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While ultimately they are described by quantum mechanics, macroscopic mechanical systems are neverthe-
less observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining mac-
roscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a
process referred to as the quantum to classical transition. Extending previougBhatkacharya, Habib, and
Jacobs, Phys. Rev. Le®5, 4852(2000], here we elucidate this transition in some detail, showing that once
the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics
indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in
which classical motion is obtained, and provide numerical examples. We also demonstrate two further impor-
tant properties of the classical limit: first, that multiple observers all agree on the motion of an object, and
second, that classical statistical inference may be used to correctly track the classical motion.
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I. INTRODUCTION subjects the system to noise and damgi2@] (as a conse-
quence all real classical systems are subject to noise and

Macroscopic mechanical systems are observed to obeyamping — even if smal] and second, the environment pro-
classical mechanics to within experimental error. Howeveryides a means by which information about the system can be
the atoms that ultimately make up these systems certainlgxtracted(effectively continuously if desired providing a
obey quantum mechanics. Therefore, the question of how theeasurement of the systgih—8|.
observed classical mechanics emerges from the underlying Two levels of description have been used to discuss the
guantum mechanics arises immediately. This emergence, r@CT. The first utilizes the decoherence resulting from tracing
ferred to as the quantum to classical transition, is particularlyver the environment to suppress quantum interferg@icét
curious in the light of the fact that the equations of motionis assumed that no dynamical information about the indi-
for the trajectories of classical mechanics are nonlinear, andidual system has been extracted from its environment. In
can therefore exhibit chaos, whereas even a proper quantifinany circumstances this alone can lead to an effectively
cation of chaos in quantum mechanics has been difficult telassical evolution of a phase space distribution function
obtain[1]. [10]. As mentioned above, a more fine-grained description is

Note that the task of explaining the quantum to classicahchieved when the environment is taken to be a meter that is
transition (QCT) is essentially a practical question: it is a continuously monitored, leading to a “quantum trajectory
question of explaining why real systems, such as nonlineaiinraveling” of the system density operator conditioned on
pendulums, baseballs, and other systems that can be built attte measurement record. If one averages over all possible
observed in the laboratory obey classical mechaf@it$east measurement results, the description reverts to that at the
to within any experimental errprlit is not a question of |evel of phase space distributions. However, the fine-grained
obtaining classical mechanics precisely as a formal limit ofdescription, which explicitly incorporates monitoring of the
guantum mechanics. In fact, due to the absence of chaos #hvironment, is required to understand the QCT at the level
closed quantum systerfis] and the noncommutativity of the of extracting classical trajectories from the quantum sub-
twin limits A—0 (the semiclassical limitand t—« (the strate.

long-time limit necessary to describe chposfforts to ex- An example of an environment that naturally provides a
tract classical chaos as a formal limit have been less thameasurement is that of the electromagnetic field which sur-
successful. rounds the system. Monitoring this environment consists of

If one describes macroscopic objects sufficiently realisti-focusing the light that is reflected from the system, allowing
cally using quantum mechanics, then it should be possible tthe motion to be observed. If the environment is not being
predict the(often chaoti¢ trajectories of classical dynamics. monitored, then the evolution is simply given by averaging
In order to do this, it is important to realize thall real  over all the possible motions of the system. Classically this
classical systems are subject to interaction with their envimeans an average over any uncertainty in the initial condi-
ronment. This interaction does at least two things. First, itions and over the noise realizations. However, in the ab-

sence of explicit observatiotmonitoring the environment
and recording the evolutignt is impossible to obtain clas-

*Electronic address: tanmoy@lanl.gov; sical trajectories: the system must be described by an ever
URL: http://t8web.lanl.gov/t8/people/tanmoy/ broadening probabilityor pseudoprobabilitydistribution in
"Electronic address: habib@lanl.gov; phase space. This is an experimental truism, and therefore
URL: http://t8web.lanl.gov/t8/people/salman/ applies regardless of whether the system is being treated by a
*URL: http://t8web.lanl.gov/t8/people/kaj/ classical or quantum mechanical theory.
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Since all classical systems are subject to environmentakhere p; are the momenta of the internal modes, afd
interactions, and since measurement is necessary to dedugiees the strength of the coupling between the center of mass
the trajectories of classical motion, it may be expected thaand the internal degrees of freedom. The center of mass now
such environmental interaction, and the associated measuresenstitutes effectively an open system interacting with an
ment process, will need to be included in a treatment that ienvironment consisting of a large number of harmonic oscil-
adequate enough to predict the emergence of classical mtators with a correspondingly large range of frequencies. This
tion from quantum mechanics. Indeed, recent work by &s the starting point for a treatment of quantum Brownian
number of authors has made it increasingly clear that thisnotion, as developed by Caldeira and Legdeft Under
provides a natural explanation for the emergence of classicgleneral conditions, the phonon environment can be treated as
motion, and, therefore, a resolution of the problem of thea heat bath, and in the double limit of weak coupling to this
emergence of classical chddd-15. Fortunately, the quan- bath and high temperature, it is possible to write a very
tum theory of environments and continuous measurement isimple master equation for the center-of-mass maof&jn
now sufficiently well developed that their effects can be
treated in a fairly straightforward manner, the emergence of , i
classical dynamics verified, and the mechanism of the quan- p==7[Hem(X,P),p] = Ken [X,[X,p]], )
tum to classical transition elucidated.

