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Density-matrix operatorial solution of the non-Markovian master equation for quantum
Brownian motion

F. Intravaia, S. Maniscalco,* and A. Messina
MIUR, INFM and Dipartimento di Scienze Fisiche ed Astronomiche, via Archirafi 36, 90123 Palermo, Italy
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An original method to exactly solve the non-Markovian master equation describing the interaction of a
single harmonic oscillator with a quantum environment in the weak-coupling limit is reported. By using a
superoperatorial approach, we succeed in deriving the operatorial solution for the density matrix of the system.
Our method is independent of the physical properties of the environment. We show the usefulness of our
solution deriving explicit expressions for the dissipative time evolution of some observables of physical
interest for the system, such as, for example, its mean energy.
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I. INTRODUCTION

The problem of the quantum dynamics of a small syst
interacting with its environment has been extensively stud
since the origin of quantum mechanics. However, in spite
the noticeable progresses in the theory of open quantum
tems, many conceptual difficulties still remain. Indeed
understanding of the effects of the environment on the ph
cal system of interest, in general, is not an easy task.
conventional way to afford the problem of the description
the time evolution of an open quantum system consists
eliminating the degrees of freedom of the environment
order to derive an equation of motion for the reduced den
matrix of the small system. This procedure stems from
fact that we are usually only interested in the dynamics
this subsystem and do not really care about the state of
environment and its evolution. The procedure of tracing o
the environmental variables thus amounts to declaring
everything other than the small system is indifferent to us
this way one reduces the number of variables one need
take into account to study the problem.

Only very few physical systems prove to be amenable
an analytic description of their open dynamics. In this pap
we deal with the simplest open quantum system worth be
studied: the damped harmonic oscillator. Such a system
great conceptual importance because it provides a sim
successful starting point in the theoretical description
many experimental situations in the quantum optics, so
state physics, and quantum-field-theory contexts. For
reason, it is also one of the most extensively studied phys
systems@1–7#.

Understanding the dissipative behavior of open quan
systems is a crucial problem for both fundamental and ap
cative reasons. On one hand, indeed, during the past
years, the interpretation of Zurek, associating the quantum
classical transition with environment induced decohere
effects, has become increasingly popular. From this poin
view, studying the open system dynamics of exempl
quantum systems, i.e., harmonic oscillator, would help
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identifying the elusive border between quantum and class
descriptions of the world. On the other hand, the huge
vances in experimental techniques for controlling the evo
tion of quantum systems have paved the way to the real
tion of the first quantum logic gates, the key elements
quantum computers. The biggest obstacle to building qu
tum computers is the decoherence process due to the
avoidable coupling with the external environment. Thu
studying a decohering quantum computer is an essential
for the identification of realistic quantum error correctin
codes@8#.

A standard method to describe the effects of the envir
ment on a small quantum system is based on the Bo
Markov master equation. Such an approach is valid wh
ever the environmental correlation time is much shorter th
the typical time scales of the system dynamics. Under th
conditions, it is possible to derive and, in some cases
solve analytically the master equation ruling the dynami
This is, for example, the case of a quantum harmonic os
lator coupled through bilinear interactions to a reservoir
harmonic oscillators. This model is a particular case of
quantum Brownian motion~QBM!, where we specify the
system to be just a quantum harmonic oscillator@9#.

There exist situations, however, wherein the reservoir c
relation time is longer than the system time scales of inte
and thus the Born-Markov approximation does not hold a
more. This is, for instance, the case of atoms decaying
photonic band-gap materials or atom lasers@10#. Moreover,
very recently, the potential interest of non-Markovian res
voirs for quantum information processing has been dem
strated@11# and a non-Markovian description of quantu
computing, showing the limits of the Markovian approac
has been presented@8#. Several procedures have been dev
oped to treat non-Markovian processes. Most of them
reviewed in Ref.@12#. Very often, in order to describe th
dynamics of an open quantum system in terms of a ma
equation for its density matrix, a number of approximatio
involving the relevant system and reservoir parameters
required. One of the most common is the weak-coupling
proximation based on the assumption of a weak syst
environment coupling strength. As underlined by Paz a
Zurek in Ref. @9#, a perturbative approach in the couplin
strength can always be shown to lead to master equat
©2003 The American Physical Society08-1
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local in time. This fact could appear surprising at a first sig
since often non-Markovian quantum systems are descr
by generalized master equations involving a nonlo
memory kernel taking into account the past history of
reduced system. The advantage of dealing with a genera
master equation which is local in time is that the memo
effects of the environment are incorporated into its tim
dependent coefficients@13–15#. This circumstance makes
possible, in some cases, to find an analytic solution of
generalized master equation.

In this paper, we present an original method for the de
vation of the operatorial density matrix solution of the no
Markovian master equation for the QBM in the wea
coupling limit. We apply our procedure to the case in whi
the system is a harmonic oscillator interacting with the qu
tized reservoir through a bilinear coupling. Our method do
not rely on any assumption other than the weak-coup
limit. In particular, it is independent of the type of enviro
ment considered and of the characteristic parameters o
system, provided a perturbative approach to the second o
in the coupling constant is valid. We demonstrate the use
ness and simplicity of our analytic solution discussing, as
example, the dissipative dynamics of the mean energy of
harmonic oscillator.

The paper is organized as follows. In Sec. II, we introdu
the mathematical formalism of superoperators and
present some key properties for solving the generalized m
ter equation for our system. In Sec. III, we describe the n
Markovian master equation for the QBM in the wea
coupling limit and in Sec. IV we derive its operatori
solution. In Sec. V, we discuss some approximated forms
the density matrix and we present some applications. Fin
in Sec. VI we present conclusions.

II. SUPEROPERATOR FORMALISM

Let us begin introducing the mathematical formalism a
properties which we use in the rest of the paper to derive
time dependence of density matrix of the system under s
tiny. Our method is based on the extension of the notion
eigensolution of an operator in the ‘‘superoperator’’ formal-
ism.

Given two generic operatorsÂ and r̂, let us define the
superoperators of the S typeAS[(A)S and of theS type
AS[(A)S in the following way:

ASr5@Â,r̂ #, S type, ~1a!

