r3 and r3 to r1 by C12,C23, and C31, respectively.
Then we have the relation

wg@C5C12øC23øC31#5wg@C12#1wg@C23#1wg@C31#

2argD3~c1 ,c2 ,c3!

52E
S
v ~4.25!

for any c jPp21(r j ), j 51,2,3. If as a special case we s
r35r2 here, recall the definition~3.16! and the fact that
D2(c1 ,c2) is real positive, we recover Eq.~3.27!. Thus, the
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latter is a particular special case of Eq.~4.25!. However, in
the reverse direction, of course, it is not possible to der
Eq. ~4.25! from Eq. ~3.27!. Now Eq. ~4.25! can be general-
ized to the case where we choose anym>4 points
r1 ,r2 , . . . ,rmPC, located one after the other in a s
quence, with no two consecutive ones being orthogo
Then in an obvious notation we have

wg@C5C12øC23ø•••øCm1#

5wg@C12#1wg@C23#1•••1wg@Cm1#

2argDm~c1 ,c2 , . . . ,cm!

52E
S
v, m>4. ~4.26!

This is also derivable from Eq.~4.25! which is the primitive
relation of this kind. The proofs of Eqs.~4.25! and ~4.26!
follow the pattern of the arguments in Sec. III. In these re
tions, if all the segmentsC12,C23, . . . ,Cm1 are NPC’s, we
recover Eqs.~3.23! and ~3.24!.

Now let M,R be a connected, simply connected smoo
submanifold with dimensionM>2 in the real sense@19#.
The corresponding identification map isi M :M�R. The
pullback toM of the symplectic two-formv on R is

vM5 i M* v. ~4.27!

This is of course closed but may well be degenerate. In
extreme case of an isotropic submanifold it vanishes,

M isotropic⇔vM50. ~4.28!

If in addition dimM5(n21), it is a Lagrangian submani
fold.

Assume now thatM is an NPM. Every once-differentiable
curveC,M must then be of class II and we get the follow
ing two consequences:

M is an NPM⇒M is isotropic, vM50;
~4.29a!

M is an NPM⇒for any r j5p~c j !PM , j 51,2,3,

D3~c1 ,c2 ,c3! is real positive. ~4.29b!

The first follows from Eq. ~3.14! after specializing to
C,C8,S,M . The second then follows from the first upo
use of Eq.~4.25!, again specializing toC12,C23,C31,S,M .
From Eq.~4.29b! we also see by takingr35r2 that any two
points inM are nonorthogonal. This means that every on
differentiable curveC,M is of class II.

Conversely, if we start by assuming Eq.~4.29b! for M, we
deduce

D3(c1 ,c2 ,c3) real positive,

any r j5p~c j !PM , j 51,2,3

⇒Tr~r1r2!.0, any r1 ,r2PM ; ~4.30a!
4-10
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⇒M is an NPM; ~4.30b!

⇒M is isotropic, vM50. ~4.30c!

These three statements are not independent since, by
~4.29!, ~4.30b! implies Eq.~4.30c!. In any case, we see from
Eqs.~4.29b! and~4.30b! together that the necessary and s
ficient condition forM to be an NPM is thatD3(c1 ,c2 ,c3)
be real positive ifr j5p(c j )PM , j 51,2,3. It then follows
that the GP for an open or closed class-I curve lying entir
in an NPM is zero. Isotropy ofM is thus only a necessary bu
not a sufficient condition to ensure this property forM. It is
therefore instructive to see how far one can go on the bas
isotropy alone. We now examine this point.

Let M be a connected, simply connected submanifold
R, such that Tr(r1r2).0 for anyr1 ,r2PM . As in the pre-
ceding section for an NPC, we construct a lift ofM to a
submanifoldM0 , B, in the spirit of the Pancharatnam lif
Choose any pointr0PM and then anyc0Pp21(r0),B.
The lift M0 is then completely and uniquely defined by t
rule @generalization of Eq.~3.11!#

rPM→c5
rc0

ATr~r0r!
PM0 ,

p~c!5r, ~4.31!

so M0 as a subset ofB is displayed as

M05$rc0 /ATr~r0r!,rPM %,B. ~4.32!

