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Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance
in measurement
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The Heisenberg uncertainty principle states that the product of the noise in a position measurement and the
momentum disturbance caused by that measurement should be no less than the limit set by Planck’s constant
hl2 as demonstrated by Heisenberg’s thought experiment usjngag microscope. Here it is shown that this
common assumption is not universally true: a universally valid trade-off relation between the noise and the
disturbance has an additional correlation term, which is redundant when the intervention brought by the
measurement is independent of the measured object, but which allows the noise-disturbance product much
below Planck’s constant when the intervention is dependent. A model of measuring interaction with dependent
intervention shows that Heisenberg'’s lower bound for the noise-disturbance product is violated even by a
nearly nondisturbing precise position measurement. An experimental implementation is also proposed to real-
ize the above model in the context of optical quadrature measurement with currently available linear optical

devices.
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I. THREE FORMULATIONS OF THE UNCERTAINTY ¢ using apparatug and 7(B,,A) stands for the distur-

PRINCIPLE bance ofB in stateys caused by apparatus We refer to the

above relation as théleisenberg noise-disturbance uncer-

Thef ur:jcertamt;l/ pr_mc!plle has been known ";‘]S one ?_‘; th&ainty relation We shall investigate the validity of this rela-
most fundamental principles in quantum mechanics. Howgio, 1 golve guestions as follows. When does this relation
ever, there is still ambiguity in formulation; we have at least

. - ) . S 7 =" "hold and when does it not? What relation can be considered
three different formulations of the “uncertainty principle. : . L . .
: . a universally valid generalization of this relation? How can
The Robertson uncertainty relatiors generally formu- ) L ! :

; we experimentally observe the violation of this relation?

lated as the relation . :
Closely related to the above relation, tHeisenberg un-
[(y|[A,B]|4)] certainty relation for joint measuremenits generally formu-
o(Ao(B¢)=——F—— (1) lated as follows: For any apparatdswith two outputs for

the joint measurement & andB, the relation

for any observable4, B, and any state, where the standard

deviationa (X, ) of an observablX in statey is defined by

a(X, ) 2= (| X?| ) — (Y| X|)2. This relation was proven [(y|[A,Bl )]
mathematically from fundamental postulates of quantum me- (A y.A)e(B.yY,A)= 2 )
chanics[1,2]. Nevertheless, this relation describes the limi-

tation on preparing microscopic objects but has no direct

relevance to the limitation of accuracy of measuring device$,q|qs for any input state/, wheree(X,,A) stands for the

[3]. noise of theX measurement in staig using apparatué. for

_Itis a common ur_lderstandmg that th.e uncertainty PN — A,B. This relation was proven mathematicdl~9] un-
ciple in any formulation has a close logical relationship to

T . : i b ““der thejoint unbiasedness conditiorequiring that the(ex-
the limitation on measuring a system without disturbing it as erimental mean values of the outcorseof the A measure-
a position measurement typically disturbs the momentum’ t and th i f the B XS0 ¢ should
However, the limitation has eluded a correct quantitative exinent an € outcomg of the b measurement snou

pression. By they-ray thought experiment, Heisenbde5] coincide with the(theoretlca) mean values of observablés
argued that the product of the noise in a position measuré2d B, respectively, on any input stage. It is a common
ment and the momentum disturbance caused by that me&Pinion that currently available measuring devices satisfy

surement should be no less thia®. This relation is gener- this relation[10-12.

ally formulated as follows: For any apparatdsto measure ~_ 1here is a logical relationship between the noise-
an observablé\, the relation disturbance relatiori2) and the joint measurement relation
(3). Assume that thé& measurement using the apparafus
[(y|[A,B]¥)] followed immediately by a measurement of the observable
(A A) (B, ¥ A)= 2 2 using a noiseless measuring appard@usThen, combining

