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We present a theory of the geometric phase based logically on the Bargmann invariant of quantum mechan-
ics, and null phase curves in ray space, as the fundamental ingredients. Null phase curves are themselves
defined entirely in terms of thé&hird orde) Bargmann invariant, and it is shown that these are the curves
natural to geometric phase theory, rather than geodesics used in earlier treatments. The natural symplectic
structure in ray space is seen to play a crucial role in the definition of the geometric phase. Logical consistency
of the formulation is explicitly shown, and the principal properties of geometric phases are deduced as sys-
tematic consequences.
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[. INTRODUCTION tem carries a natural Riemannian metric—the Fubini-Study
metric[8]—as well as a natural symplectic struct(ieg. The
The evolution of our understanding of the geometricformer determines a corresponding family of geodesics
phase(GP) [1] has brought together many aspects of thewhich have played an important role in the GP theory in at
basic structure of quantum mechanics, both in Hilbert spackast two ways. Initially, they were exploited to show how to
and ray space levels. They include both linear vector spaceefine the GP for noncyclic evolution governed by the Sehro
features and differential geometric featuf@s$. During this  dinger equation, essentially by converting such an evolution
development, on one hand, the original assumptions of adide a cyclic one by adding on a geodesic to connect the end
baticity, cyclicity, and unitary evolution were relaxed in points[10]. Later they were found to be useful in showing
stages in significant generalizatiof. On the other hand, that phases of Bl's are particular instances of the [GH.
starting from its discovery in an essentially dynamical con-The ray space symplectic structure has been known to be
text, it has gradually become clear that the GP is largelyintimately involved with GP’s, specially for cyclic evolution.
kinematical in contenf4]. In the process, important connec-  Subsequent work has shown that rather than geodesics,
tions to properties of the Bargmann invaria®) [5], and  the really basic geometric objects needed to connect Bl's and
even to earlier ideas of Pancharatnam in classical ofics GP’s are a family of ray space and Hilbert space curves
have also been establishgd. which have been named null phase curgdBC) [12]. It has
It is well known that the ray spac&omplex projective been shown that while geodesics are NPC's, the latter form a
spacg associated with the Hilbert space of any quantum sysvastly larger class of curves having little to do with the
Fubini-Study metric or the notion of geodesics. They also
lead to the most general possible connection between Bl’'s
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on ray space. Thus in this approach, primary importance ignds is denoted byR. It is the quotient of3 with respect to
given to BI's, NPC’s, and ray space symplectic structurethe equivalence relatior~ e'“y among unit vectors for all
Earlier definitions of the GP, in particular, the kinematic defi-real phases::
nition, are seen to be immediate consequences of the present
one. R=DBIU(1). (2.2

We shall make frequent referenceth® geodesic arc con-
necting two given points in state space. By this we shalElements ofR are represented by pure state density matri-
always mean thehortergeodesic, which isiniqueassuming ~ €es, or one-dimensional projections,and there is a projec-
that the given pair of points correspond monorthogonal tion 7 from B to R:
states.

The contents of this paper are arranged as follows. In Sec. mB—Ripe Bom(y)=p, =y’ R. 23
Dert and ray Spaces of a general quantum-mechanical systef S "ell Known. 5 is a principal U(1) bundie oveR.

- . : hich in turn for finite dimensions is the complex projective

We define in a precise manner various classes of smoof]

] i pace CP~ 1. The real dimension oR in that case is 2{
curves needed for further work; recall the natural one-form 1), and it is also connected and simply connected.

on Hilbert space and the symplectic two-form on ray space; For considerations of geometric phases, null phase curves,

and then the kinematic definition of the GP. Section Il be- d desi d to deal with . zed
ins with the definition and basic properties of the BI, and in2nd geodesics, we hee to deal with continuous parametrize
g X curvesCC 3, and their projection<C=7(C) CR, obeying

terms of them defines the family of NPC'’s in Hilbert and ray _ . o .

X . suitable smoothness conditions. They are always directed
spaces. Some important formulas connecting the two are alscourves We describe them as follows:
developed. With this preparation, the definition of the GP for ' '

a general op_efsuffici_ently smoothray space curve is given, _ C={y(s) e Bls;<s<s,}CB;

and its consistency is demonstrated. The recovery of the ki-

nematic defInItIOI:l of the G,P is also shown, and the connec-  c=r(C)={p(s)=y(s)¥(s) e R|s;=s<s,}CR.

tions between Bl's and GP’s, mediated by the uses of NPC's, (2.4)

are brought out. The emphasis in this section is to display the

logical structure of ideas. Section IV explores the propertiedn general, we assume that the parametefaries over a
of NPC'’s from various points of view, emphasizing always closed finite interval's,,s,]C R, exceptions will be indi-
that it is these curves that are natural and basic to the strucated. We permit strictly monotonic reparametrizations of
ture of the GP. The fact that they are far more numerous thathese curves,

geodesics means that their description is very different from

that of the latter; in particular, they cannot be viewed as s—s'=1f(s),

solutions to any local finite-order ordinary differential equa-

tions at all. Examples dfinfinitely many) NPC'’s connecting df(5)>o 2.5
any two given ray space points; a description of the most ds ' '

general NPC; of submanifolds every curve in which is a _ N _

NPC; and examples of such submanifolds; are all developed@nd impose other smoothness conditions as appropriate and

Section V contains concluding remarks. described below. We also permit smooth local phase changes
There are two appendixes, devoted to basic differentiaflong a curve to lead to a new curve’,

geometry of Hilbert and ray spaces and to a complete de- C i ia
scription of geodesics, respectively. C'={y'(9)=€"Oy(s)|s;<s<s}CB (2.6
having the same image iR:

Il. NOTATIONAL PRELIMINARIES AND KINEMATIC (C")=m(C)=CCR. 2.7)
DEFINITION OF GEOMETRIC PHASE

. Thus, bothC andC’ are lifts, fromR to B, of C.
We_ (jenote byrt the complex(separablk Hilbert space We now define three classes of curves, with different
describing the pure states of some quantum system. The ”
. : o = smoothness conditions, as follows.
complex dimension o{ may be finite, sap=1,2,..., or Class
infinite. The inner product and the norm for vectors

U, ¢, ... InH are written as ¢, ¢) and||||, respectively. ((S1),(S,)) #0
The subset of unit vectors iK is defined by

#(s),p(s) continuous and piecewise once differentiable.

(2.9
B={yeH||¢|=1}CH. (2.)
Class It
For dimensionH=n finite, 5 is the real Euclidean sphere ((s),¥(s"))#0, any s,s' €[s1,S;]
S?"~1 of real dimension (8—1). It is both connected and
simply connected. The space of unit rays associated Hith ¥(s),p(s) continuous once differentiable. (2.9
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Class Il
(4(s1),(87))#0

¥(s), p(s) continuous twice differentiable(2.10

It will turn out that class-I curves are those for which geo-
metric phases can be defined; class-II curves subject to fu
ther conditions are null phase curves; and class-IIl curve

obeying suitable differential equations are geodesics. In eac,

case, botiCC B and C=#(C) CR will be assumed to obey
the same smoothness conditions and both will belong to th

same class. Similarly, reparametrizations and local phas

a1

changes will be assumed to preserve the smoothness prop
ties of each class.

The basic differential geometric objects needed for ou
purposes, with suitable notations, are given in Appendix
[13]. These are a one-forrA on B; its exterior derivative
two-form dA on 5; and a closed nondegenerate symplecti
two-form w on R related todA via pullback

dA=7*w. (2.11)
The one-formA is essentially defined by giving its integral
along any curveeC B of class I
s2 di(s)
dS( U(s), ? .