Of course, r0PM is lifted to c0PM0. This lift M
→M0 is characterized by the fact that each vectorcPM0
is in phase withc0 in the Pancharatnam sense, from E
~4.31!,

~c0 ,c!5
~c0 ,rc0!

ATr~r0r!
5ATr~r0r!5real.0. ~4.33!

However, if we take two general vectorsc,c8PM0, we
find that their inner product is, in general, complex:

~c8,c!5~r8c0 ,rc0!/ATr~r0r8!Tr~r0r!

5Tr~r0r8r!/ATr~r0r8!Tr~r0r!,

arg~c8,c!5argD3~c0 ,c8,c!. ~4.34!

Thus, whether or not general pairs of points inM0 are in
phase depends entirely on whether the BI’sD3(c0 ,c8,c) for
triplets of points inM are real positive or complex. This i
the sense in which the liftM→M0 is as nearly a Panchara
nam lift as possible in a general case.

Now let us impose the condition thatM be isotropic,

vM5..i M* v50. ~4.35!

Then Eq.~3.27! shows that ifC12,C128 are any twoclass-I
curves inM from anyr1PM to anyr2PM , the GP’s are the
same;
04211
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wg@C128 #5wg@C12#. ~4.36!

Furthermore, it is clear that this statement exhausts the c
tent of isotropy. Since the liftM→M0 is unique~given r0
andc0), we can faithfully transcribe this statement toM0,
which is more convenient since we then deal with vecto
Denote byc1 andc2 the lifts of r1 andr2 to M0, and by
C12,C 128 the ~unique! lifts of C12,C128 to M0. Then the full
content of Eq.~4.36! is expressed as follows: for any tw
points c1 ,c2PM0, and for any class-I curvesC12,C 128 in
M0 connecting them, we have

arg~c1 ,c2!2E
C12

A5arg~c1 ,c2!2E
C 128

A,

i.e.,E
C12

A5E
C 128

A. ~4.37!

This means that~as we have assumed simple connect
ness! the pullback ofA from B to M0 is exact. Denoting the
relevant identification map asi M0

:M0�B, we have

vM50⇔ i M0
* A5d f ~4.38!

for some f PF(M0). For emphasis we repeat that isotrop
of M allows us to conclude thati M0

* A is exact, and allows

(c,c8) for c,c8PM0 to have a nontrivial phase.
If at this point we assume in addition thatM is an NPM,

we immediately see that we have much stronger conclusi

~c,c8!5real positive, anyc,c8PM0 ,

i M0
* A50. ~4.39!

These results imply that nowM0 is truly a Pancharatnam lif
of M, and they show very effectively the extent to which t
NPM property goes beyond isotropy.

To round out this discussion we give some examples
submanifoldsM,R, connected and simply connected, po
sessing the NPM property. To begin with, we use a constr
tion similar to that used in Sec. IV A to construct families
NPC’s connecting any two given nonorthogonal poin
r1 ,r2PR. For anym>3 ~upto n in case dimH5n is fi-
nite!, let er ,r 51,2, . . . ,m, be an orthonormal set of vector
in H. We first define a submanifoldM,B as consisting of
all real normalized ‘‘positive’’ linear combinations of theer :

M5H c~x!5(
r 51

m

xrerPBu xr real positive,

(
r 51

m

xr
251J ,B, ~4.40!

and then take the projection to getM,
4-11
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M5p~M!,R. ~4.41!

Both M andM are of real dimension (m21), in factM is
essentiallyS1

m21 of Eq. ~4.8!. By construction we see that

„c~x8!,c~x!…5x8•x5(
r 51

m

xr8xr5real positive,

~4.42!

and therefore for any three points inM,

D3„c~x!,c~x8!,c~x9!…5x•x8x8•x9x9•x5real positive.
~4.43!

This ensures that every once-differentiable curveC,M , ob-
tained by settingx5x(s) for suitable functionsxr(s), is of
class II and also an NPC.

