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Density-matrix operatorial solution of the non-Markovian master equation for quantum
Brownian motion
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An original method to exactly solve the non-Markovian master equation describing the interaction of a
single harmonic oscillator with a quantum environment in the weak-coupling limit is reported. By using a
superoperatorial approach, we succeed in deriving the operatorial solution for the density matrix of the system.
Our method is independent of the physical properties of the environment. We show the usefulness of our
solution deriving explicit expressions for the dissipative time evolution of some observables of physical
interest for the system, such as, for example, its mean energy.
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[. INTRODUCTION identifying the elusive border between quantum and classical
descriptions of the world. On the other hand, the huge ad-
The problem of the quantum dynamics of a small systenvances in experimental techniques for controlling the evolu-
interacting with its environment has been extensively studiedion of quantum systems have paved the way to the realiza-
since the origin of quantum mechanics. However, in spite ofion of the first quantum logic gates, the key elements of
the noticeable progresses in the theory of open quantum sy§uantum computers. The biggest obstacle to building quan-
tems, many conceptual difficulties still remain. Indeed thetum computers is the decoherence process due to the un-
understanding of the effects of the environment on the physi@voidable coupling with the external environment. Thus,
cal system of interest, in general, is not an easy task. Theiudying a decohering quantum computer is an essential step
conventional way to afford the problem of the description Offor the identification of realistic quantum error correcting

) : . :codeg[8].
the time evolution of an open quantum system consists i 0 . .
eliminating the degrees of freedom of the environment in A standard method to describe the effects of the environ-

. ment on a small quantum system is based on the Born-
: . WMarkov master equation. Such an approach is valid when-
matrix of the small system. T.h's procedL_Jre stems from i ver the environmental correlation time is much shorter than
fact that we are usually only interested in the dynamics Ofy,q ynica) time scales of the system dynamics. Under these
this subsystem and do not really care about the state of the,nqitions, it is possible to derive and, in some cases, to
environment and its evolution. The procedure of tracing ovekg|ye analytically the master equation ruling the dynamics.
the environmental variables thus amounts to declaring thathis is. for example, the case of a quantum harmonic oscil-
everything other than the small system is indifferent to us. INator coupled through bilinear interactions to a reservoir of
this way one reduces the number of variables one needs tgarmonic oscillators. This model is a particular case of the
take into account to study the problem. quantum Brownian motiofQBM), where we specify the
Only very few physical systems prove to be amenable tgystem to be just a quantum harmonic oscilld&jt
an analytic description of their open dynamics. In this paper, There exist situations, however, wherein the reservoir cor-
we deal with the simplest open quantum system worth beingelation time is longer than the system time scales of interest
studied: the damped harmonic oscillator. Such a system is aind thus the Born-Markov approximation does not hold any-
great conceptual importance because it provides a simplenore. This is, for instance, the case of atoms decaying in
successful starting point in the theoretical description ofphotonic band-gap materials or atom lasgi8]. Moreover,
many experimental situations in the quantum optics, solidvery recently, the potential interest of non-Markovian reser-
state physics, and quantum-field-theory contexts. For thigsoirs for quantum information processing has been demon-
reason, it is also one of the most extensively studied physicaltrated[11] and a non-Markovian description of quantum
systemg1-7]. computing, showing the limits of the Markovian approach,
Understanding the dissipative behavior of open quantunimas been present¢fl]. Several procedures have been devel-
systems is a crucial problem for both fundamental and applioped to treat non-Markovian processes. Most of them are
cative reasons. On one hand, indeed, during the past fereviewed in Ref[12]. Very often, in order to describe the
years, the interpretation of Zurek, associating the quantum tdynamics of an open quantum system in terms of a master
classical transition with environment induced decoherencequation for its density matrix, a number of approximations
effects, has become increasingly popular. From this point ofnvolving the relevant system and reservoir parameters are
view, studying the open system dynamics of exemplaryrequired. One of the most common is the weak-coupling ap-
quantum systems, i.e., harmonic oscillator, would help inproximation based on the assumption of a weak system-
environment coupling strength. As underlined by Paz and
Zurek in Ref.[9], a perturbative approach in the coupling
*Electronic address: sabrina@fisica.unipa.it strength can always be shown to lead to master equations
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local in time. This fact could appear surprising at a first sight, (aA+IB|§)S(2): aAS®+ gBS®) 4 BeC, )
since often non-Markovian quantum systems are described

by generalized master equations involving a nonlocaknd the properties

memory kernel taking into account the past history of the

reduced system. The advantage of dealing with a generalized [AS BS]=[A,B]S, (3a
master equation which is local in time is that the memory

effects of the environment are incorporated into its time- [AE,BE]=[A,I§]2, (3b)
dependent coefficien{d3-15. This circumstance makes it

possible, in some cases, to find an analytic solution of the [AS,BE]z[AE,BS]=[7-\,I§]E. 30

generalized master equation.

