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Calculation of resonances in adtµ molecule by theR-matrix method

Gennady V. Mil’nikov1 and Hiroki Nakamura1,2,*
1Department of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

2Department of Functional Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, J
~Received 18 December 2001; published 13 March 2003!

Using the spectral representation of Green’s function, we calculate the density of states and extract param-
eters of resonances in the scattering system. The method is implemented for the resonances in thedtm
molecule below thetm (n52) threshold.
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The R-matrix method @1# is widely used in time-
independent scattering calculations. It was first shown
Wigner and Eisenbud@2# that theR matrix permits a conver-
gent spectral expansion. A similar representation was use
Schneider and Walker to derive theR-matrix propagation
equations within the scope of the diabatic-by-sector sche
@3#. Essentially, the same method was also given later
Baluja Burke, and Morgan@4# and the modifications for
adiabatic-by-sector approach were proposed in Refs.@5#, @6#.

We have shown recently that the spectral representa
can be obtained also for the scattering wave function it
@7#. This provides a very stable numerical technique for so
ing both homogeneous and inhomogeneous Schro¨dinger
equations with arbitrary boundary conditions. The meth
has been used for studying dissociative electron attachm
to di-atomic molecules and proved to be very efficient@8#. In
these previous papers, the emphasis was mostly given to
numerical efficiency, but the significance of the method c
go far beyond just the numerical method. In the case of
homogeneous Schro¨dinger equation, the spectral expansi
of the solution leads to the same representation for Gre
function. The latter yields, in principle, full information
about the system, which can be easily extracted due to
established properties of the basis functions in the spe
expansion. In the present work, we calculate the density
states in the scattering system and illustrate the method
calculating the resonances in the three-body Coulombic
tem of dtm molecule.

We start with a brief derivation of Green’s function, a
propriate for the three-body problem. We use the mass-sc
hyperspherical coordinatesR5(R,w), wherew denotes a se
of angle variables on the hypersphereV. We confine the
system in the boxRP@0,Rf # and consider the inhomoge
neous problem

@K1Had~w;R!2E#C~R,w!5x~R,w!, ~1!

with K52 ~1/2R2! ~]/]R! R2 ~]/]R! 1 ~15/8R2!
~2!

and C~0,w!50. ~3!

Here,C(R,w) is the wave function of the three-body syste
multiplied by R3/2 and the adiabatic HamiltonianHad de-
pends onR parametrically. Inhomogeneous partx(R,w) is
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an arbitraryL2 function. In order to introduce Green’s func
tion, we impose the additional homogeneous condition aR
5Rf . Let Fn(w) be the real-valued hyperspherical adiaba
channel functions~i.e., the eigenfunctions ofHad) calculated
at R5RfFn form a complete basis set on the hypersph
and we assume the boundary condition atR5Rf in a general
form

K FnUdC

dRL 5 (
m51

Nch

Anm^FmuC&, ~4!

where^FnuC& stands for the integral on the hypersphereR
5Rf ,

^FnuC&[E
V

Fn~w;Rf !C~Rf ,w!dm~w!, ~5!

with dm(w) being an appropriate measure. Hereafter,
will use the notation~¯u¯! for integration over the full-
dimensional configuration spaceV3@0,Rf # with the mea-
sure R2dR dm(w). The matrix Anm is a complex-valued
boundary matrix determined from the type of Green’s fun
tion and the corresponding boundary condition. Below
will discuss the case of outgoing Green’s function.

The HamiltonianK1Had is not Hermitian due to the sur
face term atR5Rf in the kinetic-energy operator. The latte
can be recast in the formK5K̃2L, whereK̃ is the symme-
trized operator and theBloch operator L represents the
asymmetric part. In the space of square integrable functi
satisfying zero boundary condition at the origin@Eq. ~3!#, K̃
and L are completely determined by the corresponding m
trix elements,

~C1uK̃C2![
1

2 EV
dm~w!E

0

Rf
dR R2

]C1

]R

]C2

]R

1
15

8 E
V

dm~w!E
0

Rf
dRC1C2 ~6!

and

~C1uLuC2![ ~Rf
2/2! ^C1u~]/]R!C2& . ~7!