LAzlmf:ds( gb(s),dw(s)) —iLl
(2.12

ds
If C happens to be a closed loop wii{s,) = ¢(s;) so that
its projection7(C)=CCR is also a closed loop, we have

fo fon o

wheresS is any smooth two-dimensional surfacefirhaving
C as boundary, and is the image ofS in R with C as
boundary:

(2.13

S=m(S),dS=C. (2.19
The orientations of andS are determined by the directions
of C andC, respectively. It is to be emphasized thais not
exact, sA is not the pullback viar* of any one-form oriR.
Since the two-formw on R will play a primary role in our
definition of the GP, we add the following comments to help

better understand its nature. In the finite-dimensional case,

dimensionH=n, we have mentioned th&®=CP" 1, the
complex projective space dtomplex dimension —1);
and it is well known that these spaces are important canon
cal examples of symplectic manifolfi8]. This property can

however be also grasped from another point of view. The

unitary group Uf) acting on’H via its defining representa-
tion has for its Lie algebra w), the set of all Hermitian
operators onH. Upon conjugation by elements of bl

AS

C
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coset space W()/H, whereH is the stability group of any
chosen representative point on the orbit. Most orbits are ge-
neric and of real dimension(n—1), being the coset space
U(n)/U(1)xU(1)X---XU(1) (n factorg. Apart from
these, there are several exceptional or singular orbits of vari-
ous lower dimensions. From the general Kostant-Kirillov-
Souriau theory of coadjoint orbits of Lie grougs, it is
nown that each orbifgeneric or exceptionpals a symplec-

¢ manifold; the symplectic two-form is obtained by descent
rom the Maurer-Cartan two-form on the gro@itself, i.e.,

y quotienting with respect to its kerngl4]. In the case at
%and, the pure state density operators fomadimensional
antum system are elements oh)( They are clearly acted
upon transitively by conjugation with elements ofr( and

IIhey form a single nongeneric orbit in the Lie algebra, the

tability groupH in this case being easily seen to be U(1)
XU(n—1). We can then identifyR with the coset space
U(n)/U(1)xU(n—1), which is indeed of real dimension
2(n—1); and according to the general theory of coadjoint
orbits of Lie groups, it is a symplectic manifold.

Even without appeal to the Kostant-Kirillov-Souriau
(KKS) theory and then limiting ourselves to the nongeneric
orbit of pure state density operators, one can directly display
the connection between the formdsand dA on B and the
Maurer-Cartan one- and two-forms onnJ(

Denote byg,g’, ... the matrices of the defining repre-
sentation of Uf1). The actions of U) on 3 and onR given
b

Yy

geU(n):yeB—gyelB (2.15

and

peR—gpg teR (2.16
are both transitive. Therefore, for any choice of a fiducial
vector iy, € B, we have an onto map,:U(n)— B given by

Ho:geU(n)—gyoeB. (2.17

This map can be used to take afgmooth curve y
={g(s)}CG to an image C={uo(g(s)}={y(s)
=g(s)¢o}CB, and in turn to its projectionC={p(s)
=y(s)y(s)T=g(s) ¢0¢gg(s)—l}c7z. In the reverse direc-
tion, evidently, the pullbaclud allows us to takeA anddA
on B to appropriate forms on W(). From Eq.(2.12 Aon B
has the expression

A=—iy'dy. (2.18

Combining with Eq.(2.17) we get

|_
*

Mo

A

—ipd (pdy)=—iylg'dgyo=—i Tr(peg'dg).
(2.19

The expressiong'dg is the matrix of left-invariant
Maurer-Cartan one-forms on b, so in Eq.(2.19 we have

(which is the adjoint action u(n) is mapped onto itself and the expected connection between the one-férron 5 and
broken up into disjoint orbits. Each orbit is essentially athe Maurer-Cartan one-forms on ) A particular linear
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combination of the latter, determined by the choice/gf is @g[ C for s;<s<sy+ €]~ ¢y C for s;<s<sy—€]= =,
picked out. It also follows by taking the exterior derivative of (2.24
Eq. (2.19 that
which are equivalent modulo72 Thus, in such a situation
whdA=—i Tr(podg'Odg) =i Tr(pogTdglg'dg), we see that the GP is defined upto just before a point of
(2.20 orthogonality to the initial point, as well as to a point just
after; and there is a discontinuity of = as we cross that
so here the matrix of left-invariant Maurer-Cartan two-formspoint.

on U(n) appears. Hence, X; andX, are two left-invariant In passing we may mention that even in the context of a
vector fields on uf) associated with Hermitian matrices real Hilbert space, the GP survives though in a rudimentary
rand 7, in u(n), form[16]. The dynamical phase is of course absent, however
the total phase could be an odd multiplesof In fact, each
ix_gngzirj, j=1,2, (2.21)  time the inner producti(s,),¥(s,)) passes through zero,
: we pick up a contributiont 7, just as in Eq(2.24). The BI
then a short calculation shows As(41,42,43) [see belocan also have a nontrivial phase,
namely, = = when it is negative. All these remarks remain
wEAAX1,X2) = (dA) (o (X1) ox (X2)) valid also in the case of a complex Hilbert space, if we
restrict ourselves to the real linear span of a set of vectors
=iX2in,u§dA taken from an orthonormal basis. The role of such “real”

subspaces will become evident in the sequel.
=i Tr(po[ 71, 72]). (2.22
. [ll. NULL PHASE CURVES AND A DEFINITION
In particular, we can choose, and 7, to be two elements OF THE GEOMETRIC PHASE
p1.p2€ R and then we get in Eq(2.22 the result
i Tr(pol p1,p2]) which agrees with EqA.7). Thus, the con-
nection betweer\,dA on B and the Maurer-Cartan forms on
U(n), mentioned in the previous paragraph, are made exg
plicit [15].
We now recall the definition of the GP according to the
kinematic approacfd]. If C is a class-I curve with imagg,
then the GP foC is

Our aim now is to define NPC i8 andR as the basic or
rimitive objects, then define GP’s in terms of them, and
erive their properties in a logically consistent manner. To
begin with, we recall the definition and properties of the
third-order Bargmann invariant, as the NPC definition will
depend on it. For convenience, we divide this section into
further sections.

gog[C]Zarg(w(sl),z//(Sz))— j A. (2.23 A. Bargmann invariants (Bl)
¢ Given any three mutually nonorthogonal vectors

Clearly, because of the first term on the right, this phase i¢1: %2, %3 € B, projecting oniq, ,pz,ps € R, the third-order
defined modulo 2 and as implied by the notation it is a B! iS defined as
functional ofC independent of the lif€ used to compute the _ _
individual terms on the right. Moreover it is unchanged by AalY1id2 o) =(1.92) (Y2, 43) (Y5.41) Tr(plpzps:;'
any permitted reparametrizations. '
In a previous work, Eq(2.23 was adopted as the defini- Its key properties are well knowi) for dimensionH=,2 it
tion of the GP, and thereafter null phase curves were defined in general complexéii) it is cyclically symmetric;(iii) as
and used in various way42]. Our approach here will be to the second form shows, it is invariant under independent
regard null phase curves as primitive objects and to definphase changes in each of the vectgisy, , .
GP’s in terms of them. This will be done in the following  Higher-order Bl's can be defined in a similar manner. For
section. any m vectors ¢y, ¥, ...,y B, such that no two succes-
If the end points)s(s,),¥(s,) of C are mutually orthogo- sive ones are mutually orthogonal, we have the generally
nal, clearly the GRpg[C] becomes undefined. This is the complexmth order BI
reason behind the condition of nonorthogonality of end
points in the definitior(2.8) of class-I curves. It ensures that ~ Am(#1,¥2, ... . Wm) =1, 82) (P2, 3) - - - (P, Y1)
for any class-I curve the, GP is well-defined module.2

However, the definition2.8) does not forbid the possibility =Tr(papz2- - pm)- 32
that for somesy e (s1,S,), #(Sp) may be orthogonal to either _ ; ) ;

#(sy) or ¥(s,) or both. Assumej(s,) is indeed orthogonal Form=2 of course Ay(y1,>) is real non-negative.

to ¢(sy), and letsy be a point onC and C at which these

curves are differentiable. If for sufficiently sma#l both B. Null phase curves

P(sp—€) and y(sy+ €) are not orthogonal tak(s;), then A curve CC B of class II, with imageCC R, will be said
the GP’s are defined for the portions®©frunning froms; to  to be an NPC if for any three vectors on it, the Bl is real

Sp* €, and they obey positive:
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C,CNPGC=A3(i(s),¢(s"),¥(s")) arg(yo(s1), ¥o(s2))=0,
=Tr(p(s)p(s")p(s"))=real positive f A=0. 3.9
e Tr(p(s)[p(s'),p(s")])=0, “

Now let C={y(s)=e€"*®yy(s)} be a general lift ofC ob-
tained fromC, by a (sufficiently smooth local phase trans-
(gormation. ForC we find in place of Eq(3.9),

anys,s’,s"e[s;,S5]. (3.3

For convenience, when this condition is obeyed, we refer t
both C andC as NPC's.

