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Continuous quantum measurement and the quantum to classical transition

Tanmoy Bhattacharya,* Salman Habib,† and Kurt Jacobs‡

T-8, Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 7 December 2002; published 8 April 2003!

While ultimately they are described by quantum mechanics, macroscopic mechanical systems are neverthe-
less observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining mac-
roscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a
process referred to as the quantum to classical transition. Extending previous work@Bhattacharya, Habib, and
Jacobs, Phys. Rev. Lett.85, 4852~2000!#, here we elucidate this transition in some detail, showing that once
the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics
indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in
which classical motion is obtained, and provide numerical examples. We also demonstrate two further impor-
tant properties of the classical limit: first, that multiple observers all agree on the motion of an object, and
second, that classical statistical inference may be used to correctly track the classical motion.

DOI: 10.1103/PhysRevA.67.042103 PACS number~s!: 03.65.Ta, 05.45.Ac, 05.45.Pq
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I. INTRODUCTION

Macroscopic mechanical systems are observed to o
classical mechanics to within experimental error. Howev
the atoms that ultimately make up these systems certa
obey quantum mechanics. Therefore, the question of how
observed classical mechanics emerges from the underl
quantum mechanics arises immediately. This emergence
ferred to as the quantum to classical transition, is particula
curious in the light of the fact that the equations of moti
for the trajectories of classical mechanics are nonlinear,
can therefore exhibit chaos, whereas even a proper qua
cation of chaos in quantum mechanics has been difficul
obtain @1#.

Note that the task of explaining the quantum to class
transition ~QCT! is essentially a practical question: it is
question of explaining why real systems, such as nonlin
pendulums, baseballs, and other systems that can be buil
observed in the laboratory obey classical mechanics~at least
to within any experimental error!. It is not a question of
obtaining classical mechanics precisely as a formal limit
quantum mechanics. In fact, due to the absence of chao
closed quantum systems@1# and the noncommutativity of the
twin limits \→0 ~the semiclassical limit! and t→` ~the
long-time limit necessary to describe chaos!, efforts to ex-
tract classical chaos as a formal limit have been less t
successful.

If one describes macroscopic objects sufficiently reali
cally using quantum mechanics, then it should be possibl
predict the~often chaotic! trajectories of classical dynamics
In order to do this, it is important to realize thatall real
classical systems are subject to interaction with their en
ronment. This interaction does at least two things. First
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subjects the system to noise and damping@2,3# ~as a conse-
quence all real classical systems are subject to noise
damping — even if small!, and second, the environment pr
vides a means by which information about the system can
extracted~effectively continuously if desired!, providing a
measurement of the system@4–8#.

Two levels of description have been used to discuss
QCT. The first utilizes the decoherence resulting from trac
over the environment to suppress quantum interference@9#: it
is assumed that no dynamical information about the in
vidual system has been extracted from its environment
many circumstances this alone can lead to an effectiv
classical evolution of a phase space distribution funct
@10#. As mentioned above, a more fine-grained descriptio
achieved when the environment is taken to be a meter th
continuously monitored, leading to a ‘‘quantum trajecto
unraveling’’ of the system density operator conditioned
the measurement record. If one averages over all poss
measurement results, the description reverts to that at
level of phase space distributions. However, the fine-grai
description, which explicitly incorporates monitoring of th
environment, is required to understand the QCT at the le
of extracting classical trajectories from the quantum s
strate.

An example of an environment that naturally provides
measurement is that of the electromagnetic field which s
rounds the system. Monitoring this environment consists
focusing the light that is reflected from the system, allowi
the motion to be observed. If the environment is not be
monitored, then the evolution is simply given by averagi
over all the possible motions of the system. Classically t
means an average over any uncertainty in the initial con
tions and over the noise realizations. However, in the
sence of explicit observation~monitoring the environmen
and recording the evolution! it is impossible to obtain clas
sical trajectories: the system must be described by an
broadening probability~or pseudoprobability! distribution in
phase space. This is an experimental truism, and there
applies regardless of whether the system is being treated
classical or quantum mechanical theory.
©2003 The American Physical Society03-1
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BHATTACHARYA, HABIB, AND JACOBS PHYSICAL REVIEW A 67, 042103 ~2003!
Since all classical systems are subject to environme
interactions, and since measurement is necessary to de
the trajectories of classical motion, it may be expected t
such environmental interaction, and the associated meas
ment process, will need to be included in a treatment tha
adequate enough to predict the emergence of classical
tion from quantum mechanics. Indeed, recent work by
number of authors has made it increasingly clear that
provides a natural explanation for the emergence of class
motion, and, therefore, a resolution of the problem of
emergence of classical chaos@11–15#. Fortunately, the quan
tum theory of environments and continuous measureme
now sufficiently well developed that their effects can
treated in a fairly straightforward manner, the emergence
classical dynamics verified, and the mechanism of the qu
tum to classical transition elucidated.

Detailed studies of the QCT are particularly timely b
cause current experiments in quantum and atomic optics
condensed matter physics are beginning to probe this tra
tion directly in both ensemble and individual system ca
@16#. Our approach here is to present a general formalism
understanding the transition: more focused analyses ap
priate to specific experimental situations can easily be de
oped based on this general approach.

In the following we examine the QCT in some detail.
Sec. II, we examine how macroscopic systems may
treated, including environmental interactions and meas
ment. In Sec. III, we derive inequalities that describe
regime under which classical motion emerges. In Sec. IV,
show that, in addition, classical state estimation will work
the classical limit. In Sec. V, we provide two specific nume
cal examples showing that classical motion is indeed
tained in the regime predicted in Sec. III. We finish wi
some concluding remarks in Sec. VI.