ASr̂5$Â,r̂%, S type, ~1b!

where the square and curly brackets indicate the commu
and anticommutator, respectively. Equations~1a! and ~1b!
define a particular class of superoperators hereafter
called commutator~S! and anticommutator (S) superopera-
tors. It is important to note that aSsuperoperatorAS may be
linearly combined with or multiplied by aS superoperator
BS giving rise to superoperators belonging neither to thS
class nor to theS class. From Eqs.~1a! and ~1b! linearity
follows immediately,
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~aÂ1bB̂!S(S)5aAS(S)1bBS(S), a,bPC, ~2!

and the properties

@AS,BS#5@Â,B̂#S, ~3a!

@AS,BS#5@Â,B̂#S, ~3b!

@AS,BS#5@AS,BS#5@Â,B̂#S. ~3c!

The main consequence of such relations is that if the co
mutator of two operators is ac number, then the correspond
ing S(S) superoperators do commute. For example, for
superoperatorsXS(S) andPS(S), corresponding, respectively
to positionX̂ and conjugate momentumP̂ operators, the fol-
lowing relation holds:

@XS(S),PS(S)#50. ~4!

Moreover, from Eq.~3c! one gets

@XS,PS#5@XS,PS#52ı. ~5!

Another superoperatorial identity extensively used in the r
of the paper is

~ÂB̂1B̂Â!S5~ASBS1BSAS!, ~6!

and, in particular,

ASAS5~Â2!S5A2S. ~7!

In a certain sense superoperators can be considered
generalization of the concept of operator used in quan
mechanics. Superoperators act on a space whose elem
are operators to give other operators. Let us consider a
eralization of the concept of eigenstates. Looking at
equations

XSe2ı(pX̂2xP̂)52xe2ı(pX̂2xP̂), ~8a!

PSe2ı(pX̂2xP̂)52pe2ı(pX̂2xP̂), x,pPR, ~8b!

we can identifyeı(pX̂2xP̂) as the eigenoperator of the supe
operatorsXS andPS with eigenvalues2x and2p, respec-
tively. Another superoperatorial eigenvalue equation of int
est in this paper is

N~pX̂2xP̂!n5n~pX̂2xP̂!n, nPN, ~9!

whereN52(ı/2)(PSXS2XSPS). In particular, we have

NX̂n5nX̂n, NP̂n5nP̂n. ~10!

In the following we will use, for the sake of simplicity,
matrix representation of the previous relations. Let us de

ZŴ 5S X̂

P̂
D , Z¢ S(S)5S XS(S)

PS(S) D , zW5S xW

pW
D . ~11!
8-2
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With this notation, Eqs.~8! can be recast in a more compa
form

Z¢ Se2ızW tJZŴ 52zWe2ızW tJZŴ . ~12!

In this equation,J is the following 232 matrix:

J5S 0 21

1 0 D , ~13!

and thus satisfies the propertiesJt5J2152J andJ2521.
Note that, using this notation, the superoperatorN can be
cast in the formN52 1

2 ı(Z¢ S) tJZ¢ S.

III. THE MASTER EQUATION IN THE WEAK-COUPLING
LIMIT

In this section we specify the physical system we wish
study, namely, a single harmonic oscillator interacting wit
quantized environment, and we introduce and discuss
generalized master equation governing its dynamics. Le
consider a harmonic oscillator of frequencyv0 surrounded
by a generic environment. We express the total Hamilton
Ĥ as follows:

Ĥ5Ĥ01ĤE1aX̂Ê, ~14!

whereĤ05 1
2 ( P̂21X̂2), ĤE andaX̂Ê are the system, envi

ronment and interaction Hamiltonians, respectively, anda is
the coupling constant. The interaction Hamiltonian here c
sidered has a simple bilinear form withX̂ as the position
operator of the system andÊ as the generic environmenta
operator.

For the sake of simplicity, we have written the previo
expressions in terms of adimensional position and mom

tum operators. Let us denote withr̂̃[r̃ the density-matrix
operator for the oscillator-environment system.

Let us now assume the following.

~1! At t50 system and environment are uncorrelated, t
is, r̃(0)5 r̂(0)^ r̂E(0), with r̂ and r̂E density matrices of
the system and the environment, respectively.

~2! @ĤE ,r̂E(0)#50 ~stationarity of the environment!.
~3! trE$Êr̂E(0)%50 ~as, for example, in the case of

thermal reservoir!.
~4! A second-order perturbative approach in the coupl

constant is possible.

Under these conditions one can show@9,21# that the non-
Markovian generalized master equation describing
harmonic-oscillator dynamics, in the Schro¨dinger picture, is
the following:

dr̂~ t !

dt
5F 1

i\
H0

S2DS~ t !1ıGS~ t !G r̂~ t !, ~15!

where the superoperatorDS(t) ~not Sor S type! is defined as
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DS~ t !5E
0

t

k~t!XS@cos~v0t!XS2sin~v0t!PS#dt.

~16!

Also GS(t) is neither anS-type nor aS-type superoperato
being defined as follows:

GS~ t !5E
0

t

m~t!XS@cos~v0t!XS2sin~v0t!PS#dt.

~17!

With reference to the assumption~1!, we observe that the
time-convolutionless master equation for quantum Brown
motion can be derived also for the more general even
correlated initial states of the total system. In such a case
generalized master equation for the system contains an i
mogeneity termI (t) @14#. We have verified that a general
zation of the solving procedure to be presented in the follo
ing section to the case of nonfactorizing initial conditions
possible provided that the quantum characteristic funct
associated toI (t) is known.

In Eqs.~16! and ~17! we have introduced the correlatio
k(t) and the susceptibilitym(t) functions@24#. Such quan-
tities, characterizing the environmental temporal behav
are defined as follows:

k~t!5
a2

2\2
^$Ê~t!,Ê~0!%&, ~18!

m~t!5
ıa2

2\2
^@Ê~t!,Ê~0!#&, ~19!

with ^•••&5trE$••• r̂E(0)%.
The form of Eq.~15! has a clear physical meaning. Th

superoperatorDS(t), indeed, is strictly related to diffusion
~decoherence! processes only@9#. The superoperatorGS(t),
on the other hand, describes dissipation and frequency re
malization processes@9#. Such a superoperator arises from
quantum-mechanical treatment of the environment and,
deed, vanishes when the environment is treated as a clas
quantity @see also Eq.~19!#.