the two apparatus, we have a new appard&uto jointly
holds for any input statey and any observabl®, where measureA andB on the input state of apparatéds SinceB
e(A,,A) stands for the noise of th® measurement in state carries out a noiseless measurement on its own input state,
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the noise 0B measurement in the outcome of appardius  observableM at timet+ At, the probability distribution of
equal to theB disturbance caused by apparafusThus, we the output variable is given by
have the relations
Probixe Al=(EM*"(A)), (6)
e(Ah,A)=€(A,,C), (4a)
where(- - -) stands fof ¢y ® &|- - - |® £) throughout this pa-
7n(B,y,A)=€(B,#,C). (4b) per.
Thenoisee(A, ,A), or e(A) for short, of theA measure-
By applying the uncertainty relation for joint measurementsment on input statey using apparatu#\ is defined as the
to the apparatusC, we can conclude that the noise- root-mean-square deviation of the experimental variable
disturbance relatior(2) holds if apparatusC satisfies the M©°U! from the theoretical variabld™", i.e.,
joint unbiasedness condition for observabdeandB. How-
ever, there are two deficiencies of the above approégh: e(A, g, A)=((MOUI— AIM)2) 172 (7
Even for noiseless measuring apparaiuto measuré, one
cannot ensure that the combined appar&usatisfies the Then, we can prove tha(A) =0 on any input statey if and
joint unbiasedness conditiofii) The above argument does only if apparatusA measures observable A preciselhis
not give a universally valid trade-off relation between noiseensures that “precise apparatus” and “numerically noiseless
and disturbance. Thus, we can conclude that the validity oépparatus” are equivalent.
the noise-disturbance relatig®) cannot be reduced to the Let B be an observable &. Thedisturbancezn(B, ¢,A),
current formulation of the Heisenberg uncertainty relationor 7(B) for short, of observablB on input state/ caused by
for joint measurement3). apparatud\ is defined as the root-mean-square of the change
in the observabl® during the measuring interaction, i.e.,
Il. MEASUREMENT NOISE AND DISTURBANCE )
n(B,gb,A):((Bout— Bm)2>1/2' (8)
Now, let us analyze noise and disturbance in the most
general description of measuremgh8—15 in detail. LetA  Then, we can prove thaj(B) =0 on any input statey if and
be a measuring apparatus withacroscopioutput variable  only if apparatusA does not change the probability distribu-
X to measure an observableof a quantum syster8. Then,  ion of the observable ’B.e',<EB'”(A)>:<EB°“'(A)> for ev-
apparatusA measures observabke precisely if and only if ery interval A on any input statey. Thus, apparatus not
the (experimental probability distribution ofx coincides  gisiurbing the observablB and apparatus with zero distur-
with the (theoreti(_:{:l] probability distribution ofA; or rigor- bance[ 7(B)=0] are equivalent notions. It should be also
ously the probability of the event that the outpudf appa-  poted that the above definitions of noise and disturbance are
ratusA is in an intervalA satisfies theBorn statistical for-  consistent with the standard formulation for the Heisenberg

mulafor observableA, i.e., uncertainty relation for joint measurements, E), with Eq.
A (4). Thus, the above definitions of noise and disturbance can
Prol{xe A}=(¢|E"(A)[4) () pe considered standard.

on every input statey, whereEA(A) stands for the spectral
projection of A corresponding to intervak. Otherwise, we

consider apparatué to measure observablé with some Under the above general definitions of noise and distur-
noise. In order to evaluate the noise, we need to describe thgance, we can rigorously investigate the validity of the
measuring process. The measuring interaction is supposed ieisenberg noise-disturbance uncertainty relation, (2j.

turn on at a time, the time of measurement, and to turn off For this purpose, we introduce theise operator NA) and
at timet+ At between the objec and a quantum subsystem the disturbance operator [B) by

P, called theprobe of the (large) apparatus\. Denote byU

IIl. UNIVERSALLY VALID UNCERTAINTY RELATIONS

the unitary operator representing the time evolution of the MU= A"+ N(A), 9
composite systens+ P for the time interval {,t+ At). We
assume that the object and any part of the apparatus do not BOU=BiIN+ D(B). (10)

interact before nor aftert + At. At the time of measurement,

the object is supposed to be in an arbitrary statand the  gsinceM andB are observables in different systems, we have
prObe is in a fixed Statf. ThUS, the composite SysteB1 [MOUt,BOUt]z(), and hence we have the fo”owing commu-

+Pis in the statey® ¢ at timet. Just after the measuring tation relation for the noise operator and the disturbance op-
interaction has turned off, the probe is subjected to a precisgrator:

local measurement of an observableof the probe, called

theprobe observableand its output is recorded by the output  [N(A),D(B)]+[N(A),B"]+[A",D(B)]=—[A",B"].
variablex. In the Heisenberg picture with the original state (11)
Y& at time t, we write A"=A®l, M"=loM, A°!