II. DESCRIBING THE MOTION OF MACROSCOPIC
OBJECTS

A macroscopic object is composed of a very large num
of quantum degrees of freedom. For example, we can c
sider the motions of the atoms that comprise a massive
ject, and these are all coupled together by the interato
forces. The equations of classical mechanics are suppos
describe the dynamics of macroscopic quantities, such as
center of mass; classical motion is not observed in the en
many-particle phase space. Hence, one should consid
change of variables, so as to write a Hamiltonian in terms
the center-of-mass coordinateX ~with conjugate momentum
P). This coordinate is coupled to all the other coordinatesxi
~in a solid we might refer to these as the internal phon
modes, for example!. Under the assumption that none
these environmental modes is strongly perturbed by the
namics, it is sufficient to treat them as harmonic oscillato
and to couple them to the center-of-mass motion via
Hamiltonian@2,3#

H5Hc.m.~X,P!1(
i

F 1

2mi
pi

21
k i

2
~xi2X!2G , ~1!
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where pi are the momenta of the internal modes, andk i
gives the strength of the coupling between the center of m
and the internal degrees of freedom. The center of mass
constitutes effectively an open system interacting with
environment consisting of a large number of harmonic os
lators with a correspondingly large range of frequencies. T
is the starting point for a treatment of quantum Browni
motion, as developed by Caldeira and Leggett@2#. Under
general conditions, the phonon environment can be treate
a heat bath, and in the double limit of weak coupling to th
bath and high temperature, it is possible to write a ve
simple master equation for the center-of-mass motion@3#:

ṙ52
i

\
@Hc.m.~X,P!,r#2kenv†X,@X,r#‡, ~2!

wherekenv is determined by thek i and the temperature. Thi
provides a simple description of the effects of the inter
degrees of freedom upon the macroscopic motion of an
ject for which frictional effects are negligible, and the hea
ing due to the noise is not significant over time scales
interest. If one wanted to treat damped classical syste
then one would relax the weak coupling approximation so
to give a master equation that explicitly contains dampi
However, for simplicity, we will restrict our attention here t
classical Hamiltonian systems.

Another important environment that we need to consi
is the quantum electromagnetic field. This interacts with
object, and provides a natural mechanism for measurem
of the center-of-mass positionX. In general, macroscopic
objects are bathed in light from all directions, and the lig
that is reflected may be monitored by a large number
observers. Since we are considering a one-dimensional
tem, and since we wish to use the simplest description wh
captures the essential aspects of the measurement pro
we restrict ourselves to interaction with an electromagne
field in one dimension. In particular, we consider a las
reflected from the object such that the phase shift provi
information aboutX. Performing an analysis of such a me
surement, one finds that the evolution of the system, co
tioned upon the measurement record, may be written a
stochastic master equation~SME! in the Itô formalism @17#
as @18,19#

dr52H i

\
@Hc.m.~X,P!,r#1k~@X†X,r#122XrX†!J dt

1
Ak̄

2
$~Xr1rX†!2r Tr r~X1X†!%dW

52H i

\
@Hc.m.~X,P!,r#1k@X,@X,r##J dt

1
Ak̄

2
$@X,r#122r Tr rX%dW, ~3!

where the observed measurement record is given by
3-2
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CONTINUOUS QUANTUM MEASUREMENT AND THE . . . PHYSICAL REVIEW A 67, 042103 ~2003!
dy5Tr rXdt1
1

Ak̄
dW. ~4!

In these equations,dW is a white noise generating a Wien
process,k gives the strength of the interaction between
light and the object and is proportional to the power of t
laser, whereask̄ gives the rate at which information about th
system is obtained. When no information is obtained~i.e.,
k̄50), or if the measurement record is averaged over,
stochastic master equation~3! reduces to the ordinary maste
equation~2!.

The ratioh[ k̄/8k, called the efficiency of the measure
ment @8#, is a measure of the fraction of the reflected lig
that is actually detected by the observer in making the m
surement. As will be clear from our discussion in Sec.
although bothk andk̄ arise from the interaction of the syste
with the measurement environment, they play very differ
roles: whereas\2k represents a noise on the system t
leads to spreading out in phase space,k̄ provides information
about the system leading to localization around individ
trajectories. The fact that Eq.~3! leads to a~completely!
positive evolution for all initial conditions if and only ifh
<1 @20# is a particular case of the general informatio
disturbance principles in quantum mechanics: any proc
that leads to information about a system must produce
least a minimal unavoidable disturbance.

If there exist multiple observers dividing the available r
flected light up among them, then each sees an evolu
with a value ofh i,1 ~and, for positivity,( ih i<1, with a
different noise realization for each observer@21#. This is cer-
tainly the case in reality, where each observer usually c
tures only a small fraction of the available light. In the r
gime in which classical motion is obtained~which we will
refer to as theclassical limit!, all observers must agree on th
motion of the system to within experimental error, and
consider this question at the end of the next section an
our numerical examples.

Since the form of the equation resulting from interacti
with the internal modes is the same as that which res
from failing to monitor the light that is being used to prob
the system, we can take this environment into account in
same way that we take multiple observers into account,
is, by taking an appropriate value ofh,1. ~The measure-
ment constantk is then adjusted to include the contributio
from kenv .)

