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Quantum-state engineering assisted by entanglement
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We suggest a general scheme for continuous variable quantum-state engineering based on conditional mea-
surements carried out on entangled twin beam of radiation. Realistic detection schemes such as on/off photo-
detection, homodyne detection, and joint measurement of two-mode quadratures are analyzed in detail. Imper-
fections of the apparatuses, such as nonunit quantum efficiency and finite resolution, are taken into account. We
show that conditional on/off photodetection provides a reliable scheme to verify nonclassicality, whereas
conditional homodyning represents a tunable and robust source of squeezed light. We also describe optical
continuous variable teleportation as a conditional measurement, and evaluate the degrading effects of finite
amount of entanglement, decoherence due to losses, and nonunit quantum efficiency.
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[. INTRODUCTION sis of arbitrary unitariefl12], and generation of optical qubit
by conditional interferometry13].
Quantum-state engineering of radiation field plays a ma- In this paper, we analyze in detail the use of conditional
jor role in several fundamental tests of quantum mechanicemeasurements on entangled twin beam of radiatioVB)
[1], as well as in applications such as high-precision meato engineer quantum states, i.e., to produce, manipulate, and
surements and high-capacity communication chanf@]s transmit nonclassical light. In particular, we will focus our
Generation of nonclassical light generally involves active deattention on realistic measurement schemes, feasible with
vices and nonlinear optical media, which couple two or morecurrent technology, and will take into account imperfections
modes of the field through the nonlinear susceptibility of theof the apparatuses such as detection quantum efficiency and
matter. Since the nonlinear susceptibilities are small, the effinite resolution.
fective implementation of nonlinear interactions is experi- The reason to choose TWB as antangled resourcéor
mentally challenging, and the resulting processes are genetonditional measurements is twofold. On one hand, TWBs
ally characterized by a low rate of success, i.e., by a lownare the natural generalization to continuous varigla}®)
efficiency. systems of Bell states, i.e., maximally entangled states for
In quantum mechanics, the reduction postulate providegubit systems. On the other hand, and more importantly,
an alternativantrinsic mechanism to achieveffectivenon-  TWBs are the only CV entangled states that can be reliably
linear dynamics. In fact, if a measurement is performed on @roduced with current technology, either by parametric
portion of a composite entangled system, e.g., the bipartitdown-conversion of the vacuum in a nondegenerate paramet-
entangled systems made of two modes of radiation, the otheic amplifier[19], or by mixing two squeezed vacua from a
component is conditionallyeducedaccording to the out- couple of degenerate parametric amplifiers in a balanced
come of the measuremef8]. The resulting dynamics is beam splitte{20,21]. Overall, our main goal is to establish
highly nonlinear, and may produce quantum states that carthe current state of art for conditional engineering of CV
not be generated by currently achievable nonlinear processeguantum states assisted by entanglement.
The efficiency of the process, i.e., the rate of success in get- The first kind of measurement we analyze is on/off pho-
ting a certain state, is equal to the probability of obtaining atodetection. As a matter of fact, though recent proposals are
certain outcome from the measurement. This is usuallyencouraging22], the discrimination of, say) photons from
higher than nonlinear efficiency, thus making conditionaln+1 photons in the quantum regime is still experimentally
schemes possibly convenient even when a correspondirghallenging. Therefore, we are led to consider the action of
Hamiltonian process exists. realistic avalanche on/off photodetectors, i.e., detectors that
The nonlinear dynamics induced by conditional measurehave no output when no photon is detected and a fixed output
ments has been analyzed for a large variety of tf4ksl8,  when one or more photons are detected. Our analysis shows
among which we mention photon adding and subtractinghat on/off photodetection on TWB provides the generation
schemeg5], optical state truncation of coherent stafé$ of conditionalnonclassical mixturesvhich are not destroyed
generation of catlike(macroscopic quantum interference by decoherence induced by noise and permits a robust test of
stated 7-9), state filtering by active cavitig40,11, synthe- the quantum nature of light. The second apparatus involves
homodyne detection, whose action on TWB represents a tun-
able source of squeezed light, with high conditional probabil-
*Electronic address: paris@unipv.it; URL: www.qubitsitparis ity and robustness to experimental imperfections, such as
"Electronic address: mary.cola@mi.infn.it nonunit quantum efficiency and finite resolution. The third
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kind of measurement we are going to consider is the joint
measurement of the sum and difference quadratures of twc
modes corresponding to the measurement of the real and th
imaginary parts of the complex photocurreéita+b', a
andb being two modes of the field. Such a measurement is
realized by generalized heterodyne detection if the two
modes have different frequencies, and by multiport homo-
dyne detection if they have the same frequency. In our case
one of the two modes is a beam of the TWB, whereas the
second mode is excited in a given reference state, usually
referred to as the probe of the measurement. As we will see m.=V'E.v
this approach allows us to describe CV quantum teleporta- X X
tion as a conditional mgasurement, and to easily evaluate the £ 1 scheme for quantum-state engineering assisted by en-
degrading effects of finite amount of entanglement, decohefanglement. At first, a twin beam of the modeandb is produced
ence due to losses, and imperfect detection at receiver's Igsy spontaneous down-conversion in a nondegenerate parametric op-
cation. tical amplifier. Then, modé is (possibly subjected to the unitary
The paper is structured as follows. In Sec. II, we establishransformationv and then revealed by a measurement apparatus
notation and describe the general measurement scheme \§éscribed by the probability operator-valued measB@VM) E, .
are going to consider. In Sec. lll, we consider the three aboveverall, the quantum operation on the mdalés described by the
detection schemes as conditional measurements to enging@dVM I1,=V'E,V. The conditional state of mode is given by
nonclassical states. In Sec. IV, we show how to evaluat®,, and this state may be further modified by a unitary transforma-
detection probabilities and conditional states using Wignetion U, depending on the outcome of the measurement, whose
functions. This approach allows us to analyze several devalue may be sent to the receiver location by classical communica-
grading effects in CV teleportation, and to show the equivation. The overall conditional state is thug=Uo,U} . Through-
lence of noisy teleportation to a Gaussian noisy channeRut the paper, we always také=1 (no transformation before the

