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Nonpositive evolutions in open system dynamics
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The long-time evolution of a system in interaction with an external environment is usually described by a
family of linear mapsy;, generated by master equations of Block-Redfield type. These maps are, in general,
nonpositive; a widely adopted cure for this physical inconsistency is to restrict the domain of definition of the
dynamical maps to those states for whigh remains positive. We show that this prescription has to be
modified when two systems are immersed in the same environment and evolve with the factorized dynamics
v:® y; starting from an entangled initial state.

DOI: 10.1103/PhysRevA.67.042110 PACS nuntber03.65.Yz, 03.65.Ca

[. INTRODUCTION the starting state of the subsystem, a procedure sometimes
referred to as “slippage of the initial conditions.” On physi-
The dynamics of systems immersed in large, external encal grounds, this effect is viewed as the consequence of the
vironments can be described in terms of master equationshort-time correlations in the environment, that have not
they generate the finite time-evolution for the reduced denbeen properly taken into account in the derivation of the
sity matrix, obtained by tracing over the environmental de-Markovian limit of the original master equatidn.
grees of freedoni1-9]. Their explicit form is, in general, In the following, we shall reexamine this widely used
rather complex, involving nonlinearities and memory effects.prescription to cure possible inconsistencies produced by
Nevertheless, when the coupling between subsystems ambnpositive, Markovian master equations, and point out fur-
environment is sufficiently weak and for times much longerther potential problems of this approach. We shall deal with
than the characteristic correlation time in the environmenttwo identical, noninteracting subsystems immersed in a same
suitable limiting master equations in Markovian form can beenvironment, both evolving, in the Markovian limit, with the
derived. same nonpositive master equation. We shall explicitly show
These derivations are often basedahhocapproxima-  that redefining the initial conditions to make positive the
tions, lacking mathematical rigor, while the final result is single-system time evolution is not enough to cure all pos-
justified on the basis of physical considerations. Despit&ible inconsistencies of the two-system dynamics. These
these heuristic treatments, Markovian master equations hawhow up when the two-system state that emerges after the
been applied to model various effects in open system dynamransient due to the short-time correlations in the environ-
ics, ranging from quantum optics to quantum chemistry.  ment is entangled; therefore, in order to have a physically
It has been pointed out long ago that the heuristic derivagcceptable time evolution for the two subsystems when en-
tions of the Markovian limit of master equations could lead,tanglement is the most likely consequence of the initial tran-
in general, to physical inconsistencig€]. In particular, the  sjent phase, the above-mentioned procedure of restricting
resulting finite time evolution described by such equationsnitial conditions should take into account also correlated
would not, in general, preserve the positivity of the reducediates.
density matrix, with some remarkable exceptions, based on On the other hand, let us notice that maximal entangle-
rigorous mathematical treatmerjts-4,11-19. ment can be produced without any transient. A particularly

Although acknowledged in most subsequent literature ofinteresting example is that of two neutral kaons that are pro-
the subject, these inconsistencies were either dismissed as

irrelevant for all practical purpos¢20] or cured by adopting

further ad hocprescriptiong21-23. In the latter case, the 1 ¢t ys point out that, instead of restricting the possible initial
general attitude is to restrict the action of the dynamicaktates, one can alternatively “smooth” the initial conditions on
maps generated by the nonpositive master equations to \ghich the nonpositive dynamical map af2]; the resulting effec-
subset of all possible initial reduced density matrices, thos@ve map turns out to be positive. Unless it results in being also
for which the time evolution remains positive. This is completely positive, unphysical effects of the kind discussed below
equivalent to a suitable selection of the initial conditions forwould affect this case as well.
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duced, via the weak interaction, as decay products of a spin-  \W(AB)(t—g) = (VA (1)V{B)(s)) = (WIAB)* (t—s)
one ® resonance: due to the angular-momentum conserva- . . .
tion, the two spin-zero kaons fly apart back to back, in a state =V\ﬁjiBA)(s—t). (2.3

that resembles that of the singlet for two spirparticles . .
g Bip For completeness, let us point out that the Hamiltonian

[25]. . : o
Using standard techniques, in the following section, We(z.l) can be equivalently interpreted as describing two sub-

shall derive the Markovian limit of the master equation de_systems in interaction with two independent baths of identi-

scribing two two-level systems in interaction with a stochas-cal physical characteristics; for definiteness, in the following

tic environment. After waiting for the correlations in the en- we find more convenient to refer to the single bath picture.