The R-matrix basis is now defined in the usual way by t
equation

~CnuK̃1HaduCm!5Endnm . ~8!
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This eigenvalue problem supplies real-valuedCn and En
which are futher used to expand the solution of interestC as

C5(
n

CnCn . ~9!

It is worth noting that the coefficients in this expansion a
generally complex valued and so are the wave functionC,
which is determined by the boundary condition@Eq. ~4!#, and
the inhomogeneous termx. Substituting Eq.~9! into Eq. ~1!
and using Eq.~7!, one obtains

Cn5
1

En2E F ~Cnux!1
Rf

2

2 K CnU ]

]R
C L G . ~10!

Now the unknown solutionC enters only into the surfac
term and the boundary condition atR5Rf can be used to
determineCn . Using the orthogonality of the adiabatic cha
nel functions on the hypersphere, the last term in Eq.~10! is
rewritten as

K CnU ]

]R
C L 5(

m
^CnuFu&lm , ~11!

where by definitionlm[^Fmu(]/]R)C&. From Eqs.~9!–
~11! and the boundary condition@Eq. ~4!#, ln are easily
found as

ln5(
m

@~12AR!21A#nm(
n

^FmuCn&~Cnux!

En2E
, ~12!

where

Rnm5
Rf

2

2 (
n

^FnuCn&^CnuFn&
En2E

~13!

is theR matrix atR5Rf . Onceln are found,C is given by
Eqs. ~9!–~11!. The solution can be written in the integr
form

C~R,w!5E
0

Rf
R82dR8E

V
dm~w8!G~R,w,R8,w8!x~R8,w8!,

~14!

where the kernel is nothing but Green’s function

G~R,R8,E!5(
n

Cn~R!Cn~R8!

En2E

1
Rf

2

2 (
nm

CnmCn~R!Cm~R8!

~En2E!~Em2E!
~15!

with

Cnm5 (
nm51

Nch

^CnuFn&@~12AR!21A#nm^FmuCm&. ~16!

Note the essential difference of Eq.~15! from the ordinary
spectral expansion of Green’s function in the form
R-matrix theory@9,10#. In the latter case, Green’s functio
appears as a kernel of the integral representation which
lates the value of the wave function in the inner regionR
03450
l

e-

,Rf with its derivatives at the boundaryR5Rf . On the
contrary, the present result is valid for arbitrary values of
argumentsR, R8, and Green’s function explicitly include
the boundary conditions for the scattering wave functio
Starting from Eq.~15!, one can obtain similar representatio
for any physical quantity of interest. Here, we derive a use
expression for the density of statesr(E) and study reso-
nances in the scattering system.

We introducer(E) by the standard formula

r~E!5 ~1/p! Im@TrĜ1~E!#

5 ~1/p! Im E
0

Rf
R2dR(

V
dm~w!G1~R,R,E!, ~17!

whereG1(R,R,E) is the outgoing Green’s function. In sca
tering problems, one usually definesĜ1 by attaching an in-
finitesimal positive imaginary quantity to the energyE. In
our formulation,E is real while the matrixAnm in Eq. ~4!
must correspond to outgoing solutions of the inhomogene
equation. Inserting Eq.~15! into Eq. ~17! and using the or-
thogonality ofCn , we obtain

r~E!5
1

p
ImFRf

2

2 (
nnm

^CnuFn&@~12AR!21A#nm^FmuCn&
~En2E!2 G .

~18!

The summation overn just gives theE derivative of theR
matrix in Eq.~13! and we come to the following practicall
useful formula:

r~E!5 ~1/p! Im$Tr@~dR/dE! ~12AR!21A#%. ~19!

It is worthwhile to note that the spectral representation is
required any more to evaluater(E) in Eq. ~19!. Any of the
well developed methods ofR-matrix propagation can be
implemented to calculateR at R5Rf .

Our purpose is to determine the energy positionE0 and
the widthG of the resonance from the behavior ofr(E). It is
known from the general scattering theory that the den
of states @Eq. ~17!# contains the resonant contributio
(1/p)@dd(E)/dE# @11#, whered(E) is the scattering phas
shift exp@2id(E)#5detS(E) @12,13#. For a short-range poten
tial, the same result follows directly from Eq.~19!. Thus, by
cut-
ting off the nonadiabatic couplings between channels
R5Rf , we can define the asymptotic states asf n

6

5(1/AknR)e6 iknRuFn&. In this approximation, Anm
5@ ikn(E)2(1/Rf)#dnm and Eq.~19! gives

r~E!5 ~1/p! @Rf Tr~1/k̂!2Tr~~11 k̂R̃k̂R̃!21 ~1/k̂! R̃!