Section V closes the paper with some concluding remarks. measuremeit and consider three kinds of measurements: on/off
photodetection, homodyne detection, and joint measurement of

two-mode quadratures by multiport homodyne or heterodyne detec-

tion. In the case of on/off photodetection and homodyne detection,
The genera' measurement scheme we are going to coMe do not consider further transformati@re., U,=1), whereas for

sider is schematically depicted in Fig. 1. The first stage conth€ joint measurement of two-mode quadratures, this will a be dis-

sists of a nondegenerate optical parametric amplifPA) placement operatdd («), with amplitude equal to the result of the

obtained by a?) nonlinear optical crystal cut either for type Measurement.

| or type Il phase matching. In the parametric approximation

II. CONDITIONAL QUANTUM-STATE ENGINEERING

(i.e., pump remaining Poissonian during the evolufigg]), ~ — T"{@In ¢}, whereas the entropies of the two modesndb

the crystal couples two modes of the radiation field accord@r® given by S[g;]=—Tr{ejIng}}, j=ab, with ¢,

ing to the effective Hamiltonian =Tr{e} and ¢,=Tr,{e} denoting partial tracef27]. The
degree of entanglement of the stdde), in terms of the

H,.=«(a'b’+ab), (1)  average number of photons of the TWKB=2\2/(1—\?), is

given by

where « represents the effective nonlinear coupling, some-

times referred to as thgain of the amplifier, anda and b AS=In(1+ E) +E|n 14 E )

denote modes with wave vectors satisfying the phase- 2] 2 N/°

tmh:tcﬁl:rrlﬁ]p?oggltlsgg;uﬁ i:gﬁtkr\)/vzelﬁgvt: epvz:{?;/ri gt?i%toé g\fvn_Notice that for pure stated,S represents the unique measure
conversion with the output given by the so-called twin—beammc entanglemen[28]. TWBs are the maximally entangled
state of radiation states for a given average number of photons, and the degree
’ of entanglement is a monotonically increasing functiofNof
o A measurement performed on one of the two moges
|)\>>:\/1_7|)\|22 APlpp)) PP =IpYa®|pYs. (2) ducesthe other one according to the projection postulate.
p=0 Each possible outcome occurs with probabilityP,, and

o ~corresponds to a conditional statg on the other subsystem.
where \ =tanh«|7 and 7 represents an effective interaction \We have

