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Nonpositive evolutions in open system dynamics
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The long-time evolution of a system in interaction with an external environment is usually described by a
family of linear mapsg t , generated by master equations of Block-Redfield type. These maps are, in general,
nonpositive; a widely adopted cure for this physical inconsistency is to restrict the domain of definition of the
dynamical maps to those states for whichg t remains positive. We show that this prescription has to be
modified when two systems are immersed in the same environment and evolve with the factorized dynamics
g t ^ g t starting from an entangled initial state.
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I. INTRODUCTION

The dynamics of systems immersed in large, external
vironments can be described in terms of master equati
they generate the finite time-evolution for the reduced d
sity matrix, obtained by tracing over the environmental d
grees of freedom@1–9#. Their explicit form is, in general,
rather complex, involving nonlinearities and memory effec
Nevertheless, when the coupling between subsystems
environment is sufficiently weak and for times much long
than the characteristic correlation time in the environme
suitable limiting master equations in Markovian form can
derived.

These derivations are often based onad hocapproxima-
tions, lacking mathematical rigor, while the final result
justified on the basis of physical considerations. Desp
these heuristic treatments, Markovian master equations h
been applied to model various effects in open system dyn
ics, ranging from quantum optics to quantum chemistry.

It has been pointed out long ago that the heuristic der
tions of the Markovian limit of master equations could lea
in general, to physical inconsistencies@10#. In particular, the
resulting finite time evolution described by such equatio
would not, in general, preserve the positivity of the reduc
density matrix, with some remarkable exceptions, based
rigorous mathematical treatments@1–4,11–19#.

Although acknowledged in most subsequent literature
the subject, these inconsistencies were either dismisse
irrelevant for all practical purposes@20# or cured by adopting
further ad hocprescriptions@21–23#. In the latter case, the
general attitude is to restrict the action of the dynami
maps generated by the nonpositive master equations
subset of all possible initial reduced density matrices, th
for which the time evolution remains positive. This
equivalent to a suitable selection of the initial conditions
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the starting state of the subsystem, a procedure somet
referred to as ‘‘slippage of the initial conditions.’’ On phys
cal grounds, this effect is viewed as the consequence of
short-time correlations in the environment, that have
been properly taken into account in the derivation of t
Markovian limit of the original master equation.1

In the following, we shall reexamine this widely use
prescription to cure possible inconsistencies produced
nonpositive, Markovian master equations, and point out f
ther potential problems of this approach. We shall deal w
two identical, noninteracting subsystems immersed in a sa
environment, both evolving, in the Markovian limit, with th
same nonpositive master equation. We shall explicitly sh
that redefining the initial conditions to make positive t
single-system time evolution is not enough to cure all p
sible inconsistencies of the two-system dynamics. Th
show up when the two-system state that emerges after
transient due to the short-time correlations in the envir
ment is entangled; therefore, in order to have a physic
acceptable time evolution for the two subsystems when
tanglement is the most likely consequence of the initial tr
sient phase, the above-mentioned procedure of restric
initial conditions should take into account also correlat
states.

On the other hand, let us notice that maximal entang
ment can be produced without any transient. A particula
interesting example is that of two neutral kaons that are p

1Let us point out that, instead of restricting the possible init
states, one can alternatively ‘‘smooth’’ the initial conditions o
which the nonpositive dynamical map acts@24#; the resulting effec-
tive map turns out to be positive. Unless it results in being a
completely positive, unphysical effects of the kind discussed be
would affect this case as well.
©2003 The American Physical Society10-1
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duced, via the weak interaction, as decay products of a s
one F resonance: due to the angular-momentum conse
tion, the two spin-zero kaons fly apart back to back, in a s
that resembles that of the singlet for two spin-1

2 particles
@25#.