vironment to die out, the resulting finite time evolutibh ilr?;ed”;?]s(i:tounalaet?i );O(t?i:tgf;r;a:ttfdf]':g’c_tgi :?r:ancrz:\??ﬁe-
turns out to be describable in terms of a factorized dynamicss.p Y ' '

I''=%:® y;, wherewy, represent a single open system dynam-duced'" spin_ dgnsity matrbp(t) is ok_Jtai_ned_ by averaging
ics, in general, nonpositive. In Sec. Ill, we shall then applyover the n0|sep(t)':=<R(t)>. A.t the initial time t=0, we
the derived time evolutiol'; to a maximally entangled, pure Tay sup_pose spin and noise to decouple, so that
initial state, and show that “negative probabilities” may arise =(R(0))= R(O). . . .

even though the dynamicg, remains positive on the con- The dynamical equation fOP.(t) can be obtained in a
stituent single-system states. The case of partially entangleﬁ"ijIarOI way from the usual Liouville-von Neumann equa-

states and that of mixed entangled states is discussed in sdon for R(t), through the intermediate use of the interaction

IV. The concluding Sec. V contains our final considerations.p'ét.ure' The resulting master eq“?“"” contains an "?“”“e
series of terms. As usually done in the case of a single-

system subdynamics, a simplified, more manageable expres-
Il. MARKOVIAN MASTER EQUATION sion for it can be derived by means of physical consider-
ations[5-9,24.
By hypothesis, the action of the external stochastic field
the two subsystems is weak; within this “weak-coupling

The physical model we shall study is formed by two,
noninteracting, two-level systems immersed in the same, e%n
ternal environment. The Markovian limit of their subdynam-_"mit,, assumption, one can then focus on the dominant first

ICS \.N'” be _derlved using the same ?echm_ques and appProXisarm in the expansion of the general master equation, ne-
mations widely adopted in analyzing single-system time

evolutions[5—9| glecting higher-order contributions. One explicitly finds
For sake of definiteness, the action of the environmenton  g,p(t)=—i[H{M+HP ,p(t)]

the two subsystems will be assumed to be mediated by a 5

weak time-dependent stochastic field, coupled to their spin-

like degrees of freedoif26—28. This choice is of sufficient _A%‘;l

generality for the considerations that follow. Let us point out

that this model can describe real physical situations, like the (2.43

ones occurring in interferometric setups, involving the 3

propagation of neutrons in random magnetic fidl28—36 (AB) 4y _ AB) _

or photons in random optical medisa—8,37,38. Moreover, i kzl fodsw'( (SUk(s), (240

it has been used to study dissipative effects in correlated

neutral mesons under the action of weak, stochastic gravitdVhere

3

2, CFPOLe [ 1)

tional fields[39-42. 1 0 0
Without loss of generality, the total system Hamiltonian .
can be taken to bE36] Ujj(t)=[ 0 coswgt  sinwqt (2.5

0 —sinwgt coswgt

—_H@D (2) (1) (2)
H=Hg +Hg"+H7+H", (2.1 is the orthogonal matrikU;;(t) ] that represents the rotations

of the Pauli(r)natrices(?ue to the action of the free Hamil-
3 ) o A . A
=0, HM=3 VW)™, A=12, o by e came phaa :
2 = Vi i urther, by the same physical arguments, the memory ef
(2.2 fects in Eq.(2.4) should not be physically relevant: within
the above-mentioned hypothesis, the use of the Markovian
1 2)_ _limit is therefore justified; in practice, this can be imple-
where o7'=0;®1, 0;”=1®0;, are the two-system spin mented by extending to infinity the upper limit of integration
operators, represented by the Pauli matriogs i=1,2,3, iy Eq. (2.4b. More precisely, for situations amenable to a
while VA (t)= (VP (1), V(1) V{I(1)), A=12, are the rigorous mathematical treatment, one can show that a linear,
stochastic, Gaussian field variables, independently coupledcal in time subdynamics is the general result of a limiting
to the spin degrees of freedom of the two systems. For simprocedure in which the coupling constahbetween system
plicity, we assumeV®(t) to have zero mearkV(t))  and external environment, and the ratT between the
=0, and stationary, real, positive-definite covariance matrixypical time scale of the system and the decay time of the
[Wi(jAB)(t)] with entries correlations in the environment, become snj2i-4]. The
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quantities¢ and 7/T regulate both the weak-coupling limit tion has been proposed, widely adopted in the literature: re-
and the Markovian approximation. strict the possible initial stateg(0) to those for whichz(t)