time. The TWB|\)) is an entangled state in the bipartite

Hilbert space,®Hy,, where;, j=a,b, are the Fock Py=Trapl [N (N 1@ 11, ]
space of the two modes, respectively.
TWBs are pure states and therefore their degree of en- :(1_)\2)2 N29(q|IL,|q)
tanglement can be quantified by the excess von Neumann q
entropy AS=3(S[ea]+S[ep]-Se]) [23-268. The en- t
tropy of a two-mode statep is defined asSe]= =(1-\?)Try[A2° PIL7], 4
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1 1-\2
QX=P—XTrb[I>\>><<>\IHa®HX] 01=—p; .Z‘l ANX[1— (1= ) ][Kk)(K]. (8)
22
= 1A 2 AP+ |1'[T| | | The density matrix in Eq(8) describes a mixture: pseude
B (plILy|a)|a)(p
X Ppg thermal state, where the vacuum component has been re-
atariTs ata moved by the conditional measurement. Such a state is
~OATEILA highly nonclassical, as also discussed in RE26,32. No-
s r— (5

tice that the nonclassicality is present only when the state
exiting the amplifier is entangled. In the limit of low gain,
where II, is the probability operator-valued measurei.e., for small TWB photon numbeN, the conditional state
(POVM) describing the measuremetity” denotes transpo- o, approaches the number st&1é(1| with one photon.

sition, andl, denotes the identity operator @1y, . In the last The Wigner function ofo,

equalities of both Eqs(4) and (5), we have already per-

formed the trace over the Hilbert spakg . Also notice that d?y e

in the last expression fag, in Eq. (5), I1, should be meant W(“):J ?ey "TrLe1D(y)], 9

as an operator acting di,. Our scheme is general enough
to include the possibility of performing any unitary operation
on the beam subjected to the measurement. In fa&, if
the original POVM anadV the unitary, the overall measure-
ment process is described Bl =V'E,V, which is again a
POVM. In the following, we always consid&f=1, i.e., no 2 1 2+ 7N

transformation before the measurement. A further generaliza- W(0)=— 7 N+1 2014 N) =N’ (10)
tion consists in sending the result of measurentbytclas- g

sical communicationto the reduced state location and thenOne can see that also the generalized Wigner functiors for
performing a conditional unitary operatidh, on the condi-  ordering,

tional state, eventually leading to the stat@zUXQXUI.

Tr[A2°PII]]’

whereD(y) = exp:yaT—;a] is the displacement operator, ex-
hibits negative values for any value »fand ». In particular,
in the origin of the phase space, we have

This degree of freedom will be used in Sec. Ill C, where we W _ i A2 E| Y
analyze CV quantum teleportation as a conditional measure- s(a)= TS YWo(v)ex s ¥
ment.

shows negative values fare (—1,0). In particular, one has

I1l. CONDITIONAL MEASUREMENTS ON TWIN BEAM
2(1+s)(2+yN)
m(1+N=s)[2(1+N—-s)— yN(1+s)]’
By looking at the expressio2) of TWB in the Fock (11

basis, it is apparent that ideal photocounting on one of the
two beams, described by the POVNI,=|n)(n|, is a con- A good measure of nonclassicality is given by the lowest
ditional source of Fock number stafe), which would be index s, for which W is a well-behaved probability, i.e.,
produced with a conditional probabilitf,=(1—A%)\?". regular and positive definifg1]. Equation(11) says that for
However, as mentioned above, photocounting cannot be corg1 We haves®= —1, that is,¢, describes a state as nonclas-
sidered a realistic kind of measurement. Therefore, we nowical as a Fock number state.
consider the situation in which one of the two beams, say The Fano factor
mode b, is revealed by an avalanche on/off photodetector,

A. Geiger-like (or/off) photodetection W,(0)=—

th_ (hth)12
i.e., a detector which has no output when no photon is de- F= ([b'b—(b'b)]%)
tected and a fixed output when one or more photons are <bTb>
detected. The action of an on/off detector is described by the
two-value POVM{I1,I1,}, where of ¢4 is given by
il ) 1 ) 2 4(2+N) 5
Hozgo(l_ﬂ) [k)(K|, Ty=I-TI,, (6) F_E( +N)|{ 1+ 2+N77_4+N(4+N7;) . (12

7 being the quantum efficiency. The outcome “@’e., reg- Therefore, we have that the bedns always sub-Poissonian
istering a “click” corresponding to one or more incoming for (at least N<2. The verification of nonclassicality can be
photong occur with probability performed, for any value of the gain, by checking the nega-
tivity of the Wigner function through quantum homodyne
7\? 7N tomography{32], and in the low-gain regime, also by veri-
2 ) () fying the sub-Poissonian character by measuring the Fano
1-\2(1—75) 2+2N g the st . . y 9
factor via direct noise detectid33,34.
and correspondingly, the conditional output states for the Notice that besides quantum efficiency, i.e., lost photons,
modea is given by the performance of a realistic photodetector may be degraded