Detailed studies of the QCT are particularly timely be- ) . .
cause current experiments in quantum and atomic optics anfn€r€Ken, is determined by the; and the temperature. This
condensed matter physics are beginning to probe this trandprovides a simple description of the effe.cts of_the internal
tion directly in both ensemble and individual system case&l€drees of freedom upon the macroscopic motion of an ob-
[16]. Our approach here is to present a general formalism fo!reCt for which fnctpna! effects.art'a'negllglble, gnd the heat-
understanding the transition: more focused analyses apprdld dué to the noise is not significant over time scales of

priate to specific experimental situations can easily be devefNt€rest. If one wanted to treat damped classical systems,
oped based on this general approach. then one would relax the weak coupling approximation so as

In the following we examine the QCT in some detail. In to give a master equation that explicitly contains damping.

Sec. Il, we examine how macroscopic systems may p&lowever, for simplicity, we will restrict our attention here to
treated, including environmental interactions and measureqlass'caI Hgmlltonlan sys_tems. .
ment. In Sec. Ill, we derive inequalities that describe the ANOther important environment that we need to consider

ds the quantum electromagnetic field. This interacts with the
show that, in addition, classical state estimation will work in ©Pi€ct, and provides a natural mechanism for measurement
the classical limit. In Sec. V, we provide two specific numeri-°f the center-of-mass positioX. In general, macroscopic
cal examples showing that classical motion is indeed obobjects are bathed in light from all directions, and the light

tained in the regime predicted in Sec. Ill. We finish with that is reflected may be monitored by a large number of
some concluding remarks in Sec. VI. observers. Since we are considering a one-dimensional sys-

tem, and since we wish to use the simplest description which

captures the essential aspects of the measurement process,
Il. DESCRIBING THE MOTION OF MACROSCOPIC we restrict ourselves to interaction with an electromagnetic
OBJECTS field in one dimension. In particular, we consider a laser

) o reflected from the object such that the phase shift provides
A macroscopic object is composed of a very large numbeformation aboutX. Performing an analysis of such a mea-

of quantum degrees of freedom. For example, we can consyrement, one finds that the evolution of the system, condi-
sider the motions of the atoms that comprise a massive ol;oned upon the measurement record, may be written as a

ject, and these are all coupled together by the interatomigiychastic master equatigBME) in the Ifo formalism[17]
forces. The equations of classical mechanics are supposed 59[18,193

describe the dynamics of macroscopic quantities, such as the

center of mass; classical motion is not observed in the entire i

many-particle phase space. Hence, one should consider adp=—[—[Hcm(X,P),p]+k([XTX,p]+—2XpXT)]dt
change of variables, so as to write a Hamiltonian in terms of h o

the center-of-mass coordina¥e(with conjugate momentum \/f

P). This coordinate is coupled to all the other coordinates e Ty _ t

(in a solid we might refer to these as the internal phonon * 2 {(Xp+pX1)=p Tr p(X+XD)idW
modes, for example Under the assumption that none of

regime under which classical motion emerges. In Sec. IV, w

these environmental modes is strongly perturbed by the dy- i
namics, it is sufficient to treat them as harmonic oscillators, = —[%[Hc_m.(X,P),p]-l- k[X,[X,p]]]dt
and to couple them to the center-of-mass motion via the
Hamiltonian[2,3] \/‘i
+5AXple —2p Tr pX}dW, 3

1 K|
H=Hcm(X,P)+ > | 5—p?+ = (x—X)?|, 1
e ) 2." 2m i 2 (Xi=X) @ where the observed measurement record is given by
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1 forces on the system are spatially dependent. In fact, other
dy=Tr pXdt+ —=dW. (4) authors have provided numerical support for this view by
\/f showing that quantum state diffusidnsing a measurement
interaction which includes dampinp@l1] or a simultaneous
In these equations|W is a white noise generating a Wiener measurement of position and moment[it] is sufficient to
processk gives the strength of the interaction between theinduce the QCT in the same manner.
light and the object and is proportional to the power of the If the correct classical mechanics is to be obtained, two
laser, whereak gives the rate at which information about the conditions need to be sat|sf|_ed. First, it must be possible to
system is obtained. When no information is obtairied., observe the system so that Its center O.f. massl all othgr
— . . degrees of freedom considered classidal known suffi-
k=0), or if the measurement record is avera_lged Over, th%iently accurately on the scale of the potential and relevant
stochgstlc master equati¢®) reduces to the ordinary master dynamical time scales. Second, these observed values, which
equation(2). _ we might identify as noisy counterparts of the means of the
The ratio n=k/8k, called the efficiency of the measure- syfficiently well localized distributionx=(X) and p=(P),
ment([8], is a measure of the fraction of the reflected lightshould evolve according to the classical Hamiltonian
that is aCtually detected by the observer in making the mea:'c.m.(xlp) which has the same functional form as the quan-
surement. As will Ee clear from our discussion in Sec. I, {ym HamiltonianH, ,(X,P), with deviations small com-
although bottk andk arise from the interaction of the system pared to the classical scales. In other words, the existence of
with the measurement environment, they play very differenthe quantum to classical transition implies that in the classi-
roles: whereadi?k represents a noise on the system thatcal limit we can replace the quantum operators with effective

leads to spreading out in phase spacprovides information ~ classical dynamical variables,
about the system leading to localization around individual

trajectories. The fact that Eq3) leads to a(completely H(X,P)—H(x,p). ®)
positive evolution for all initial conditions if and only i