In order to keep the discussion in the subsequent sections y,[ 7(0)], t>0, as generated by E.9), is still a state.
as simple as possible, we shall make some further simplifyAs we shall see in the following section, this requirement is,
ing assumptions on the environmental correlatith8). We  in general, not enough to guarantee the consistency of Eq.
first assume that the external stochastic field be orientec?.7).

along the third directiony ™ (t) = (0,0¥{V(t)), with expo-
nentially suppressed correlation functions:

(VEOVE () =(VE (VP (s)) =ge #I 7,

IIl. MAXIMALLY ENTANGLED STATES

As shown in the preceding section, the dynamics of two

(2.68  noninteracting systems immersed in the same bath takes a
(1) @ 2=t factorized form,I';=y;® v, at least for times much longer
(V3 (1)V57(s))=f% - (2.6D  than the characteristic correlation times in the environment.

However, the initial statg(0) of the compound system, on

. X - (12) SR hich I'; acts, need not be in factorized form: due to the
that the nondiagonal, off-site correlatlomés be Sl;{gdorn" short-time interaction with the environment, the subsystems
nant with respect to the diagonal, on-site oné&2”; in  can emerge from the transient in an entangled state.
practice, this can be achieved by assuming a hierarchy in the Tg avoid inconsistencies with the single-system dynamics
strength (*<g?) and decay constantsu(<v) of the two ., e shall adopt the previously mentioned prescription of
types of correlations. In this way, the interaction between thgestricting its action to those states for which positivity is
ment becomes negligibleThe general case is briefly treated gy,qy, this amounts to require that the partial traeéy

Furthermore, we make the physically sensible hypothesi

in the Appendix, where more details on the derivation of Eq
(2.7 below can also be founHThen, to lowest order, the
finite time evolution for the density matrixp(0)— p(t)
=I"[p(0)], assumes a factorized form,;= y,® y,, being
generated by the following Markovian master equation:

(2.7

The linear operatoi.[-]=Lg[-]+L4[-], the generator of
v, acts on X 2 density matricesy, and its explicit form is
as follows:

dp(t)=(Lel+1sL)[p(t)].

LO[”]:_I[H0177]1 Hozwo-la (283
Li[ 7]=a(o3nos—n)— B(onoz+ o3n0,),
(2.8b
with
20°u 9wo wo
a_wg-i-,uz' B—wg+M2, w—7+,8. (2.809

=Tr,[p(0)] and ®=Tr,[p(0)] over the degrees of free-

dom of the second, respectively, the first, subsystem be ad-
missible states for the map .

Let us decompose a generix2 density matrixy along
the Pauli matrices and the identidy: 77222:077”% with
7°=1/2 andy' real; its time evolution, generated by the Egs.
(2.8 and (2.9, is then given by n(t)=yl7]
=3%_,7*(t)o, with components

In this way, each system evolves independently, with the

dynamics generated by

dp(t)=L[n(1)].

This equation is of the Bloch-Redfield tygé-9] and as
such it is known not to be positiveAs already mentioned in
the Introduction, to cure this pathology ad hocprescrip-

(2.9

0 1
n ()= > (3.1a
nH(t)=e 2yt (3.1b
2(ty=e" COS 20t — ——sin 20t 7?
g 2Q)
+
_ @ 'BsinZQtn:*}, (3.10
QO
7(t)y=e Cos 2+ ——sin 20t 7
20
+wéﬂ sinzng}, (3.1

with Q= Jw?— BZ—a?/4, andn*, 7%, 7° the initial density
matrix components.

2t is interesting to notice that essentially the same master equa- With the eigenstates;. =|+)(*|=(oo*07)/2 of the
tion (2.9) with (2.8) is also the result of the Markovian approxima- free systems Hamiltonian in Eq2.83, Ho|*)=*w|*),
tion of a stochastic dynamical evolution based on the “gquantumone can build the maximally entangled state
state diffusion” approacii43,44.