=UT(A®1)U, andM°“'=UT(I®@ M)U. Since the output of Taking the modulus of means of both sides and applying the
this measurement is obtained by the precise measurement miangular inequality, we have
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[{(IN(A),D(B)])|+|{[N(A),B"])+([A",D(B)])] The above relation holds for any apparafigspecified by
any probe state€, any unitary operatolJ, and any probe
=[(yI[A,BI ). (12 observablev), any observablea,B, and any input state,

and hence ultimately generalizes the Heisenberg noise-
Since the variance is not greater than the mean square, vedisturbance uncertainty relation, E), to arbitrary mea-

have surements.
Under the finite energy constraint, i.e:(Q), o(P)<e,
e(A,,A)=0(N(A),yR0), (13)  the above relation excludes the possibility of having both
€(Q)=0 and»(P)=0. However,e(Q)=0 is possible with
7(B,,A)=0(D(B),y® ), (14) ag(Q)n(P)=r/2; and also »(P)=0 is possible with

e(Q)o(P)=%/2. In particular, even the case whet€Q)

=0 and n(P)<e with arbitrarily small ¢ is possible for

some input state withr(Q)>%/(2¢), and also the case

where 7(P)=0 and ¢(Q)<e is possible for some input

I([N(A),D(B)])] state w_ithcr(P)>ﬁ/(28). Suph_extreme cases occur in com-
i . (15) pensation for large uncertainties in the input state, while in
2 the minimum uncertainty state witho(Q)=0o(P)

. . S =(#/12)*?, we have
Thus, we obtain theniversally valid noise-disturbance un-

certainty relationfor the pair @A,B),

and hence by the Robertson uncertainty relation,(Eqg.we
have

€(A)n(B)=

h h
e(Q)n(P)+ \@[e(QH 7(P)]= 5. (19
[{[N(A),B"])+([A",D(B)])|

e(A)n(B)+ 5 Even in this case, it is allowed to hae€¢Q) »(P)=0 with
€(Q)=0 and 7(P)=(#%/2)"? or with 7(P)=0 and &(Q)
_KyIlA.B[9)| 16 = (h12)Y2.
= 5 _

IV. VIOLATION OF THE HEISENBERG INEQUALITY

The above relation shows that the Heisenberg noise- Now let us consider the problem as to whether one can
disturbance uncertainty relation, E@), holds if the corre-  implement, under the current experimental technique, a good
lation term|{[N(A),B'"])+([A'",D(B)])| vanishes. In or- measuring apparatus with small noise-disturbance product
der to characterize a class of measurements satisfying Efgeyond the original Heisenberg lower bound. The contro-
(2), we introduce the following definition. The measuring versy[17] on the sensitivity limit of gravitational wave de-
interaction is said to be dhdependent interventiofor the  tectors suggested that the Heisenberg noise-disturbance un-
pair (A,B) if the noise and the disturbance are independentertainty relation is not universally valid. In fact, based on
of the object system; or precisely if there is observalNes the Heisenberg noise-disturbance uncertainty relation, Bra-
and D of probe P such thatN(A)=1®N and D(B)=1 ginsky and co-worker§18,19 claimed that there is a sensi-
®D. In this case, we havgN(A),B"]=[A",D(B)]=0. tivity limit, called the standard quantum limitSQL), for
Therefore, we conclude thdtthe measuring interaction U is monitoring the free-mass position that leads to a quantum-
of independent intervention for the pdiA,B), the Heisen- mechanical sensitivity limit on interferometer-type gravita-
berg noise-disturbance uncertainty relation for the pair tional wave detectors. However, Yug20] proposed the idea
(A,B), Eg.(2), holds for any object states and any probe of “contractive state measurements” to break the SQL, and
stateé. A similar assertion was previously suggested in parteventually in Ref[21] the present author found an explicit
by Braginsky and Khalil{16] without conceivable justifica- Hamiltonian realization of a contractive state measurement
tions. that breaks the SQlsee also Ref[22]). Consequently, the
The universally valid uncertainty relation shows that forabove measuring interaction violates the Heisenberg noise-
measurements of dependent intervention, the lower bound afisturbance uncertainty relation. Direct computaions on the
the noise-disturbance product depends on the premeasufgssition-measuring niose and momentum disturbance has
ment uncertaintieéstandard deviationof A andB. In order  also shown the violation of the Heisenberg noise-disturbance
to obtain the trade-off among the nois@d), the disturbance uncertainty relatiori23].
7»(B), and the premeasurement uncertaintie6A) and In what follows, modifying the above interaction in the
o(B), we apply the Robertson uncertainty relation, Eb, context of optical quadrature measurement, it will be shown
to all terms in the left-hand side of the universally valid that the small noise-disturbance product can be achieved be-
noise-disturbance uncertainty relation, E@6). Then, we Yyond Heisenberg’s lower bound by an apparatus carrying out
obtain the generalized noise-disturbance uncertainty rela-a precise and nearly nondisturbing quadrature measurement
tion, with currently available linear optical devices.