After this abstract example of an NPM, we give two ot
ers involving explicit families of Schro¨dinger wave func-
tions, which are simple but quite relevant. The context is
family of coherent states of a system ofN identical simple
harmonic oscillators. Starting with the normalized vacuu
stateu0& with the wave function

u0&→c0~X!5p2N/4 exp~2 1
2 X•X!,

X•X5(
j 51

N

xj
2 , ~4.44!

the spatial translates ofu0&,uY& say, have wave functions

uY&→cY~X!5p2N/4 exp@2 1
2 ~X2Y!•~X2Y!#.

~4.45!

Taken for allYPR n, these states constitute a submanifo
R n in the manifold R 2n of all coherent states; and th
former clearly form an NPM. Clearly, the image of th
manifold of states under any unitary transformation will a
be an NPM. In particular, the submanifold of all momentu
translates of the vacuum state form an NPM.

The second example is in the context of the manif
Sp(2N,R)/U(N) of all squeezed vacuum states obtained
the orbit of the state~4.44! under the unitary action of the
groupSp(2N,R) of all real linear canonical transformation
@20#. These states can be characterized by a pair of real s
metric N3N matricesu,v with u.0, and so they form an
N(N11)-dimensional submanifold in Hilbert space. Th
corresponding normalized wave functions are

uu,v&→c (u,v)~X!5p2N/4~detu!1/4exp$2 1
2 XT~u1 iv !X%,

~4.46!

and for generalu,v these are complex. This set of wav
functions constitute a generalization of the Poincare´ upper-
half plane, withSp(2N,R) acting onu,v through ~matrix!
fractional linear transformations. In this set if we now lim
ourselves to those withv50, all the wave functions
c (u,0)(X) are real and all scalar products among them are
positive. Thus we have another example of an NPM. Ag
the image of this submanifold under any unitary transform
tion retains this property.
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V. CONCLUDING REMARKS

We have developed an approach to the theory of the G
quantum mechanics, in which the basic ingredient is
three-vertex BI of quantum mechanics. This invariant lea
to the definition of NPC’s in the Hilbert and ray spaces
quantum systems. In turn, this lets us define the GP ass
ated with any suitable~open or closed! ray space curve as a
area integral of the ray space symplectic form. The emph
has been on the logical basis and consistency of the e
development, and the crucial role of NPC’s. We have sho
that it is the BI which is the truly fundamental concept u
derlying all the others. In the course of the development,
have taken care to define with precision the classes of
and Hilbert space curves that one must work with for ea
purpose.

NPC’s are a vast and important generalization of the m
familiar family of geodesics in Hilbert and ray spaces, and
turns out that they truly belong to the theory of the GP.
happens to be true that geodesics are instances of NP
however the latter are far more numerous by any meas
and are intrinsically of a quite different nature. Thus, leng
of a curve and its minimization are not at all the releva
concepts in arriving at NPC’s. This makes their descript
considerably more difficult than of geodesics, for which
differential equation treatment is available. They have de
properties of a nonlocal nature. The examples of NPC’s
NPM’s, and their general properties brought out in our d
cussion, should help in aiding our understanding this imp
tant class of quantum mechanical objects.

The Pancharatnam liftM0 of an NPMM is characterized
by the two properties~4.39!. The first actually implies the
second. Its structure suggests the following nonlocal ope
tion or construction: pass from the collection of vecto
c,c8, . . . PM0 to its real linear hull, i.e., form all real lin-
ear combinations of any numbers of vectors inM0 ~and then
normalize them to get results inB). This much enlarged
collection of vectors inB is clearly associated with a rea
subspace ofH all inner products among whose vectors a
real ~but of course not anymore always positive!. The con-
sideration of NPM’s leads in a natural way to associate r
linear subspaces inH within which the Hermitian scalar
product of H reduces to a real symmetric scalar produ
Such a subspace is clearlyp* v isotropic, and we are led to
consider trying to characterize NPM’s via such associa
subspaces.