By using the properties of the superoperators introdu
in the preceding section, one can show thatGS(t) can be
recast in the following form:

GS~ t !5
1

2
@r ~ t !X̂22g~ t !~X̂P̂1 P̂X̂!#S2ıg~ t !~N12!,

~20!

where the superoperatorN is defined by Eq.~9! and

r ~ t !52E
0

t

m~t!cos~v0t!dt, g~ t !5E
0

t

m~t!sin~v0t!dt.

~21!

As for DS(t), it is straightforward to see from Eq.~16! that it
can be recast in the form

DS~ t !5D̄~ t !~XS!22P~ t !XSPS, ~22!
8-3
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where

D̄~ t !5E
0

t

k~t!cos~v0t!dt, P~ t !5E
0

t

k~t!sin~v0t!dt.

~23!

In view of Eq. ~4!, DS(t) can be regarded as a quadra
form in the commutative operator variablesXS andPS:

DS~ t !5~Z¢ S! tM~ t !Z¢ S with M~ t !5S D̄~ t ! 2
P~ t !

2

2
P~ t !

2
0

D .

~24!

It is not difficult to check that@DS(t),DS(t1)#50, what-
ever t and t1 are. Inserting Eq.~20! into Eq. ~15! one can
write the generalized non-Markovian master equation
scribing the dissipative dynamics of our system in the f
lowing final form @9,21#:

dr̂~ t !

dt
5F 1

i\
H̄0

S~ t !2DS~ t !1g~ t !~N12!G r̂~ t !, ~25!

with

Ĥ̄0~ t !5
\v0

2 F P̂21X̂22
r ~ t !

v0
X̂21

g~ t !

v0
~X̂P̂1 P̂X̂!G .

~26!

Let us note, first of all, that such a master equation is loca
time, even if non-Markovian. This feature is typical of all th
generalized master equations derived by using the ti
convolutionless projection operator technique@13,14# or
equivalent approaches such as the superoperatorial
sketched in this section.

Let us have a closer look at the form of our master eq
tion. Equation~26! shows the appearance of two terms, p
duced by the interaction with the environment, modifying t
free Hamiltonian of the system. The first one, proportiona
r (t), is a time-dependent renormalization of the frequency
the oscillator while the second one, proportional tog(t),
describes a coupling between the theX̂ andP̂ operators. The
perturbation of the free dynamics due to these terms ca
easily visualized in phase space, as shown in Fig. 1. Ind
the effect of the terms proportional tor (t) and g(t) is
equivalent to a compression and rotation in phase spac
the circle describing the free oscillator dynamics. From
dynamical point of view one can show that the term prop
tional to g(t) gives rise to both a further frequency reno
malization and a dynamical dephasing between position
momentum of the oscillator~see Fig. 1!. Note that these
features are analogous to the ones present in the dynami
a classical dissipative oscillator@9#.

IV. OPERATORIAL SOLUTION

In quantum mechanics there exists a well established
cedure to determine the dynamical evolution of a giv
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closed physical system. It prescribes to write down
Schrödinger equation and calculate eigenstates and eigen
ues of the Hamiltonian of the system. Once we have de
mined these quantities, it is possible to describe the dyn
ics evaluating the action of the corresponding tempo
evolution operator on the initial state. The dynamics of op
systems, however, is much more complicated since the
scription of the state of the system in terms of a state ve
is not sufficient anymore. In order to describe completely
physical system, one needs indeed to introduce the den
matrix operator whose time evolution is governed by a m
ter equation definitely more difficult to handle than th
Schrödinger equation.

In this section we present a method to solve the gene
ized master equation, given by Eq.~25!, for the system of
interest in the paper. In some sense, the method we des
can be seen as a generalization to open systems of the
cedure for solving the Schro¨dinger equation of a closed sys
tem, since it is based on the solution of an appropriate eig
value equation. Indeed we will deal, in the formalism
superoperator, with generalized eigenvalue equations inv
ing superoperators and operators, instead of operators
vectors, respectively. As we will see in this section, the e
istence of some useful algebraic properties of the supe
erators will help us in treating the problem of the open s
tem dynamics allowing, in particular, to find the operator
solution for the density matrix of the system.

A remarkable virtue of the procedure we are going
describe is its independence on the expression of the ti
dependent coefficients appearing in the master equation~25!.
This implies that it is applicable to all the master equatio
presenting the same structure.

Our method for solving the master equation~25! consists
of two steps which can be summarized as follows:~1! sin-
gling out the temporal evolution superoperator correspo
ing to Eq.~25! and~2! understanding how this temporal evo
lution superoperator acts onr̂(0).

FIG. 1. The plain line represents the unperturbed oscillator. T
dashed line represents, instead, an oscillator with a Hamiltonia
the form given in Eq.~26! @we have choseng(t)/v05r (t)/v0

50.1].
8-4
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A. Temporal evolution superoperator

In the preceding section we have introduced the ma
equation related to the dissipative non-Markovian dynam
of our system:

dr̂~ t !

dt
5F 1

i\
H̄0

S~ t !2DS~ t !1g~ t !~N12!G r̂~ t !. ~27!

A formal solution of Eq.~27! can be written as

r̂~ t !5T~ t !r̂~0!, ~28!

where the temporal evolution superoperatorT(t) is given by

T~ t !5expcS E
0

tF 1

i\
H̄0

S~ t1!2DS~ t1!1g~ t1!~N12!Gdt1D .

~29!

In Eq. ~29! the subscript ‘‘c’’ stands for the Dyson chrono
logical order. In the following, we shall prove thatT(t) can
be factorized as follows:

T~ t !5TOs~ t !TG~ t !TD~ t !, ~30!

where

TOs~ t !5expcF 1

i\E0

t

H̄0
S~ t1!dt1G , ~31a!

TG~ t !5expFG~ t !

2
~N12!G , ~31b!