Using standard techniques, in the following section,
shall derive the Markovian limit of the master equation d
scribing two two-level systems in interaction with a stoch
tic environment. After waiting for the correlations in the e
vironment to die out, the resulting finite time evolutionG t
turns out to be describable in terms of a factorized dynam
G t5g t ^ g t , whereg t represent a single open system dyna
ics, in general, nonpositive. In Sec. III, we shall then ap
the derived time evolutionG t to a maximally entangled, pur
initial state, and show that ‘‘negative probabilities’’ may ari
even though the dynamicsg t remains positive on the con
stituent single-system states. The case of partially entan
states and that of mixed entangled states is discussed in
IV. The concluding Sec. V contains our final consideratio

II. MARKOVIAN MASTER EQUATION

The physical model we shall study is formed by tw
noninteracting, two-level systems immersed in the same,
ternal environment. The Markovian limit of their subdynam
ics will be derived using the same techniques and appr
mations widely adopted in analyzing single-system ti
evolutions@5–9#.

For sake of definiteness, the action of the environmen
the two subsystems will be assumed to be mediated b
weak time-dependent stochastic field, coupled to their s
like degrees of freedom@26–28#. This choice is of sufficient
generality for the considerations that follow. Let us point o
that this model can describe real physical situations, like
ones occurring in interferometric setups, involving t
propagation of neutrons in random magnetic fields@29–36#
or photons in random optical media@5–8,37,38#. Moreover,
it has been used to study dissipative effects in correla
neutral mesons under the action of weak, stochastic gra
tional fields@39–42#.

Without loss of generality, the total system Hamiltoni
can be taken to be@36#

H5H0
~1!1H0

~2!1HI
~1!1HI

~2! , ~2.1!

H0
~A!5

v0

2
s1

~A! , HI
~A!5(

i 51

3

Vi
~A!~ t !s i

~A! , A51,2,

~2.2!

where s i
(1)5s i ^ 1, s i

(2)51^ s i , are the two-system spin
operators, represented by the Pauli matricess i , i 51,2,3,
while V(A)(t)5„V1

(A)(t),V2
(A)(t),V3

(A)(t)…, A51,2, are the
stochastic, Gaussian field variables, independently cou
to the spin degrees of freedom of the two systems. For s
plicity, we assumeV(A)(t) to have zero mean,̂V(A)(t)&
50, and stationary, real, positive-definite covariance ma
@Wi j

(AB)(t)# with entries
04211
n-
a-
te

e
-
-

s:
-
y

ed
ec.
.

,
x-

i-
e

n
a

n-

t
e

d
a-

ed
-

x

Wi j
~AB!~ t2s!5^Vi

~A!~ t !Vj
~B!~s!&5~Wi j

~AB!!* ~ t2s!

5Wji
~BA!~s2t !. ~2.3!

For completeness, let us point out that the Hamilton
~2.1! can be equivalently interpreted as describing two s
systems in interaction with two independent baths of ide
cal physical characteristics; for definiteness, in the followi
we find more convenient to refer to the single bath pictur

Being coupled to a stochastic field, the complete 434
spin density matrixR(t) is also stochastic; an effective, ‘‘re
duced,’’ spin density matrixr(t) is obtained by averaging
over the noise:r(t)ª^R(t)&. At the initial time t50, we
may suppose spin and noise to decouple, so thar
[^R(0)&5R(0).

The dynamical equation forr(t) can be obtained in a
standard way from the usual Liouville-von Neumann equ
tion for R(t), through the intermediate use of the interacti
picture. The resulting master equation contains an infin
series of terms. As usually done in the case of a sing
system subdynamics, a simplified, more manageable exp
sion for it can be derived by means of physical consid
ations@5–9,26#.

By hypothesis, the action of the external stochastic fi
on the two subsystems is weak; within this ‘‘weak-coupli
limit’’ assumption, one can then focus on the dominant fi
term in the expansion of the general master equation,
glecting higher-order contributions. One explicitly finds

] tr~ t !52 i @H0
~1!1H0

~2! ,r~ t !#

2 (
A,B51

2

(
i , j 51

3

Ci j
~AB!~ t !@s i

~A! ,@s j
~B! ,r~ t !##,

~2.4a!