It is useful to view all this also from another perspectiv
The Fubini-Study metric and the symplectic form on t
quantum-mechanical ray space both originate from
Kahler form, as its real and imaginary parts, respectiv
@21#. While the geodesics stem from the metric, the B
NPC’s, and GP are all more naturally related to the sympl
tic structure. Hence, it is that NPC’s and not geodesics, fo
the principal notion in the GP context.

We have seen in Sec. IV that it is only when dimH>3
that the true differences between NPC’s and geode
emerge. The situations in which the GP has been tradition
studied in detail have involved two-dimensional symplec
manifolds: CP1 or S2 corresponding to a two-level system
4-12



o
ic

ni

d
e
he
hu

h

ic

ld
s
hi
pr
p
ge
th

m

a
es

2

io
to

ibed

in

ate
e-

For

ce
ere

BARGMANN INVARIANTS, NULL PHASE CURVES, AND . . . PHYSICAL REVIEW A67, 042114 ~2003!
such as polarized light or spin-1/2 particles; the tw
dimensional planeR 2 as in the coherent states of a harmon
oscillator; and the timelike two-dimensional upper half u
hyperboloid in (211)-dimensional space~equivalently the
unit disc or the upper half complex plane!, as in the squeeze
vacuum states of an oscillator. In all these cases, ther
simply no extra room in these minimal situations for t
differences between NPC’s and geodesics to show up. T
it is understandable that the geodesics were thought to
intrinsically relevant to GP discussions, but this status rig
fully belongs to the NPC’s.

We have examined elsewhere the conditions under wh
constrained geodesics, i.e., geodesics among curves
stricted to lie within a given ray space submanifold cou
turn out to be NPC’s@12#. Important examples when thi
happens, and the corresponding BI-GP connections w
are of physical interest, have been given. The more com
hensive account of NPC’s and NPM’s presented in this pa
should enable us to study the connections to constrained
desics in a more definite manner. We intend to return to
and related problems elsewhere.

APPENDIX A: BASIC DIFFERENTIAL GEOMETRY
OF RAY SPACE, LOCAL DESCRIPTIONS

For the convenience of the reader we collect here so
basic definitions relating to the unit sphereB,H, the ray
spaceR5p(B), defined in Eqs.~2.1! and~2.3!, and geomet-
ric objects associated with them. Convenient local coordin
descriptions of some of them are also given. For definiten
we may assume that dimensionH5n is finite.

The spaceB5S2n21 is a differentiable manifold. At any
point c0PB, the tangent space is

Tc0
B5$fPHuRe~c0 ,f!50%. ~A1!

This is clearly a real linear vector space of dimension (n
21). The connection one-formA defined onB is specified at
eachc0PB as a linear functional onTc0

B is

fPTc0
B:Ac0

~f!5Im~c0 ,f!52 i ~c0 ,f!. ~A2!

Therefore, the horizontal subspace ofTc0
B is defined as

Hc0
B5$fPTc0

BuAc0
~f!50%

5$fPHu~c0 ,f!50%,Tc0
B. ~A3!

This is of course a real linear vector space of dimens
2(n21), but it is in a natural sense a complex linear vec
space of dimension (n21), namely, the subspace ofH or-
thogonal toc0.

The two-form dA is, at eachc0PB, an antisymmetric
bilinear functional onTc0

B,

f,f8PTc0
B:~dA!c0

~f,f8!52Im~f,f8!. ~A4!
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Next we turn to the ray spaceR. At a point r05c0c0
†

PR, the tangent space can be defined and then descr
explicitly in terms ofHc0

B:

Tr0
R5$B5 linear operator onHuB†5B, TrB50,

$B,r0%5B%5$B5fc0
†1c0f†ufPHc0

B%. ~A5!

This is a real linear vector space of dimension 2(n21). In
the latter form, if we change the representative vectorc0
Pp21(r0) by a phase, we must keep track of the change
B if f is unchanged, or alternatively changef by a compen-
sating phase to keepB the same.

The two-formdA onB is the pullback of a two-formv on
R,

dA5p* v. ~A6!