TD~ t !5expF2E
0

t

eG(t1)D̄~ t1!dt1G , ~31c!

with

G~ t !52E
0

t

g~ t1!dt1 , ~32!

D̄~ t !5TOs
21~ t !DS~ t !TOs~ t !. ~33!

To this aim we exploit the Feynman’s rule@25# stating that,
whatever the operators or superoperatorsA(t) andB(t) are,

expcF E @A~ t !1B~ t !#dtG
5expcF E A~ t !dtGexpcF E B̄~ t !dtG , ~34!

with

B̄~ t !5S expcF E A~ t !dtG D 21

B~ t !S expcF E A~ t !dtG D .

~35!

Applying the Feynman’s rule to the time-evolution supero
erator defined in Eq.~29! and taking in consideration that, a
shown in Appendix A,@N,H̄0

S(t)#50, one gets
04210
er
s
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T~ t !5TOs~ t !T8~ t !, ~36!

where

T8~ t !5expcF E
0

t

@g~ t1!~N12!2D̄~ t1!#dt1G . ~37!

Applying again Feynman’s rule in Eq.~37! and using the
property~see Appendix A! @N,D̄(t)#522D̄(t), leading to

TG
21~ t !D̄~ t !TG~ t !5eG(t)D̄~ t !, ~38!

we have

T8~ t !5TG~ t !TD~ t !. ~39!

Finally, inserting Eq.~39! into Eq. ~36! one obtains the fina
factorized form of the time-evolution superoperator given
Eq. ~30!.

The key advantage of such a factorized form is tha
makes easier estimating the action of the time-evolution
peroperator on the initial density matrix of the system. As
shall see in the following, this allows not only to solve th
master equation~25!, but also to clarify the physical origin o
each of its terms.

It is worth noting that the Dyson chronological order
present in only one of the three superoperators defined
Eqs. ~30! and ~31!. Of course, this circumstance leads to
further simplification of the calculations. In fact, while fo
TG(t) the reason why one can drop the subscriptc is already
clear from Eq.~31!, in the case ofTD(t) some more com-
ment is needed. As we will demonstrate in the following, t
Dyson chronological order is not necessary in the expres
of TD(t)5exp@2*0

t eG(t1)D̄(t1)dt1# because the superoperat

D̄(t), defined in Eq.~33!, is a quadratic form inZ¢ S, that is,

D̄~ t !5~Z¢ S! tA~ t !Z¢ S, ~40!

with A(t) being the 232 matrix of time-dependent scala
quantities. Indeed it is straightforward to prove that, wh
Eq. ~40! holds,@D̄(t),D̄(t1)#50 for all t,t1.

In order to prove Eq.~40!, let us note that, as demon
strated in Appendix B, the following chain of equalitie
holds:

TOs
21~ t !Z¢ STOs~ t !5„T̂Os

21~ t !ZŴ T̂Os~ t !…S5„TOs
21~ t !ZŴ …S.

~41!

According to these equations, the transformation operated
TOs(t) on Z¢ S is a linear transformation corresponding to t

one operated byT̂Os(t) on ZŴ . One can show~see Appendix
B! that

T̂Os
21~ t !ZŴ T̂Os~ t !5R~ t !ZŴ , whereR~ t !5S c~ t ! s~ t !

2sr~ t ! cr~ t !
D .

~42!

The functionsc(t)and s(t) are the solutions of the Cauch
problems
8-5
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ÿ1v0
2F12

r ~ t !

v0
2

g2~ t !

v0
2

2
ġ~ t !

v0
2 Gy50,

with initial conditions H c~0!51, ċ~0!50,

s~0!50, ṡ~0!5v0 .
~43!

The functionsṡr(t)and ċr(t) are defined as

cr~ t !5
ṡ~ t !

v0
2

g~ t !

v0
s~ t !, 2sr~ t !5

ċ~ t !

v0
2

g~ t !

v0
c~ t !.

~44!

Inserting Eq.~24! into Eq. ~33! and using Eqs.~41! one gets

D̄~ t !5~Z¢ S! tM̄~ t !Z¢ S,

where we have put M̄~ t !5Rt~ t !M~ t !R~ t !. ~45!

These considerations allow us to recastTD(t) in the form

TD~ t !5exp@2~Z¢ S! tW~ t !Z¢ S#, ~46!

where

W~ t !5E
0

t

eG(t1)M̄~ t1!dt1 . ~47!

Summarizing, in this section we have manipulated the
pression of the time evolution superoperator in order to pu
in a form more convenient for the calculations. In fact w
have proved that such a superoperator can be factorize
the form given by Eq.~30!. Moreover we have shown tha
two of the superoperators appearing in Eq.~30! do not need
the Dyson chronological order. As we will see in the follow
ing section, this circumstance allows us to find an analy
expression for the density-matrix solution.

B. Evolution of the density matrix

In this section, we calculate the action of the factoriz
superoperator given in Eq.~30! on the initial density matrix.

To this end we express the density matrix in the followi
form @16–19#:

r̂5
1

2pE x~zW !e2ızW tJZŴ d2zW, ~48!

where the scalar functionx(zW)[x(x,p)5tr$eı(pX̂2xP̂)r̂%,
known in the literature asquantum characteristic function
~QCF! @17–20#, satisfies the following properties:

x~0,0!51, x~x,p!5x* ~2x,2p!,

ux~x,p!u<M ~MPR!. ~49!

Having in mind Eqs.~28! and~30!, and writing the initial
density matrix as follows:
04210
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d

r̂~0!5
1

2pE x0~zW8!e2ızW8tJZŴ d2zW8, ~50!

with x0(zW8)5tr$eızW8tJZŴ r̂(0)%, we have

r~ t !5
1

2pE TOs
~ t !TG~ t !TD~ t !x0~zW8!e2ızW8tJZŴ d2zW8.

~51!

Let us first introduce two superoperator eigenvalue equat
we will use in the following. Indicating withF(A) a generic
superoperatorial well defined function of the superopera
A, from Eqs.~4!, ~8!, and~9!, we obtain

F~Z¢ S!e2ızW tJZŴ 5F~2zW !e2ızW tJZŴ , ~52!