<1 [20] is a particular case of the general information- |||, INEQUALITIES GOVERNING THE CLASSICAL
disturbance principles in quantum mechanics: any process LIMIT

that leads to information about a system must produce at o )

least a minimal unavoidable disturbance. We now seek for the parameter regime in which the evo-

If there exist multiple observers dividing the available re-!ution reduces to classical motion. As explained in the previ-
flected light up among them, then each sees an evolutioRUS Section th|s_means that the quantum dlstr|but|on_ remains
with a value of ;<1 (and, for positivity,S; <1, with a suff|0|gntly Iocqhzed(such that th(_a system can be said to be
different noise realization for each obsery2t]. This is cer- €Xecuting a trajectody and that this trajectory, c_haracterlzed
tainly the case in reality, where each observer usually cagly X=(X) andp=(P), follows that of the classical motion,
tures only a small fraction of the available light. In the re- 9enerated bHcm(x,p). _ _
gime in which classical motion is obtaingd/hich we will We proceed by first writing down the equations of motion
refer to as thelassical limib, all observers must agree on the for the first and second moments Xfand P. From Eq.(3)
motion of the system to within experimental error, and wethese become
consider this question at the end of the next section and in 0
our numerical examples. _Pr

Since the form of the equation resulting from interaction dx de \/vadw’ ©®
with the internal modes is the same as that which results
from failing to monitor the [ight that is beir}g used to prpbe dp=(F(X))dt+ \/?Cxde, @)
the system, we can take this environment into account in the
same way that we take multiple observers into account, thaj,q
is, by taking an appropriate value @f<1. (The measure-
ment constank is then adjusted to include the contribution 2 _
from Kepy ) dV,= [acxp— kv?2

The stochastic master equati(@) constitutes our descrip-
tion of the evolution of the center of mass of a macroscopic o = 5
object. In the following we will show that this description, dVp=[27"k=kCp+20,F Cypldi+ oxF Ky dt
while very simple, is sufficiently realistic to obtain the cor- \/:
rect classical motion in the classical limit. It should also be + VKK opd W, ©)
noted that, while we have chosen to measure the postjon
the analysis which follows suggests that the extraction of the
classical limit is not sensitive to the precise observables that
are measured; as long as the measurement provides sufficient
information about the location of the system in phase space, + \/?prpdw, (10
the classical limit will be obtained. For example, a continu-
ous measurement of momentum will suffice, as long as thevhere

dt+ VKK dW, ®)

1 o 1
ACyp=| V=KV, Cop P V| dt+ 5 35F K it
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Vx=<X2>—<X), (11 density functions are completely positive, and, therefore, not
only does the covariance matrix stay positive, but also these
V,=(P%)—(P), (120  equations can be completed into a hierarchy of cumulant
equations that automatically satisfy the appropriate reality
1 conditions. Furthermore, as discussed in Sec. I, such a mea-
CXp:§<XP+ PX)—(X)(P) 13 surement process leads to the unavoidable noise proportional

to 722k apparent on the right hand side of E); in contrast,
are the second cumulants, and Kis are the third cumulants in the classical discussion in Sec. 1V, the corresponding noise

defined by term is unrelated to the measurement process and can even
be set to zero. In fact, the truncation to the second cumulants
Kabc=(:ABC:) = (AB:)(C) = (A)(:BC:) = (:AC:)(B) implies that no truly quantum effects of dynamics come into
+2(AXB)C), play [25] in our approximation, and the quantum scéle

appears in our equations purely from this information-

whereA,B,C can beX or P, and the colons denote Weyl disturbance consideratid@6]. - o
ordering of the operator products. In the above equations we e will make two self-consistent approximations in order
use the simplified notatioR=F(x)=F((X)) and expandc 0 eéxamine in what regime classlcal dynamics emerges. The
in a Taylor series abouX=x truncated to second order. firstis to truncate the power seriesfito second order. The

Without this truncation, higher derivatives Bfwould appear ~Second is to neglect third and higher cumulants in the equa-
in the equations fov,, andC,,, multiplied by higher pow- tions for the _second cumul_ants. An examination _of the equa-
ers of the widths or by higher cumulants. Truncating thetions of motion for the third cumulants appearing in Egs.
power series foFF in this way is a good approximation so (8)—(10) shows that indeed these are damped by the mea-
long as the distribution is sufficiently localized abowgndp.  surement, again with damping coefficients proportiond.to
Examining Eq(6), one sees that to maintain classical motionThe fact that the wave function stays close to Gaussian is
for x one needgF(X))~F(x), which happens when the also borne out by numerical simulatioffs4].

system is localized enough so thétd,F(x)<2F(x). It is Setting the third cumulants to zero in the equations for the
the task of the measurement to maintain such localizatiorgecond cumulants, we solve for the stable steady state:

and numerical studiggd.4] have shown that it can indeed do

SO. 2CSs
At this point, it is perhaps instructive to look at the origin VSS= — (15)
of localization of the individual trajectories. The density ma- m

trix obtained by solving Eq(3) is conditioned on the mea-
surement record Ed4), or, equivalently, on the noise real-
ization dW. Averaging over these realizations results in the
density matrix of the unobserved system which can also be