The stochastic master equation~3! constitutes our descrip
tion of the evolution of the center of mass of a macrosco
object. In the following we will show that this description
while very simple, is sufficiently realistic to obtain the co
rect classical motion in the classical limit. It should also
noted that, while we have chosen to measure the positioX,
the analysis which follows suggests that the extraction of
classical limit is not sensitive to the precise observables
are measured; as long as the measurement provides suffi
information about the location of the system in phase spa
the classical limit will be obtained. For example, a contin
ous measurement of momentum will suffice, as long as
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forces on the system are spatially dependent. In fact, o
authors have provided numerical support for this view
showing that quantum state diffusion~using a measuremen
interaction which includes damping! @11# or a simultaneous
measurement of position and momentum@15# is sufficient to
induce the QCT in the same manner.

If the correct classical mechanics is to be obtained, t
conditions need to be satisfied. First, it must be possible
observe the system so that its center of mass~and all other
degrees of freedom considered classical! is known suffi-
ciently accurately on the scale of the potential and relev
dynamical time scales. Second, these observed values, w
we might identify as noisy counterparts of the means of
sufficiently well localized distribution,x[^X& and p[^P&,
should evolve according to the classical Hamiltoni
Hc.m.(x,p) which has the same functional form as the qua
tum HamiltonianHc.m.(X,P), with deviations small com-
pared to the classical scales. In other words, the existenc
the quantum to classical transition implies that in the clas
cal limit we can replace the quantum operators with effect
classical dynamical variables,

H~X,P!→H~x,p!. ~5!

III. INEQUALITIES GOVERNING THE CLASSICAL
LIMIT

We now seek for the parameter regime in which the e
lution reduces to classical motion. As explained in the pre
ous section this means that the quantum distribution rem
sufficiently localized~such that the system can be said to
executing a trajectory!, and that this trajectory, characterize
by x[^X& andp[^P&, follows that of the classical motion
generated byHc.m.(x,p).

We proceed by first writing down the equations of moti
for the first and second moments ofX andP. From Eq.~3!
these become

dx5
p

m
dt1Ak̄VxdW, ~6!

dp5^F~X!&dt1Ak̄CxpdW, ~7!

and

dVx5F 2

m
Cxp2 k̄Vx

2Gdt1Ak̄KxxxdW, ~8!

dVp5@2\2k2 k̄Cxp
2 12]xFCxp#dt1]x

2FKxxpdt

1Ak̄KxxpdW, ~9!

dCxp5F 1

m
Vp2 k̄VxCxp1]xFVxGdt1

1

2
]x

2FKxxxdt

1Ak̄KxppdW, ~10!

where
3-3
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BHATTACHARYA, HABIB, AND JACOBS PHYSICAL REVIEW A 67, 042103 ~2003!
Vx5^X2&2^X&, ~11!

Vp5^P2&2^P&, ~12!

Cxp5
1

2
^XP1PX&2^X&^P& ~13!

are the second cumulants, and theK ’s are the third cumulants
defined by

Kabc5^:ABC:&2^:AB:&^C&2^A&^:BC:&2^:AC:&^B&

12^A&^B&^C&,

where A,B,C can beX or P, and the colons denote Wey
ordering of the operator products. In the above equations
use the simplified notationF[F(x)5F(^X&) and expandF
in a Taylor series aboutX5x truncated to second orde
Without this truncation, higher derivatives ofF would appear
in the equations forVp andCxp , multiplied by higher pow-
ers of the widths or by higher cumulants. Truncating t
power series forF in this way is a good approximation s
long as the distribution is sufficiently localized aboutx andp.
Examining Eq.~6!, one sees that to maintain classical moti
for x one needŝ F(X)&'F(x), which happens when th
system is localized enough so thatVx]xF(x)!2F(x). It is
the task of the measurement to maintain such localizat
and numerical studies@14# have shown that it can indeed d
so.

At this point, it is perhaps instructive to look at the orig
of localization of the individual trajectories. The density m
trix obtained by solving Eq.~3! is conditioned on the mea
surement record Eq.~4!, or, equivalently, on the noise rea
ization dW. Averaging over these realizations results in t
density matrix of the unobserved system which can also
obtained by solving Eq. ~2!. The second cumulant
sxx

2 , sxp
2 , andspx

2 of that distribution are related to the co
responding cumulants for each trajectory by the relations

sxx
2 5^Vx&W1varW~x,x!,

sxp
2 5^Cxp&W1varW~x,p!,

spp
2 5^Vp&W1varW~p,p!, ~14!

where^•&W and varW(•,•) represent, respectively, the mea
and ~co!variances of the quantities, when considered as
tributions over trajectories. The Wiener process damps
first term on the right hand side of each equation by a te
proportional to2 k̄, at the same time compensating this w
a growth of the last term in each equation. As discusse
Sec. IV, this is precisely the way in which classical measu
ment also selects well defined trajectories out of an ensem
spreading out in phase space.

At the level of these second cumulants, the exact form
the damping is thus immaterial. The fact, however, that
derived these from the stochastic master equation~3! not
only gives us a theoretical ‘‘unraveling’’ of the master equ
tion, but also provides a physical meaning to each traject
Furthermore, it guarantees that the underlying evolutions
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density functions are completely positive, and, therefore,
only does the covariance matrix stay positive, but also th
equations can be completed into a hierarchy of cumu
equations that automatically satisfy the appropriate rea
conditions. Furthermore, as discussed in Sec. II, such a m
surement process leads to the unavoidable noise proport
to \2k apparent on the right hand side of Eq.~9!; in contrast,
in the classical discussion in Sec. IV, the corresponding no
term is unrelated to the measurement process and can
be set to zero. In fact, the truncation to the second cumul
implies that no truly quantum effects of dynamics come in
play @25# in our approximation, and the quantum scale\
appears in our equations purely from this informatio
disturbance consideration@26#.