It is immediately evident that any connected subset or
portion of an NPC, say running frons; to s,, where S S
[s3,84]C[S1,S,], is also an NPC. fAz—if 2ds( lﬂ(S),w):J 2dsm, (3.9

From Eq.(B13) of Appendix B, it follows that every geo- c s1 ds s1 ds
desic inR (and any lift of it in B) is an NPC. Since any two
points p;,p, e R can definitely be connected by a geodesic
[which is moreover unique if Tg{;p,)>0], we can say that
they can definitely be connected by an NPC. However, as we f A=arg((s,),¥(S,)). (3.10
will see in the following section, provided dimensidH ¢
=3, NPC'’s are far more numerous than geodesics: there are . . , ) .
infinitely many of them connecting any; ,p, € R. This is the basic property of NPC’s that we will use repeat-

The definition(2.9) of a class-1l curve includes the con- edly. . . . W
dition that no two vectors along it should be mutually or- Concerning the construction of the particular “Pancharat-

it _ — T
thogonal. The motivation for this is now understandable: wg'@m lift" Co of the NPCC={p(s)=y(s)y(s) }CR, we
need the BI appearing in Eq43.3) to be nonzero for any may.add the followmg remark. The lit, is completgly o_le-
triplet of vectors on the curve. It will soon emerge that atefmined once a choice afy(so) at the reference poirsy is
somewhat more economical definition of an NPC, which ismade. Any alteration ofio(So) by a phase leads to a rigid or

arg((sy), ¥(S)) = a(s,) — a(sy),

that is,

however fully equivalent to Eq3.3), is constant phase change of all points algiag One can now
see that the rul€3.5) to determineyy(s) for generals has
C,CNPC=A3(i(sp), #(s),(s"))=real positive, the following quite explicit solution:
. = = —iarg(o(sp). ¥(s))
any fixedspe[s;,s,], anys,s’e[s;,s,]. (3.4 Po(8)=N(S)p(S) tho(So) = (s) @010 15 (3.0

Let nowC be an NPC. We derive a fundamental formula
for the integral ofA along any liftC of C. For any chosen
reference point sye[s;,S;], choose some y(Sp) N(s)=|(go(So), #(s))| L. (3.12
e 7 Y(p(sp)). By definition of class Il, for anyse[s;,S;]
and any choice ofy(s)e 7 *(p(s)), the scalar product  The vectoryy(s) in Eq. (3.11) is clearly invariant under
(¥o(S0),¥(8)) is nonzero. Adjust the phase gf(s) to get  changes in phase af(s). Then both Eqs(3.5) and(3.6) are

whereN(s) is a real positive normalization factor,

Wo(s) e m (p(s)) such that obeyed by the expressidB.11):
($ho(s0), o(s))=real positive, anyse([s;,s;]. (th0(S0), o(S))=N(S) (ho(So),p(S) o(So))
(3.9
=[(¥o(s0),¥(s))|>0,
This gives us a particular lif€y={y(s)|s;<s<s,} of C
with the property (#o(S), #o(s"))=N(S)N(s") (p(S) o(So), p(S") #o(S0))
(¥o(9), o(s"))=real positive, anys,s’ e[s;,S,]. =N(s)N(s")Tr(p(so) p(s)p(s'))>0,

( (3.13
We see this by setting’=s; in the definition(3.3) and then  sinceC is given to be an NPC.
using Eg.(3.5). This means that any two points @ are in Now let C be an NPC fromp, to p,, andC’ an NPC
phase in the Pan(.:harat.nam sef8f a nonlocal property; from p, to p;. Choose vectors e m Y(py), i
and furthermore, is horizontal, a local property, e 7 Y(p,), and litsC,C’ of C,C’ from ¢, to i, and i, to

1, respectively. The unionsCUC’'CR,CUC'CB are
closed loops. LeSC R be any smooth two-dimensional sur-
face with boundaryyS=CUC’. Combining Eq.(2.11) with
the basic property3.10 for bothC andC’, we find

=0, anyse[s;,S,]. (3.7

d
003( lﬂo(s),d_si/fo(s)

Therefore, for the end points @%, and for the integral oA
alongC,, we have C,NPC p; to p,, C'NPC p, top;, JS=CUC’,
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place ofC’ to computeg,[C]. Choose any surfac®’ CR
with boundary 9S'=C’UC”. Then SUS' has boundary

4(SUS')=CUC". Using Eq.(3.14 for the pairC’,C" we
have

jw= é ’A=argA2(¢l,¢2)=0. (3.19
s cuc

It is perhaps worth emphasizing that while the cur@g’
and their liftsC,C" are each of class Il, since they are NPC’s,

the closed loop€£UC’ andCUC' may not be of class Il, JS=CUC’, S'=C'UC", #(SUS)=CUC":
and in any case they are not expected to be NPC's. They are

of course class | which requires only piecewise once differ-

entiability. gog[C]=—Lw=—fSw—f ,w=—fsuslw. (3.19

The generalization of Eq3.14 to a string of three or

more successive NPC’s, altogether forming a closed 100D¢re e used the additivity property for integrals@fover
involves the phase of a nontrivial BI. Thus for am=3, it onoverlappingsurfacesSandS'. Thus, the consistency of
P1.P2, - pmeR ANdC; ., are NPC's fromp; 10 pj1 the definition(3.16 is established.
forj=12,... m(with pp,1=p1), with lifts C; ; 4 running All of the above is applicable for a general class-I curve
from ¢; to ;. 1, we find using Eq(3.10 repeatedly CC R which could be open, i.ea,# p;. In casep,=p; and
_ . . o C is a closed loop, there is no need to append any NPC to it
95=C1UCoqU . .. UCm, Cjje1 NPCSp; 10 s before computing its GP. We choose any (iftalso in the

m form of a closed loop and any two-dimensional surface
J' wzz A=argA (1, ¥, ... ). SCR with ¢S=C, and directly have
s  j=1lc .,
o (3.15 9S=C, dC=dC=0;
It is because onhA,(i4,¥,) is known to be always real
positive that we obtain a vanishing right-hand side in the (Pg[c]:_f 0=- %A (3.20
result(3.14).

o Going back to the general definitid8.16 of ¢4[C] for an
C. Definition of the GP openC, we now compare with E¢3.20 for closedC and

With this preparation we are able to define the GJPC] draw the conclusion

for any class-I curveCCR from p; to p,. We choose any | / ,
. [ NP
NPCC'CR from p, to p;, so thatCUC’ is a class-I closed C dasslpy 10 pp, C'NPC ps 10 p1, J(CUCT

loop in R, and then choose any two-dimensional surface  =0:;