Pi=((M[I@I14|\))=
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by the presence of dark count, i.e., by “clicks” that do not The coefficients of,) in the Fock basis are given by
correspond to any incoming photon. In order to take into -
account both these effects, a real photodetector can be mod- N 1 2.2 2
eled as an ideal photodetect@mit quantum efficiency, no k_(j) \/?(1_)\4)1/49 A )Hk(\/ix),
dark count preceded by a beam splittéof transmissivity ' (16)
equal to the quantum efficiengywhose second port is in an
auxiliary excited statde.g., a thermal state, or a random- \which means thalty,) is a squeezed state of the form
phase coherent statewhich accounts for the background
noise (thermal or PoissonianHowever, at optical frequen- | i) =D(ay)S(£)|0), (17
cies, the number of dark counts is negligible and we are not
going to take into account this effect, which has been anawhere
lyzed in detail in Ref[32]. NN )

We conclude that conditional on/off photodetection on ay= 2xn _ NIN+2)
TWB provides a reliable scheme to check nonclassical light. 1+\? 1+N
The nonclassicality, as well as its verification, are robust

against amplifier gain and detector efficiency. [=arctanh?= arctanl?\l’i—z. (18
B. Homodyne detection The quadrature fluctuations are given by
In this section, we consider the kind of conditional state 11 1
that can be obtained by homodyne detection on one of the Ax2=Z——— Ay?=(1+N), (19)
two beams exiting the NOPA. We will show that they are @ 41+N & 4
squeezed states. We first consider ideal homodyne detection Lt ) . —
described by the POVNIL,=|x)(x|, where where x,=3(a'+a), y,=(i/2)(a’'-a), and AO
=Ti[e0?]—(Tr[ ¢0])2. Equation(19) confirms thaf ) is
2\ L2 Hu(V2x) a minimum uncertainty state. Notice th@t the amount of
|X>:(—) e 2 —1n), squeezing is independent of the outcome of the measure-
™ n=0 /n!2"

ment, which only influences the coherent amplitudig;ac-
cording to Eq.(13), the most probable conditional state is a

with Hy(x) denoting thenth Hermite ?olyno[rnials, IS an  gqueezed vacuum. The average number of photon of the con-
eigenstate of the quadrature operatgr5(b+b"). Thenin  jitional state is given by

the second part of the section, we will consider two kinds of

imperfections: nonunit quantum efficiency and finite resolu- NNH2) 10 N?

- t — hl
tion. As we will see, the main effect of the conditional mea- Ny=(ihla’algh)=x (1+N)? tI1Ton 20
surement, i.e., the generation of squeezing, holds also for
these realistic situations. The conservation of energy may be explicitly checked by
dyne detection on the modeis obtained from Eq(4). We
have f PN N?2 ,N(N+2) N o1
XPx X_Zl+N+U)‘(1+N)2_§’ (21)
X2
exp{ - _2} which correctly reproduces the number of photon pertaining
N

(13)  each part of the TWB.
We now take into account the effects of nonunit quantum
efficiency at the homodyne detector on the conditional state.

P.=(1-N)2 2>, N29(x|q)|?= ————,
( >q§o (x| a)] Norr:

where We anticipate thap,,, will be no longer pure states, and in
particular, they will not be squeezed states of the f¢in).
, 1 1+)\2 1 Nevertheless, the conditional output states still exhibit
=2 1_)\2=Z(1+ N). (14 squeezing, i.e., quadrature fluctuations below the coherent

level, for any value of the outcome and for quantum effi-
ciency larger thary>1/2.