V3=mVE(KCE— F), (16)

obtained by solving Eq.(2). The second cumulants F a.F 2 p2
0% 0%, andas, of that distribution are related to the cor- Cip=——tsgnm) (T) o 17
responding cumulants for each trajectory by the relations k k K
o)Z(X:(VX}WJr vary(X,X), where sgnin) is the sign ofm, which we shall henceforth
) take to be positivg27], andd,F is taken to be evaluated at a
pr=<Cxp>w+Vafw(X.p), typical point in phase space. Now, there are three conditions
that must be satisfied in order for the classical limit to be
a§p=<vp>w+varw(p,p), (14  obtained. First, localization such thed,F(x) <2F(x), as

discussed above, must be maintained; second, the noise in-

where(- )y and vag,(-,-) represent, respectively, the meanstroduced by the measurement should be negligible compared
and (co)variances of the quantities, when considered as disto the classical motion; and third, the measurement record
tributions over trajectories. The Wiener process damps thghould follow the motion of the position with sufficient ac-
first term on the right hand side of each equation by a termguyracy.
proportional to—k, at the same time compensating this with  Before examining these conditions in turn, two points are
a growth of the last term in each equation. As discussed iin order. First, localization and low noise are not really inde-
Sec. 1V, this is precisely the way in which classical measurependent constraints: in fact, to provide effective damping for
ment also selects well defined trajectories out of an ensemblie covariance matrix, the noise has to increase with increas-
spreading out in phase space. ing width of the state. Conversely, noise also effects a spread

At the level of these second cumulants, the exact form ofn phase space of any uncertain state, especially near un-
the damping is thus immaterial. The fact, however, that westable points. It is convenient, however, to treat the direct
derived these from the stochastic master equat®)nnot  effect of the finite width of the state on the deterministic
only gives us a theoretical “unraveling” of the master equa-evolution in a nonlinear potential as a question of localiza-
tion, but also provides a physical meaning to each trajectorytion, and the rest as a question of low noise on the trajecto-
Furthermore, it guarantees that the underlying evolutions ofies.
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As a second point, it is important to emphasize that thevhen the width stays small at the stable points independent
deviations of the quantum trajectories from the classical onesf the value ofk.
can be different in different parts of the phase space. Never- Since, when the nonlinearity is large enough to violate Eq.
theless, in most experimental situations, “classical” quanti-(25), Eq. (24) is stronger than Eq22), we can summarize
ties evaluated are of similar orders of magnitude almost evthese results as follows: If the nonlinearity, characterized by
erywhere, and so we shall ignore these differences aneF, is sufficiently weak to satisfy Eq25), then, at the
consider them evaluated at a “typical” point around the tra-unstable points{,F>0) one needs

jectory in question.

A. Localization

We start by noting that, in the deterministic part of the

equations of motion, for the quantum mean valwesdp to
match the classical equations of motion, we need

1
(FOO)=F(x)+ 5 VydiF () + - (18
to very closely approximaté(x). That is, we need
O2FV,
r= >F (19

ReplacingV, with its typical steady state valuydgs. (15)
and(17)], we see that is the positive solution to

2mieF? | o / o2 112k
(19)2<F)2r _(0x )_ ((9)( ) +W-

(20

Since this equation implies thais a monotonically decreas-

ing function ofk, Eq. (19) can provide a lower limit fok.

We examine this possibility in the following discussion.
Due to the positivity of its right hand side, E(0) im-

plies that at the unstable poiafF>0 we must have

2mICF2r2>(92F)24,F. (22)

This alone means that to have1 it is necessary that

—_ (5F)?oF|
>\

k? = (22

Squaring Eq(20) one sees thatis the algebraically larg-
est solution of

o 22 2 2h2
_(5F) ((cm 23

k?= Fr2|.
mFxr4 | 16pmF2 )

For this solution to be small would generically require

ks (5 (24)
> T o
4\/pmF?
except in the typical case of small nonlinearity
169mF2|9,F|
202 X
(9gF)°< Py , (25

[(32F)2 o,F|
8rk> \ | —————.
g 2mF?

(26)
In the case of strong nonlinearity, we need
(9;F)%h
8nk> ——— 2
K> TomP? (27)
to hold at all points.
B. Low noise

In this subsection we consider the noise component of
these equations. In the classical limit the effect of this noise
must be negligible on the scale of the deterministic dynam-
ics. To compare the random noise with the deterministic dy-
namics, we need to average over an appropriate time scale:
during a timeT in which the dynamics is effectively linear,
the noisedW provides a rms contribution of T. We will
define “low noise” to mean that the noise contribution on
this time scale is small compared to the deterministic contri-
bution. The time scales upon which the dynamics is linear
for x andp are those in which the terms in the corresponding
equations do not change appreciably, and we will use the
deterministic terms to obtain these time scales. The deter-
ministic motion for x is driven by p/m, so appreciable
changes occur when the change in momentAim, is of the
order of p. The resulting time scale for this changeTg
~|p/F|. The deterministic motion forp is driven by
(F(X))=~F. Changes irF are due to changes i in par-
ticular, AF~d,FAx. Hence the time scale for changesHn
is To~(m|F|)/(|pdxF|). Demanding that the change i
and p from the noise is small compared to that due to the
deterministic motion in these time intervals gives the two

inequalities
VkV <P = \/—l P’ (28)
X“m' X m|F|’
= m|F~|
kCXp< F \/sz W (29

We will now examine these two inequalities in turn.
Considering the first inequality, and replacixg with its
typical steady state value given above, we have