We will make two self-consistent approximations in ord
to examine in what regime classical dynamics emerges.
first is to truncate the power series inF to second order. The
second is to neglect third and higher cumulants in the eq
tions for the second cumulants. An examination of the eq
tions of motion for the third cumulants appearing in Eq
~8!–~10! shows that indeed these are damped by the m
surement, again with damping coefficients proportional tok̄.
The fact that the wave function stays close to Gaussia
also borne out by numerical simulations@14#.

Setting the third cumulants to zero in the equations for
second cumulants, we solve for the stable steady state:

Vx
ss5A2Cxp

ss

mk̄
, ~15!

Vp
ss5mVx

ss~ k̄Cxp
ss2]xF !, ~16!

Cxp
ss5

]xF

k̄
1sgn~m!AS ]xF

k̄
D 2

1
\2

4h
, ~17!

where sgn(m) is the sign ofm, which we shall henceforth
take to be positive@27#, and]xF is taken to be evaluated at
typical point in phase space. Now, there are three conditi
that must be satisfied in order for the classical limit to
obtained. First, localization such thatVx]xF(x)!2F(x), as
discussed above, must be maintained; second, the nois
troduced by the measurement should be negligible comp
to the classical motion; and third, the measurement rec
should follow the motion of the position with sufficient ac
curacy.

Before examining these conditions in turn, two points a
in order. First, localization and low noise are not really ind
pendent constraints: in fact, to provide effective damping
the covariance matrix, the noise has to increase with incre
ing width of the state. Conversely, noise also effects a spr
in phase space of any uncertain state, especially near
stable points. It is convenient, however, to treat the dir
effect of the finite width of the state on the determinis
evolution in a nonlinear potential as a question of localiz
tion, and the rest as a question of low noise on the traje
ries.
3-4
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CONTINUOUS QUANTUM MEASUREMENT AND THE . . . PHYSICAL REVIEW A 67, 042103 ~2003!
As a second point, it is important to emphasize that
deviations of the quantum trajectories from the classical o
can be different in different parts of the phase space. Ne
theless, in most experimental situations, ‘‘classical’’ quan
ties evaluated are of similar orders of magnitude almost
erywhere, and so we shall ignore these differences
consider them evaluated at a ‘‘typical’’ point around the t
jectory in question.

A. Localization

We start by noting that, in the deterministic part of t
equations of motion, for the quantum mean valuesx andp to
match the classical equations of motion, we need

^F~X!&5F~x!1
1

2
Vx]x

2F~x!1••• ~18!

to very closely approximateF(x). That is, we need

r[U]x
2FVx

2F
U!1. ~19!

ReplacingVx with its typical steady state value@Eqs. ~15!
and ~17!#, we see thatr is the positive solution to

2mk̄2F2

~]x
2F !2

r 22~]xF !5A~]xF !21
\2k̄2

4h
. ~20!

Since this equation implies thatr is a monotonically decreas
ing function of k̄, Eq. ~19! can provide a lower limit fork̄.
We examine this possibility in the following discussion.

Due to the positivity of its right hand side, Eq.~20! im-
plies that at the unstable point]xF.0 we must have

2mk̄2F2r 2.~]x
2F !2]xF. ~21!

This alone means that to haver !1 it is necessary that

k̄2@
~]x

2F !2u]xFu

mF2
. ~22!

Squaring Eq.~20! one sees thatr is the algebraically larg-
est solution of

k̄25
~]x

2F !2

mF2r 4 S ~]x
2F !2\2

16hmF2
1]xFr 2D . ~23!

For this solution to be small would generically require

k̄@
~]x

2F !2\

4AhmF2
, ~24!

except in the typical case of small nonlinearity

~]x
2F !2!

16hmF2u]xFu

\2
, ~25!
04210
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when the width stays small at the stable points independ
of the value ofk.

Since, when the nonlinearity is large enough to violate E
~25!, Eq. ~24! is stronger than Eq.~22!, we can summarize
these results as follows: If the nonlinearity, characterized
]x

2F, is sufficiently weak to satisfy Eq.~25!, then, at the
unstable points (]xF.0) one needs

8hk@A~]x
2F !2u]xFu

2mF2
. ~26!

In the case of strong nonlinearity, we need

8hk@
~]x

2F !2\

4AhmF2
~27!

to hold at all points.

B. Low noise

In this subsection we consider the noise component
these equations. In the classical limit the effect of this no
must be negligible on the scale of the deterministic dyna
ics. To compare the random noise with the deterministic
namics, we need to average over an appropriate time sc
during a timeT in which the dynamics is effectively linear
the noisedW provides a rms contribution ofAT. We will
define ‘‘low noise’’ to mean that the noise contribution o
this time scale is small compared to the deterministic con
bution. The time scales upon which the dynamics is lin
for x andp are those in which the terms in the correspond
equations do not change appreciably, and we will use
deterministic terms to obtain these time scales. The de
ministic motion for x is driven by p/m, so appreciable
changes occur when the change in momentum,Dp, is of the
order of p. The resulting time scale for this change isTx
;up/Fu. The deterministic motion forp is driven by
^F(X)&'F. Changes inF are due to changes inx: in par-
ticular, DF']xFDx. Hence the time scale for changes inF
is Tp;(muFu)/(up]xFu). Demanding that the change inx
and p from the noise is small compared to that due to t
deterministic motion in these time intervals gives the tw
inequalities

Ak̄Vx!
p

m
ATx5A up3u

muFu
, ~28!