Ci j
~AB!~ t !5 (

k51

3 E
0

t

dsWik
~AB!~s!Uk j~s!, ~2.4b!

where

Ui j ~ t !5S 1 0 0

0 cosv0t sinv0t

0 2sinv0t cosv0t
D ~2.5!

is the orthogonal matrix@Ui j (t)# that represents the rotation
of the Pauli matrices due to the action of the free Ham

tonian:e2 i tH 0
(A)

s i
(A)eitH 0

(A)
5( j 51

3 Ui j (t)s j
(A) .

Further, by the same physical arguments, the memory
fects in Eq.~2.4! should not be physically relevant: withi
the above-mentioned hypothesis, the use of the Markov
limit is therefore justified; in practice, this can be impl
mented by extending to infinity the upper limit of integratio
in Eq. ~2.4b!. More precisely, for situations amenable to
rigorous mathematical treatment, one can show that a lin
local in time subdynamics is the general result of a limiti
procedure in which the coupling constantj between system
and external environment, and the ratiot/T between the
typical time scale of the system and the decay time of
correlations in the environment, become small@2–4#. The
0-2
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quantitiesj and t/T regulate both the weak-coupling lim
and the Markovian approximation.

In order to keep the discussion in the subsequent sect
as simple as possible, we shall make some further simp
ing assumptions on the environmental correlations~2.3!. We
first assume that the external stochastic field be orien
along the third direction,V(A)(t)5„0,0,V3

(A)(t)…, with expo-
nentially suppressed correlation functions:

^V3
~1!~ t !V3

~1!~s!&5^V3
~2!~ t !V3

~2!~s!&5g2e2mut2su,
~2.6a!

^V3
~1!~ t !V3

~2!~s!&5 f 2e2nut2su. ~2.6b!

Furthermore, we make the physically sensible hypothe
that the nondiagonal, off-site correlationsW33

(12) be subdomi-
nant with respect to the diagonal, on-site ones,W33

(AA) ; in
practice, this can be achieved by assuming a hierarchy in
strength (f 2!g2) and decay constants (m!n) of the two
types of correlations. In this way, the interaction between
two subsystems induced by the coupling with the envir
ment becomes negligible.@The general case is briefly treate
in the Appendix, where more details on the derivation of E
~2.7! below can also be found.# Then, to lowest order, the
finite time evolution for the density matrix,r(0)→r(t)
[G t@r(0)#, assumes a factorized form,G t5g t ^ g t , being
generated by the following Markovian master equation:

] tr~ t !5~L ^ 111^ L !@r~ t !#. ~2.7!

The linear operatorL@•#[L0@•#1L1@•#, the generator of
g t , acts on 232 density matricesh, and its explicit form is
as follows:

L0@h#52 i @H0 ,h#, H05vs1 , ~2.8a!

L1@h#5a~s3hs32h!2b~s2hs31s3hs2!,
~2.8b!

with

a5
2g2m

v0
21m2 , b5

g2v0

v0
21m2 , v5

v0

2
1b. ~2.8c!

In this way, each system evolves independently, with
dynamics generated by2

] th~ t !5L@h~ t !#. ~2.9!

This equation is of the Bloch-Redfield type@5–9# and as
such it is known not to be positive.3 As already mentioned in
the Introduction, to cure this pathology anad hocprescrip-

2It is interesting to notice that essentially the same master e
tion ~2.9! with ~2.8! is also the result of the Markovian approxim
tion of a stochastic dynamical evolution based on the ‘‘quant
state diffusion’’ approach@43,44#.

3Indeed, for sufficiently small, but positive times, the evoluti
equation~2.9! will map the initial stateh(0)5(0 0

1 0) into a nonposi-
tive matrix h(t).
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tion has been proposed, widely adopted in the literature:
strict the possible initial statesh~0! to those for whichh(t)
[g t@h(0)#, t.0, as generated by Eq.~2.9!, is still a state.
As we shall see in the following section, this requirement
in general, not enough to guarantee the consistency of
~2.7!.