In this paper, we present an original method for the deri-  The main consequence of such relations is that if the com-
vation of the operatorial density matrix solution of the non-mytator of two operators is@number, then the correspond-
Markovian master equation for the QBM in the weak-jnq 5(s) superoperators do commute. For example, for the

coupling limit. We apply our procedure to the case in WhiChsuperoperatorxS(E) andPS®); corresponding, respectively,
the system is a harmonic oscillator interacting with the quan;

tized reservoir through a bilinear coupling. Our method doe {0 p_osmonX_ and conj_ugate momentuf operators, the fol-
. . “Towing relation holds:

not rely on any assumption other than the weak-coupling

limit. In particular, it is independent of the type of environ- [XS(®) pS)]=0. (4

ment considered and of the characteristic parameters of the

system, provided a perturbative approach to the second ordgforeover, from Eq(3c) one gets

in the coupling constant is valid. We demonstrate the useful-

ness and simplicity of our analytic solution discussing, as an [XS,P*]=[X*PS]=2I. (5)
example, the dissipative dynamics of the mean energy of the o ) ) )
harmonic oscillator. Another superoperatorial identity extensively used in the rest

The paper is organized as follows. In Sec. II, we introduceof the paper is
the mathematical formalism of superoperators and we A
present some key properties for solving the generalized mas- (AB+BA)S=(ASB*+B®A%), (6)
ter equation for our system. In Sec. lll, we describe the non- ) .
Markovian master equation for the QBM in the weak- @nd, in particular,
coupling limit and in Sec. IV we derive its operatorial SAS_  ADNS_ A2S
solution. In Sec. V, we discuss some approximated forms of ATAT=(A%)>=A". @)
the density matrix and we present some applications. Finally,

in Sec. VI we present conclusions. In a certain sense superoperators can be considered as a

generalization of the concept of operator used in quantum
mechanics. Superoperators act on a space whose elements
ll. SUPEROPERATOR FORMALISM are operators to give other operators. Let us consider a gen-

Let us begin introducing the mathematical formalism anderalization of the concept of eigenstates. Looking at the

properties which we use in the rest of the paper to derive thgquations
time dependence of density matrix of the system under scru-

tiny. Our method is based on the extension of the notion of XSe ™ (PX~XP) = _ @~ (PX~xP), (8a)
eigensolution of an operator in thestiperoperatdtformal- . .
ism. PSe ! (PXXP)= _ pe !(PX=XP) =y peR, (8b)

Given two generic operator& and p, let us define the S
superoperators of the S typ&S=(A)S and of the> type Wwe can identifye'(PX~*P) as the eigenoperator of the super-

A>=(A)* in the following way: operatorsX® and PS with eigenvalues—x and — p, respec-
tively. Another superoperatorial eigenvalue equation of inter-
ASp=[A,p], S type, (1@  estin this paper is
Azﬁz{A,Z)}, E type, (1b) N(ps(_XAP)n:n(pX_XAP)n, nEN, (9)

- Sy S_ yEpS ;
where the square and curly brackets indicate the commutatéthereN_ (172)(P*X"=X=P%). In particular, we have

and anticommutator, respectively. Equatidds) and (1b)
define a particular class of superoperators hereafter also
called commutatofS) and anticommutatorY) superopera-
tors. It is important to note that &isuperoperatoAS may be
linearly combined with or multiplied by & superoperator

NX"=nX", NP"=nP". (10)

In the following we will use, for the sake of simplicity, a
matrix representation of the previous relations. Let us define

B* giving rise to superoperators belonging neither to $he ~ X X S(2) <
class nor to the class. From Eqgs(la and (1b) linearity Z=\ .|, 23(2):( s ) 7= 9). (11
follows immediately, P pS) p
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With this notation, Eqs(8) can be recast in a more compact t
form Ds(t)=f k(7) XS cog wor)XS—sin(wyr)PS]d7.
0
. - L (16)
ZSeﬂz JZ:_ZeﬂZJZ. (12)
Also Gg(t) is neither anStype nor a3 -type superoperator
In this equation,) is the following 2x 2 matrix: being defined as follows:
t
J:(O 1) (13 Gg(t)= fo/_L(T)XS[COS(wOT)XE—Sin(on)Pz]dT.
1 0]/

17

With reference to the assumptigh), we observe that the
time-convolutionless master equation for quantum Brownian

and thus satisfies the properti#s=J"1=—J andJ?=—1.
Note that, using this notation, the superoperdtocan be

cast in the formN=—31(Z*)"3Z5. motion can be derived also for the more general event of

correlated initial states of the total system. In such a case the

Ill. THE MASTER EQUATION IN THE WEAK-COUPLING generalized master equation for the system contains an inho-
LIMIT mogeneity terml (t) [14]. We have verified that a generali-

: . . , . zation of the solving procedure to be presented in the follow-
In this section we specify the physical system we wish 10, section to the case of nonfactorizing initial conditions is

study, namely, a single harmonic oscillator interacting with a,,qqjple provided that the quantum characteristic function
guantized environment, and we introduce and discuss thgssociated to(t) is known.

generalized master equation governing its dynamics. Let us |, Eqs.(16) and (17) we have introduced the correlation

consider a.harmpnic oscillator of frequeney surrounded _ «(7) and the susceptibility.(7) functions[24]. Such quan-
by a generic environment. We express the total Hamiltoniatjies - characterizing the environmental temporal behavior,

H as follows: are defined as follows:

H:HO_F':IEJFCY;(E, (14) a2 ~ A~

k()= %HE(T),E(O)}% (18)

whereHo=1(P2+X?), He and aXE are the system, envi-

ronment and interaction Hamiltonians, respectively, and L2

the coupling constant. The interaction Hamiltonian here con- w(7)= _2<[|§( T),E(O)]), (19
2%

sidered has a simple bilinear form with as the position
operator of the system arfel as the generic environmental with (- -y =trg] P (0)}
co=trg{- - pe(0)}.