The POVM of a homodyne detector with quantum effi-
ciency 7 is given by

P, is Gaussian with variance that increasea as approach-
ing unit. In the(unphysical limit A— 1, i.e., infinite gain of
the amplifier, the distribution fox is uniform over the real

axis. The conditional output state is given by Ef), and " dt (x—1t)? " 22
sincell, is a pure POVM, it is a pure state,= |, )], sz:f oz oh ~ 2 t
where 2y Ay

where

_,/1_)\ atajy\ _1_77
|‘//x>_ Px A |X>_; (/fk|k>- (15) AEI—W. (23)
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The nonideal POVM is a Gaussian convolution of the ideal
POVM. The main effect is thatl,, is no longer a pure
orthogonal POVM. The probabilit®, ,, of obtaining the out-
comex is still a Gaussian, now with variance
2 _ 2 2

Af, =0y +A%. (24
The conditional output state is again given by Es). After
some algebra, we get the matrix element in the Fock basis

(LA [ 2—p(1-)\?
<n|gx7]|m>— \/W Y 12

FIG. 2. Matrix elements in the Fock basis of the conditional
stateg,,, after homodyne detection on TWB. In the first row, the

2)2 matrix elements fox=0.0 and»=1.0,0.8,0.4. In the second row,
X ex _4X277— the matrix elements fox=0.6 and the same values of quantum
1-\%(1-279) efficiency.

min(m,n)

x 2
k=0

ues of the homodyne outcome=0.0,0.6, and three values
of the quantum efficiency;=1.0,0.8,0.4.

(E) 77(m+n)/27k
The outcome of homodyne detection is, in principle, con-

m
k
2l

5 tinuously distributed over the real axis. However, in practice,
XHn-2 N2 7%). (25 one h_as always to d_iscretize data, mostly _bt_acause of finite
The quadrature fluctuations are now given by experl_mentz_il re_solutlon. The POVM describing homodyne
detection with binned data is given by
1+N(1-) — 1
2_ 2_= 1 (x+62
X3 A1+ N Ayj 4(1+ N). (26) M,,(8)= (_Sf / dtil,,,, (31)

X— 02

As a matter of factAy; is independent ofy, whereasdx;  yyhere Il,, is given in Eq.(22), and 6 is the width of the
increases for decreasing Therefore, the conditional output pins. The probability distribution is now given by
Oxy IS No longer a minimum uncertainty state. However, for

7 large enough, we still observe squeezing in the direction
individuated by the measured quadrature. The form of the
output state can be obtained by the explicit calculation of the
matrix elements or, more conveniently, by evaluating the
Wigner function(see Sec. IY. We have

o o
X+E X E

V247,

Py, (0)= 5| erf

26 ‘/ZAin

X2
expy — ———
an:D(aXn)S(grl)VthST(gn)DT(axn)! (27) _ ;{ ZAiﬂ] XZ_A)Z\” 2
— . 1- 8% +0(8%),
where \/27TA}\77 24A5,
o 32
Ny |P (
- -1 th
vip=(1+ngy,) pgo 1+nth) Ip){p| Pyy (6)
is a thermal state with average number of photons given by
1‘JuﬁNH1+M1—m]
and the amplitude and squeezing parameters read as follows:
~ pYN(N+ 2) 29
S T 29
1 (1+N)(1+yN me s, e
1, (AN gN) 0 X5
7 4 1+N(1-17n)

] FIG. 3. Probability distributiorP,,(5) of homodyne outcomes
From Egs.(26) and (30), we notice thatp,, shows squeez- x for quantum efficiencyy=0.7, TWB photon numbeX = 20, and
ing if »>1/2, independent of the actual valueof the ho-  width of the binss§=0.25. The threshold value;~5.16 to obtain a
modyne outcome. In Fig. 2, we illustrate the effects of quan-conditionally squeezed state is shown. The gray-shaded area repre-
tum efficiency on the matrix elements of the conditionalsents the overall probabilit) ;~97% of producing a squeezed
state. In particular, we plot the matrix elements for two val-state by the conditional measurement.
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9N tanglement increases the probability of getting squeezed
states. However, such states would be only slightly squeezed,
i.e., AXoc<%. Therefore, since the scheme is aimed to be a
tunable source of squeezing, the best strategy is to use large
values ofN, while accepting a slightly decreased conditional
probability.

C. Joint measurement of two-mode quadratures

In this section, we assume that mdulés subjected to the
measurement of the real and the imaginary part of the com-
plex operatoiZ=b-+c', wherec is an additional mode ex-
cited in a reference stat® The measurements of Rg&| and
Im[Z] correspond to measuring the sum and difference
guadratures,+ X, andy,—Y, of the two modes, and can be
experimentally implemented by multiport homodyne detec-