1 ~dd~E!/dE!#, ~20!

where k̂ stands for the corresponding diagonal matrix a
R̃[@11(1/Rf)R#21R is theR matrix for the wave function
multiplied by the hyper-radiusR. We assume that the lifetime
G21 of the resonance is much longer than the character
scattering timeRfTr(1/k). Then, atE close toE0 , the term
dd/dE;G dominates and the resonant behavior ofr(E) has
the Breit-Wigner form
1-2
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r~E!;
G

2p

1

~E2E0!21 ~G2/4!
. ~21!

The short-range approximation is twofold. First, it impli
that Rf is much larger than the size of the resonance w
function. If this is not the case, the resonance componen
r(E) is Rf dependent. This can be easily seen, for exam
by expressing Green’s function in Eq.~19! via Siegert states
@14#. Generally, Eq.~21! must be multiplied by a smooth
function of Rf which approaches unity at infiniteRf . Sec-
ond, the above analysis is based on the diagonal adiab
boundary matrixAnm . There are such cases, of course, t
the long-range part of the interaction should be prope
taken into account outside the radiusRf . In general, the
boundary condition reads@see Eq.~4!#

A5O8O21 ~22!

with

On i5^FnuC i
1& and On i8 5^Fnu~d/dR!C i

1&, ~23!

whereC i
1 are the appropriately found outgoing solutions

the outer regionR.Rf . The diagonal form ofA corresponds
to the simplest approximationC15 f 1.

We implemented the method described above to st
resonances indtm molecule for zero total angular momen
tum. Recently, there has been a lot of attention on this sys
due to its important role in muon catalyzed fusion@15–20#.
The lowest resonances indtm have been detected previous
and a number of results@14,21–25# are available. Although
the different methods give fairly close values for the re
nance energies, there are orders of magnitude discrepan
the widths. The present results resolve this discrepancy.

To propagate theR matrix, we divide the whole interva
@0,Rf # into small equal sectors of the size of 5 ma.u. At t
boundaries of sectors, the adiabatic eigenvalue problem
Had is solved using the hyperspherical elliptic coordinates
these coordinates, one can nicely remove the singular
due to Coulombic potential fromHad @26#. The adiabatic
channel functions have been calculated using direct pro
of DVR ~discrete variable representation! basis sets for two
hyperangles with the accuracy not worse than six signific
digits in the adiabatic energies. Within each sector@Rl ,Rr #,
the R matrix R(R) is propagated according to the conve
tional relation@4,5#

R~Rr !5M ~r ,r !2M ~r ,l !@M ~ l ,l !1R~Rl !#
21M ~ l ,r !, ~24!

where the auxiliary sector matricesM ~a,b! explicitly depend
on the total energyE and are evaluated by the method of R
@6#. Differentiation of Eq.~24! with respect toE gives the
second equation for propagatingdR/dE. We have first cal-
culatedr(E) taking the logarithmic derivative matrixAnm
5dnm( ikn21/Rf), wherekn is the local momentum for the
channeln atRf . We have found a series of distinct resonan
peaks ranging from about six to seven orders of magnit
higher than the nonresonant part ofr(E). The observed
peaks can be perfectly fitted to the Breit-Wigner form of E
~21! in a very wide interval of magnitude ofr(E) ~see Fig.
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1!. The accuracy of the calculations was verified by chang
Rf within the interval@500, 640# and using 30, 40, and 50
adiabatic channels. For the lowest eight resonances, the
sults were stable but for the next two resonances, the wid
did not converge with respect toRf . This indicates the de-
localized character of the resonance wave function
strong influence of the long-range interaction. This can
taken into account properly by taking more accurate out
ing boundary conditions without cutting off the couplings
R5Rf .