operator. L . . The form of Eq.(15) has a clear physical meaning. The
e o sk of sl e have Wt e BrOvOUSuperopertoD. (1), indecd, ' il eited o ifusion
P (decoherencgeprocesses only9]. The superoperatdbg(t),
tum operators. Let us denote wifh=p the density-matrix on the other hand, describes dissipation and frequency renor-
operator for the oscillator-environment system. malization processg®]. Such a superoperator arises from a
Let us now assume the following. quantum-mechanical treatment of the environment and, in-
, deed, vanishes when the environment is treated as a classical
(1) At t=0 system and environment are uncorrelated, tha&uantity[see also Eq(19)].

is, p(0)=p(0)@pe(0), with p and pe density matrices of By using the properties of the superoperators introduced

the system and the environment, respectively. in the preceding section, one can show tfaft) can be
(2) [Hg,pe(0)]=0 (stationarity of the environment recast in the following form:
(3) tre{Epe(0)}=0 (as, for example, in the case of a 1

thermal reservojr . . Gyt =S[r (X =) (XP+PR)IP=15(1)(N+2),
(4) A second-order perturbative approach in the coupling 2

constant is possible. (20

Under these conditions one can shf®21] that the non- Where the superoperatdt is defined by Eq(9) and
Markovian generalized master equation describing the t
r(t)y=2 f

t
harmonic-oscillator dynamics, in the ScHioger picture, is u(7)cod wyr)dT, 'y(t)=f p(7)sin(wor)dr.
0

the following: 0 21
dp(t) 1 s - As for Dg(t), it is straightf d i
|t ys_ s(0), ghtforward to see from E(L6) that it
dt ih Ho=Ds(D+1G<(1) (1), (15 can be recast in the form
where the superoperatbi(t) (notSor S type) is defined as Dg(t) =A(t)(XS)2—I1(t)XSPS, (22)
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where P
— t t
A(t)ZJ k(7)cod wor)dT, H(t)=J k(7)SiN(wg7)dT.
0 0

(23

In view of Eq. (4), Dg(t) can be regarded as a quadratic
form in the commutative operator variabl®s and PS:

Dy(t)=(Z9M(®Z° with MO={ ||

2
(24)

It is not difficult to check thaf Dg(t),Dg(t1)]=0, what-
evert andt, are. Inserting Eq(20) into Eq. (15 one can
write the generalized non-Markovian master equation de- FiG. 1. The plain line represents the unperturbed oscillator. The
scribing the dissipative dynamics of our system in the fol-gashed line represents, instead, an oscillator with a Hamiltonian of
lowing final form[9,21]: the form given in Eq.(26) [we have choseny(t)/wy=r(t)/wg

' -0.1].
dp(t) [1
L:[Emo(u—os(t)w(t)mm

p(t), (25  closed physical system. It prescribes to write down the
Schralinger equation and calculate eigenstates and eigenval-
with ues of the Hamiltonian of the system. Once we have deter-
mined these quantities, it is possible to describe the dynam-
- fiwg| oy on Ty, YD) oo oo ics evaluating the action of the corresponding temporal
Ho() =——| PT+XT= =X+ ——(XP+PX) . evolution operator on the initial state. The dynamics of open
° ° (26)  systems, however, is much more complicated since the de-
scription of the state of the system in terms of a state vector
Let us note, first of all, that such a master equation is local iris not sufficient anymore. In order to describe completely the
time, even if non-Markovian. This feature is typical of all the physical system, one needs indeed to introduce the density-
generalized master equations derived by using the timematrix operator whose time evolution is governed by a mas-
convolutionless projection operator techniq{ie3,14] or ter equation definitely more difficult to handle than the
equivalent approaches such as the superoperatorial oichralinger equation.
sketched in this section. In this section we present a method to solve the general-
Let us have a closer look at the form of our master equaized master equation, given by E®5), for the system of
tion. Equation(26) shows the appearance of two terms, pro-interest in the paper. In some sense, the method we describe
duced by the interaction with the environment, modifying thecan be seen as a generalization to open systems of the pro-
free Hamiltonian of the system. The first one, proportional tocedure for solving the Schdinger equation of a closed sys-
r(t), is a time-dependent renormalization of the frequency otem, since it is based on the solution of an appropriate eigen-
the oscillator while the second one, proportional #tft),  value equation. Indeed we will deal, in the formalism of
describes a coupling between the thand P operators. The ~Superoperator, with generalized eigenvalue equations involv-
perturbation of the free dynamics due to these terms can B9 Superoperators and operators, instead of operators and
easily visualized in phase space, as shown in Fig. 1. Indeed€ctors, respectively. As we will see in this section, the ex-
the effect of the terms proportional to(t) and y(t) is istence of some useful algebraic properties of the superop-
equivalent to a compression and rotation in phase space &fators will help us in treating the problem of the open sys-
the circle describing the free oscillator dynamics. From alem dynamics allowing, in particular, to find the operatorial
dynamical point of view one can show that the term propor-Solution for the density matrix of the system. _
tional to y(t) gives rise to both a further frequency renor- A remarkable virtue of the procedure we are going to
malization and a dynamical dephasing between position ang€scribe is its independence on the expression of the time-
momentum of the oscillatotsee Fig. 1 Note that these dependent coefficients appearing in the master equézin
features are analogous to the ones present in the dynamics bfiS implies that it is applicable to all the master equations

a classical dissipative oscillatf®]. presenting the same structure. _ _
Our method for solving the master equati@5) consists

of two steps which can be summarized as folloys: sin-
gling out the temporal evolution superoperator correspond-

In quantum mechanics there exists a well established prdng to Eq.(25) and(2) understanding how this temporal evo-
cedure to determine the dynamical evolution of a givenlution superoperator acts qi(0).