SCR with 9S=CUC’. Thengy[C] is defined as the inte-

gral of w over S[17]: pg[Cl=¢4CUC']. (3.21
C classl p;top,, C'NPC p, to p;, dS=CUC’; The kinematic definitior{2.23 for ¢4[ C] is immediately

recovered from the present definitié®.16). With reference
to the latter, leC be any lift of C from any ¢, e 7~ (p,) to
any ¢, 7w (p,), and letC’, an NPC, be any lift of the
NPC C’ from i, to ;. Then using Eqs(2.11) and(3.10,
For consistency, we must show that the integral involvedve obtain

here is independent of the choice of the NEC. Pending

that, we see immediately upon comparing By14) with the o Cl= - f e jg A

definition (3.16 that for any NPC, the GP vanishes, 9 s cuc’

<pg[C]=—Lw. (3.16

C is NPC= ¢ [C]=0. (3.17)

:_fA_J /A=arg¢1,¢2)—fA, (3.22
The proof of the consistency of the definiti¢8.16) also © ¢ ¢
rests on the resul3.14). First, we introduce an item of no- which is Eq.(2.23

tation. For any curveg,C, we denote byC,C the reversed
curves obtained by traversing them backwards. We note then

g ! D. The BI-GP connections
that the NPC property is preserved while the GP changes

sign: There are two important formulas connecting Bl's and
GP’s. Both of them can be derived from the definiti@n16)
C,C NPC <C,C NPC, with the property(3.10 for NPC's.
Let p1,po,p3€ R be images off, ¢, 3 B, no two in
%[E;]: — @4l C]. (3.18 either triplet being mutually orthogonal. Join them pairwise

by NPC’s: Cy, from p; to p,, andCy3 from p, to p3, and
Now turning to the consistency of E(B.16), let C” be any  Cg; from pj to p4, their lifts C;, from iy to ¢,, Cog from o,
other NPC fromp, to p4, which could have been used in to ¢5,andC;; from 5 to ;. Now bothC,,UC,3UC3; and
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C1oUCy3UC4; are closed loops, so we can use E320 to
get

C’'s,C’'s NPC's;

¢yl C12U Cos] = [ C1oU C3U Cyy]

=—§ A=—f A—f A—fA
C12UC3UC3 C12 Ca3 Ca1

PHYSICAL REVIEW A67, 042114 (2003

An exception to the general lack of additivity expressed
by Eg. (3.26 occurs when we take;=p, because BI
As(hq b0 ,01) = As(ih1, ) is real positive. In this case, we
have

0S= C12U C21;

gl C12UCo1]= ¢yl C1]+ @yl Coil
= ¢g[C1ol— @l Corl

:_argA?)(lyDl!erw:g)' (323)
This is in fact the most general connection between GP’s and =— J' . (3.27
(phases of Bl's, as discussed elsewhef#2]. It takes the S

known connectior(3.15 between NPC’s and Bl's one step

further and brings in the GP. Equati@8.23 goes with Eq.

(3.15 for m=3. Form=4, we have, using the notations of

Eq. (3.19,
C’s,C’sNPC's;
@g[C12UC23U"‘UCm1]:_f A_f A— _J A
C12 Ca3 Cm1
= _argAm(wlvlpZi e 1¢m)'
(3.29

This will be used in the sequel.

IV. EXAMPLES AND PROPERTIES OF NULL
PHASE CURVES

We have mentioned that for any two poirms,p,e R,
there is a geodesic connecting them, which is unique when
Tr(p1p,) >0, and that geodesics are NPC'’s. In this section,
we explore NPC’s from several points of view, so as to vi-
sualize them better. We will show by explicit construction
that for dimensionH=3, given p;,p,eR with Tr(p,p2)
>0, there are infinitely manyin a quite nontrivial senge

The second formula brings out the role of BlI's in showing NPC’s connecting, to p,. We follow this up by developing
the nonadditivity of GP’s and its derivation exploits Eq. an explicit analytical description, as far as is possible, of the

(3.23. For triplets of pointspy,p2,p3€ R, ¢1,,, 3 B as

most general NPC fronp, to p,. Finally, we explore the

before, letC,, andC,; be any class-I curves, not necessarily differential geometric properties and characterization of

NPC’s from p, to p, and p, to p3, respectively. Next let
C,,,C3,,C3, be NPC'’s fromp, to p1, p3 to p,, andp; to

smooth submanifoldM CR with the property that every
continuous once-differentiable curéCM is an NPC, and

p1, respectively. These are needed to define the GP’s whic@ive examples of such submanifolds.
appear below. Finally, we choose two-dimensional surfaces It is instructive to see how the condition dif?3 for the

S$1,S,,S; with boundaries

9$;=C1UC, 9S,=CaUCy,

9S3=CpUClUCY,
(9(81U32US3):C12U C23U Cél (325)

Then repeatedly using the definitig8.16) and at the last
step appealing to the resyR.23, we find

gl C12U Cos] = @g[ C1a] — ¢g[ Cosl

=—J w-l-fw-i—Jw:—J’w
S| USUS; Sy S S3

= @g[éélu C5UCyyl
=—argAs( i, ¢, ¢3),
i.e., @[ C1oUCo3]=@g[ Cio]+ ¢g[ Cosl

—argAg( i, i, 13).  (3.29

existence of nontrivial NPC'’s arises. For dife2, the ray
spaceR is the PoincaresphereS?. If now three points
p1.Pp2.p3€R correspond to respective unit vectors
Ni,N,.Nze S then, as is known, arg Ts(p,ps) is one-half

of the solid angle subtended at the cente8oby the spheri-

cal triangle with verticesi; ,n,,n5 [18]. Thus, for condition
(3.3) to be obeyed for any three points on an NPC, this solid
angle must always vanish, so the NPC must be contained
within some great circle. More explicitly is expressible in

terms of its representative pointe $? as
1 I
p=§[l+n'0'], (4.
and then

Tr{p(s>[p<s'>,p(s">]}='§ﬁ(s>-ﬁ(s')xﬁ(s">. 4.2

Parametrizing tha’s with spherical polar angles, ¢ on S?
in the usual way, and assuming with no loss of generality

This is a known result, the purpose here was to derive it as ﬁ(s)z (0,0,1), the vanishing oﬁ(s) . ﬁ(s’) X ﬁ(s”) for all

logical consequence of E3.16).

independens’,s” amounts to
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X5(s') +X5(S)sin Gy nonzero throughout. Let us further limit our-
—=tang(s’) =const. (4.3 selves whers; <s<s, to vectors onS™ ! with all compo-
X1(s") nents strictly positive. That is, generalizing the positive

Hence, the NPC condition corresponds, after rotating to thguadrant and octant in wo and three dimensions, we define

configurationn(s) =_(0,0,1), to¢=const_; and we find that ST_lz{XESm_l|X1-X21 L Xp>0lCS™ L (4.9
NPC'’s are great circle arcs or geodesics$n Given any
two nonantipodal points or$?, then an NPC connecting and choose
them is either the corresponding geodesic, or it may explore
some more extended portion of the corresponding great X(s)eS" L, s,<s<s 4.9
circle. The vast generalization involved in going from geo- oo 2 '
desics to NPC_s really shows up only_for dkma_B. Then the vectors

For convenience, as in the preceding section, the present

one is also divided into further sections.
P(S)=X1(S)e1+Xy(S)ex+X3(S)e3+ - - - +Xm(S)en

(4.10
A. Examples of null phase curves
Let two distinct pointsp;,p,e R with Tr(p;p,)>0 be  obey
given. We will construct examples of class-Il cun@és R
from p, to p, which are NPC’s. Since by Eq2.9) every  (¥(S),¥(s"))=x(s) -x(s")=real positive, s,s’ [s;,S;].
point p(s) e C must obey Tirp;p(s)]>0, it follows thatC (4.1
must lie entirely in the neighborhod®(p,) CR of p, de-
fined in the manner of EGA.8). We can therefore use a local Condition (3.3) for C,C to be an NPC is clearly satisfied,

description ofR(p;) as set up in Appendix A. so we have succeeded in constructing infinitely many
Let ¢y, e *(p;) and choosey,e 7 *(p,) such that NPC's from p; to p,. In this construction, the integer
(1,1, is real positive. Introduce an angtg by me(3,4,...n), and the vectores,e,, ... e, forming
along with ¢, =e; ande, an orthonormal set i8 may each
(Y1,42)=cosby, Ope(0,7/2). (4.4  be freely chosen; and thet(s) for s;<s<s, is any once-

differentiable curve orS8™ ! obeying the boundary condi-
tions (4.7) at the end points.