F~N!~zW tJZŴ !n5F~n!~zW tJZŴ !n, ~53!

where nowF(2zW) andF(n) are simple scalar functions.
We begin noting that, using Eqs.~46! and ~52!, one can

write the termTD(t)e2ızW8tJZŴ appearing in Eq.~51! as follows:

TD~ t !e2ızW8tJZŴ 5e2(zW8) tW(t)zW8e2ızW8tJZŴ . ~54!

Moreover, using Eq.~53! it is not difficult to prove that

TG~ t !e2ızW tJZŴ 5eG(t)(
n

@eG(t)/2~2ızW tJZŴ !#n

n!

5eG(t)exp@eG(t)/2~2ızW tJZŴ !#. ~55!

Finally, remembering Eqs.~41! and ~42! we get

TOs~ t !e2ızW tJZŴ 5e2ızW tJTOs(t)Z
Ŵ
5e2ızW tJR21(t)ZŴ

5e2ı[R(t)zW] tJZŴ 5e2ızW(t) tJZŴ . ~56!

Inserting Eqs.~54!–~56! into Eq. ~51!, we can express the
density-matrix solution as follows:

r̂~ t !5
1

2pE e2(zW8) tW(t)zW8x0~zW8!eG(t)

3exp@eG(t)/2
„2ızW8~ t ! tJZŴ …#d2zW8. ~57!

After some algebraic manipulation, reported in Append
C, the previous expression can be recast in the follow
final form:

r̂~ t !5
1

2pE e2(zW) tW̄(t)zWx0@e2G(t)/2R21~ t !zW#e2ızW tJZŴ d2zW

5
1

2pE x t~zW !e2ızW tJZŴ d2zW, ~58!

where

W̄~ t !5e2G(t)@R21~ t !# tW~ t !R21~ t !. ~59!

Equation ~58! constitutes the main result of the paper.
gives the operatorial density-matrix solution of the proble
of the dissipative dynamics of a harmonic oscillator intera
8-6
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ing with a generic environment satisfying properties~2! and
~3! of Sec. II, as for example, a thermal reservoir at tempe
tureT. Our approach to the dynamics of the system relies
the weak-coupling limit but does not invoke the Bor
Markov and rotating wave approximations. In more det
we have solved a non-Markovian generalized master eq
tion for the harmonic oscillator coincident with that dedu
ible using either the time-convolutionless projection opera
technique@13# or the superoperatorial approach of Ref.@21#.

The exact dissipative dynamics of the reduced den
matrix for the damped harmonic oscillator can also be
rived in terms of the Wigner function@29# and by means of
the path-integral technique@22,23#. Our procedure, however
allows us to obtain an operatorial solution for the dens
matrix of the system whereas the influence functio
method leads to an expression of the density matrix in
coordinate representation. Moreover, as we will see in
following section, once the analytic expression for the Q
is obtained, one can very easily calculate the time evolu
of the mean value of a huge class of observables.

In the following section we derive some approximat
forms of the solution given by Eq.~58! and we show its
usefulness in calculating the analytic expression of many
servables of interest and thus in gaining an important ins
into the dynamics of one of the most extensively stud
physical systems.

V. APPROXIMATED FORMS OF THE SOLUTION AND
APPLICATIONS

In this section we derive an approximated form of t
operatorial density-matrix solution, given by Eq.~58!, valid
when

Ĥ̄0~ t !'Ĥ0 , ~60!

with Ĥ0 given by Eq.~26!. Looking at this equation one see
immediately that Eq.~60! amounts to neglecting the time
dependent frequency renormalization and dephasing term

r ~ t !

v0
,

g2~ t !

v0
2

. ~61!

It is worth noting that such an approximation is always ju
tified in the weak-coupling regimea!1, provided that the
reservoir frequency cutoff remains finite, as one can app
ciate with the help of Eqs.~19!, ~21!, and~26!. For the same
reason it turns out thatġ(t)/v0!1. From Eq.~43!, it is not
difficult to prove that this last inequality allows us to wri
the matrixR(t), defined in Eq.~42!, as follows:

R~ t !'S cosv0t sinv0t

2sinv0t cosv0t D . ~62!

Inserting this expression in the definition ofW̄(t), given by
Eq. ~59!, and exploiting Eqs.~47!, ~45!, and~24! we get
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W̄~ t !'e2G(t)E
0

t

eG(t1)F D̄~ t1!

2
1

D̄~ t1!

2
C2~ t2t1!

2
P~ t1!

2
S2~ t2t1!Gdt1 , ~63!

with

C2~ t !5S cos 2v0t 2sin 2v0t

2sin 2v0t 2cos 2v0t D ,

~64!

S2~ t !5S sin 2v0t cos 2v0t

cos 2v0t 2sin 2v0t D .

The form of the matrices defined in the previous equ
tions suggests a further approximation very common
quantum optics: the rotating wave approximation~RWA!. It
basically consists in neglecting rapidly oscillating terms
in our case, those oscillating to frequency 2v0. This amounts
to averaging to zero all the elements of the matricesC2(t)
andS2(t) so that Eq.~63! reduces to

W̄~ t !'e2G(t)E
0

t

eG(t1)
D̄~ t1!

2
dt15

DG~ t !

2
. ~65!

Substituting Eq.~65! into Eq. ~58! we obtain the following
expression for the density-matrix solution in the RWA:

r̂~ t !'r̂RWA~ t !

5
1

2pE e2[DG(t)/2]uzWu2x0@e2G(t)/2R21~ t !zW#e2ızW tJZŴ d2zW.

~66!

It is possible to demonstrate thatr̂RWA(t), as given by Eq.
~66!, satisfies the following master equation:

d

dt
r̂RWA~ t !5F 1

i\
H0

S2
D̄~ t !

2
uZ¢ Su21g~ t !~N12!G r̂RWA~ t !,

~67!

which in turn has been derived in Ref.@21#.
Once obtained the density matrix we are able, at leas

principle, to evaluate the mean value^A& of each and every
operatorA of interest for the system. One of the advantag
of having a solution of the density matrix in terms of th
characteristic function is the possibility of exploiting the fo
lowing relations@20#:

^X̂n&5~2ı !nS ]n

]pn
x~x,p!D

x,p50

,

~68!