IV. OPERATORIAL SOLUTION
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A. Temporal evolution superoperator T()=Tost)T'(1), (36)

In the preceding section we have introduced the masterh
equation related to the dissipative non-Markovian dynamic¥V ere
of our system:

t _
T'(t)=exp. fo[y(tl)(N+2)_D(tl)]dt1 . @D

dp(t)

dt

1 .
ZHo() =D+ »((N+2) [p(D).  (27)

Applying again Feynman’s rile in Ec(31) and using the
A formal solution of Eq.(27) can be written as property(see Appendix A[N,D(t)]=—2D(t), leading to
p(H)=T(t)p(0), (28) T2 D) Tr(t) =€ OD(1), (38)

where the temporal evolution superoperakgt) is given by ~ We have

t T (O)=Tr()Tp(t). (39
T(t)=exp3( fo dtl).

Finally, inserting Eq(39) into Eq.(36) one obtains the final
(29)  factorized form of the time-evolution superoperator given by
In Eq. (29 the subscript t” stands for the Dyson chrono-
logical order. In the following, we shall prove th@(t) can

Eq. (30).
be factorized as follows:

1
7H6(t) — Ds(ty) + 7(t)(N+2)

The key advantage of such a factorized form is that it
makes easier estimating the action of the time-evolution su-
peroperator on the initial density matrix of the system. As we

T()=Tod)Tr()Tp(t), (30) shall see in the following, this alloyvs not onI)_/ to so_lv_e the
master equatiof25), but also to clarify the physical origin of
where each of its terms.
It is worth noting that the Dyson chronological order is
1 ([t q present in only one of the three superoperators defined by
it OHO(tl) b, (318 Egs. (30) and (31). Of course, this circumstance leads to a
further simplification of the calculations. In fact, while for
Tr(t) the reason why one can drop the subsaifst already
: (31b  clear from Eq.(31), in the case offp(t) some more com-
ment is needed. As we will demonstrate in the following, the
Dyson chronological order is not necessary in the expression

t J—
TD(t):eXF{_ foer(tl) (tl)dtl}v (319  of Tp(t)=exd — Jie"@D(t,)dt,] because the superoperator
D(t), defined in Eq(33), is a quadratic form irZS, that is,

Tos()=exp.

T(t)
Tr(t):eX[{T(N'FZ)

with . R R
t D(t) = (Z29)'A(1)Z5, (40)
I'(=2 fo y(t)dt, (32 with A(t) being the 22 matrix of time-dependent scalar
quantities. Indegj itE straightforward to prove that, when
B(I):Tésl(t)Ds(t)TOS(t)- (33 Eq. (40) holds,[D(t),D(t;)]=0 for all t,t;.

In order to prove Eq(40), let us note that, as demon-
To this aim we exploit the Feynman’s rul@5] stating that, strated in Appendix B, the following chain of equalities
whatever the operators or superoperatd(s) andB(t) are, holds:

exp, f [A(t)+B(t)]dt} Tos(DZ5Tog(t) = (Toa(H ZTos(1)= (Toa(H12)°, "
—exp. f A(t)dt|exp. f g(t)dt}, (34) According}o these equations, the transformation operated by
Tos(t) onZSis a linear transformation corresponding to the

with one operated b o4(t) on Z. One can showsee Appendix

B) that
-1
fA(t)dtD B(t) fA(t)dtD.
_Sr(t) Cr(t)

Applying the Feynman'’s rule to the time-evolution superop- (42)

erator defined in Eq29) and taking in consideration that, as The functionsc(t)ands(t) are the solutions of the Cauchy
shown in Appendix A[N,H_So(t)]zo, one gets problems

B(t)= ( exp. exp,

a1, 34 5 c(t) s(t)
(35) Tos()ZTot)=R(t)Z, whereR(t)= _
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1-———-—"5|y=0,
y+ 0 wo a)% wg y
c(0)=1, ¢(0)=0,
with initial conditions ) (43
s(0)=0, s(0)=w.

The functionss,(t)andc, (t) are defined as
cr(t)=it)—ﬂs(t), —sr(t)=ﬂ—ﬂc(t)-
(O] o (O] wqo

(44)

Inserting Eq.(24) into Eqg.(33) and using Eqs41) one gets
D(t)=(Z%)'M(1)Z,
where we have put M(t)=R{(t)M(t)R(t).  (45)

These considerations allow us to recag(t) in the form

PHYSICAL REVIEW A 67, 042108 (2003

o 1 R TR
_ Na—1Z2 324251
p(0) ij Xo(z')e d<z’, (50)
with xo(2') =tr{e'? %2p(0)}, we have
1 e} *IZE]% 220
P(t)zﬁf To (O)Tr()To(t)xo(z")e d<z'.
(51)

Let us first introduce two superoperator eigenvalue equations
we will use in the following. Indicating with-(A) a generic
superoperatorial well defined function of the superoperator
A, from Egs.(4), (8), and(9), we obtain

F(ZS)eflilJZZF(_z)efl?JZ: (52)

F(N)(Z‘J%)”=F(n)(£tﬁ)“, (53)

where nowF(—f) andF(n) are simple scalar functions.
We begin noting that, using Eq#&46) and (52), one can

write the termTD(t)e"ZgZ appearing in Eq(51) as follows:

TD(t)e*';tﬁ: e—(i’)tW(t)Z’e—ui’tﬁ.