FIG. 4. The functiong(#n,N) in Eq. (36) vs the quantum effi-
ciency for different values of the TWB photon numiérFrom top

to bottom, we have the curves for=1.2,5.10. tion if the two modes _have the same frequeng8s-37), or
by heterodyne detection otherwi&8]. The measurement is
whereA?, is given in Eq.(24) and described by the following POVNI39]:
X 1
erf(x)zz/ﬁf dtexp{—t2 Ha=;D(a)STDT(a), (37)
0

denotes the error function. The conditional state is modifieqvhere a is a comPIex numberD(«) is the displacement
accordingly. Concerning the quadrature fluctuations of theperator, and (- -)" stands for the transposition operation.

conditional state, we have, up to second ordes,in The present scheme is equivalent to that of CV teleportation,
which can be viewed as a conditional measurement, with the

_ _ 8% 7°N(N+2) state to be teleported playing the role of the reference State
AXZ(8)=AXa+ le—zm, (83)  of the apparatus. In order to complete the analogy, we as-

sume that the result of the measurement is classically trans-
mitted to the receiver’s location, and that a displacement

which is below the coherent level foy>1/2 and for ) + ) -
operationD'(«) is performed on the conditional stage, .

1 [3(1+9N)(29-1) Equations(4) and(5) are rewritten as
|X| <Xs5= 2 2 . (34) Tarr T

0 7(N+2) Pa=(1=AA)TN22IT], (38)
Therefore, the effect of finite resolution is that the condi- NalappTya'a
tiona_l output is squeeze;d only for the subpétx, of the Qa:z—z;;a_T' (39
possible outcomes which, however, represents the range Tr{A=*11, ]
where the probability is higher. In Fig. 3, as an example, we T
show P, () as a function ofx for »=0.7, 5=0.25, and g,=D'(a@)0,D(a), (40)

N=20. The threshold«s is shown as well as the overall
probability Qs of producing a squeezed state which, up to
second order ird, is given by

while the teleported state is the average over all the possible
outcomes, i.e.,

0, N=0 ozf dzapaaazf d2aDT(a)((\|I T\ ))D(a).
Xs
= dx Py, (8)= 1 35 41
Q= [ axpyy (o) ofbacnn], wso, @
After performing the partial trace, and some algebra, one has
where d?a |af?
o= | — ———1D(a)SD'(a), (42)
(mN) = [6(29—1) 39 Ko Ko
9 n(N+2)° whereK,=1+N—/N(N+2). The output state coincides

In Fig. 4, we showg(#n,N) as a function ofy for different  with the input only in the limitN—oe, i.e., for infinite energy
values of the TWB photon numbé\. As it is apparent from of the TWB. Equation(42) shows that CV teleportation with
the plot,g(#»,N) is a monotonically increasing function ¢f  finite amount of entanglement is equivalent to a Gaussian
and a monotonically decreasing function I9f Notice that  displacement channel wit, background photons applied
the largerg(#,N) is, the smaller is the effect of finite reso- to the input state. This result has been also obtained in Refs.
lution in decreasing the probability for obtaining squeezed 40,41 by different methods. In the following section, we
states. In principle, using small value &f (i.e., less en- will show that this result still holds taking into account the
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effects of decoherence due to losses, and nonunit quantum
efficiency of the measurement, either multiport homodyne or

heterodyne detection.

IV. CONDITIONAL MEASUREMENTS IN THE PHASE
SPACE

The results of the previous sections can be derived, and
for CV teleportation also extended, using Wigner functions
in the phase space. The analysis is based on the fact that the

trace between two operators can be writteri43

Tr[0102]=77f d’BW[O;1(AWIO1(B), (43

where the Wigner function for a generic opera@ris de-
fined analogously to that of a density matrix, i.e.,

W[O](a f —ewgv TH{OD(y)],  (44)

wherea is a complex number anid(y) is the displacement
operator. The inverse transformation reads as follp4&:

o= f d2aW[O](a)e 2@ ?e2ea"(— 1)2"ag20a (45

The Wigner functionW[\](X1,Y1;X2,Y,) of a TWB is
Gaussianwe omit the argumeit

(X1 +X2)?  (Y1+Y2)?
W[\]=(270% 2702) Texp — -
[M]=(2mo% 2mo™) % 40'?F 40°
X1—X5)? —y,)?
_( 1 22) _(yl )2/2) ' (46)
40° 407
where the variances are given by
1
ai=z[1+N+\/N(N+2)], (47)
1
0%=Z[1+N—\/N(N+2)]. (48)

Using Eq.(43), we rewrite the probability distributiot¥) as
follows:

=f fdxldylf fdedyzvv[x](xl,yl;xZ,yz)