III. MAXIMALLY ENTANGLED STATES

As shown in the preceding section, the dynamics of t
noninteracting systems immersed in the same bath tak
factorized form,G t5g t ^ g t , at least for times much longe
than the characteristic correlation times in the environme
However, the initial stater~0! of the compound system, o
which G t acts, need not be in factorized form: due to t
short-time interaction with the environment, the subsyste
can emerge from the transient in an entangled state.

To avoid inconsistencies with the single-system dynam
g t , we shall adopt the previously mentioned prescription
restricting its action to those states for which positivity
guaranteed, for anyt>0. For the compound system und
study, this amounts to require that the partial tracesh (1)

5Tr2@r(0)# and h (2)5Tr1@r(0)# over the degrees of free
dom of the second, respectively, the first, subsystem be
missible states for the mapg t .

Let us decompose a generic 232 density matrixh along
the Pauli matrices and the identitys0 : h5(m50

3 hmsm with
h051/2 andh i real; its time evolution, generated by the Eq
~2.8! and ~2.9!, is then given by h(t)[g t@h#
5(m50

3 hm(t)sm with components

h0~ t !5
1

2
, ~3.1a!

h1~ t !5e22ath1, ~3.1b!

h2~ t !5e2atF S cos 2Vt2
a

2V
sin 2Vt Dh2

2
v1b

V
sin 2Vth3G , ~3.1c!

h3~ t !5e2atF S cos 2Vt1
a

2V
sin 2Vt Dh3

1
v2b

V
sin 2Vth2G , ~3.1d!

with V5Av22b22a2/4, andh1, h2, h3 the initial density
matrix components.

With the eigenstatesh6[u6&^6u5(s06s1)/2 of the
free systems Hamiltonian in Eq.~2.8a!, H0u6&56vu6&,
one can build the maximally entangled state

uc&5
1

&
~ u1& ^ u2&2u2& ^ u1&). ~3.2!

a-
0-3
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Let us assume that after the transient the compound sy
be in such a state, so that the initial density matrix, on wh
the total Markovian dynamicsG t5g t ^ g t acts, is given by

r~0![uc&^cu5
1

2
~h1 ^ h21h2 ^ h12h12 ^ h212h21

^ h12!, ~3.3!

with h675(s36 is2)/2. The two partial tracesh (1)

5Tr2@r(0)# and h (2)5Tr1@r(0)#, being equal tos0/2, are
left invariant by the dynamics~3.1!, and therefore represen
admissible states for the evolutiong t .

It is a matter of a simple computation to apply the evo
tion given in Eq.~3.1! to the four 232 matricesh1 , h2 ,
h12 , h21 and therefore obtain the explicit expression f
the evolved 434 matrix r(t)5G t@r(0)#[g t ^ g t@r(0)#.
On the basis for which the Pauli matrices assume the s
dard form,s15(1 0

0 1), s25( i 0
0 2 i), s35(0 21

1 0), one explicitly
gets

r~ t !5
1

4 S A2~ t ! C~ t ! C~ t ! B1~ t !

2C~ t ! A1~ t ! B2~ t ! 2C~ t !

2C~ t ! B2~ t ! A1~ t ! 2C~ t !

B1~ t ! C~ t ! C~ t ! A2~ t !

D , ~3.4!

where

A6~ t !516e22atF S cos 2Vt1
a

2V
sin 2Vt D 2

1S v2b

V D 2

sin2 2Vt G , ~3.5a!

B6~ t !52e24at6e22atF S cos 2Vt2
a

2V
sin 2Vt D 2

1S v1b

V D 2

sin2 2Vt G , ~3.5b!

C~ t !5 ie22at sin 2VtF2b

V
cos 2Vt2

av

V2 sin 2Vt G .
~3.5c!