Elp|

Cep< IR (30)
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whereE = p?/(2m) is the typical energy of the system. Not- is satisfied whenever

ing thatE|p|/|F| has units of action, to simplify the follow-

ing analysis we will now define a dimensionless actidny

sh=E|p|/(4|F|). Conceptuallys may be identified with the

typical action of the system in units &f. Using Eq.(10) to

write Cii, in terms ofk the inequality becomes whereas, forg,F <0 (the condition is not useful wheaF
=0), it is sufficient that

aF\ h? a.F _
— | + —<4hs— —. (31 hk
k | 47 k = <47s’. (40)

|9xF|

16
—,<§<277$’, (39
S

The positivity of the left hand side immediately gives us theCoIIecting all the inequalities in this subsectifice., Egs.

condition (32, (34), (39), (39), and (40)], we find that they are all
o F implied by
——=<4s. (32 _
ik 2| dF]| |0yF|s
— <fik< 7 (41
Now, squaring both sides of E¢31) and rearranging, we 7S
obtain —
wheres=min(s,s’).
2 , , 8hsd,F
— <16h°s"— 03 (33 C. Faithful tracking
In the previous subsections we have been considering the
Because of Eq(32), this condition reduces to motion of the centroid of the quantum wave packet,p{.
This centroid represents the observer’s true best estimate of
1 the mean value of position and momentum at the current
s> 8y’ (34 time, given the measurement record. To obtain this best es-
7 timate the observer must know the dynamics of the system,

given byH_ ., and then integrate the full stochastic master
equation, where the corredtW is obtained continuously
from the measurement record.
P 32 In practice, it is often merely the measured value of posi-
7S 1 . : ;
>~ —, (35  tion that is taken as the estimated value. Hence, we need to
axF 647s’>—1 2s find conditions under which this value tracks the true best
estimate with sufficient accuracy. Since the measurement
where the approximate equality is implied by the inequalityrecord in our formulation contains white noise, the simplest
in Eq. (34). way to model a realistic macroscopic measuring apparatus is
We now consider the inequality given by E@9). Re-  to low-pass filter, otband limit the measurement record to
placingC,,, with its typical steady state value, and perform- obtain the continuous estimate of the posititiis is equiva-

except at the unstable pointg,F>0) where one requires,
in addition,

ing some rearrangements we obtain lent to making the reasonable assumption that all real mea-
i suring devices have a finite response tinhis is achieved
S by averaging the measurement record over some finite time
<4yl s — F)\/— y ( _
¢ 77<s SgrdxF) 13 ) (36 At. To obtain an accurate estimatet must be short com-
. pared to the dynamical time scale of the system.
where for compactness we have written If we assume that the changeirover timeAt is negli-
_ gible, then the error in the estimate ofesulting from aver-
£= fik aging the measurement recoy(t) over At is
o Fl”
|94F] or(X)=(87kAt) 12, (42)
2 . . .
o= mF|F| 37) Hence, if to accurately track a classical dynamical system we
(34F)?|p| ' require a spatial resolution dx and a temporal resolution

of At, then we must have
Here s’ is a dimensionless quantity, which we will once
again take to be an estimate of the typical action of the sys-

tem in units ofa. For d,F>0, the condition 87k= At(Ax)z' (43)
g<dn|s — 4_3’ (39) We also note, however, that in the observation of classical
7 & systems, classical estimation theory is, in fact, often used to
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obtain the classical equivalent of the quantum best estimatesates of the different observers must agree within errors.
provided by the SMHEEGq. (3)]. Such a procedure is most Since the conditions derived in this section can be satisfied
often used in classical feedback-control applications. In thevith »<1 (even with »<1), and since these imply local-
classical limit, therefore, such classical estimation proceization and accurate tracking of the measurement record, un-
dures must work effectively, and we will verify this in the der these conditions all observers will agree upon the motion
next section. of the system to within errors small on the classical scale.

IV. CLASSICAL ESTIMATION IN THE CLASSICAL LIMIT
D. Summary

We have now derived a set of inequalities which, when When a classical system is subject to noise and continu-
satisfied, lead to the emergence of classical mechanics. CoYS observation, a classical theory of continuous state esti-
sider first the inequalities that come from the localization™ation may be developed to describe the continuous acqui-
condition. In the macroscopic regime, which applies to comSition of information regarding the systel28]. We consider
mon mechanical devices one would build in the laboratory@n observed classical system whose dynamics is given by

the right hand side of inequalif{25) is extremely large com-

) . . T dx p/m 0
pared to the typical nonlinearity. Consequently, this inequal- — dt+ (44)
ity is satisfied, and the resulting condition flois given by dp F(X) V29, dW,

(26). Note thatz does not appear in this inequality. In fact, .
this is actually a classical inequality, similarly required for With measurement record
classical continuous measurement in classical systems. In
that case, the observer’s state of knowledge of the system is dv.=xd d_V
) ; i~ e ye=xdt+ : (49)
given by a classical probability density in phase space, and \/%

this evolves as the system evolves and as information is con-
tinuously obtained. i.e., we consider a system with purely additive momentum

If the system is sufficiently small and the nonlinearity noise being observed continuously and with random errors.
sufficiently large on the quantum scale so that inequéy  Here,dW, anddV are Wiener noises witdV possibly cor-
is not satisfied, then the condition féris replaced by in- related withdW,, andg, andg,, are positive real numbers.
equality (27). This does contairnk, and is, therefore, a Then the evolution of the state of knowledge of the observer,
uniquely quantum condition. It appears due to the unavoiddescribed by a probability densig(x,p,t) obtained by av-
able quantum noise which affects the dynamics strongly iraging overdW, and conditioning bydy, is [28,29
the nonlinearity is large on the quantum scale.