To(t)=exd — (Z%)'W(1)Z°], (46) (54)
Moreover, using Eq(53) it is not difficult to prove that
where
o ryz, _ _)IJZ)]n
t _ —1Z9Z _ AT(t) le (—1z
w(t)= f e OM(ty)dty. (47) Trte =02, i
0
_al(t r(t)/2 Jt >
Summarizing, in this section we have manipulated the ex- =eWexfe! W —1292)]. (59
pression of the time evolution superoperator in order to put ifina|ly, remembering Eqg41) and (42) we get
in a form more convenient for the calculations. In fact we A . .
have proved that such a superoperator can be factorized in T (t)eflilJZZeflftJToS(t)ZZeflftJR_l(t)Z
the form given by Eq(30). Moreover we have shown that os i i
two of the superoperators appearing in E20) do not need =e*'[R(t)Z]'Jize*'z(‘)th (56)

the Dyson chronological order. As we will see in the follow-

ing section, this circumstance allows us to find an analytianserting Eqgs.(54)—(56) into Eq. (51), we can express the

expression for the density-matrix solution.

B. Evolution of the density matrix

density-matrix solution as follows:

~ 1 _ (ot ot >
b= 5 [ & @MWy (er®

In this section, we calculate the action of the factorized
superoperator given in E¢30) on the initial density matrix.

To this end we express the density matrix in the following
form [16-19:

xexg e" W2(— 1z’ (1)13Z)]d?Z’ . (57)

After some algebraic manipulation, reported in Appendix
C, the previous expression can be recast in the following
~ i R —i‘aidz* final form:
1Y 2 X(Z)e Z, 1 = “t -
p(t): ZJ' e—(Z) W(t)ZXO[e—F(t)/ZR—1(t)z]e—lz 2427

where the scalar functiony(2)= x(x,p)=tr{e'®PX*P)5},

known in the literature agjuantum characteristic function _ i X (Z)e"?ﬁdzf (58)
(QCH [17-2Q, satisfies the following properties: 2 t '
X(0.0=1, x(x,p)=x*(~X,~p), where
W(t)=e "O[R™H()]'WHR(1). (59

Ix(x,p)|<=M (M eR). (49)
Equation (58) constitutes the main result of the paper. It
gives the operatorial density-matrix solution of the problem

of the dissipative dynamics of a harmonic oscillator interact-

Having in mind Eqs(28) and(30), and writing the initial
density matrix as follows:
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ing with a generic environment satisfying propert{gs and _ ¢
(3) of Sec. II, as for example, a thermal reservoir at tempera- W(t)me*m)J’ el (t)
ture T. Our approach to the dynamics of the system relies on 0

Aty A
<2tl> A

2

the weak-coupling limit but does not invoke the Born-
; . : II(ty)
Markov and rotating wave approximations. In more detail, _ S,(t—ty) |dt (63)
. . 2 1 1
we have solved a non-Markovian generalized master equa- 2

tion for the harmonic oscillator coincident with that deduc- . h
ible using either the time-convolutionless projection operatOlW't

techniqud 13] or the superoperatorial approach of Re&fl]. COS2wgt  —Sin 2wgt
The exact dissipative dynamics of the reduced density Cz(t)z( ) )
matrix for the damped harmonic oscillator can also be de- —Sin2wgt  —COS Zwqt
rived in terms of the Wigner functiof29] and by means of (64

the path-integral techniqy&2,23. Our procedure, however,
allows us to obtain an operatorial solution for the density
matrix of the system whereas the influence functional
method leads to an expression of the density matrix in the The form of the matrices defined in the previous equa-
coordinate representation. Moreover, as we will see in th&ions suggests a further approximation very common in
following section, once the analytic expression for the QCFjuantum optics: the rotating wave approximati&@wA). It
is obtained, one can very easily calculate the time evolutioasically consists in neglecting rapidly oscillating terms as,
of the mean value of a huge class of observables. in our case, those oscillating to frequenay This amounts

In the following section we derive some approximatedto averaging to zero all the elements of the matriCgét)
forms of the solution given by Eq58) and we show its andS,(t) so that Eq(63) reduces to
usefulness in calculating the analytic expression of many ob- _
;ervables of intgrest and thus in gaining an important insight W(t)wer(t)ftef(tl)A(tl) dt :Ar(t)
into the dynamics of one of the most extensively studied 0 2 1= 2
physical systems.

Sin2wgt  €OS 2wt
COS 2wgt  —sSin 2wt/

Sz(t)z(

(65

Substituting Eq(65) into Eq. (58) we obtain the following

V. APPROXIMATED FORMS OF THE SOLUTION AND expression for the density-matrix solution in the RWA:

APPLICATIONS ~ ~
p(H)~pR¥(1)
In this section we derive an approximated form of the 1 i -
O%eratorial density-matrix solution, given by E&8), valid - EJ ef[Ar(t)/2]|z\2X0[e—F(t)/2R*l(t)i’]ef|21JZd22_
when

(66)
Ho(t)~Ho, 60 «
o()=Ho (60 It is possible to demonstrate thaf"(t), as given by Eq.

oA ) ) ) (66), satisfies the following master equation:
with Hg given by Eq.(26). Looking at this equation one sees

immediately that Eq(60) amounts to neglecting the time- ¢ _ 1 (t) - .
dependent frequency renormalization and dephasing terms apRWA(t)= EHS_ T|ZS|2+ Y()(N+2) [ pR(1),

(67)

JORE0) . o
—_— > (61)  which in turn has been derived in R¢21].