Ak̄Cxp!FATp5AmuF3u
up]xFu

. ~29!

We will now examine these two inequalities in turn.
Considering the first inequality, and replacingVx with its

typical steady state value given above, we have

Cxp
ss!

Eupu
uFu

, ~30!
3-5
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BHATTACHARYA, HABIB, AND JACOBS PHYSICAL REVIEW A 67, 042103 ~2003!
whereE5p2/(2m) is the typical energy of the system. No
ing thatEupu/uFu has units of action, to simplify the follow
ing analysis we will now define a dimensionless actions by
s\[Eupu/(4uFu). Conceptually,s may be identified with the
typical action of the system in units of\. Using Eq.~10! to
write Cxp

ss in terms ofk̄ the inequality becomes

AS ]xF

k̄
D 1

\2

4h
!4\s2

]xF

k̄
. ~31!

The positivity of the left hand side immediately gives us t
condition

]xF

\ k̄
,4s. ~32!

Now, squaring both sides of Eq.~31! and rearranging, we
obtain

\2

4h
!16\2s22

8\s]xF

k̄
. ~33!

Because of Eq.~32!, this condition reduces to

s@
1

8Ah
, ~34!

except at the unstable points (]xF.0) where one requires
in addition,

\ k̄

]xF
@

32hs

64hs221
'

1

2s
, ~35!

where the approximate equality is implied by the inequa
in Eq. ~34!.

We now consider the inequality given by Eq.~29!. Re-
placingCxp with its typical steady state value, and perform
ing some rearrangements we obtain

j!4hS s82sgn~]xF !A4s8

j D , ~36!

where for compactness we have written

j[
\ k̄

u]xFu
,

\s8[
mF2uFu

~]xF !2upu
. ~37!

Here s8 is a dimensionless quantity, which we will onc
again take to be an estimate of the typical action of the s
tem in units of\. For ]xF.0, the condition

j!4hS s82A4s8

j D ~38!
04210
s-

is satisfied whenever

16

s8
!j!2hs8, ~39!

whereas, for]xF,0 ~the condition is not useful when]xF
50), it is sufficient that

\ k̄

u]xFu
!4hs8. ~40!

Collecting all the inequalities in this subsection@i.e., Eqs.
~32!, ~34!, ~35!, ~39!, and ~40!#, we find that they are all
implied by

2u]xFu

h s̄
!\k!

u]xFus̄
4

, ~41!

wheres̄[min(s,s8).

C. Faithful tracking

In the previous subsections we have been considering
motion of the centroid of the quantum wave packet, (x,p).
This centroid represents the observer’s true best estima
the mean value of position and momentum at the curr
time, given the measurement record. To obtain this best
timate the observer must know the dynamics of the syst
given byHc.m., and then integrate the full stochastic mas
equation, where the correctdW is obtained continuously
from the measurement record.

In practice, it is often merely the measured value of po
tion that is taken as the estimated value. Hence, we nee
find conditions under which this value tracks the true b
estimate with sufficient accuracy. Since the measurem
record in our formulation contains white noise, the simpl
way to model a realistic macroscopic measuring apparatu
to low-pass filter, orband limit, the measurement record t
obtain the continuous estimate of the position~this is equiva-
lent to making the reasonable assumption that all real m
suring devices have a finite response time!. This is achieved
by averaging the measurement record over some finite t
Dt. To obtain an accurate estimate,Dt must be short com-
pared to the dynamical time scale of the system.

If we assume that the change inx over timeDt is negli-
gible, then the error in the estimate ofx resulting from aver-
aging the measurement recordy(t) over Dt is

sT~x!5~8hkDt !21/2. ~42!

Hence, if to accurately track a classical dynamical system
require a spatial resolution ofDx and a temporal resolution
of Dt, then we must have

8hk>
1

Dt~Dx!2
. ~43!

We also note, however, that in the observation of class
systems, classical estimation theory is, in fact, often use
3-6
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obtain the classical equivalent of the quantum best estim
provided by the SME@Eq. ~3!#. Such a procedure is mos
often used in classical feedback-control applications. In
classical limit, therefore, such classical estimation pro
dures must work effectively, and we will verify this in th
next section.

D. Summary

We have now derived a set of inequalities which, wh
satisfied, lead to the emergence of classical mechanics.
sider first the inequalities that come from the localizati
condition. In the macroscopic regime, which applies to co
mon mechanical devices one would build in the laborato
the right hand side of inequality~25! is extremely large com-
pared to the typical nonlinearity. Consequently, this inequ
ity is satisfied, and the resulting condition fork is given by
~26!. Note that\ does not appear in this inequality. In fac
this is actually a classical inequality, similarly required f
classical continuous measurement in classical systems
that case, the observer’s state of knowledge of the syste
given by a classical probability density in phase space,
this evolves as the system evolves and as information is
tinuously obtained.

If the system is sufficiently small and the nonlinear
sufficiently large on the quantum scale so that inequality~25!
is not satisfied, then the condition fork is replaced by in-
equality ~27!. This does contain\, and is, therefore, a
uniquely quantum condition. It appears due to the unavo
able quantum noise which affects the dynamics strongl
the nonlinearity is large on the quantum scale.