As an antisymmetric bilinear functional onTr0
R,v is speci-

fied by

vr0
~B,B8!52 iTr~r0@B,B8# !52Im~f,f8!, ~A7!

wheref,f8PHc0
B correspond toB,B8, respectively, as in

the second line of Eq.~A5!.
All the above definitions and expressions are coordin

independent and intrinsic. Now we give local coordinate d
scriptions for some of them, which are sometimes useful.
given r0PR, and some chosenc0Pp21(r0), we define an
open neighborhoodR(r0) by

R~r0!5$rPRuTr~r0r!.0%,R. ~A8!

Thus, what are excluded fromR(r0) are projectionsr onto
vectors inB which are orthogonal toc0, that is, onto vectors
in Hc0

. The corresponding open subset ofB is denoted by

B(c0), though in fact it is determined byr0;

B~c0!5p21@R~r0!#5$cPBu~c0 ,c!Þ0%,B. ~A9!

We can give an explicit formula for anyrPR(r0) as fol-
lows:

rPR~r0!⇔r5r~f!

5@f1~12ifi2!1/2c0#

3@f1~12ifi2!1/2c0#†,

fPHc0
B, ifi,1; ~A10!

and then

Tr„r0r~f!…5„c0 ,r~f!c0…512ifi2.0. ~A11!

Thus, points inR(r0) are in one-to-one corresponden
with, and are coordinatized by points inside the unit sph
in the subspaceHf0

B of H. By adding a phase factoreia,

we get a local description forB(c0) as
4-13
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cPB~c0!⇔c5c~f,a!5eia
„f1~12ifi2!1/2c0…,

fPHc0
B, ifi,1, 0<a,2p. ~A12!

Let $c05e1 ,e2 , . . . % be any orthonormal basis forH.
We expandfPHc0

B as

f5
1

A2
(

r 52,3, . . .
~b r2 ig r !er , ~A13!

so that the conditionifi,1 becomes

(
r 52,3, . . .

~b r
21g r

2!,2. ~A14!

Then$b2 ,b3 , . . . ,g2 ,g3 , . . . % subject to~A14! are real lo-
cal coordinates, 2(n21) in number overR(r0),R; while
$a,b2 ,b3 , . . . ,g2 ,g3 , . . . % are real local coordinates ove
B(c0),B. In these charts we have the explicit expressio

A5da1
1

2 (
r 52,3, . . .

~g rdb r2b rdg r !,

dA5p* v5 (
r 52,3, . . .

dg r `db r . ~A15!

APPENDIX B: PROPERTIES OF GEODESICS
IN RAY SPACE

We provide here a brief account of the definition, diffe
ential equations, and main properties of geodesics in
spaceR. Since they will be found to obey second-ord
ordinary differential equations, it is appropriate to work wi
curves of class III. Let then

C5$r~s!PRus1<s<s2%,R ~B1!

running fromr(s1)5r1 to r(s2)5r2 be a curve of class III,
and assume Tr(r1r2).0. Let

C5$c~s!PBur~s!5c~s!c~s!†,s1<s<s2%,B ~B2!

be any~class III! lift of C. The length ofC is the functional

L@C#5E
s1

s2
dsiu'~s!i ,

u'~s!5u~s!2„c~s!,u~s!…c~s!PHc(s)B;

u~s!5
d

ds
c~s!PTc(s)B. ~B3!

This is both reparametrization and local phase transforma
invariant. We make infinitesimal changesdc(s) in c(s)
alongC, inducing changesdr(s) along C, vanishing at the
end pointss1 and s2. RequiringdL@C#50 we arrive at a
differential equation which must be obeyed ifL@C# is to be
stationary andC is to be a geodesic:
04211
s

y

n

dL@C#50⇔S d

ds
2~c~s!,u~s!! D u'~s!

iu'~s!i 5 f ~s!c~s!,

f ~s! arbitrary real. ~B4!

This equation is naturally covariant with respect to both re
arametrizations and local phase transformations. These p
erties can now be exploited to successively specialise
choice of the liftC and its parametrization, and thereby sim
plify the differential equation~B4! @22#. By a suitable local
phase transformation we can assume thatC is a horizontal lift
of C, so we can replace Eq.~B4! by the simpler system

d

ds

u~s!

iu~s!i 5 f ~s!c~s!,

~c~s!,u~s!!50,

f ~s! real. ~B5!