The left inequality in Eq(41), again, is a classical condi- dP=[—(p/M)d,—(F = 0pdp) dp]Pdt+\gm(x—(x)) PdW,
tion (the 7 arises because we chose to measure the astion (46)

in units of2): it reflects the observation that, if the measure-yhere dw=\/g,(x—(x))dt+dV and turns out to be a
ment does not localize the motion, the state estimate chang§iener noise, uncorrelated with the conditional probability

from moment to moment essentially randomly, or in otherp Note that we can then write the measurement record for
words, the noise is large. The right hand inequality in EQ.the classical measurement as

(41) is the direct effect of the irreducible noise coming from

the measurement process and is thus a quantum effect. To- W

gether, as the action increases, these low noise conditions put dy.=(x)dt+ —, (47)
ever decreasing constraints on the required measurement Vo

strength.

The faithful tracking condition is once again ourely cl and we see that this can be viewed as directly analogous to
sical. in Eha? 'tralsé g I'esl Iton c;'lsasg'cal gblserpl;rt'o)rg I‘?S.'sthe guantum measurement record. The equations of motion

ical, | It a PPl : vation. ™ 13¢5 the classical best estimateés . and(p)., and the second
simply the condition on the accuracy of the measurement s

that the measurement record itself, as opposed to the es |—rder moments are

mated state, accurately tracks the motion of the system from (p)e

which the localization condition is derived. d{x).= - dt+ g, V,dW, (48
It is worth noting that the above inequalities also deter-

mine the regime in which multiple observers agree on the
' e e Ters o9 d(p)c=(Fe(X))dt+\GmCrpd W, (49)

motion of an object, which is clearly an important property

of the classical limit. As discussed in Sec. Il, multiple ob- 53nq
servers can be taken into account by giving each obseever
value of n= %; such thatS; »;<1, and giving each a differ- )
ent noise realizatiod W, . Furthermore, it is clear from the dVy= Ecxp_ ImVx
derivation of the stochastic master equatji@B,24] that the

state conditioned by the measurements made by all of the de=[29p—ng)2(p+ 20,FC,,pldt+ 0§FKxxpdt
observers is narrower than and consistént probability)

with the state estimate of each obsenipso factq the esti- + @prpdw, (51

dt+ Vg mKad W, (50)
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1 1 of knowledge of observei, given the measurement record
dCxp=| Vo~ 9mVxCupF oxF V| dt+ EaiFKxxxdt dr, generated by the stochastic Satirger equatior(53) is
the stochastic master equatif28,24]

+VgmK xppd W. (52) i
Identifying g,=k andg,=%°k, we see that these equations dp ﬁ[H’p]dt KX X op 1At ([X ]
are identical to the quantum equations governing the con-
tinuously estimated stafd=gs. (6)—(10)], and the only way —2pTr pX])v27ikdV;, (55
that quantum mechanics enters is in enfordifg,,< 89p -
Even though this is the case, it should be noted that, whe
the potential is nonlinear, the equations of motion for the
third and higher cumulants are not the same in the quantum
and classical cases, so in general the evolutions of the cla
sical and quantum estimates differ. In the classical limit
however, the conditional probability, or the state in the quan

tum case, 1S Gaussian t0 a very good approximation so th%tddition, the fractions;; are the respective measurement ef-
the third cumulants can be set to zero, and as a result they iencies

longer feed into the equations_ for the second _order CuUmMu™ 14 simulate multiple observations on a given system, we
lants. Consequently, the evolutions pf thg classical best est o integrate the stochastic Schinger equation, which
mates and second cumulants are identical to the quantuffl, . ates a set of measurement records. one f’or each ob-

estlm.ates fo'r thg same measurement record, an_d as a resfllyor we then integrate the corresponding stochastic master
_classwal estimation may be used to track dynamical Syswm«?qur;ttions using the measurement record for each observer.
in the classical limit. The state of knowledge of each observer over time can then
be compared to the “actual” evolution of the system state
V. NUMERICAL EXAMPLES vector given by Eq.(53). The stochastic Schdinger and

In this section we provide numerical support for the argu_master equations were integrated in time using the spectral

ments in the previous section. We present two examples arsplit-operator method. Since the classical limit is obtained

show that under the conditions derived in the previous secVNen the extent of the wave function is small compared to

tions, the quantum wave packet remains localized, the evd!® range of motion of the centroid, the algorithm is designed

lution of the centroid follows the classical motion with neg- so that th(_a computational grid follows the wave functl(_)n N

ligible noise, and both the measurement recésditably bo.th. position and.momentum space, and this is crucial for

band limited and the classical state estimate accurately tracificient computation. _ o

the motion of the system for each of a set of observers. In treating systems of different sizes anq actions its con-
To derive the equation of motion for the wave function of VENieNt to choose units for the system variables to keep the

the continuously observed system, assumigbservers numerical value of the action close to unity. Due to this

one can first write down the stochastic Safinger equation SYStém dependent choice of units, 'the fixed quariiityas a

for the unormalized wave function for a single observer mak SyStem dependent numerical value; and indeed we expect the

ing N measurements. If the interaction strength for measureclassical limit whenz <1 in these units. This is what we
menti is 7;k, then this is demonstrate below.