%Indeed, for sufficiently small, but positive times, the evolution

equation(2.9) will map the initial staten(0)= (3 9 into a nonposi-
tive matrix 7(t).
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Let us assume that after the transient the compound system
be in such a state, so that the initial density matrix, on which

the total Markovian dynamicE,;= v,® y; acts, is given by

1
pOI=|)(=5(ns@n-+n-@ni=n On — 7,
®@ni-), (3.3

with 7. +=(03*i0,)/2. The two partial tracesn
=Tr,[p(0)] and »@=Tr,[p(0)], being equal tary/2, are

PHYSICAL REVIEW A 67, 042110(2003

1+e *—2e72% cog 200t

1
)\(t): Z

20w2—02
+ —QQ—sin2 2m“, (3.6

one checks that(0)=\(0)=0, while A (0)= — 82, so that
\(t) starts assuming negative values as soon lascomes
nonzero.

In order for the mafd',= y,® v; to produce a physically

left invariant by the dynamic§3.1), and therefore represent acceptable dynamics, states lik&3) must therefore be ex-

admissible states for the evolution.

cluded from its domain of definition. Entanglement is crucial

It is a matter of a simple computation to apply the evolu-in revealing this physical inconsistency; indeed, on factor-

tion given in Eq.(3.1) to the four 2<2 matricesn,, 7_,

ized statesyM® 7@, with V), %@ admissible starting

7., n_, and therefore obtain the explicit expression for density matrices fory,, the dynamicd’;= y,® y, remains

the evolved 4«4 matrix p(t)=T"p(0)]=v® %[ p(0)].

positive.

On the basis for which the Pauli matrices assume the stan- The negativity of\(t) will not last forever: due to the

dard form,o;=(% ), o,=(" ), o3=(§ _9), one explicitly
gets

A () C() C()

1| —C(t) AL(t) B_(t)

PO=21 —cy B.() AL

Bi(t) C(t) C(t)

B, (1)
—C(t)
—C(t) |’
A_(1)

(3.9

where

— 14+ 2at
A (t)=1*xe 50

o 2
(cos 20t+ —sin Zﬂt)

2
+ M) Sir2 20t

Q , (3.58

2
(64
B.(t)=—e 4l+re 24 ( cos 0t— ——sin 29t>

2Q

2
+(—w;'8) sir2 20t |, (3.5

aw

> Sin Zﬂt}.
(3.50

2
—'Bcos 20t —

—ia2at o
C(t)=ie sin 20t Q Q

The matrixp(t) in Eq. (3.4) should represent the state of
the compound system at timighaving been originally pre-

pared in the initial entangled stat8.3). The matrix (3.4)

damping factors, the expression in E§.6) becomes posi-
tive after a certain time, and actually asymptotically tends to
1/4, as the remaining three eigenvalues of Bf). This is a
consequence of the dynamics generated by @dqi) for
which the von Neumann entrop$j p]= —p In p, always in-
creasegas already observed, the map, hencel’;, is uni-

tal, v o9l = 0g); therefore, any initial statp(0) of the com-
pound system is asymptotically driven for long times to the
maximally disordered state= o(® /4.

In general, master equations of the fo(th9) and(2.8b
may involve parametera and 3, not as in Eq.(2.80, but
totally independent. In such cases, contrary to 80, «
can become vanishingly small, without conflicting with the
Markovian hypothesis. Consequently, the eigenvalfe)
becomes a periodic function of time and assumes negative
values even for arbitrary large times.

IV. PARTIALLY AND MIXED ENTANGLED STATES

As already observed, it is the entanglement of the initial
statep(0) of the otherwise independent two subsystems that
allows revealing the unphysical effect of production of
“negative probability” by the dynamicd’;. The magnitude
of the phenomenon is directly connected to the amount of
entanglement that the initial stap€0) contains.