|<¢|[A B]|1ﬂ>| V. BACKACTION EVADING QUADRATURE AMPLIFIERS

(An(B)+e(A)o(B)+a(A)n(B)= 2 Consider the case where the syst8m@and the prob& are

(17 two optical modes represented by annihilation operagors
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and b, respectively. The quadrature component field opera-

tors X, Ya, Xp, Y, are self-adjoint operators satisfyirag
=X,+1Y, andb=X,+iYy, for which we have[X,,Y,]
=i/2 and[ Xy, Yp]=i/2.

A measuring interactiod on S+ P is called abackaction
evading (BAE) quadrature amplifi¢24] with gain G if we
have

XQUt=xin, (199
XpU'= X"+ G Xy, (19b
YoUt=YN—GY", (199
yout=vyin, (199

PHYSICAL REVIEW A 67, 042105 (2003

N(X,) =0, (239
D(Xa)=—Xy", (23b)
D(Yq)=—(YM+YM. (230

The conditionN(X,)=0 is characteristic of the noiseless
transducer. Hence, the measurement is a nois&gsaea-
surement regardless of the probe preparajorFrom Eq.
(23b), if the probe is prepared nearly in thg, eigenstate
|Xp=0), the measurement is a noiselgsgX,)=0] and
nearly nondisturbing »(X,)~0] measurement of, . Since
e(Xy) =0, we have

€(Xa)n(Ya)=0 (24)

In order to measur&,, the probe observable is chosen best

to beM=X,/G. Then we have

1
Zxin,

M Out= X|an+ s

(20

The X,-noise operator, th&,-disturbance operator, and the
Y ,-disturbance operator are given by

1.
N(Xa)= gX'b“, (218
D(X,) =0, (21b
D(Y,)=—-GY. (210

The conditionD (X,) =0 is characteristic of BAE amplifiers.
If the probe is prepared nearly in thé, eigenstate|X,
=0), the measurement is a nearly noiselesX,)~0] and
nondisturbing[ 7(X,)=0] measurement oK,. From the

for any statesy and¢, so that Heisenberg’s lower bound for
the noise-disturbance product can be overcome by a noise-
less and nearly nondisturbing quadrature measurement, if
one can implement a noiseless quadrature transducer. The
above model also suggests that the linearity of measuring
interaction does not ensure the validity of the Heisenberg
noise-disturbance uncertainty relation, despite a prevailing
claim that linear measurements, measurements closely con-
nected to linear systems, obey the Heisenberg noise-
disturbance uncertainty relatidt6].

VII. EXPERIMENTAL REALIZATION OF THE
NOISELESS QUADRATURE TRANSDUCERS

The noiseless quadrature transducer can be implemented,
in principle, as follows. Consider two degenerate modes
the signal, andb, the probe, with frequency and orthogonal
polarization, which undergo successive parametric interac-
tions in the following five steps; see Ref24—-28 for simi-

above, BAE amplifiers are of independent intervention forl@r implementations of BAE amplifiers.

the pair X,,Y,). Thus, the Heisenberg noise-disturbance

uncertainty relation for the pailX,,Y,) holds. If theb mode
is prepared in the vacuung=|0), the noise and disturbance
satisfy e(X,)=1/2 and n(Y,)=1/2, so that the minimum
noise-disturbance product attainse&X,) »(Y,) =1/4.