For this purpose, it is most essential to consider the dip
interaction in thed1tm channel. In the corresponding mas
weighed Jacobi coordinatesX, Y, u, with Y for the internal
coordinate, the wave function has the formC
5Snlxnl(X) f nl(Y,u), wheref nl are the Coulomb functions
To define the boundary condition correctly, one needs to fi
xnl(X) in the outer region. In the present work, we take in
account only the most important long-range part of the int
action (;X22), which comes from the dipole matrix ele
ments between degenerate states@27#. In this approximation,
n functionsxnl , l 50,1,...,n21 satisfy the system of equa
tions

F 1

X2

d

dX
X2

1

X22
1

X2 @ l̂ ~ l̂ 11!1D̂n#12S E1
m

2n2D G x̂50,

~25!

wherem is the reduced mass oftm atom, l̂ is the diagonal
matrix of angular momentum, andD̂n is the off-diagonal
matrix of the dipole interaction. After diagonalization of th
constant matrix@ l̂ ( l̂ 11)1D̂n#, Eq. ~25! is solved analyti-
cally. This gives the adiabatic outgoing solutions in the ou
region and the logarithmic derivative matrix is determin
by the matching procedure given by Eq.~22!. Let us estimate
the validity of the short-range potential approximation f
the energies belowtm (n52) threshold. In the case ofn
52, the nondiagonal elements ofD̂2 are26(M /m), where
M is the reduced mass for the relative motiond1tm. The
corresponding eigenvalues of@ l̂ ( l̂ 11)1D̂2# are 1
6A1136M2/m2, the negative component of which corre
sponds to the attractive potential that supports infinite nu

FIG. 1. Density of states in the vicinity of the resonance atE
520.134 529. The points represent numerical results obtained
Eq. ~19!. The solid line is the Breit-Wigner formula, Eq.~21!, with
the parameters from the table.
1-3
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TABLE I. The lowestL50 resonances indtm ~in ma.u.!

Ref. @21# Ref. @24# Present Ref.@14# Ref. @22# Ref. @23#
2E0 2E0 109G 2E0 109G 109G 109G 109G

0.159 195 0.159 194 0.640 0.159 193 9 0.341 0.354 0.643104 0.363103

0.145 302 0.145 302 5.56 0.145 301 9 0.829 0.839 0.143105 0.503104

0.134 526 0.134 530 0.373102 0.134 529 1.14 1.15 0.203106 0.123105

0.126 967 0.126 976 0.593103 0.126 978 0.960 0.123104

0.123 569 0.123 572 0.123102 0.123 573 0.270 0.153105

0.122 497 0.122 498 0.363102 0.122 500 0.108 0.503105

0.121 753 0.121 756 0.763102 0.121 758 0.267
0.121 102 0.121 104 0.623102 0.121 105 0.095

0.1207 0.120 776 0.163102 0.120 777 0.029
0.120 61 2.84 0.120 61 0.03
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ber of bound states. The analysis of this equation shows
the approximation becomes invalid~the first significant digit
in the logarithmic derivative of the wave function disagree!
whenA2(E1m/8)X,;10. If we takeX5500, this condi-
tion indicates that the approximation does not hold at en
gies higher than;20.1207. This rough estimate correlat
well with our numerical results. We redefined the part of t
matrix A for d1tm channel and repeated the calculation
We reproduced the lowest eight resonances and also c
obtain the stabilized widths of the resonances atE0
520.120 777 and20.120 61. Table I presents our final r
sults. The positions of the resonances are in perfect ag
ment with the previous scattering calculations@24# and
somewhat better than the results by the variational met
@21#. For the highest four resonances, they are well descr
by the formulaEtm (n52)2Ev;0.4614v @28#. However,
the calculated widths differ by the order of magnitude fro
that of @22–24# which, in turn, disagree with each other. A
the same time, for the lowest three resonances, we have
n.

-

s
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firmed the widths obtained by the Siegert-states method@14#.
This supports our confidence in the present method.

In conclusion, we have implemented the novel repres
tation of Green’s function to evaluate density of states a
resonances. The method has been applied to the three-
Coulombicdtm system, and demonstrated to reproduce
results well for the lowest three resonances obtained by
Siegert-states method. We have also calculated the hi
resonances, the energies of which are in good agreem
with the previous calculations. Finally, we would like to no
that in comparison with the Siegert-state representation,
present method is much easier to implement numerically
may find applications in a variety of collision processes.
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