@o o Once obtained the density matrix we are able, at least in
principle, to evaluate the mean val(&) of each and every

It is worth noting that such an approximation is always jus-operatorA of interest for the system. One of the advantages
tified in the weak-coupling regime<1, provided that the of having a solution of the density matrix in terms of the
reservoir frequency cutoff remains finite, as one can apprecharacteristic function is the possibility of exploiting the fol-
ciate with the help of Eqg19), (21), and(26). For the same lowing relations[20]:
reason it turns out thag(t)/ wy<1. From Eq.(43), it is not
difficult to prove that this last inequality allows us to write <)A(n>:(_ "
the matrixR(t), defined in Eq(42), as follows:

(9“
—x(X,p) ,
8p x,p=0

. (68
CoSwpt  SInwgt

R(t)% (62) <|5n>:(|)n

—sinwgt  coswgt)

an

—x(x,p) :

X _
X,p=0

Inserting this expression in the definition ‘&‘(t), given by By using these relations it is not difficult to calculate the time
Eq. (59), and exploiting Eqs(47), (45), and(24) we get evolution of the mean energy of the oscillatory system:
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N\ - T(y/0 A U |
(Ho)i=e " “(Ho)=ot+fiwg (Z9)'W(t)ZS= FZ( )[(XS)2+(PS)2]
Ar(t) with the RWA
tr{W(t)} without the RWA but neglecting + &[(XS)Z—(PS)ZHG)(UXSPS (73)
2 L
renormalization and dephasing
terms. where the time-dependent coefficients appearing in the pre-
vious equation are
(69)
Ap(t)=tr{W(t)}, A(t)=tr{o,W(1)},
We emphasize that these solutions depend on the initial state (74)
of the oscillator only through the terH),—,, the second O (t)=tr{o,W(t)},

term of the sum being independent of the initial state. More-
over, looking at Eq(69) one sees that the exponential factor with ¢, and o, being Pauli spin matrices.

accounting for energy dissipation does not depend on the Exploiting the properties of the trace and puttifag(t)

initial state of the system but only on the characteristic pa- 1 . . .
rameters of the reservoir. =Tg(t) “p(t), one can easily show that the following chain

These features, characterizing E§9), are directly re- of equalities holds:

lated to the factorized form of the the QQE(E). In fact, AN el Ty AL SN ALt A
from both Egs.(58) and (66) it appears evident that such a (An=tp(AI=t{To(Dp" (DA} =t (DTe(DA}
function is the product of a Gaussian factor and the function =tr{p’ ()AS(1)}, (75)

yole TW2R1(t)Z]. All the information on the initial state

of the system is incorporated in this last function from whichwhere we have defined

the first term into the right-hand side of E§9) comes from.

On the contrary, the second term derives exclusively from AS(t)=Tg(t)A. (76)

the Gaussian factor of the QCF, which depends only on the

environment functions and not on the initial state of the sysHaving these equations in mind it is not difficult to convince

tem. oneself that calcula’cingA)t using x:(x,p) is equivalent to
Note from Egs.(58) and (66) that, whatever the initial calculating(AG)t using Xo[efI‘(t)lzRfl(t)E]' In the caseA

f th i o B2 %
state of the system is, —fi,= 1(B?+ X?) we have that

(3) = e~ @WOZ(in the RWA)e[4rO2IZ (70 [(X3)2+(P9)2]Ho= — 2h wy,
(77
, o . . [(X9)?=(P%)?IHo=0, X°P°Ho=0,
This behavior is easily understandable, when the environ-
ment is a thermal reservoir, in the light of the thermalizationgnd thus
procesq 26].
Let us now have a closer look at E§9). If we evaluate AS(t)=Fo+iweAr(t). (78)

tr{W(t)} with the help of Eq.(63), we find that

Note that this equation is not affected by the RWA as well as
yo[e T®W2R~1(t)z]. This explains why we obtain for the
mean value of the oscillator energy the same result with or
without the RWA.

This means that the time evolution of the oscillator energy is The previous procedure suggests a sufficient condition to
not affected by the contribution of the rapidly oscillating single out operators which “do not suffer the RWA approxi-
terms neglected in the RWA. This feature comes directlymation,” indeed we have that

from the particular structure of the free Hamiltonian opera-

tr{W(t)}=Ap(t). (71)

tor. [(X9?=(P9)?]A=0, X3P°A=0=(A)=(A)["".

To better understand this point we consider the Gaussian (79
factor appearing in the QCF. The superoperator correspond-
ing to such a factor has the form With the expression operators which do not suffer the RWA

approximation we indicate operators having the property that

. the time evolution of their mean value is not influenced by

To(t)=exd — (Z%)'W(t)Z®]. (72)  the RWA. In other words, the counter-rotating terms do not
contribute to the dynamics of this class of observables. Ex-

With some algebraic manipulation one can recast the supeMples of operators belonging to such a classxare, X?
operator appearing in the exponent as follows: + P2 and all linear combinations of such operators, as one

042108-8
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can easily verify. On the contrad¢? and P2 do not satisfy ~ research, under conditions in which, up to now, only numeri-
condition (79). For such operators, indeed, exploiting Eq. cal approaches were possible.
(75), one gets

ACKNOWLEDGMENT

&2\ /52 RWA_ 52\ _ /52\RWA_
(XU=(X)OTT==A(), (PH—=(PHT =A(). One of the authoréS.M.) acknowledges financial support
(808 from Finanziamento Progetto Giovani Ricercatori anno

- i 1999, Comitato 02.
Similarly, for the mean value of the “correlation” operator