This can be easily shown by taking the partially entangled
state

| gy =cosb| +)®|—)—sinf| - )& |+), (4.2

should then be positive. However, one can easily check thas starting state, instead of the maximally entangled one in
one of its eigenvalues can become negative, precisely th&d.(3.2. The evolution in time of the corresponding density

corresponding to the eigenvectdr, 0, 0,—1).* Indeed, from
its expression

4Using the definitions in Eq(3.5), the four eigenvalues can be

explicitly written as &, —B_)/4, (A_—-B.)/4, {(A.+A_+B,

+B_)*[(A,—A_+B_—B,)?—16C?]¥2/8. The corresponding

matrix p,(0)=|#4){ 4 can be easily obtained as before us-
ing the explicit expressions in E¢3.1).% One finds that also
in this case the eigenvalugy(t) of p,(t)=T"[p,(0)] corre-
sponding to the eigenvectét,0,0,-1) can assume negative

®Notice that as before the partial trace§”=Tr,[ p,(0)]= o/2

eigenvectors turn out to be time dependent; their explicit expres-cos Xo4/4 and nfgz):Trl[pg(O)]=00/2— cos Xo/4 are per-

sions are involved and not particularly inspiring.

fectly admissible states of the dynamigs.
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values: in  fact, N, (0)=A,(0)=0, while i,0) form: p(0)=%pipVe ), p=0, =p;=1, where n{*
—2(a?cog20—4/2sirt 2¢), which is negative provided and 7 are adm.issible states for the first and second sub-
tarf 26=o?/432. systems, respectively. _ _ _

In other terms, once the evolutiop is given, and there- On the contrary, as shown in the previous sections, when
fore the parametera and 3 of the corresponding master the initial Statep(O).IS not in factorized form and the degree
equation are fixed, the time evolutiéh= y,® y, of the com- of entanglement is sufficiently high, the evolved matrix
pound system becomes physically inconsistent on initiaP(1)=T't[p(0)] fails to be positive at all times. In keeping
states that possess a sufficiently high degree of entanglemeMfith the same attitude adopted for a single-subsystem dy-
Therefore, in order fol, to be an acceptable Markovian Namicsy;, to cure this additional inconsistency one can fur-
evolution, one has to further restrict its domain of definition, ther restrict the domain of applicability g4® y;. However,
in order to exclude also those partially entangled states. this is again a temporary solution: indeed, the whole discus-

The discussion can be extended to entangled mixed initigfion needs be repeated when three or more subsystems in
states, like the Werner statpts): contact with the same bath are considered; clearly, further

restrictions orny; need to be imposed.
1-p 1 These considerations cannot be dismissed as being purely
pw=Ppp+ 4 00®0Tg, — §$ p=<1, (4.2 academic; on the contrary, they seem to have a direct experi-
mental relevance: as mentioned in the Introduction, couples

wherep is again the maximally entangled state in E8.3). of systems in an entangled state are in fact actively studied,

Also in this case one can show that the eigenvalyét) of and the ongoing experiments on correlated neutral kaons

pw(t)=T[pw] corresponding to the eigenvectd,0,0-1)  constitute a significative example. From this perspective, the

can take negative values, provided the paramettitat mea-  Widely used cure of redefining the initial conditions in case

sures the degree of entanglement, is sufficiently close to on&f nonpositive Markovian dynamics does not appear to be
The discussion becomes particularly transparent wihen completely satisfactory.

=0. In this case, the eigenvaluesmf(t) become a periodic In closing, let us mention that in the few cases for which
function of time; foray,(t) one then explicitly obtains the Markovian limit of the subdynamics can be obtained in a

rigorous way, the resulting evolution map turns out to be
20°-0% not only positive, but also completely positij&—4,11-16.
TS'”Z ZQt)H. In these cases, the compound niap- y;® v, is also com-
(4.3 pletely positive and therefore no inconsistencies can arise,
even whenl'; acts on entangled statp46,47].
From this expression, one sees that the minimum value of

1+p 1—2(co§ 20t+

1
Aw(t)= 2

Aw(t) becomes periodically negative provideg> (w? APPENDIX
2 2 2 ; ihility i ;
— B9 (w°+3B7). This possibility is excluded in absence of
noise: B=0; in this case, the evolution, (and hencel’; In Sec. Il, we have seen that the master equation that
=¥:® y;), being unitary, results automatically positive. describes the time evolution of two, noninteracting sub-
systems in contact with the same stochastic bath can be writ-
V. DISCUSSION ten in the following closed form:
The dynamics of a subsystem in weak interaction with an aip(t)= _i[HE)l)Jr ng) p(D)]

external environment can be described in terms of linear
maps obeying a Markovian master equation. This result has 2
been rigorously proven in very special cases; it is neverthe- - 2
less believed to hold, in general, on the basis of simple AB=1
physical considerations: when all correlations in the environ-
ment have died out, nonlinearities and memory effects (AB) 3 e AB)
should disappear from the reduced subsystem dynamics. Cij :gl fo dsWieP(s)Uy(s), (A2)