Where

dV,=\/877|k(dr|—Tr[pX]dt) (56)

Rlote that this is, in fact, just Eq3), because as far as ob-
'serveri is concerned all the other observers are simply gath-
ering part of the environment to whighhas no access. In

N

1. 5 A. The Duffing oscillator
djy)=| = Z[IH O +AKX]dt+ 3, dnkdri |[4),

The Duffing oscillator is a sinusoidally driven double-
(53)  well potential, with Hamiltonian

2

where the record for each measurement is given by P
H(t)= ﬁ+Esx“—Ax2+AXcos(wt). (57)
dw,
=00 Bk 54 \We choosem=1, A=10,B=0.5, A=10, andw=6.07. At

times when the driving is zero, this puts the minima of the
Now we let each observer have access to just one of thavo potential wells at~=3.2, with a central barrier height
measurement records. In addition, we chodse;=1, so  of 50. We choosé =10 ° andk= 10°, which is sufficient to
that ; represents the fraction of the total measurement insatisfy the inequalities derived in Sec. Ill for all but tiny
teraction strengttk used by each observer. The evolution of values of», and therefore puts the system in the classical
the state of knowledge for any particular obserfveino only ~ regime. We now evolve the system with three observers, and
has access to her measurement recoath be calculated by set their measurement efficiencies to be 0.5, 0.3, and 0.2,
averaging over the noise realizations for all the other obserwespectively. We first calculate the position variante of
ers while keeping the measurement record for the observer ithe wave function given by evolving E¢3), and verify that
question fixed. The resulting equation of motion for the statethis remains sufficiently small. Running the simulation for a
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x10° tical to the quantum estimate, and the rms\bfy for this
' ' ' ' estimate is also given in Table |. Note that the position vari-
ances for each observer are, as expected, larger than the vari-
ance of the wave function calculated using the stochastic
Schralinger equation. Since the solution to E§3) can be
viewed as an “unraveling” of the stochastic master equation
in Eq. (55), the difference between the variances of the
“true” state estimate from the former and the individual ob-
servers’ state estimate from the latter provides an estimate of
the amount by which their means differ, averaged over noise
realizations for all the observers. We will refer to this, for
want of a better name, as the error variance, and its square
root as the “error standard deviation.” The rms value of this
error standard deviation is 2210°3, 1.7x10 3, and 2.1
X 103 for observers withy=0.5, 0.3, and 0.2 respectively,
for both the stochastic master equation and Gaussian simu-
lations. In Fig. 2 we plot the evolution of the error standard
deviation, and also the actual difference between the esti-

FIG. 1. The standard deviations of the state estimates for each ghated mean and the mean of the wave function, for both the
the three observers for the Duffing oscillator, plotted over a duratiormaster equation simulation and the Gaussian estimator. The
of t=5. Solid line, observer withy=0.5; dashed line, observer sma|| difference between these last two is most probably due
with »=0.3; dash-dotted line, observer wiii=0.2. solely to the fact that the mean of the computationally inten-

) ) ) sive master equation simulation has not completely con-

duration of t=5, the maximum value Qfm IS 2.7 verged at the value of the time step employgkhis differ-
X 10", and the rms value over the evolution is X80™°.  ence is not seen for the computationally simpler delta-kicked
The localization condition is therefore well satisfied, and anygtor system discussed in the next subsection.
inspection of the evolution of the centroid shows that the Each observer may also track the position simply by av-
deed the classical evolution is more nontrivial since the sys¢j ¢ by low-pass filtering the measurement regoidatu-
tem is chaotic: any small difference in the noise on the tworg)ly this period should be as long as possible so as to filter
trajeCtorieS will cause them to diverge I’apid|y, and one Can0ut the noise, but short enough SO as not to filter out the
not therefore simply compare the trajectory to the equivalenfieterministic motion. For this system we use a time period of
noise-free classical trajectory. In Ré14], the classical dy- 2 5x 102 for the filtering. The average rms deviation of this
namics was verified by comparing the stroboscopic map angstimate from the mean position of the wave function is also
the largest Lyapunov exponent obtained from the quantungiyen in Table I for each observer. From this we see that all
evolution and their classical equivalents. Here we calculatgpservers can effectively track the motion of the particie

the continuously estimated states, both quantum and classg an error in position of about I8) using their measure-
cal, for the different observers, and show that these agregent records directly.

and agree between observers.