This great profusion of NPC’s as compared to geodesics,
available only when dimensiok=3, is an indication that
the former are not solutions to any system of local ordinary

(e,,6,)=0, |e)f=1, (4.5  differential equations with some boundary conditions, in the

way familiar with geodesics. It is also clear from the deduc-

S0 i, =e1,e, form an orthonormal pair. As in Appendix A tive development in Sec. Il that it is NPC’s that are basic to
we supplemeng; e, by further vectores,e4, ... B, ter-  the theory of the GP, and in a sense it is incidental that
minating withe, if dimension=n is finite, such tha{y;;  geodesics are NPC's. These remarks lead to the following
=e;,8,,63, ...} is an orthonormal basis foH. Let C interesting questions: given any two distinct nonorthogonal

Let us when convenient writey;=e;. According to Eq.
(A.10) we can expresgs, in the form

=01 C0SHy+ e, Sinby,

={y(s)|sy<s<s,} be a lift of C from i, to i,. For ¢(s), points p1,p,e R, how can we describe in a constructive
we write sense the most general NPC fr@gmto p,; and how can we
characterize a smooth submanif®&ldiC R if it has the prop-
P(s)=xy(s)er+Xa(s)er+Xa(s)es+ - - -, erty that every continuous once-differentiable cUB&M is
i an NPC ? The latter kind of question is clearly not meaning-
x1(8)#0,  X1(S)c0sbo+Xz(s)sin 6 # 0, ful in the case of geodesics. We will find that here again the
third-order Bl plays a key role.
X1(8) |2+ [X2(S) |2+ [x5(s)[*+ - - - =1, s1<S<S5,. Py Y
4.6
48 B. Description of a general null phase curve
The coefficientsx;(s),X»(S), . .. must be continuous once

Now we develop a description of the most general

differentiable. At the end points, they have real values NPC C={p(s)|s,<S<s,} connecting two given points

x(s;)=(1,0,0,0...), p1,preR with Tr(pip,)>0. We assume vectors
12 m *(p1) Obeying Egs(4.4) and(4.5 have been cho-
X(S,)=(c0s6y,5iN6,0,0, . . .). (4.77  sen. LetCo={y(s)|se[s,s,]} be the particular lift ofC,

from ¢, to i,, obeying the conditiori3.6) so
Now choose any integeme (3,4, ...n) and consider

the real unit spher&™ 'CR™. Assumex(s) to have real Po(S1) =1, Po(S2) =2,

components,  with Xy, 1(S)=Xmi2(8)=---=0 for s

e[s1,S,]. Thus the firstm components ok(s) describe a (o(s"),p(s))=real positive, s’,se[s1,S;].
moving point on S™ ! with x,(s) and x;(s)cosé, (4.12
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We expandyq(s) as
ho(s)=xy(s)ertXa(s)ex+ x(S),

(el1X(S)):(e21X(S)):Ov (413

At this stagex,(s) andx,(s) are complex continuous once-
differentiable functions ofs, while y(s) is a continuous
once-differentiable vector in the subspakg (¢4,¢,) CH
orthogonal to the paig,, ¢ i.e., toe,,e,. At the end points,
we have

se[s;,S;].

X1(81) =1, Xa(S1)=x(s1)=0;

X1(S2) =€0S6Hy, Xo(S,)=sinéy, x(s,)=0.

(4.19

Now we draw out step by step the implications of the real

positivity condition(4.12), and of (s) € B for all s. From
the real positivity of(iq,1¥0(S)) and (5, ¥(S)), we get

X41(s)=real positive,

X1(S)cosby+ X,(S)sin fg=real positive, se[S;,S,].

(4.15
These imply
Xs(s)=real,
0o b iy
xl(s)cos? +X,(8)sin 5= real positive, se[s;,S,].

(4.19

Thus,x;(s) can never vanish, whilg,(s) could vanish, as it

does as=s;, or even sometimes be negative. Next from the

normalization ofiy(s), we have

[o(S)]|=1=x1(8) 2+ Xa(5) 2+ x(9)|?=1, se[s;,Sz].

(4.17
We therefore parametrize (s) andx,(s) by
X1(s)=0o(s)cosh(s), Xy(s)=o(s)sinb(s),
0<o(s)=1, se[s1,S,];
o(s))=0(sSy)=1, 06(s1)=0, 6(sy)=6,. (4.18

Both o(s) and 4(s) are continuous once differentiable, and

for the norm ofy(s) we have

Ix(s)|=1-a(s)%)*<[0,1). (4.19

The positivity conditiong4.15) lead to the allowed range for
o(s),
— 2+ 6,< O(s)< /2,

(4.20

which exceedsr/2 in extent. The permitted region in the
X1-X, plane is thus a segme®AB of the unit disk subtend-

PHYSICAL REVIEW A67, 042114 (2003

T2

FIG. 1. The allowed region in the;-x, plane is the segment
OAB of the unit disc, excluding the radii OA and OB.

hencex;(s) andx,(s), can be chosen freely subject to the
bounds and conditions given in Eqg.18 and(4.20.

Now we turn to the more comprehensive positivity con-
dition (4.12,

(o(s’), ¥o(s))=real positive
< o(s')a(s)codo(s")—0(s))
+(x(s"),
x(s))=real positive,
s’,se[s1,Ss]. (4.2)

An immediate conclusion is that for alls’ and
S,(x(s"),x(s)) is real. One can show quite easily that this
means the following: there is some orthonormal basis
{es3,€4, ...} for the subspac@{, (#,,1,) C'H such that

s

The orthonormal sefes,e,, ...}, defined of course upto a
real orthogonal transformation, depends in general on the
particular NPCC from p; to p, that we are describing; it
need not be the same for all NPC’'s from to p,. The

ing an angle ¢— ) at the center, as shown in Fig. 1. The information on||x(s)|| leads via the Cauchy-Schwartz in-

open arcA to B is included, while the end point&,B, and
the radiiOA, OB are excluded. At this pointr(s) andé(s),

equality to a bound on the magnitude of the last term on the
right-hand side of the conditio(.21):
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|(X(Sf),x(s))|s{(1_U(g/)z)(l_g(s)Z)}U% 4.23 latter is a particular special case of Hd.25. However, in
the reverse direction, of course, it is not possible to derive

Since, as already mentioned, the rangeé®) in Eq. (4.20 Eq. (4.25 from Eqg. (3.27). Now Eg.(4.25 can be general-
exceedsr/2 in extent, the differencé(s’) — 6(s) can some- ized to the case where we choose amg4 points
times exceedr/2 in magnitude; this would make the first p;,p,, ...,pmeC, located one after the other in a se-
term in the inequality (4.21) negative. In that case, quence, with no two consecutive ones being orthogonal.
(x(s'),x(s)) must be positive and large enough to compen-Then in an obvious notation we have
sate for this, while still subject to E¢4.23. We are thus led
to an interesting nonlocal condition er(s) and 6(s): g C=CoUC3U - - - UCpy]

o(s’)a(s) g -1 =@yl Cral+ @[ Coal + - - - + o[ Cipa]
(A= o(s))(1—o(mpyea XS~ fNI= —arGA (Y1 U« )

it 16(s")—6(s)|> /2. (4.24 =—fw, m=4. (4.26
S

This condition, being nonlocal, cannot be translated in any
simple way to a further restriction on the so-far allowedThis is also derivable from Edq4.25 which is the primitive
ranges foro(s) and 6(s), but must be carried along as a relation of this kind. The proofs of Eq$4.25 and (4.26)

nontrivial condition to be obeyed by them. For such allowedfollow the pattern of the arguments in Sec. lll. In these rela-
choices ofo(s) andé(s), x(s) must then be chosen as in Eq. tions, if all the segment€,,,Cy3, . ..,Cy are NPC'’s, we
(4.22 ensuring that the inequality4.21) is obeyed. recover Eqs(3.23 and(3.24).