As shown in Sec. Il, the same type of arguments allow
deriving a Markovian limit for the master equation describ- o . .
ing the time evolution of two noninteracting subsystems in2fter the weak-coupling limit and the Maalg))wan approxima-
contact with the same reservoir; the corresponding dynamiion have been taken into account; heré*® represent the

cal mapl', for the compound system turns out to assume &0rrelation functions in the environment, whilg;; is the
factorized forml',= 7,® y; . orthogonal matrix in Eq(2.5 that takes into account the

In the case of two-level systems, usually takes a Bloch- rotgtion of the Pauli matrices generated by the free Hamil-
Redfield-type form, and therefore it is not, in general, posi-tonian. _ _ _ _
tive. To avoid inconsistencies, one usually restricts the pos- From the propertie¢2.3) of the correlation functions, it
sible initial states to those for whici remains positivéthe ~ follows that the diagonal, on-site coefficien@f?, A
so-called “slippage of initial conditions” This prescription =1,2, are real matrices, that can thus be decomposed into
works also in the case of the evolutidh=y,® y, for two  symmetric, S{V=(C{*+C{{")/2, and antisymmetric,
identical subsystems, provided the initial state is in separablel{’=(C{*¥—C{{*¥)/2, components. Correspondingly, the

3

2, Gl Lo p(01 (A
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second term in Eq(Al), can be decomposed into Hamil-

PHYSICAL REVIEW A 67, 042110(2003

wherelL andsL; are linear operators acting orx2 density

tonian and purely dissipative pieces, so that the total mastenatricesn

equation can be rewritten as

dp(t)=—i[H,p(t)]+Lp[p(t)],

where the total Hamiltonian is now given by

(A3)

3
H=HP+HP+H +HE, HEV= > Ao,

i k=1
(A4)

while the dissipative contributionp=L+ L&+ LY? has
diagonal and off-diagonal pieces

3
Le1= 3, SP@o M (o o), A=12
(A5a)
3
L§2= 3
i,j=1

+[0}?p(1),0{"]).

(CiP+CiE) (oY p(t) o]

(A5b)

Lol7]=—i[H,7], H= %ﬂs o1 (AS3)

Lil n]l=a(oznoz—n) = B(ono3+ o3n0,),
(A8b)

while L, takes the form

Lolpl=H{o3®03,p} —03@00poo®@ 03
—0o®03p03® 0]~ d[{03®07,p}
+{o2®03,p} — 038 00p0® 03
—0g®0p03Q 00— 028 09p0® 03

_0'0®0'3p0'2®0'0]. (ASC)

The four constantsy, B, y, 6, that measure the relative
strength of the various dissipative contributions, are deter-

Without additional knowledge on the behavior of the corre-mined by the parameters appearing in the correlation func-

lation functionsW{A®) of the environmental variables, the
form of the evolution equation@3)—(A5) cannot be further
simplified.

On the other hand, with the assumptig2s),

5 (t—9) =W (t—s)=ge "9,

W5 (t—s)=1f2e "It (A6)

tions (A6):
Y 20%u 9%wo 2 2y
i+ u?’ w5+ u?’ Y w5+ v’
_ fz(oo Ag
B wg-l- ,u,2 (A9)

and all remaining entries zero, the form of the coefficients in
Eq. (A2) can be explicitly computed, and a more manageabléyhen the strength and decay constants of the off-diagonal

expression for Eq(A3) can be obtained. Indeed, after some ¢orrelationsWii?)

simple manipulations, one finds
dp(1)=(Lo®1+10Lo)[p() ]+ (L1@1+1eLy)[p(1)]
—LaAp()], (A7)

%5~ are much smaller than the corresponding
ones inW$%?Y |, 2<g?, 1/v<1/u, the dissipative constants
and & can be neglected with respect éoand 8, and the
resulting evolution equatiofA7) reduces to that presented in
Egs.(2.7) and(2.8).
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