XWIL](X2,Y2) (49

—(1-2) f f Aoy WA 2] (x5 Y2 WL T (%5 ),
(50

whereW[II,](X5,Y,) is the Wigner function of the POVM
describing the measurement andin2°'®] is given by

PHYSICAL REVIEW A7, 042104 (2003

2,2
2TY5

EET A

1
W[)\ZbTb](Xz Y2)= mexrl( -

Analogously, the Wigner function of the conditional output
state(5) can be written as

WLy ](X1,Y1) = j fdxdeZW[)\](Xl Y1:X2,Y2)

XWITL](X2,Y2). (52

Once the Wigner function for the POV, of the detector

is known, one may reproduce the results of previous sections
using Eqgs.(50) and (52) together with Eq(45). For on/off
photodetection, one has

X3+ Y3
2—7

27
VV[Ho](Xz,y2)=7T(2—_77)eXp( -

WIIT;](X5,Y2) =1—W[II](X2,Y2),

whereas the POVM of a homodyne detector with quantum
efficiency » corresponds to the Wigner function given by

WL, (X1,y1) = WL, 1(X1)

(53

(Xl_x)2
=(2wA%) Yexp —

whereA? is given in Eq.(23).

Let us now focus our attention on the situation where the
conditional measurement on TWB is the joint measurement
of the sum and difference quadratures of two modes. In this
case, the Wigner approach may be convenient, in particular,
in the description of optical teleportation as a conditional
measurement, since it makes it easier to include the degrad-
ing effects of nonunit quantum efficiency and of losses along
the transmission channel.

At first, we consider the ideal POVM , of Eq. (37). By
taking into account that for any density matrix

WLeTl(x,y)=Wlel(x,~y),
W[D(@)eD"(a)](x,y) =W[](X—X¢,Y~Ya),
with x,=R{ «] andy,=
WIIT,1(X2,Y2) =WISI(X2 =X Yo ™ ¥2).
Inserting Eq.(56) in Egs. (50) and (52), and changing the

integration variables, we obtain the Wigner function of the
teleported stater of Eq. (40):

] . (59

(595
Im[ «], it is easy to show that

(56)

Wirloayo = [ [ dadys [ [ axdywinioex, v,

+ya;xl+xa! yl_ya)w[s](xlvyl)
f J XmdY1 _X§+yi

7TKO KO
XW[S](X2—X1,Y2— Y1), (57)
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which corresponds to the state given by E4R). We now  whereW[\] is initial Wigner function of the TWB, and the
proceed by taking into account nonunit quantum efficiencyGreen functionss (x;|x;) are given by
of the detector and losses due to propagation of TWB. Non-

unit quantum efficiency at either double homodyne or het- o (U2)ym 2
o . (x;—x/ e~ (2rr)
erodyne detectors modifies the POVM of the sender, which G.(xi|x/)= exd — —— '
becomes a Gaussian convolution of the ideal POM, M 27D? 2D?
dzﬁ |CY_B|2 2 1- Y 1
Haff WD%GXP{ - D2 g Dy=— D2:H(1—e—m. (63
(58)
leading to The Wigner functionV, can be obtained by the convolution

(62), which can be easily evaluated since the initial Wigner
function is Gaussian. The form & is the same ofV[\]
) with the variances changed to

dxgdyp exp(  XgtYp

2 2
’7TD77 D”

WL Jo.2)= | |

2_) —y7, 2 2
XWIS](Xg+Xo=Xo,Ya— Y2~ Yp)- oy (e DY),

(59 a2 —(e o? +D?). (64)
On the other hand, losses that may occur during the propa-

gation of TWB degrade the entanglement. This effect can bénserting the Wigner functions of the POVM,,, and of the
described as the coupling of each part of the TWB with aevolved TWB in Eq.(52), we obtain the teleported state in
nonzero temperature reservoir. The dynamics is described lifie general case. This still has the fotd®2), however with

the two-mode master equation, the parameteK now given by
dR _ _
St =LRET (L MIL[a]R A+ T(1+ M)L[b]R, K=Kee "+ (2M+1)(1-e"")+D7. (69
+I'ML[a"R,+TML[b'R,, (60) Equations(42) and (65 summarize the possible effects that