The left inequality in Eq.~41!, again, is a classical cond
tion ~the \ arises because we chose to measure the actis̄
in units of\): it reflects the observation that, if the measu
ment does not localize the motion, the state estimate cha
from moment to moment essentially randomly, or in oth
words, the noise is large. The right hand inequality in E
~41! is the direct effect of the irreducible noise coming fro
the measurement process and is thus a quantum effect
gether, as the action increases, these low noise condition
ever decreasing constraints on the required measure
strength.

The faithful tracking condition is once again purely cla
sical, in that it also applies to classical observation. It
simply the condition on the accuracy of the measuremen
that the measurement record itself, as opposed to the
mated state, accurately tracks the motion of the system f
which the localization condition is derived.

It is worth noting that the above inequalities also det
mine the regime in which multiple observers agree on
motion of an object, which is clearly an important prope
of the classical limit. As discussed in Sec. II, multiple o
servers can be taken into account by giving each observei a
value ofh5h i such that( ih i<1, and giving each a differ-
ent noise realizationdWi . Furthermore, it is clear from the
derivation of the stochastic master equation@23,24# that the
state conditioned by the measurements made by all of
observers is narrower than and consistent~in probability!
with the state estimate of each observer;ipso facto, the esti-
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mates of the different observers must agree within erro
Since the conditions derived in this section can be satis
with h,1 ~even withh!1), and since these imply local
ization and accurate tracking of the measurement record,
der these conditions all observers will agree upon the mo
of the system to within errors small on the classical scale

IV. CLASSICAL ESTIMATION IN THE CLASSICAL LIMIT

When a classical system is subject to noise and cont
ous observation, a classical theory of continuous state e
mation may be developed to describe the continuous ac
sition of information regarding the system@28#. We consider
an observed classical system whose dynamics is given b

S dx

dpD 5S p/m

Fc~x!
D dt1S 0

A2gp dWp
D ~44!

with measurement record

dyc5xdt1
dV

Agm

, ~45!

i.e., we consider a system with purely additive moment
noise being observed continuously and with random err
Here,dWp anddV are Wiener noises withdV possibly cor-
related withdWp , andgp andgm are positive real numbers
Then the evolution of the state of knowledge of the observ
described by a probability densityP(x,p,t) obtained by av-
eraging overdWp and conditioning bydyc , is @28,29#

dP5@2~p/m!]x2~Fc2gp]p!]p#Pdt1Agm~x2^x&!PdW,
~46!

where dW5Agm(x2^x&)dt1dV and turns out to be a
Wiener noise, uncorrelated with the conditional probabil
P. Note that we can then write the measurement record
the classical measurement as

dyc5^x&dt1
dW

Agm

, ~47!

and we see that this can be viewed as directly analogou
the quantum measurement record. The equations of mo
for the classical best estimates^x&c and^p&c , and the second
order moments are

d^x&c5
^p&c

m
dt1AgmVxdW, ~48!

d^p&c5^Fc~X!&dt1AgmCxpdW, ~49!

and

dVx5F 2

m
Cxp2gmVx

2Gdt1AgmKxxxdW, ~50!

dVp5@2gp2gmCxp
2 12]xFCxp#dt1]x

2FKxxpdt

1AgmKxppdW, ~51!
3-7
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dCxp5F 1

m
Vp2gmVxCxp1]xFVxGdt1

1

2
]x

2FKxxxdt

1AgmKxppdW. ~52!

Identifying gm5 k̄ andgp5\2k, we see that these equation
are identical to the quantum equations governing the c
tinuously estimated state@Eqs. ~6!–~10!#, and the only way
that quantum mechanics enters is in enforcing\2gm<8gp .
Even though this is the case, it should be noted that, w
the potential is nonlinear, the equations of motion for t
third and higher cumulants are not the same in the quan
and classical cases, so in general the evolutions of the c
sical and quantum estimates differ. In the classical lim
however, the conditional probability, or the state in the qu
tum case, is Gaussian to a very good approximation so
the third cumulants can be set to zero, and as a result the
longer feed into the equations for the second order cu
lants. Consequently, the evolutions of the classical best
mates and second cumulants are identical to the quan
estimates for the same measurement record, and as a
classical estimation may be used to track dynamical syst
in the classical limit.

V. NUMERICAL EXAMPLES

In this section we provide numerical support for the arg
ments in the previous section. We present two examples,
show that under the conditions derived in the previous s
tions, the quantum wave packet remains localized, the e
lution of the centroid follows the classical motion with ne
ligible noise, and both the measurement record~suitably
band limited! and the classical state estimate accurately tr
the motion of the system for each of a set of observers.

To derive the equation of motion for the wave function
the continuously observed system, assumingN observers,
one can first write down the stochastic Schro¨dinger equation
for the unormalized wave function for a single observer m
ing N measurements. If the interaction strength for measu
ment i is h ik, then this is

duc&5F2
1

\
@ iH ~ t !1\kX2#dt1(

i 51

N

4h ikdri G uc&,

~53!

where the record for each measurement is given by

dri5^X&dt1
dWi

A8h ik
. ~54!

Now we let each observer have access to just one of
measurement records. In addition, we choose( ih i51, so
that h i represents the fraction of the total measurement
teraction strengthk used by each observer. The evolution
the state of knowledge for any particular observer~who only
has access to her measurement record! can be calculated by
averaging over the noise realizations for all the other obs
ers while keeping the measurement record for the observ
question fixed. The resulting equation of motion for the st
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of knowledge of observeri, given the measurement recor
dri generated by the stochastic Schro¨dinger equation~53! is
the stochastic master equation@23,24#

dr52
i

\
@H,r#dt2k†X,@X,r#‡dt1~@X,r#1

22rTr@rX# !A2h ikdVi , ~55!

where

dVi5A8h ik~dri2Tr@rX#dt!. ~56!