VI. NOISELESS QUADRATURE TRANSDUCERS

Consider the following input-output relations:

XU = Xg =Xy (229
XpUt=X1, (22b)
YoUl=—yn, (220)
YoUt= YN+ YN (220

In this case, the measuring interactidnis called thenoise-
less quadrature transducein order to measureX,, the
probe observable is chosen to lle= X,,. The X,-noise op-
erator, theX,-disturbance operator, and thg-disturbance
operator are given by

(i) The two polarization modes undergo a mixing interac-
tion using a polarization rotator which rotates the angle of
polarization byf. The operation of the polarization rotator is
represented by the mixing operator

T(6)=exd #(ab’™a'b)]. (25)

(i) The mixture of the signal and the probe fields will
propagate along each of the ordinary and orthogonal extraor-
dinary axis of a potassium-titanyl-phosphate crystal pumped
by a pulsed intense classical field. This interaction is a non-
degenerate parametric amplifier described by the two-mode
squeeze operator

S(r)y=exfr(ab—a'b")], (26)
wherer corresponds to the squeezing parameter.

(iii ) After the amplification step, the fields pass through a
second polarization rotator with the mixing anglé 2o that
the operation is represented BY26) =T(6)2.

(iv) The mixture of the signal and the probe fields under-
goes the second parametric amplification described by the
two-mode squeeze operatsf—r).
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(v) After the second amplification step, the fields pass 1+5
through a third polarization rotator with the mixing angle r=In 5 (319
so that the operation is representedTdy).
Thus, this process defines the measuring interaction op-
erator 1 1
6= Esinfl—, (31b
U(rO=T(OS(-NT(OTOSOT(H). (27 5

We shall determine the parametetsandr for U(r,6) 0 the resulting unitary operatds = U(r, 6) realizes the noise-
realize a noiseless quadrature transducer,(E2). Suppose |ess quadrature transducer, EB2).

that 6 andr satisfies the relation sirg2tanhr. In this case, Thus, if r and @ are chosen as Eq31), steps(i)—(v)

it is well known [24-28 that the unitary operatot)_  realize the noiseless quadrature transducer. Therefore, this
=T(6)S(—r)T(0) realizes the BAE quadrature amplifier process followed immediately by the precise homodyne de-
with G=2 sinhr, i.e., tection of theX, component implements a nearly nondisturb-

ing and noiseless measurement of ¥yequadrature compo-

T _
U-XU-=Xa, (289 nent that disturbs the conjugate observalfle much less
+ . . than the quantum limit set by Heisenberg’s lower bound for
U=XpU - =Xp+2(sinhr)X,, (28D the noise-disturbance produe(X,) n(Y,)=1/4.
Ut y,U_=Y,—2(sinhr)Y,, (280
VIIl. CONCLUSION
uly,u_=v,. (280

In this paper, relations have been propo4é&é) and(17),
Similarly, the unitary operatot) , =T(6)S(r)T(¢) realizes that are universally valid for the trade-off between the mea-

the conjugate BAE quadrature amplifier, i.e., surement noise and disturbance. These relations demonstrate
that the prevailing Heisenberg lower bound for the noise-
ULXaU +=Xg—2(sinhr) X, (299 disturbance product is valid for measurements with indepen-
dent intervention, but can be circumvented by a measure-
ULXbU+=Xb, (29b) ment with dependent intervention. An experimental
confirmation of the violation of Heisenberg’s lower bound is
ULYaU+=Ya, (290 proposed for a measurement of optical quadrature with cur-
rently available techniques in quantum optics. The relation
UﬂYbU+=Yb+ 2(sinhr)Y,. (290 will not only bring an insight on fundamental limitations on

o _ _ measurements set by quantum mechanics but also advance a
Combining the above equations, we have the input-outpufrontier of precision measurement technology such as gravi-
relations for the unitary operatdi(r,6)=U_U., tational wave detection and quantum information processing.

U(r,8)"™X,U(r,8)=X,— 2(sinhr) Xy, (30a
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