The matrixr(t) in Eq. ~3.4! should represent the state
the compound system at timet, having been originally pre-
pared in the initial entangled state~3.3!. The matrix ~3.4!
should then be positive. However, one can easily check
one of its eigenvalues can become negative, precisely
corresponding to the eigenvector~1, 0, 0,21!.4 Indeed, from
its expression

4Using the definitions in Eq.~3.5!, the four eigenvalues can b
explicitly written as (A12B2)/4, (A22B1)/4, $(A11A21B1

1B2)6@(A12A21B22B1)2216C2#1/2%/8. The corresponding
eigenvectors turn out to be time dependent; their explicit exp
sions are involved and not particularly inspiring.
04211
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l~ t !5
1

4 H 11e24at22e22atFcos2 2Vt

1
2v22V2

V2 sin2 2Vt G J , ~3.6!

one checks thatl(0)5l̇(0)50, while l̈(0)528b2, so that
l(t) starts assuming negative values as soon ast becomes
nonzero.

In order for the mapG t5g t ^ g t to produce a physically
acceptable dynamics, states like~3.3! must therefore be ex
cluded from its domain of definition. Entanglement is cruc
in revealing this physical inconsistency; indeed, on fact
ized statesh (1)

^ h (2), with h (1), h (2) admissible starting
density matrices forg t , the dynamicsG t5g t ^ g t remains
positive.

The negativity ofl(t) will not last forever: due to the
damping factors, the expression in Eq.~3.6! becomes posi-
tive after a certain time, and actually asymptotically tends
1/4, as the remaining three eigenvalues of Eq.~3.4!. This is a
consequence of the dynamics generated by Eq.~2.7! for
which the von Neumann entropy,S@r#52r ln r, always in-
creases~as already observed, the mapg t , henceG t , is uni-
tal, g t@s0#5s0); therefore, any initial stater~0! of the com-
pound system is asymptotically driven for long times to t
maximally disordered stater5s0^ s0/4.

In general, master equations of the form~2.9! and ~2.8b!
may involve parametersa and b, not as in Eq.~2.8c!, but
totally independent. In such cases, contrary to Eq.~2.8c!, a
can become vanishingly small, without conflicting with th
Markovian hypothesis. Consequently, the eigenvaluel(t)
becomes a periodic function of time and assumes nega
values even for arbitrary large times.

IV. PARTIALLY AND MIXED ENTANGLED STATES

As already observed, it is the entanglement of the ini
stater~0! of the otherwise independent two subsystems t
allows revealing the unphysical effect of production
‘‘negative probability’’ by the dynamicsG t . The magnitude
of the phenomenon is directly connected to the amoun
entanglement that the initial stater~0! contains.

This can be easily shown by taking the partially entang
state

ucu&5cosuu1& ^ u2&2sinuu2& ^ u1&, ~4.1!

as starting state, instead of the maximally entangled on
Eq. ~3.2!. The evolution in time of the corresponding dens
matrix ru(0)5ucu&^cuu can be easily obtained as before u
ing the explicit expressions in Eq.~3.1!.5 One finds that also
in this case the eigenvaluelu(t) of ru(t)5G t@ru(0)# corre-
sponding to the eigenvector~1,0,0,21! can assume negativ

s-

5Notice that as before the partial traceshu
(1)5Tr2@ru(0)#5s0/2

1cos 2us1/4 and hu
(2)5Tr1@ru(0)#5s0/22cos 2us1/4 are per-

fectly admissible states of the dynamicsg t .
0-4
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values; in fact, lu(0)5l̇u(0)50, while l̈u(0)
52(a2 cos2 2u24b2 sin2 2u), which is negative provided
tan2 2u>a2/4b2.

In other terms, once the evolutiong t is given, and there-
fore the parametersa and b of the corresponding maste
equation are fixed, the time evolutionG t5g t ^ g t of the com-
pound system becomes physically inconsistent on in
states that possess a sufficiently high degree of entanglem
Therefore, in order forG t to be an acceptable Markovia
evolution, one has to further restrict its domain of definitio
in order to exclude also those partially entangled states.