(XP+PX) one has APPENDIX A: PROPERTIES OF THE DISSIPATION
SUPEROPERATOR

XP+PX)— (XP+PX)R"M=20(1). 800
{ h={ z ® (80 In this appendix, we demonstrate some useful properties

of the superoperatdd. Such properties, allowing us to fac-

VI. CONCLUSIONS torize the time-evolution superoperator given in E29), are
. the following:
In this paper, we have developed a method to solve the
weak-coupling generalized master equation for the QBM. In [N,H_So(t)]=0, [N,D(t)]=—2D(t). (A1)

particular, we have considered the case in which the system

interacting with the environment is a quantum harmonic 0S- - The first one is the most surprising one: it can be consid-
cillator. The master equation we have solved, given by Edgreq as a “dynamical invariance” of the dissipation process.
(25), glthough non-MarIgowan is local in time. Such a masterag we shall see in the following, the dynamical invariance
equation has been derived in REZ1] by using a superop- qyriginates from the particular structure of the Hamiltonian
eratorial technique and in Ref®,14] by means of the time- - defined b
convolutionless method and is the weak-coupling approxit€™ Ho(t), defined by Eq(26). .

Independently on the form of the time-dependent func-

mated form of the exact master equation for the QBM. . : h . b ; ) |
derived by Paz and Zhang in Ré27]. The main result of tions present in such a term, it can be written, in general, as

the paper is the derivation of the analytic solution of &%) . - -
for the density matrix of the reduced system. To this aim, we Ho(t)=2Z'S(t)Z with S'(t)=S(t), (A2)
have used an approach based on the algebra of superopera-
tors. Our method is independent of the specific form of thewhereS(t) is a 2x2 real symmetric matrix. Remembering
environment and does not rely on any approximation aparthat
from the weak-coupling one. We have also studied simpler
forms of the density-matrix solution obtained by neglecting
frequency renormalization terms and/or performing the
RWA. We have demonstrated the existence of a class of su-
peroperators whose mean value is not affected by the presnhe gets
ence of the counter-rotating terms at any ti@nd we have
given a sufficient condition to verify if a given operator be-
longs to such a class. This circumstance simplifies substan-
tially the calculations, since, for operators belonging to such 1
a class, one can use the approximated density-matrix solu- _ 53t St 555
tion, given by Eq.(66), in order to calculate their mean _5'{(2 JZS12,2]
value. The analytic solution we derive and discuss in the . A
paper is given in terms of the QGBee Eqs(58)] by means +((Z'S(t)Z,Z]1%)1 328} (Ada)
of which one can calculate the expectation value of many
observables of physical interest in a very direct way, as sugt is possible to show thg28]
gested by Eq968). For example, thanks to the simplicity of
the analytic solution we have derived, we succeed in calcu-
lating the dissipative time evolution of the mean energy of
the system. Finally, it is worth noting that from the QCF it is
easy to derive the Wigner function characterizing the state og
the dissipative system.

Concluding, we believe that the non-Markovian analytic 1
approach we have derived in this paper for the QBM can be [N,H3(t)]=— E[(ZE)tJJS(t)ZS+(22)‘8‘(0\]‘\]25]
generalized to other fundamental dissipative systems, such

1 e,
N=— E|(22)th5, (A3)

[N,H(t)]=— ;l[(iz)‘ﬁs, (itsmi)s]

[z*tS(t)E,EJ:usa)i (A4b)

ubstituting this equation into E¢A4a) and using the prop-
rties of the matriceS(t) andJ [cf. Eq. (13)] one obtains

as, for example, the Jaynes-Cummings model with losses. As 1 R . . .

for the QBM, we think that the analytic solution of the den- =— E[—(ZE)tS(t)ZS+(ZE)IS(t)ZS]=0.
sity matrix may be used for studying important aspects of

such a basic model, both for fundamental and for applicative (Adc)
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The generality of the matri$§(t) ensures the validity of
this relation for a generic quadratic Hamiltonian and thus, in

particular, forH(t).

PHYSICAL REVIEW A 67, 042108 (2003

Let us define

A =T(DAT, (=T (DA, (B5)

As far as the s_econd com_mutation relation is concerneq;rom the previous equation we have

remembering thab(t) = (Z5)'M(t)ZS one has
d

[N,D(t)]=[N,(Z5)'M(t)Z5] GiZWA=IL(D,A(D]=LADAL(D) =LA To(DA

=[N, ZS|'M(t)ZS+ (Z5)'M(t)[N,ZS]. q

(A5a) = L0 =LOT(D). (B6)

Exploitin'g the superoperatorial commutation rules given inthis means tha,(t) satisfies an equation similar to the one
Eq. (3) yields given by Eq.(B1). The form of 7 (t) can be obtained from
Eq. (B2) by replacingT(t)— 7¢(t) andL(t)—LS(t).