This is the extent to which an explicit constructive de- Now let M CR be a connected, simply connected smooth
scription of a general NPC fromp, to p, can be given. submanifold with dimensiotM=2 in the real sensg19].
Admittedly, it is much less “complete” than the description The corresponding identification map ig:M—7R. The
we can give for a geodesic, again an indication that NPC'ullback toM of the symplectic two-formw on R is
form a much larger family of curves than do geodesics. We

can now see that the examples of NPC'’s given in the preced- oy=ino. 4.27
ing section correspond to the special simplifying assumption
that the functionsxy(s),x,(s),xs(s), ... are all non- This is of course closed but may well be degenerate. In the

negative. Ther|6(s')— 6(s)| never exceedsr/2, and the extreme case of an isotropic submanifold it vanishes,
nonlocal conditions(4.21) and (4.24) are automatically
obeyed as even(x(s'),x(s)) is throughout real non- M isotropic= wy=0. (4.28
negative.
If in addition dimM=(n—1), it is a Lagrangian submani-
C. Submanifolds of null phase curves fold.
. , Assume now thai is an NPM. Every once-differentiable
Now we enlarge the scope of our analysis of NPC’s and

ask the question: how can we characterize a smooth sufprveCcM must then be of class Il and we get the follow-

manifold M C R if every once-differentiable curv€ CM is ng two consequences:
to be an NPC? For brevity let us call such a submanifold an
NPM. To answer this question we first assemble the basic
formula which generalizes Eq3.26 and connects GP's,
Bl's, and two-dimensional surface integrals of the two-form
w. Let CCR be any closed class-I curve, a&t R any
two-dimensional surface withS=C. Let p;,p,,p3 be any
three pairwise nonorthogonal points chosen in sequence
alongC. Denote the successive portions@from p, to p,,
p, to p3 and p; to p; by Cq5,Cy3, and Csq, respectively.
Then we have the relation

M isan NPM=M isisotropic, wy=0;
(4.299

M isan NPM=forany pj=m(¢;)eM, [j=1,2,3,
As(q,5,103) s real positive. (4.29bH
The first follows from Eq.(3.14 after specializing to

C,C’,SCM. The second then follows from the first upon
use of Eq.(4.25), again specializing t€,,,C53,C31,SCM.

@g[ C=C 15U CaUCa1]= @4l C1al + @[ Coal + ¢4l Ca1] Fr(_)m E_q.(4.29l:) we also see by ta\_king3= p, that any two
points inM are nonorthogonal. This means that every once-
—argAs(¢, ¥2,43) differentiable curveCCM s of class II.
Conversely, if we start by assuming E¢.29b for M, we
=—f » (4.25  deduce
S As(ip, ¢, 43) real positive,
for_any e W_l(pj), j=1,2,_3.. .If as a special case we set any p=m(y;)eM, j=123
p3=p, here, recall the definitiori3.16 and the fact that
As(iq1,4,) is real positive, we recover E@R3.27). Thus, the =Tr(pip2)>0, any ps,poeM; (4.303
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=M isan NPM; (4.300 ¢g[Cio]= @4l Cual. (4.36

=M s isotropic, wy=0. (4.300  Fyrthermore, it is clear that this statement exhausts the con-
gnt of isotropy. Since the lifM — M, is unique(given pg

nd ), we can faithfully transcribe this statement.d,,
which is more convenient since we then deal with vectors.
Denote by, and ¢, the lifts of p; andp, to M, and by

be real positive ifp;=7(i;) e M, j=1,2,3. It then follows C12,C1, the (unique I'Tts of Cy,Cy, to M. Then the full
that the GP for an open or closed class-l curve lying entirehyfontent of Eq.(4.3 is expressed as follows: for any two
in an NPM is zero. Isotropy d¥l is thus only a necessary but POINtS ¥1,4, Mo, and for any class-l curves;,,Cy, in
not a sufficient condition to ensure this property korItis /Mo connecting them, we have
therefore instructive to see how far one can go on the basis of
isotropy alone. We now examine this point.

Letpl)\//I be a connected, simply com?ected submanifold in arg g1, ¥2) — L A=ard i, i2) = fcr A,
R, such that Trp,p,)>0 for anyp,,p,€ M. As in the pre- 2 1
ceding section for an NPC, we construct a lift df to a
submanifoldMg C B, in the spirit of the Pancharatnam lift. i.e.,f A:f A. (4.37)
Choose any poinpoe M and then anyy,e 7 *(pg) CB. o cl,
The lift Mg is then completely and uniquely defined by the
rule [generalization of Eq(3.11)] This means thatas we have assumed simple connected-

ness the pullback ofA from 55 to M, is exact. Denoting the

These three statements are not independent since, by E
(4.29, (4.30b implies Eqg.(4.300. In any case, we see from
Egs.(4.29h and(4.30b together that the necessary and suf-
ficient condition forM to be an NPM is that\ (¢, ¥, ¥3)

peM—y= pio e Mo, relevant identification map asy:Mo— B, we have
VTr(pop)
wM=O©ij,loA=df (4.39
() =p, (4.3D)
S0 M, as a subset oB is displayed as for somef e 7(M,). For emphasis we repeat that isotropy
of M allows us to conclude thaﬁAOA is exact, and allows
Mo={pho/NTr(pop).pe M}CB. (432 (y,y") for ¢,' € M, to have a nontrivial phase.

If at this point we assume in addition thisk is an NPM,

Of course, poe M is lifted to yoe Mo. This lift M e immediately see that we have much stronger conclusions:

— M, is characterized by the fact that each veatat M,
is in phase withy, in the Pancharatnam sense, from Eq.

(4.30) (¢, ¢")=real positive, any, ' e My,

) i* A=0. 4.3
<¢o,w>=M=¢Tr<pop>=real>o. (4.33 Mo (439

VTr(pop)
_ These results imply that now1y is truly a Pancharatnam lift
However, if we take two general vectogsy' € Mo, we  of M, and they show very effectively the extent to which the

find that their inner product is, in general, complex: NPM property goes beyond isotropy.
, ) - To round out this discussion we give some examples of
(") =(p" Po,p o) NTr(pop’ ) Tr(pop) submanifoldsM C R, connected and simply connected, pos-
_ / \/,— S.eSS|r_19.the NPM properlty. To begin with, we use a cp.nstruc—
Tr(pop” p)/NTH(pop")Tr(pop), tion similar to that used in Sec. IV A to construct families of
arg ' ) =argAs(vo, o' ). (4.34 NPC’s connecting any two given nonorthogonal points

p1,p2€ R. For anym=3 (upto n in case dimH=n is fi-
ThUS, whether or not genera' pairs of po|ntS/\”bO are in nite), let e ,r= 1,2, LLoom, be an orthonormal set of vectors
phase depends entirely on whether the B, ', ¢) for  in H. We first define a submanifold1C 5 as consisting of
triplets of points inM are real positive or complex. This is all real normalized “positive” linear combinations of theg:
the sense in which the lit1 — M, is as nearly a Pancharat-

nam lift as possible in a general case. m N
Now let us impose the condition th&t be isotropic, M= l//(X):Zl x.€ €B| x, real positive,
oy =iyo=0. (4.395 m
> X,2=1] CB, (4.40
Then Eq.(3.27 shows that ifC,,,C;, are any twoclass-I r=1

curves inM from anyp, e M to anyp, e M, the GP’s are the
same; and then take the projection to géit
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M=m(M)CR. (4.41 V. CONCLUDING REMARKS