Note that this is, in fact, just Eq.~3!, because as far as ob
serveri is concerned all the other observers are simply ga
ering part of the environment to whichi has no access. In
addition, the fractionsh i are the respective measurement
ficiencies.

To simulate multiple observations on a given system,
first integrate the stochastic Schro¨dinger equation, which
generates a set of measurement records, one for each
server. We then integrate the corresponding stochastic ma
equations using the measurement record for each obse
The state of knowledge of each observer over time can t
be compared to the ‘‘actual’’ evolution of the system sta
vector given by Eq.~53!. The stochastic Schro¨dinger and
master equations were integrated in time using the spe
split-operator method. Since the classical limit is obtain
when the extent of the wave function is small compared
the range of motion of the centroid, the algorithm is design
so that the computational grid follows the wave function
both position and momentum space, and this is crucial
efficient computation.

In treating systems of different sizes and actions it is c
venient to choose units for the system variables to keep
numerical value of the action close to unity. Due to th
system dependent choice of units, the fixed quantity\ has a
system dependent numerical value; and indeed we expec
classical limit when\!1 in these units. This is what we
demonstrate below.

A. The Duffing oscillator

The Duffing oscillator is a sinusoidally driven double
well potential, with Hamiltonian

H~ t !5
P2

2m
1BX42AX21LXcos~vt !. ~57!

We choosem51, A510, B50.5, L510, andv56.07. At
times when the driving is zero, this puts the minima of t
two potential wells at;63.2, with a central barrier heigh
of 50. We choose\51025 andk5105, which is sufficient to
satisfy the inequalities derived in Sec. III for all but tin
values ofh, and therefore puts the system in the classi
regime. We now evolve the system with three observers,
set their measurement efficiencies to be 0.5, 0.3, and
respectively. We first calculate the position varianceVX of
the wave function given by evolving Eq.~53!, and verify that
this remains sufficiently small. Running the simulation for
3-8
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duration of t55, the maximum value ofAVX is 2.7
31023, and the rms value over the evolution is 1.431023.
The localization condition is therefore well satisfied, and
inspection of the evolution of the centroid shows that
noise is indeed negligible. Showing that the evolution is
deed the classical evolution is more nontrivial since the s
tem is chaotic: any small difference in the noise on the t
trajectories will cause them to diverge rapidly, and one c
not therefore simply compare the trajectory to the equiva
noise-free classical trajectory. In Ref.@14#, the classical dy-
namics was verified by comparing the stroboscopic map
the largest Lyapunov exponent obtained from the quan
evolution and their classical equivalents. Here we calcu
the continuously estimated states, both quantum and cla
cal, for the different observers, and show that these ag
and agree between observers.

We now calculate the quantum state estimate for e
observer, obtained by integrating Eq.~55!, and compare this
with the classical~Gaussian! estimate for each observer, ob
tained by integrating Eqs.~48!–~52!. In Fig. 1 we plot the
uncertainty in position ~characterized by AVX

5ATr@rX2#2Tr@rX#2) for the quantum state estimated b
each observer over the duration of the run. All these rem
small. The rms ofAVx for each observer over the duration
the run is given in Table I. The evolution of the uncertain
in position for the Gaussian state estimate is essentially id

FIG. 1. The standard deviations of the state estimates for eac
the three observers for the Duffing oscillator, plotted over a dura
of t55. Solid line, observer withh50.5; dashed line, observe
with h50.3; dash-dotted line, observer withh50.2.

TABLE I. The rms standard deviation of state estimates for
Duffing oscillator and the rms deviation of the averaged meas
ment record.

Observer’sh h50.5 h50.3 h50.2

Quantum 1.931023 2.331023 2.631023

Gaussian 1.931023 2.331023 2.631023

Averaged record 8.231023 9.331023 1.131022
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tical to the quantum estimate, and the rms ofAVX for this
estimate is also given in Table I. Note that the position va
ances for each observer are, as expected, larger than the
ance of the wave function calculated using the stocha
Schrödinger equation. Since the solution to Eq.~53! can be
viewed as an ‘‘unraveling’’ of the stochastic master equat
in Eq. ~55!, the difference between the variances of t
‘‘true’’ state estimate from the former and the individual o
servers’ state estimate from the latter provides an estimat
the amount by which their means differ, averaged over no
realizations for all the observers. We will refer to this, f
want of a better name, as the error variance, and its sq
root as the ‘‘error standard deviation.’’ The rms value of th
error standard deviation is 1.231023, 1.731023, and 2.1
31023 for observers withh50.5, 0.3, and 0.2 respectively
for both the stochastic master equation and Gaussian s
lations. In Fig. 2 we plot the evolution of the error standa
deviation, and also the actual difference between the e
mated mean and the mean of the wave function, for both
master equation simulation and the Gaussian estimator.
small difference between these last two is most probably
solely to the fact that the mean of the computationally inte
sive master equation simulation has not completely c
verged at the value of the time step employed.~This differ-
ence is not seen for the computationally simpler delta-kick
rotor system discussed in the next subsection.!