We now calculate the quantum state estimate for each
observer, obtained by integrating E§5), and compare this
with the classicalGaussiajpestimate for each observer, ob-  The §-function-kicked rotor obeys the Hamiltonian
tained by integrating Eqg48)—(52). In Fig. 1 we plot the , .
uncertainty in  position (characterized by Vy P B
=T pX?]—Tr[ pX]?) for the quantum state estimated by H(t)= 2m +Kcos(X)nZO o(t=n). (58)
each observer over the duration of the run. All these remain
small. The rms ofyV for each observer over the duration of 1t js, thus, a free particle, which experiences regular kicks
the run is given in Table I. The evolution of the uncertainty from the potential of a nonlinear pendulum. For a wide range
in position for the Gaussian state estimate is essentially idenst parameters, the quantum behavior of this systéy

o ) which we mean the evolution of the closed systésvery

TABLE |. The rms standard deviation of state estimates for thedifferent from the classical motion. In particular, after a few
Duffing oscillator and the rms deviation of the averaged measureri i s the average energy of the élosed Classi(;al system in-
ment record. creases linearly with time. In the closed quantum system,
however, the average energy reaches a maximum value and

B. The é-function-kicked rotor

Observer’s =0.5 =0.3 =0.2 . . . S
" " " " after that point remains fairly constant. This is termed dy-
Quantum 1.%10°3 2.3x10°3 2.6x10°3 namical localization. We now simulate the evolution of the
Gaussian 19103 2.3x10% 2.6x10°3 observed wave function for this system, with the same values

Averaged record 82103 9.3x10°% 1.1x10°2 of # andk as we used for the Duffing oscillator, and with the
same three observers. For the system parameters we will
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x 10
3.5 T T

FIG. 2. (Color) Plot of the error standard deviatidblue) and the difference between the estimated and true means for a single noise
realization(red) for the simulation of the Duffing oscillator using the stochastic master equatiom#th.5. The green and magenta curves
plot the same quantities for the Gaussian estimator.

choosex=10 andm=1, and integrate for a time period of
30 kicks. First we check the localization of the wave function
given by integrating the stochastic Sctiimger equation, and

find that the average value afVy is 2.1x10 3, and the 500

maximum value obtained during the run is 3.20 3. We 450} e

check that the mean energy is indeed behaving in a classical | |

fashion by averaging this energy over many realizations and Classical

comparing this to the classical value. In Fig. 3 we plot the  350r 1

average energy of the observed quantum system, using 300} i

=0.1 andk=10, along with both the classical result and the

quantum result fori=0.1. @20y ]
We next compare the position uncertainties in the state 200} Observed Quantum 1

estimates of the different observers, as above for the Duffing | Closed Quantum |

oscillator, and present these results in Table 1l. The Gaussian

estimator agrees with the stochastic master equation, and the 100 ]

uncertainties are small, so that the observers effectively all g )

agree on the motion. The averaged measurement record alsc . . . . .

tracks the motion effectively. The rms value of the error stan- % 5 10 15 20 25 30

dard deviation is 1.81073, 2.9x1073, and 3.% 103 for !

observers withp=0.5, 0.3, and 0.2, respectively. In Fig. 4  F|G. 3. The average kinetic energy for tidefunction-kicked

we plot the evolution of the error standard deviation for therotor as a function of time. The classical value is obtained by aver-
observer withnp=0.5 and also the actual difference betweenaging over 10 000 trajectories. The observed quantum value was
the estimated mean and the mean of the wave function for ebtained by averaging over 1000 trajectories.
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TABLE Il. Average deviation of state estimates for the VI. CONCLUSION
S-function-kicked rotor and the rms deviation of the averaged mea-
surement record. The emergence of classical dynamics remains a central
, issue in understanding the predictions of quantum mechan-
Observer'sy 7=0.5 7=0.3 7=0.2 ics, especially now that experiments are becoming available
Quantum 2103 36x10°3 4.3x10°3 to probe this transition directlf16]. In this paper, by deriv-
Classical 2.%10°°% 36x10°% 4.3x10°3 ing general inequalities which determine when classical me-
Averaged record 88103 1.0 102 1.1X 102 chanics will emerge, and by providing numerical examples,

we have presented very substantial evidence that quantum
measurement theory provides a completely satisfactory an-

single realization of the stochastic master equation simulaSWer to the question of how classical mechanics, and hence
tion. The equivalent plots for the Gaussian estimator are virclassical chaos, emerges in a quantum world. In doing so we
tually indistinguishable. have shown in some detail how the mechanism for this tran-
To conclude, we see from the above simulations thah  Sition can be understood as a result of localization and noise
the classical regime the full quantum state estimation reducesuppression in the classical regime.
to Gaussian state estimation, and hence classical state esti-While the emergence of classical dynamics for a single
mation may be usedji) even without the use of trueand  motional degree of freedom now appears to be well under-
therefore optimal state estimation, low-pass filtering of the stood, the quantum to classical transition as yet holds many
measurement record alone provides adequate tracking of themanswered questions. What happens, for example, to the
system, andiii) since the errors in the respective estimatesdynamics of a system as it passes “through” the transition?
are small, all observers effectively agree upon the motion oHow do systems behave when they are neither fully quantum
the system. nor fully classical? For example, it is known that the

x 10

25 3 3.5 4 4.5 5

t

FIG. 4. Plot of the error standard deviatiggmooth curvg and the difference between estimated and true means for a single noise
realization(jagged curvifor a simulation of thes-function-kicked rotor using a stochastic master equation witt0.5. The results for the

Gaussian estimator are indistinguishable on this scale.
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S-function-kicked rotor demonstrates a complex behavior inbeen investigated; s¢81]), and must all the degrees of free-
the transition region30]. Further questions include how dom be continuously measured, or will a subset suffice? For
classical dynamics emerges for other degrees of freedona spin system, must one measure all the components of spin,
such as spin, and what happens, for example, when spin armd will a single component suffice? Fortunately, we are now
motional degrees of freedom are coupled? Must all the subat the point where one can not only pose these questions, but
systems have a large actigwe note that this has recently expect that solid answers will soon be forthcoming.
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