The discussion can be extended to entangled mixed in
states, like the Werner states@45#:

rW5pr1
12p

4
s0^ s0 , 2

1

3
<p<1, ~4.2!

wherer is again the maximally entangled state in Eq.~3.3!.
Also in this case one can show that the eigenvaluelW(t) of
rW(t)5G t@rW# corresponding to the eigenvector~1,0,0,21!
can take negative values, provided the parameterp, that mea-
sures the degree of entanglement, is sufficiently close to

The discussion becomes particularly transparent whea
50. In this case, the eigenvalues ofrW(t) become a periodic
function of time; forlW(t) one then explicitly obtains

lW~ t !5
1

4 H 11pF122S cos2 2Vt1
2v22V2

V2 sin2 2Vt D G J .

~4.3!

From this expression, one sees that the minimum value
lW(t) becomes periodically negative providedp.(v2

2b2)/(v213b2). This possibility is excluded in absence
noise: b50; in this case, the evolutiong t ~and henceG t
5g t ^ g t), being unitary, results automatically positive.

V. DISCUSSION

The dynamics of a subsystem in weak interaction with
external environment can be described in terms of lin
maps obeying a Markovian master equation. This result
been rigorously proven in very special cases; it is never
less believed to hold, in general, on the basis of sim
physical considerations: when all correlations in the envir
ment have died out, nonlinearities and memory effe
should disappear from the reduced subsystem dynamics

As shown in Sec. II, the same type of arguments all
deriving a Markovian limit for the master equation descr
ing the time evolution of two noninteracting subsystems
contact with the same reservoir; the corresponding dyna
cal mapG t for the compound system turns out to assum
factorized formG t5g t ^ g t .

In the case of two-level systems,g t usually takes a Bloch-
Redfield-type form, and therefore it is not, in general, po
tive. To avoid inconsistencies, one usually restricts the p
sible initial states to those for whichg t remains positive~the
so-called ‘‘slippage of initial conditions’’!. This prescription
works also in the case of the evolutionG t5g t ^ g t for two
identical subsystems, provided the initial state is in separa
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form: r(0)5( i pih i
(1)

^ h i
(2) , pi>0, ( i pi51, where h i

(1)

and h i
(2) are admissible states for the first and second s

systems, respectively.
On the contrary, as shown in the previous sections, w

the initial stater~0! is not in factorized form and the degre
of entanglement is sufficiently high, the evolved matr
r(t)5G t@r(0)# fails to be positive at all times. In keepin
with the same attitude adopted for a single-subsystem
namicsg t , to cure this additional inconsistency one can fu
ther restrict the domain of applicability ofg t ^ g t . However,
this is again a temporary solution: indeed, the whole disc
sion needs be repeated when three or more subsystem
contact with the same bath are considered; clearly, furt
restrictions ong t need to be imposed.

These considerations cannot be dismissed as being pu
academic; on the contrary, they seem to have a direct exp
mental relevance: as mentioned in the Introduction, coup
of systems in an entangled state are in fact actively stud
and the ongoing experiments on correlated neutral ka
constitute a significative example. From this perspective,
widely used cure of redefining the initial conditions in ca
of nonpositive Markovian dynamics does not appear to
completely satisfactory.

In closing, let us mention that in the few cases for whi
the Markovian limit of the subdynamics can be obtained i
rigorous way, the resulting evolution mapg t turns out to be
not only positive, but also completely positive@1–4,11–16#.
In these cases, the compound mapG t5g t ^ g t is also com-
pletely positive and therefore no inconsistencies can ar
even whenG t acts on entangled states@46,47#.

APPENDIX

In Sec. II, we have seen that the master equation
describes the time evolution of two, noninteracting su
systems in contact with the same stochastic bath can be
ten in the following closed form:

] tr~ t !52 i @H0
~1!1H0

~2! ,r~ t !#

2 (
A,B51

2

(
i , j 51

3

Ci j
~AB!@s i

~A! ,@s j
~B! ,r~ t !##, ~A1!