Each observer may also track the position simply by
eraging her measurement record over a suitable time pe
~i.e., by low-pass filtering the measurement record!. Natu-
rally this period should be as long as possible so as to fi
out the noise, but short enough so as not to filter out
deterministic motion. For this system we use a time period
2.531022 for the filtering. The average rms deviation of th
estimate from the mean position of the wave function is a
given in Table I for each observer. From this we see that
observers can effectively track the motion of the particle~up
to an error in position of about 1022) using their measure
ment records directly.

B. The d-function-kicked rotor

The d-function-kicked rotor obeys the Hamiltonian

H~ t !5
P2

2m
1kcos~X! (

n50

`

d~ t2n!. ~58!

It is, thus, a free particle, which experiences regular kic
from the potential of a nonlinear pendulum. For a wide ran
of parameters, the quantum behavior of this system~by
which we mean the evolution of the closed system! is very
different from the classical motion. In particular, after a fe
kicks the average energy of the closed classical system
creases linearly with time. In the closed quantum syste
however, the average energy reaches a maximum value
after that point remains fairly constant. This is termed d
namical localization. We now simulate the evolution of t
observed wave function for this system, with the same val
of \ andk as we used for the Duffing oscillator, and with th
same three observers. For the system parameters we

of
n

e
e-
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FIG. 2. ~Color! Plot of the error standard deviation~blue! and the difference between the estimated and true means for a single
realization~red! for the simulation of the Duffing oscillator using the stochastic master equation withh50.5. The green and magenta curv
plot the same quantities for the Gaussian estimator.
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choosek510 andm51, and integrate for a time period o
30 kicks. First we check the localization of the wave functi
given by integrating the stochastic Schro¨dinger equation, and
find that the average value ofAVX is 2.131023, and the
maximum value obtained during the run is 3.231023. We
check that the mean energy is indeed behaving in a clas
fashion by averaging this energy over many realizations
comparing this to the classical value. In Fig. 3 we plot t
average energy of the observed quantum system, usin\
50.1 andk510, along with both the classical result and t
quantum result for\50.1.

We next compare the position uncertainties in the s
estimates of the different observers, as above for the Duf
oscillator, and present these results in Table II. The Gaus
estimator agrees with the stochastic master equation, an
uncertainties are small, so that the observers effectively
agree on the motion. The averaged measurement record
tracks the motion effectively. The rms value of the error st
dard deviation is 1.931023, 2.931023, and 3.731023 for
observers withh50.5, 0.3, and 0.2, respectively. In Fig.
we plot the evolution of the error standard deviation for t
observer withh50.5 and also the actual difference betwe
the estimated mean and the mean of the wave function f
04210
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a

FIG. 3. The average kinetic energy for thed-function-kicked
rotor as a function of time. The classical value is obtained by av
aging over 10 000 trajectories. The observed quantum value
obtained by averaging over 1000 trajectories.
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CONTINUOUS QUANTUM MEASUREMENT AND THE . . . PHYSICAL REVIEW A 67, 042103 ~2003!
single realization of the stochastic master equation sim
tion. The equivalent plots for the Gaussian estimator are
tually indistinguishable.

To conclude, we see from the above simulations that~i! in
the classical regime the full quantum state estimation redu
to Gaussian state estimation, and hence classical state
mation may be used,~ii ! even without the use of true~and
therefore optimal! state estimation, low-pass filtering of th
measurement record alone provides adequate tracking o
system, and~iii ! since the errors in the respective estima
are small, all observers effectively agree upon the motion
the system.

TABLE II. Average deviation of state estimates for th
d-function-kicked rotor and the rms deviation of the averaged m
surement record.

Observer’sh h50.5 h50.3 h50.2

Quantum 2.931023 3.631023 4.331023

Classical 2.931023 3.631023 4.331023

Averaged record 8.631023 1.031022 1.131022
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VI. CONCLUSION

The emergence of classical dynamics remains a cen
issue in understanding the predictions of quantum mech
ics, especially now that experiments are becoming availa
to probe this transition directly@16#. In this paper, by deriv-
ing general inequalities which determine when classical m
chanics will emerge, and by providing numerical exampl
we have presented very substantial evidence that quan
measurement theory provides a completely satisfactory
swer to the question of how classical mechanics, and he
classical chaos, emerges in a quantum world. In doing so
have shown in some detail how the mechanism for this tr
sition can be understood as a result of localization and n
suppression in the classical regime.

While the emergence of classical dynamics for a sin
motional degree of freedom now appears to be well und
stood, the quantum to classical transition as yet holds m
unanswered questions. What happens, for example, to
dynamics of a system as it passes ‘‘through’’ the transitio
How do systems behave when they are neither fully quan
nor fully classical? For example, it is known that th

-

noise
FIG. 4. Plot of the error standard deviation~smooth curve! and the difference between estimated and true means for a single
realization~jagged curve! for a simulation of thed-function-kicked rotor using a stochastic master equation withh50.5. The results for the
Gaussian estimator are indistinguishable on this scale.
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d-function-kicked rotor demonstrates a complex behavio
the transition region@30#. Further questions include how
classical dynamics emerges for other degrees of freed
such as spin, and what happens, for example, when spin
motional degrees of freedom are coupled? Must all the s
systems have a large action~we note that this has recentl
ri,

tic

e

.
et
d
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been investigated; see@31#!, and must all the degrees of free
dom be continuously measured, or will a subset suffice?
a spin system, must one measure all the components of
or will a single component suffice? Fortunately, we are n
at the point where one can not only pose these questions
expect that solid answers will soon be forthcoming.
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