Now, let us suppose th#t is S or X -type superoperator
andL is an Stype superoperator. From the properties given
in Eqg. (3) we have that

[N,Z8]=— IE[(PEXS— X*P9),Z5]=—Z5. (ASh)

Finally, substituting into Eq(A5a) one gets
— AZD O =T(OASIT (1) =T () ASD

[N,D(t)]=— (Z5)'M(t) 25— (Z8)'M(t)Z8= — 2D(t).
(A5c¢) t tho
SO IR i (TS RRTE (AW IR
n=0 JO 0

APPENDIX B: TIME EVOLUTION

. ' Xdty- - - dt,
In this appendix, we shall demonstrate that the general
time evolution of a ‘S- or “ X "-type superoperator is equiva- _ f‘ f‘n—l - ~ A S(3)
lent to the “S"- or “ X,"-type superoperator of the time evo- _ngo 0 0 [L(ty)--[L(tn) Al ]
lution of the corresponding operator. In formulas this
amounts to demonstrating E@t1). First of all let us define xdty- - -dt,
T.(t) as solution of the equation ; t 1
= X f J LS(ty) - -LS(t)
=L T (B1) o e
G TeO=LOT(D), A o
X Adty - - -dtn)
where in generaJL(t),L(t;)]#0. L(t), as well asT(t),
can be either an operator or a superoperator. ; S3)
The previous equation can be solved in an iterative way =| exp. f Ls(tl)dtl}A)
and its solution is 0
t [t =(T(HA)S®
Te(t)= 2 J J L(ty)- - L(ty)dt;- - -dt, L .
n=0Jo - Jo = (To(OATH(1))SH) = (A (1)), (B7)

t
=exp, jol-(tl)dtl : (B2)  where we have puf(t)=exp{ [5LXt,)d].

Now, let us consider

It can be shown that }(t) satisfies the equatidi25 _
o auaezs) AT =T HOASDT (=T, (DAS®.  (B8)

Echl(t)= — T HOL(), (B3)

gt The last definition comes directly from the definition{t)

and can be verified applying.(t) on A§(t) and, vice versa,
applying the previous definition df }(t) on AX(t).

Exploiting Eq. (B4) and following the same lines of the
derivation of Eq.(B7), one can show that

which can be again solved in an iterative way giving the
following form of the solution:

t tn—l
T;l(t)=go(—l)“fo-~-fo L(tp)---L(tydty- - -dt, AS®)(t)= (T, U DAT(1)®=(A,(1)5®). (B9

Let us now derive Eqg42). Using Eq.(A4b), (B1), (B3)

=exp, . >
and remembering the definition &ft),

- ftL(tl)dtl}. (B4)
0
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Z(t) =T ) ZTodt), (B10)

one has

dz 1. . ~ 2
GiZ(0=— ZTo3(O[Ho(1),Z]Tod ) =~ IS Z(Y),

S(t)= %S(t). (B11)
Deriving the previous equation once more we get
d2 s % ~ 2 e
EZ(tF{—JS(t)Jr[JS(t)] 1Z(1)
—(-35(t)—defS(OPZ(M).  (B12)
In our case
< Lfwo=r(t) Y(t))
S0= 2( W e’ (5139

so that the differential equation for the opera¥qt) has the
following form:

>, L[ ) A v
@X(t)— (1)0(1 w_o _a)g w_g X(1).

(B14)

X(t)=Xc(t)+ Ps(t)
P(t)=—Xs,(t)+ Pc,(t)

APPENDIX C: FINAL FORM OF THE DENSITY MATRIX

In this appendix, we sketch the main steps of the deriva-
tion of the final form of the density-matrix solution, given by
Eq. (58), from Eq.(57). Let us remind the generic expression

for the density matrix in terms of the QQBee Eq(48)]

- 1 - s o
- —12JZ42
p(t) wa xi(z)e”'“ 7d“z, (CY
WhereXt(f)=tr{e'?ﬁﬁ(t)}. From Eq.(57) we have
- 1 — @YWz’ ., 3 &)
p)=5_|¢ Xo(Z')e
x exple! V' —1z/ (1)13Z]}d%Z" . (C2)

Comparing these last two equations one gets

:>%(t)=R(t), R(t)=(

PHYSICAL REVIEW A 67, 042108 (2003
A solution of the previous equation can be written as
X(t)=Xc(t)+ Ps(1), (B15)

with c(t) ands(t) solutions of Eq(43) with the same initial
conditions. Note that, from EqB11), it follows that

d. N ~
aX(t)szP(t)—F y(t)X(1). (B16)

With the help of Eq(B15) we have forP(t),

. 1/(d. 5
P(t)= w_o aX(t)—Y(t)x(t)

_pS=r(Bs)  oeB= YY)

wo o

=Pc,(t)—Xs, (1), (B17)

where we have defined, as in E¢4),

c(t)— y(t)s(t)

c ()= P

WA
@o

(B18)

Grouping Egs(B15) and(B17) and using the matrix repre-
sentation, we obtain

c(t)  s(t) )

—si(t) (1) (B19)

> z :A l o1 >r N
Xt(Z)Itr{e'ZIJZp(t)}Z ZJ e*(Z )IW(t)Z Xo(zr)er(t)

Xtr{e'itﬁexr[er(t)’z(—|£’(t)‘J2)]}d2£’. (C3)

Using some properties of th& function we obtain

1 Iy - 2
Ztr{e'Z Zexy] el 02— 12(1)13Z)]}

_ 6[2_ eF(t)/ZEI (t)] — e*F(t) 6[2! _ e*F(t)/ZRfl(t)E] )
(CH
Introducing this equation into E¢C3) yields

Xt(f):f e—(i’)‘W(t)i’Xo(Z/)é[z*,_e—r(t)/zR—l(t)E]dzfr

=exg —e "O(2)'(R™1(1))W(H)R™L(1)zZ]

X xole TOPR=1(t)z]. (C5)
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Finally, substituting this equation into E¢C1) gives where

;’(t):%f e—(i)tVT/(t)EXO[e—F(t)/ZR—1(t)£]e—IftJédZE’ w(t)=e "OR (1) W(H)R (1), (C7)

(C6)  which is the form ofp(t) given in Eq.(58).
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