Ci j
~AB!5 (

k51

3 E
0

`

dsWik
~AB!~s!Uk j~s!, ~A2!

after the weak-coupling limit and the Markovian approxim
tion have been taken into account; here,Wi j

(AB) represent the
correlation functions in the environment, whileUi j is the
orthogonal matrix in Eq.~2.5! that takes into account th
rotation of the Pauli matrices generated by the free Ham
tonian.

From the properties~2.3! of the correlation functions, it
follows that the diagonal, on-site coefficientsCi j

(AA) , A
51,2, are real matrices, that can thus be decomposed
symmetric, Si j

(A)[(Ci j
(AA)1Cji

(AA))/2, and antisymmetric,
Ai j

(A)[(Ci j
(AA)2Cji

(AA))/2, components. Correspondingly, th
0-5
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second term in Eq.~A1!, can be decomposed into Hami
tonian and purely dissipative pieces, so that the total ma
equation can be rewritten as

] tr~ t !52 i @H,r~ t !#1LD@r~ t !#, ~A3!

where the total Hamiltonian is now given by

H5H0
~1!1H0

~2!1HD
~1!1HD

~2! , HD
~A!5 (

i , j ,k51

3

e i jkAi j
~A!sk

~A! ,

~A4!

while the dissipative contributionLD[LD
(1)1LD

(2)1LD
(12) has

diagonal and off-diagonal pieces

LD
~A!@r#5 (

i , j 51

3

Si j
~A!~2s i

~A!rs j
~A!2$s i

~A!s j
~A! ,r%!, A51,2,

~A5a!

LD
~12!5 (

i , j 51

3

~Ci j
~12!1Cji

~21!!~@s i
~1! ,r~ t !s j

~2!#

1@s j
~2!r~ t !,s i

~1!# !. ~A5b!

Without additional knowledge on the behavior of the cor
lation functionsWi j

(AB) of the environmental variables, th
form of the evolution equations~A3!–~A5! cannot be further
simplified.

On the other hand, with the assumptions~2.6!,

W33
~11!~ t2s!5W33

~22!~ t2s!5g2e2mut2su,

W33
~12!~ t2s!5 f 2e2nut2su, ~A6!

and all remaining entries zero, the form of the coefficients
Eq. ~A2! can be explicitly computed, and a more managea
expression for Eq.~A3! can be obtained. Indeed, after som
simple manipulations, one finds

] tr~ t !5~L0^ 111^ L0!@r~ t !#1~L1^ 111^ L1!@r~ t !#

2L2@r~ t !#, ~A7!
.

d

n

04211
er

-

n
le

whereL0 andsL1 are linear operators acting on 232 density
matricesh

L0@h#52 i @H,h#, H5S v0

2
1b Ds1 , ~A8a!

L1@h#5a~s3hs32h!2b~s2hs31s3hs2!,
~A8b!

while L2 takes the form

L2@r#5g@$s3^ s3 ,r%2s3^ s0rs0^ s3

2s0^ s3rs3^ s0#2d@$s3^ s2 ,r%

1$s2^ s3 ,r%2s3^ s0rs0^ s2

2s0^ s2rs3^ s02s2^ s0rs0^ s3

2s0^ s3rs2^ s0#. ~A8c!

The four constantsa, b, g, d, that measure the relativ
strength of the various dissipative contributions, are de
mined by the parameters appearing in the correlation fu
tions ~A6!:

a5
2g2m

v0
21m2 , b5

g2v0

v0
21m2 , g5

2 f 2n

v0
21n2 ,

d5
f 2v0

v0
21m2 . ~A9!

When the strength and decay constants of the off-diago
correlationsW33

(12) are much smaller than the correspondi
ones inW33

(AA) , f 2!g2, 1/n!1/m, the dissipative constantsg
and d can be neglected with respect toa and b, and the
resulting evolution equation~A7! reduces to that presented
Eqs.~2.7! and ~2.8!.
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