^P̂n&5~ ı !nS ]n

]xn
x~x,p!D

x,p50

.

By using these relations it is not difficult to calculate the tim
evolution of the mean energy of the oscillatory system:
8-7
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^Ĥ0& t5e2G(t)^Ĥ0& t501\v0

35
DG~ t ! with the RWA

tr$W̄~ t !% without the RWA but neglecting

renormalization and dephasing

terms.

~69!

We emphasize that these solutions depend on the initial s
of the oscillator only through the term̂Ĥ0& t50, the second
term of the sum being independent of the initial state. Mo
over, looking at Eq.~69! one sees that the exponential fact
accounting for energy dissipation does not depend on
initial state of the system but only on the characteristic
rameters of the reservoir.

These features, characterizing Eq.~69!, are directly re-
lated to the factorized form of the the QCFx t(zW). In fact,
from both Eqs.~58! and ~66! it appears evident that such
function is the product of a Gaussian factor and the funct
x0@e2G(t)/2R21(t)zW#. All the information on the initial state
of the system is incorporated in this last function from whi
the first term into the right-hand side of Eq.~69! comes from.
On the contrary, the second term derives exclusively fr
the Gaussian factor of the QCF, which depends only on
environment functions and not on the initial state of the s
tem.

Note from Eqs.~58! and ~66! that, whatever the initial
state of the system is,

x t~zW ! →
t→`

e2(zW) tW̄(t)zW.~ in the RWA!e2[DG(t)/2]uzWu2. ~70!

This behavior is easily understandable, when the envir
ment is a thermal reservoir, in the light of the thermalizati
process@26#.

Let us now have a closer look at Eq.~69!. If we evaluate
tr$W̄(t)% with the help of Eq.~63!, we find that

tr$W̄~ t !%5DG~ t !. ~71!

This means that the time evolution of the oscillator energ
not affected by the contribution of the rapidly oscillatin
terms neglected in the RWA. This feature comes direc
from the particular structure of the free Hamiltonian ope
tor.

To better understand this point we consider the Gaus
factor appearing in the QCF. The superoperator correspo
ing to such a factor has the form

TG~ t !5exp@2~Z¢ S! tW̄~ t !Z¢ S#. ~72!

With some algebraic manipulation one can recast the su
operator appearing in the exponent as follows:
04210
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~Z¢ S! tW̄~ t !Z¢ S5
DG~ t !

2
@~XS!21~PS!2#

1
L~ t !

2
@~XS!22~PS!2#1Q~ t !XSPS, ~73!

where the time-dependent coefficients appearing in the
vious equation are

DG~ t !5tr$W̄~ t !%, L~ t !5tr$ŝzW̄~ t !%,
~74!

Q~ t !5tr$ŝxW̄~ t !%,

with ŝz and ŝx being Pauli spin matrices.
Exploiting the properties of the trace and puttingr̂8(t)

5TG(t)21r̂(t), one can easily show that the following cha
of equalities holds:

^Â& t5tr$r̂~ t !Â%5tr$TG~ t !r̂8~ t !Â%5tr$r̂8~ t !TG~ t !Â%

5tr$r̂8~ t !ÂG~ t !%, ~75!

where we have defined

ÂG~ t ![TG~ t !Â. ~76!

Having these equations in mind it is not difficult to convin
oneself that calculatinĝÂ& t using x t(x,p) is equivalent to
calculating^ÂG& t using x0@e2G(t)/2R21(t)zW#. In the caseÂ
5Ĥ05 1

2 ( P̂21X̂2) we have that

@~XS!21~PS!2#Ĥ0522\v0 ,
~77!

@~XS!22~PS!2#Ĥ050, XSPSĤ050,

and thus

Ĥ0
G~ t !5Ĥ01\v0DG~ t !. ~78!

Note that this equation is not affected by the RWA as well
x0@e2G(t)/2R21(t)zW#. This explains why we obtain for the
mean value of the oscillator energy the same result with
without the RWA.

The previous procedure suggests a sufficient condition
single out operators which ‘‘do not suffer the RWA approx
mation,’’ indeed we have that

@~XS!22~PS!2#Â50, XSPSÂ50⇒^Â& t5^Â& t
RWA .

~79!

With the expression operators which do not suffer the RW
approximation we indicate operators having the property t
the time evolution of their mean value is not influenced
the RWA. In other words, the counter-rotating terms do n
contribute to the dynamics of this class of observables.
amples of operators belonging to such a class areX̂, P̂, X̂2

1 P̂2 and all linear combinations of such operators, as o
8-8
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can easily verify. On the contraryX̂2 and P̂2 do not satisfy
condition ~79!. For such operators, indeed, exploiting E
~75!, one gets

^X̂2& t2^X̂2& t
RWA52L~ t !, ^P̂2& t2^P̂2& t

RWA5L~ t !.
~80a!

Similarly, for the mean value of the ‘‘correlation’’ operato
(X̂P̂1 P̂X̂) one has

^X̂P̂1 P̂X̂& t2^X̂P̂1 P̂X̂& t
RWA52Q~ t !. ~80b!

VI. CONCLUSIONS

In this paper, we have developed a method to solve
weak-coupling generalized master equation for the QBM
particular, we have considered the case in which the sys
interacting with the environment is a quantum harmonic
cillator. The master equation we have solved, given by
~25!, although non-Markovian is local in time. Such a mas
equation has been derived in Ref.@21# by using a superop
eratorial technique and in Refs.@9,14# by means of the time-
convolutionless method and is the weak-coupling appro
mated form of the exact master equation for the QB
derived by Paz and Zhang in Ref.@27#. The main result of
the paper is the derivation of the analytic solution of Eq.~25!
for the density matrix of the reduced system. To this aim,
have used an approach based on the algebra of supero
tors. Our method is independent of the specific form of
environment and does not rely on any approximation ap
from the weak-coupling one. We have also studied simp
forms of the density-matrix solution obtained by neglecti
frequency renormalization terms and/or performing
RWA. We have demonstrated the existence of a class of
peroperators whose mean value is not affected by the p
ence of the counter-rotating terms at any timet and we have
given a sufficient condition to verify if a given operator b
longs to such a class. This circumstance simplifies subs
tially the calculations, since, for operators belonging to su
a class, one can use the approximated density-matrix s
tion, given by Eq.~66!, in order to calculate their mea
value. The analytic solution we derive and discuss in
paper is given in terms of the QCF@see Eqs.~58!# by means
of which one can calculate the expectation value of ma
observables of physical interest in a very direct way, as s
gested by Eqs.~68!. For example, thanks to the simplicity o
the analytic solution we have derived, we succeed in ca
lating the dissipative time evolution of the mean energy
the system. Finally, it is worth noting that from the QCF it
easy to derive the Wigner function characterizing the stat
the dissipative system.