Both M andM are of real dimensionni—1), in fact M is We have developed an approach to the theory of the GP in

essentiaIIyST‘l of Eq. (4.8). By construction we see that quantum mechanics, in which the basic ingredient is the
three-vertex Bl of quantum mechanics. This invariant leads

m to the definition of NPC’s in the Hilbert and ray spaces of

((X"), h(X))=X"-x= Z X; X, =real positive, quantum systems. In turn, this lets us define the GP associ-
=1 ated with any suitabléopen or closedray space curve as an

(4.42 . . .
area integral of the ray space symplectic form. The emphasis
and therefore for any three points i, has been on the logical basis and consistency of the entire
) , o N development, and the crucial role of NPC’s. We have shown

Ag(f(X),p(X"), p(X"))=Xx-xX"X"-X"X" - x=real positive. that it is the Bl which is the truly fundamental concept un-

(4.43 derlying all the others. In the course of the development, we

This ensures that every once-differentiable cCUBEM , ob- have taken care to define with precision the classes of ray
tained by settingg=x(s) for suitable functions(s), is of and Hilbert space curves that one must work with for each
class Il and also an NPC. purpose.

After this abstract example of an NPM, we give two oth- NPC's are a vast and important generalization of the more
ers involving explicit families of Schdinger wave func- familiar family of geodesics in Hilbert and ray spaces, and it
tions, which are simple but quite relevant. The context is thdurns out that they truly belong to the theory of the GP. It
family of coherent states of a system Nfidentical simple happens to be true that geodesics are instances of NPC's;
harmonic oscillators. Starting with the normalized vacuumhowever the latter are far more numerous by any measure,

state|0) with the wave function and are intrinsically of a quite different nature. Thus, length
of a curve and its minimization are not at all the relevant
|0)— o(X) =7 N4exp — :X-X), concepts in arriving at NPC’s. This makes their description

considerably more difficult than of geodesics, for which a
N ) differential equation treatment is available. They have deep
X-X= 21 X, (444 properties of a nonlocal nature. The examples of NPC'’s and
= NPM's, and their general properties brought out in our dis-
the Spatia' translates w>'|Y> say, have wave functions CUSSion, should help in a|d|ng our Understanding this impor-
tant class of quantum mechanical objects.
VY= d(X) =7 NAexg — 3(X=Y)-(X=Y)]. The Pancharatnam lift1, of an NPMM is characterized
(4.45 Dby the two propertie4.39. The first actually implies the
second. Its structure suggests the following nonlocal opera-
tion or construction: pass from the collection of vectors
', .. e Mg toits real linear hull, i.e., form all real lin-
ear combinations of any numbers of vectorsuty (and then
normalize them to get results if). This much enlarged
collection of vectors inB is clearly associated with a real
subspace of{ all inner products among whose vectors are
real (but of course not anymore always posilivéhe con-
Sideration of NPM's leads in a natural way to associate real
linear subspaces ik within which the Hermitian scalar
roduct of H reduces to a real symmetric scalar product.
such a subspace is cleary*  isotropic, and we are led to
consider trying to characterize NPM’s via such associated
subspaces.
It is useful to view all this also from another perspective.
7~ V4(detu) Y exp{ — 1XT(u+iv)X}, The Fubini—Study. metric and the symplec;tip form on the
(4.46) quantum-mechanical ray space both originate from the
Kahler form, as its real and imaginary parts, respectively
and for generalu,v these are complex. This set of wave [21]. While the geodesics stem from the metric, the BI,
functions constitute a generalization of the Poincapger- NPC's, and GP are all more naturally related to the symplec-
half plane, withSp(2N,R) acting onu,v through(matrix) tic structure. Hence, it is that NPC’s and not geodesics, form
fractional linear transformations. In this set if we now limit the principal notion in the GP context.
ourselves to those withv=0, all the wave functions We have seen in Sec. IV that it is only when dife=3
#,0/(X) are real and all scalar products among them are redghat the true differences between NPC’'s and geodesics
positive. Thus we have another example of an NPM. Agairemerge. The situations in which the GP has been traditionally
the image of this submanifold under any unitary transformastudied in detail have involved two-dimensional symplectic
tion retains this property. manifolds: CP or S? corresponding to a two-level system

Taken for allY e R", these states constitute a submanifold
R" in the manifold R2" of all coherent states; and the

former clearly form an NPM. Clearly, the image of this

manifold of states under any unitary transformation will also
be an NPM. In patrticular, the submanifold of all momentum
translates of the vacuum state form an NPM.

The second example is in the context of the manifold
Sp(2N,R)/U(N) of all squeezed vacuum states obtained a
the orbit of the staté4.44) under the unitary action of the
groupSp(2N,R) of all real linear canonical transformations
[20]. These states can be characterized by a pair of real sy
metric NX N matricesu,v with u>0, and so they form an
N(N+ 1)-dimensional submanifold in Hilbert space. The
corresponding normalized wave functions are

[U,0)—= Py (X)
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such as polarized light or spin-1/2 particles; the two- Next we turn to the ray spac®. At a point po= o
dimensional plan® ? as in the coherent states of a harmonic e R, the tangent space can be defined and then described
oscillator; and the timelike two-dimensional upper half unitexplicitly in terms ofH, B:

hyperboloid in (2+1)-dimensional spacéquivalently the

unit disc or the upper half complex planas in the squeezed T, R={B=linear operator onH| B'=B, TrB=0,

vacuum states of an oscillator. In all these cases, there is 0
simply no extra room in these minimal situations for the
differences between NPC’s and geodesics to show up. Thus,
it is understandable that the geodesics were thought to h

intrinsically relevant to GP discussions, but this status right--?ehls is a real linear vector space of dimensiom2(1). In

fully belongs to the NPC's. the latter form, if we change the representative veatgr

We have examined elsewhere the conditions under whictf 7 (o) by a phase, we must keep track of the change in
constrained geodesics, i.e., geodesics among curves rB- ¢ IS unchanged, or alternatively changeby a compen-
stricted to lie within a given ray space submanifold couldSating phase to kee the same.
turn out to be NPC'{12]. Important examples when this _ 1he two-formdA onBis the pullback of a two-forna on
happens, and the corresponding BI-GP connections whicf
are of physical interest, have been given. The more compre-
hensive account of NPC’s and NPM’s presented in this paper
zhogld fenable us to §tgdy the connections to constrained 9€Rs an antisymmetric bilinear functional din, R,w is speci-

esics in a more definite manner. We intend to return to this, 0
and related problems elsewhere. fied by

{B,po} =B}={B=yg+ o' |¢pcH, B}.  (AS)

dA=7*w. (AB6)

w,,(B,B")=—iTr(po[B,B'])=2Im(¢, "), (A7)
APPENDIX A: BASIC DIFFERENTIAL GEOMETRY

OF RAY SPACE, LOCAL DESCRIPTIONS where ¢, ¢’ e H, B correspond td,B’, respectively, as in
For the convenience of the reader we collect here som#e second line of E¢AS5).
basic definitions relating to the unit sphelfe 7, the ray All the above definitions and expressions are coordinate

spaceR = m(B), defined in Egs(2.1) and(2.3), and geomet- independent and intrinsic. Now we give local coordinate de-
ric objects associated with them. Convenient local coordinat&criptions for some of them, which are sometimes useful. For
descriptions of some of them are also given. For definitenes§iven poe R, and some chosegioe 7 *(po), we define an
we may assume that dimensisti=n is finite. open neighborhoo®(po) by

The space3=S?""1 is a differentiable manifold. At any
point i, € B, the tangent space is R(po)={p € R|Tr(pop)>0}CR. (A8)