degrade the quality of teleportation. In the special case of
whereR=R(t), Ry=|x))((x|, T’ denotes théequa) damp-  coherent-state teleportation, one I8s|z)(z|, which corre-
ing rate,M the number of background thermal photons, andsponds to original optical CV teleportation experime[i2s].
L[O] is the Lindblad superoperatot[O]R,=0ORO" The fidelity F=(z|o|z) can be evaluated straightforwardly
—10TOR,— tR,0'0. The terms proportional th[a] and as the overlap of the Wigner functions. Sin¥¢ z](«)
L[b] describe the losses, whereas the terms proportional tt@t(zlq-r)e*Z‘C“*Z‘2 is the Wigner function of a coherent state,
L[a'] andL[b'] describe a linear phase-insensitive amplifi- we have
cation process. This can be due to either optical media dy-
namics or thermal hopping; in both cases, no phase informa- 1
tion is carried. Of course, the dissipative dynamics of the two  p= )
channels are independent of each other. The master equation 1+ Koe‘“+ (1—-e ™y2M+1)+(1— )7
(60) can be transformed into a Fokker-Planck equation for

the two-mode Wigner function of the TWB. Using the dif- |n order to verify quantum teleportation, i.e., to show that the

ferential representation of the superoperators in(E@), the  scheme is a truly nonlocal protocol, the fidelity should fulfill
corresponding Fokker-Planck equation reads as follows:  the poundr>1/2[20], i.e.,

2
-T -T
W, = 2 axjxj+(9yjyj) W, Koe '+ (1—e "H(2M+1)+(1— 5)/n<1.
i=1

- é 9+
8\ = 9 Y

Y
3

(61) Therefore, given the value of the parametéravl, and» in
order to verify quantum teleportation, one should use TWB
with an average number of photons large enough to satisfy
the inequality

where 7 denotes the rescaled time=I"/yt, and y=(2M
+ 1)~ ! the drift term. The solution of Eq61) can be written

as
I't 1 —I't
w= [t [ axg | avi [ dyawnod iy Ko<el|2=_—(2M+D(1-e |, (69
2
% G.(x:[X )G (y:|y!), 62 where, for largeN, Ko=1+N—N(N+2) decreases as
11 G.01x)G-Ayjly)) © N
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V. SUMMARY AND CONCLUSIONS =1/2 and for a large range of the homodyne outcomes.
A measurement performed on one beam of a TWB re- Finally, we have shown how to describe optical CV tele-

) L ortation as a conditional measurement of the sum and dif-
duces the other one according to the projection postulate, L
erence quadratures of two modes. We found that realistic

This _effect IS an |ntr|n5|c_ quantum mechanism _to ach_|eveCV teleportation with finite amount of entanglement is
effective nonlinear dynamics. We have analyzed in detail the_ ' . . A
quivalent to a Gaussian channel wkh=(2N)~* back-

use of conditional measurement on TWB to generate anground photons applied to the input staiebeing the aver-

manipulate quantum states of light. In particular, we hav age photon number of the TWB. Using Wigner functions we

studied realistic measurement schemes taking into accoupl 2
) ; . ave also shown that the teleportation in the general case,
imperfections of the apparatuses, such as detection quantu.lm

efficiency and finite resolution, .e., taking into account the degrading effects of finite

The first kind of measurement we have analyzed is on/oI’“F’jlrnount of entanglement, decoherence due to losses, and im-

photodetection which provides a reliable scheme to chec erfect detection, still corresponds to a Gaussian channel,

nonclassical light. The nonclassicality and its verification ar Sf)(-}v;el\fle;gg;ah AaQO'S:éegﬁfgen;vrg?aereo.f_v?/?gcg?]gundinpgfézrs
robust against the TWB energy and the detector efficiencj. q ' 9 ay.

The second apparatus is a homodyne detector, whose actit% verify quantum teleportation of coherent states, has been

) -.derived.
on TWB represents a tunable source of squeezed light, wit We conclude that performing conditional measurements
high conditional probability and robustness to experimental P 9

imperfections. In particular, in the ideal case, the conditional" entangled twin beam is a powerful and robust method of

output state is a pure minimum uncertainty state with two-gineenng nonclassical states of light.

features: the amount of squeezing is independent of the out-
come of the measurement, which only influences the coher-
ent amplitude, and the most probable conditional state is a This work has been sponsored by the INFM through the
squeezed vacuum. Taking into account the effect of nonuniProject No. PRA-2002-CLON and by MIUR through the
quantum efficiency and finite resolution, we have that thePRIN projects “Entanglement Assisted High Precision Mea-
conditional state is no longer a pure state, however, stilsurements and Decoherence Control in Quantum Information
showing squeezing for quantum efficiency larger than Processing.”
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