Concluding, we believe that the non-Markovian analy
approach we have derived in this paper for the QBM can
generalized to other fundamental dissipative systems, s
as, for example, the Jaynes-Cummings model with losses
for the QBM, we think that the analytic solution of the de
sity matrix may be used for studying important aspects
such a basic model, both for fundamental and for applica
04210
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research, under conditions in which, up to now, only nume
cal approaches were possible.
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APPENDIX A: PROPERTIES OF THE DISSIPATION
SUPEROPERATOR

In this appendix, we demonstrate some useful proper
of the superoperatorN. Such properties, allowing us to fac
torize the time-evolution superoperator given in Eq.~29!, are
the following:

@N,H̄0
S~ t !#50, @N,D̄~ t !#522D̄~ t !. ~A1!

The first one is the most surprising one: it can be cons
ered as a ‘‘dynamical invariance’’ of the dissipation proce
As we shall see in the following, the dynamical invarian
originates from the particular structure of the Hamiltoni

term Ĥ̄0(t), defined by Eq.~26!.
Independently on the form of the time-dependent fun

tions present in such a term, it can be written, in general

Ĥ̄0~ t !5ZŴ tS~ t !ZŴ with St~ t !5S~ t !, ~A2!

whereS(t) is a 232 real symmetric matrix. Rememberin
that

N52
1

2
ı~Z¢ S! tJX¢ S, ~A3!

one gets

@N,H̄0
S~ t !#52

1

2
ı@~Z¢ S! tJZ¢ S,„ZŴ tS~ t !ZŴ …S#

5
1

2
ı$~Z¢ S! tJ@ZŴ tS~ t !ZŴ ,ZŴ #S

1„@ZŴ tS~ t !ZŴ ,ZŴ #S
…

tJZ¢ S%. ~A4a!

It is possible to show that@28#

@ZŴ tS~ t !ZŴ ,ZŴ #5ıJS~ t !ZŴ . ~A4b!

Substituting this equation into Eq.~A4a! and using the prop-
erties of the matricesS(t) andJ @cf. Eq. ~13!# one obtains

@N,H̄0
S~ t !#52

1

2
@~Z¢ S! tJJS~ t !Z¢ S1~Z¢ S! tSt~ t !JtJZ¢ S#

52
1

2
@2~Z¢ S! tS~ t !Z¢ S1~Z¢ S! tS~ t !Z¢ S#50.

~A4c!
8-9
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The generality of the matrixS(t) ensures the validity of
this relation for a generic quadratic Hamiltonian and thus

particular, forH̄
ˆ

0(t).
As far as the second commutation relation is concern

remembering thatD̄(t)5(Z¢ S) tM̄(t)Z¢ S one has

@N,D̄~ t !#5@N,~Z¢ S! tM̄~ t !Z¢ S#

5@N,Z¢ S# tM̄~ t !Z¢ S1~Z¢ S! tM̄~ t !@N,Z¢ S#.

~A5a!

Exploiting the superoperatorial commutation rules given
Eq. ~3! yields

@N,Z¢ S#52
ı

2
@~PSXS2XSPS!,Z¢ S#52Z¢ S. ~A5b!

Finally, substituting into Eq.~A5a! one gets

@N,D̄~ t !#52~Z¢ S! tM̄~ t !Z¢ S2~Z¢ S! tM̄~ t !Z¢ S522D̄~ t !.
~A5c!

APPENDIX B: TIME EVOLUTION

In this appendix, we shall demonstrate that the gen
time evolution of a ‘‘S- or ‘‘ S ’’-type superoperator is equiva
lent to the ‘‘S’’- or ‘‘ S ’’-type superoperator of the time evo
lution of the corresponding operator. In formulas th
amounts to demonstrating Eq.~41!. First of all let us define
Tc(t) as solution of the equation

d

dt
Tc~ t !5L~ t !Tc~ t !, ~B1!

where in general@L(t),L(t1)#Þ0. L(t), as well asTc(t),
can be either an operator or a superoperator.

The previous equation can be solved in an iterative w
and its solution is

Tc~ t !5 (
n50

E
0

t

•••E
0

tn21
L~ t1!•••L~ tn!dt1•••dtn

[expcF E
0

t

L~ t1!dt1G . ~B2!

It can be shown thatTc
21(t) satisfies the equation@25#

d

dt
Tc

21~ t !52Tc
21~ t !L~ t !, ~B3!

which can be again solved in an iterative way giving t
following form of the solution:

Tc
21~ t !5 (

n50
~21!nE

0

t

•••E
0

tn21
L~ tn!•••L~ t1!dt1•••dtn

[expaF2E
0

t

L~ t1!dt1G . ~B4!
04210
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Let us define

Ac~ t !5Tc~ t !ATc
21~ t ![Tc~ t !A. ~B5!

From the previous equation we have

d

dt
Tc~ t !A5@L~ t !,Ac~ t !#5LS~ t !Ac~ t !5LS~ t !Tc~ t !A

⇒ d

dt
Tc~ t !5LS~ t !Tc~ t !. ~B6!

This means thatTc(t) satisfies an equation similar to the on
given by Eq.~B1!. The form ofTc(t) can be obtained from
Eq. ~B2! by replacingTc(t)→Tc(t) andL(t)→LS(t).