Next we can use the reparametrization freedom to sw
from the originally given parameter to an affine parame
This makesiu(s)i constant alongC, and for the affinely
parametrized horizontal liftC we have in place of Eq.~B5!:

d2c~s!

ds2
5 f ~s!c~s!, f ~s! real,

ic~s!i51,S c~s!,
dc~s!

ds D50,

Idc~s!

ds I5const. ~B6!

A brief analysis shows that this problem is fully equivalent
a second-order ordinary differential equation with suita
initial conditions ats5s1,

d2c~s!

ds2
52 Idc~s!

ds I 2

c~s!,

ic~s1!i51, S c~s1!,S dc~s!

ds D
s1

D 50. ~B7!

Finally, we make a scale change and shift of origin in t
parameter to makes150 and idc(s)/dsi51. This com-
pletely exhausts the freedom of reparametrizations, an
this point we may denote the parameter by a special sym
,. For the so-defined and parametrized liftC of a geodesicC
in R, we have the solution to Eq.~B7! in the form

c~, !5c~0!cos,1ċ~0!sin,,

ic~0!i5iċ~0!i51, „c~0!,ċ~0!…50. ~B8!

This solution is determined by one orthonormal pair of ve
tors, and every geodesic inR has such a lift inB. The value
4-14
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of the length functionalL@C# in Eq. ~B3!, from the starting
point ,50 to a general point,, is the parameter, itself:

L@geodesicC from ,50 to ,#5E
0

,

d,5,. ~B9!

Going back to the original curveC in Eq. ~B1!, we identify
c(0)5c1Pp21(r1), while c2Pp21(r2) has to be suitably
chosen. A careful analysis of the explicit solution~B8! shows
us that the following results hold.

~i! For givenr1 ,r2PR obeying Tr(r1r2).0, there is a
unique geodesic connecting them.

~ii ! If we make any choice ofc1Pp21(r1), we can de-
termine uniquelyc2Pp21(r2) by the condition

~c1 ,c2!5real positive. ~B10!

~iii ! A horizontal lift C of this geodesic is given by Eq
~B8! by choosing

c~0!5c1 ,

ċ~0!5
c22~c1 ,c2!c1

„12~c1 ,c2!2
…

1/2
. ~B11!

~iv! The end points ofC correspond to the parameter va
ues,50 for c1 ,,5cos21(c1,c2)P@0,p/2) for c2.

~v! The length of this geodesic is cos21(c1,c2) and is
strictly less thanp/2.

~vi! For any two points,,,8P@0,p/2) we have
u
d

ld,

.

y F

04211
„c~, !,c~,8!…5cos~,2,8!5real positive, ~B12!

and so for any three points,,,8,,9P@0,p/2), we have

D3„c~, !,c~,8!,c~,9!…5Tr„r~, !r~,8!r~,9!…

5real positive. ~B13!

~vii ! If we take the limiting case Tr(r1r2)50, corre-
sponding to (c1 ,c2)50, the geodesic distance fromr1 to
r2 becomes exactlyp/2. However there is now no uniqu
geodesic connectingr1 to r2 since, for anyaP@0,2p), the
curve

c~, !5c1 cos,1eiac2 sin, ~B14!

is a solution of the variational problemdL@C#50, i.e., of
Eq. ~B7!, and its projection inR runs fromr1 to r2 as ,
varies over@0,p/2#.

These results are very similar to what are known ab
geodesics or great circle arcs onS2, which is the ray spaceR
when dimensionH52. Their lengths, in usual units, neve
exceedp. For nonantipodal points, there is a unique geo
sic with length strictly less thanp. For antipodal points we
have a ‘‘2p worth’’ of geodesics, each of lengthp.

In a qualitative sense it is easy to see that in a ray spacR
of any dimension, two pointsr1 andr2 can never get very
far from one another, since

Tr~r12r2!252@12Tr~r1r2!#<2. ~B15!

The properties of geodesics described above are consi
with this fact.
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