Thus, what are excluded fro(py) are projectiong onto
Ty B={¢eH|Re(t)o,¢)=0}. (AL} vectors inB which are orthogonal tgy,, that is, onto vectors
in Hy,: The corresponding open subset®fs denoted by
This is clearly a real linear vector space of dimension (2 B(), though in fact it is determined byy;
—1). The connection one-fori defined ons3 is specified at
eachye B as a linear functional off, B is B(o)=m"YR(po)1={weB|(y, ) #0}CB. (A9)

deTy B:A, (#)=Im(Po,d)=—i(1o,¢). (A2) ?/c\)lvisczzan give an explicit formula for anye R(py) as fol-

Therefore, the horizontal subspaceTquB is defined as peR(py)ep=p(d)
=[¢+ (1= ¢*) 0]
X[+ (1[5 2p0]",

peH, B el<t; (A10)

HyoB={$ € Ty BlA(#)=0}
—{peH|(ho,H)=0}CT,B. (A3

This is of course a real linear vector space of dimension

2(n—1), butitis in a natural sense a complex linear vectorand then

space of dimensionn(—1), namely, the subspace &f or- 5

thogonal toy,. Tr(pop(P))=(ho.p(P)Po)=1—[#[*>0. (All)
The two-formdA is, at eachyye B, an antisymmetric

bilinear functional onTl,,oB, Thus, points inR(py) are in one-to-one correspondence

with, and are coordinatized by points inside the unit sphere
’ ) ) in the subspacH%B of H. By adding a phase fact@'“,
¢ 9" €Ty Bi(dA) (4. ¢")=2IMm(,d").  (Ad) e get a local description faB(,) as
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~[ll1%)2p0),
(A12)

pe B(o) = = p,a)=€*(p+(1
de H¢,OB, o<1, Osa<2.

Let {¢p=e,e,, ...} be any orthonormal basis fdt.
We expandp e H,B as

— 3 ' (A13)
= — — e s
¢ \/Er:2,3,... (Br—iy)e
so that the conditiofi¢| <1 becomes
& Br=<2 (A14)

Then{B,,B3, . ..,¥2,v3, - . .} subject to(A14) are real lo-
cal coordinates, 2(— 1) in number overR(py) CR; while

{auBZVBBv 0 Y2:7Y35 -

(v dB;—Bdy,),

dy AdB; . (A15)

APPENDIX B: PROPERTIES OF GEODESICS
IN RAY SPACE

We provide here a brief account of the definition, differ-
ential equations, and main properties of geodesics in ray
spaceR. Since they will be found to obey second-order
ordinary differential equations, it is appropriate to work with

curves of class lll. Let then

C={p(s)eR|s;=s<S,}CR (B1)

running fromp(s;) = p; to p(s,) = p, be a curve of class lll,

and assume Tp(;p,)>0. Let
C={¢(s) e Blp(s) = y(s)¥(s)",s,<s<8s,}CB (B2)

be any(class Il)) lift of C. The length ofC is the functional
£ic)= [ “aslu. s
u, (s)=u(s) = (¢(s),u(s))¥(s) € HysB;

d
u(s)= d_s"/’(s)ET"’(S)B' (B3)

This is both reparametrization and local phase transformation

invariant. We make infinitesimal changeB/(s) in ¢(s)

alongC, inducing change$p(s) along C, vanishing at the
end pointss; ands,. Requiring §£[C]=0 we arrive at a

differential equation which must be obeyeddfC] is to be
stationary andC is to be a geodesic:

.} are real local coordinates over
B() CB. In these charts we have the explicit expressions

PHYSICAL REVIEW A 67, 042114 (2003

u (s)

||U (S)H =f(s)y(s),

d
5£[C]=0<:>(ds (¢(s), U(S)))

f(s) arbitrary real. (B4)

This equation is naturally covariant with respect to both rep-
arametrizations and local phase transformations. These prop-
erties can now be exploited to successively specialise the
choice of the liftC and its parametrization, and thereby sim-
plify the differential equatior(B4) [22]. By a suitable local
phase transformation we can assume ¢hiata horizontal lift

of C, so we can replace EGB4) by the simpler system

S _f(sus),
ds|u(s)]

(4(s),u(s))=0,

f(s) real. (BS)
Next we can use the reparametrization freedom to switch
from the originally given parameter to an affine parameter.
This makes|u(s)|| constant alongC, and for the affinely
parametrized horizontal liff we have in place of EqB5):

2
ddllfs(zs) =f(s)y(s),f(s) real,
S)
ol =1] wis). 4 =0,
di(s)
H ds = const. (B6)

A brief analysis shows that this problem is fully equivalent to
a second-order ordinary differential equation with suitable
initial conditions ats=s;,

d? d 2
w<s> H LC] L.

ds |

li(sp)l =1, (w< 1>( 9”(S)) >=o. (B7)

Finally, we make a scale change and shift of origin in the
parameter to make;=0 and |d¢(s)/ds|=1. This com-
pletely exhausts the freedom of reparametrizations, and at
this point we may denote the parameter by a special symbol
{. For the so-defined and parametrizeddifof a geodesi€

in R, we have the solution to E¢B7) in the form

(€)= p(0)cost + (0)sin¢,

(0| =] (0)|=1, (4(0),4(0))=0.

This solution is determined by one orthonormal pair of vec-
tors, and every geodesic R has such a lift in3. The value

(B8)
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of the length functionall[ C] in Eq. (B3), from the starting
point £ =0 to a general point, is the parametef itself:

4
L[ geodesicC from ¢=0 to €]=f dé=¢. (B9)
0

Going back to the original curv€ in Eq. (B1), we identify
W(0)= iy e m (p,), while ¢, e m~1(p,) has to be suitably
chosen. A careful analysis of the explicit soluti@8) shows
us that the following results hold.

(i) For givenp4,p,e R obeying Trlp.p,)>0, there is a
unique geodesic connecting them.

(ii) If we make any choice ofy; e w (p,), we can de-
termine uniquelyy, e 7 (p,) by the condition

(i1 ,4r,) =real positive. (B10)

(i) A horizontal lift C of this geodesic is given by Eq.
(B8) by choosing

$(0)= 4,

_ = ()t
(L= (41, )YV

(iv) The end points of correspond to the parameter val-
ues¢ =0 for ¢, ,£ =cos Yy ,) €[0,7/2) for i,.

(v) The length of this geodesic is cO$yy,4,) and is
strictly less thanm/2.

(vi) For any two point¥, €’ €[0,7/2) we have

#(0) (B11)
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((€),(€"))=cog€—¢")=real positive, (B12)

and so for any three points ¢’ ,¢" [0,7/2), we have
A(p(€),gp(£7), (€)= Tr(p(€)p(£") p(£"))

=real positive. (B13)

(vii) If we take the limiting case Tg;p,)=0, corre-
sponding to (/1,¥»,)=0, the geodesic distance from to
p, becomes exactlyr/2. However there is now no unique
geodesic connecting, to p, since, for anya €[0,27), the
curve

(€)= 1p, cost + e *i, sine (B14)

is a solution of the variational probled[C]=0, i.e., of
Eqg. (B7), and its projection inR runs fromp, to p, as<¢
varies ovell 0,7/2].

These results are very similar to what are known about
geodesics or great circle arcs 8f which is the ray spack
when dimensiorf{=2. Their lengths, in usual units, never
exceedsw. For nonantipodal points, there is a unique geode-
sic with length strictly less thamr. For antipodal points we
have a “27 worth” of geodesics, each of length.

In a qualitative sense it is easy to see that in a ray sface
of any dimension, two pointp; andp, can never get very
far from one another, since

Tr(p1—p2)?=2[1-Tr(p1py)]<2.

The properties of geodesics described above are consistent
with this fact.

(B15)
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