Now, let us suppose thatA is S- or S-type superoperato
andL is anS-type superoperator. From the properties giv
in Eq. ~3! we have that

Ac
S(S)~ t !5Tc~ t !AS(S)Tc

21~ t !5Tc~ t !AS(S)

5 (
n50

E
0

t

•••E
0

tn21
†LS~ t1!•••@LS~ tn!,AS(S)#•••‡

3dt1•••dtn

5 (
n50

E
0

t

•••E
0

tn21
†L̂~ t1!•••@ L̂~ tn!,Â#•••‡S(S)

3dt1•••dtn

5S (
n50

E
0

t

•••E
0

tn21
LS~ t1!•••LS~ tn!

3Âdt1•••dtnD S(S)

5S expcF E
0

t

LS~ t1!dt1G ÂD S(S)

5„Tc~ t !Â…S(S)

5„T̂c~ t !ÂT̂c
21~ t !…S(S)5„Âc~ t !…S(S), ~B7!

where we have putT̂c(t)[expc@*0
t L̂S(t1)dt1#.

Now, let us consider

Aa
S(S)~ t !5Tc

21~ t !AS(S)Tc~ t ![T c
21~ t !AS(S). ~B8!

The last definition comes directly from the definition ofTc(t)
and can be verified applyingTc(t) on Aa

S(t) and, vice versa,
applying the previous definition ofT c

21(t) on Ac
S(t).

Exploiting Eq. ~B4! and following the same lines of th
derivation of Eq.~B7!, one can show that

Aa
S(S)~ t !5„T̂c

21~ t !ÂT̂c~ t !…S(S)5„Âa~ t !…S(S). ~B9!

Let us now derive Eqs.~42!. Using Eq.~A4b!, ~B1!, ~B3!

and remembering the definition ofZŴ (t),
8-10
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ZŴ ~ t !5T̂Os
21~ t !ZŴ T̂Os~ t !, ~B10!

one has

d

dt
ZŴ ~ t !52

1

ı\
T̂Os

21~ t !@ Ĥ̄0~ t !,ZŴ #T̂Os~ t !52JS̃~ t !ZŴ ~ t !,

S̃~ t !5
1

\
S~ t !. ~B11!

Deriving the previous equation once more we get

d2

dt2
ZŴ ~ t !5$2JṠ̃~ t !1@JS̃~ t !#2%ZŴ ~ t !

5$2JṠ̃~ t !2det@S̃~ t !#%ZŴ ~ t !. ~B12!

In our case

S̃~ t !5
1

2 S v02r ~ t ! g~ t !

g~ t ! v0
D , ~B13!

so that the differential equation for the operatorX̂(t) has the
following form:

d2

dt2
X̂~ t !52v0

2S 12
r ~ t !

v0
2

g2~ t !

v0
2

2
ġ~ t !

v0
2 D X̂~ t !.

~B14!
va
y
n

04210
A solution of the previous equation can be written as

X̂~ t !5X̂c~ t !1 P̂s~ t !, ~B15!

with c(t) ands(t) solutions of Eq.~43! with the same initial
conditions. Note that, from Eq.~B11!, it follows that

d

dt
X̂~ t !5v0P̂~ t !1g~ t !X̂~ t !. ~B16!

With the help of Eq.~B15! we have forP̂(t),

P̂~ t !5
1

v0
S d

dt
X̂~ t !2g~ t !X̂~ t ! D

5 P̂
ṡ~ t !2g~ t !s~ t !

v0
1X̂

ċ~ t !2g~ t !s~ t !

v0

5 P̂cr~ t !2X̂sr~ t !, ~B17!

where we have defined, as in Eq.~44!,

cr~ t !5
ċ~ t !2g~ t !s~ t !

v0
, 2sr~ t !5

ċ~ t !2g~ t !s~ t !

v0
.

~B18!

Grouping Eqs.~B15! and ~B17! and using the matrix repre
sentation, we obtain
X̂~ t !5X̂c~ t !1 P̂s~ t !
⇒ZŴ ~ t !5R~ t !, R~ t !5S c~ t ! s~ t !

2sr~ t ! cr~ t !
D .

P̂~ t !52X̂sr~ t !1 P̂cr~ t ! ~B19!
APPENDIX C: FINAL FORM OF THE DENSITY MATRIX

In this appendix, we sketch the main steps of the deri
tion of the final form of the density-matrix solution, given b
Eq. ~58!, from Eq.~57!. Let us remind the generic expressio
for the density matrix in terms of the QCF@See Eq.~48!#

r̂~ t !5
1

2pE x t~zW !e2ızW tJZŴ d2zW, ~C1!

wherex t(zW)5tr$eızW tJZŴ r̂(t)%. From Eq.~57! we have

r̂~ t !5
1

2pE e2(zW8) tW(t)zW8x0~zW8!eG(t)

3exp$eG(t)/2@2ızW8~ t ! tJZŴ #%d2zW8. ~C2!

Comparing these last two equations one gets
-
x t~zW !5tr$eızW tJZŴ r̂~ t !%5

1

2pE e2(zW8) tW(t)zW8x0~zW8!eG(t)

3tr$eızW tJZŴ exp@eG(t)/2
„2ızW8~ t ! tJZŴ …#%d2zW8. ~C3!

Using some properties of thed function we obtain

1

2p
tr$eızW8tJZŴ exp@eG(t)/2

„2ızW~ t ! tJZŴ …#%

5d@zW2eG(t)/2zW8~ t !#5e2G(t)d@zW82e2G(t)/2R21~ t !zW#.

~C4!

Introducing this equation into Eq.~C3! yields

x t~zW !5E e2(zW8) tW(t)zW8x0~zW8!d@zW82e2G(t)/2R21~ t !zW#d2zW8

5exp@2e2G(t)~zW ! t
„R21~ t !…tW~ t !R21~ t !zW#

3x0@e2G(t)/2R21~ t !zW#. ~C5!
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Finally, substituting this equation into Eq.~C1! gives

r̂~ t !5
1

2pE e2(zW) tW̄(t)zWx0@e2G(t)/2R21~ t !zW#e2ızW tJZŴ d2zW,

~C6!
i,

it

. A

04210
where

W̄~ t !5e2G(t)
„R21~ t !…tW~ t !R21~ t !, ~C7!

which is the form ofr̂(t) given in Eq.~58!.
-
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