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Calculation of resonances in adtp molecule by theR-matrix method
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Using the spectral representation of Green’s function, we calculate the density of states and extract param-
eters of resonances in the scattering system. The method is implemented for the resonancestjin the
molecule below théu (n=2) threshold.
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The R-matrix method [1] is widely used in time- an arbitraryl? function. In order to introduce Green’s func-
independent scattering calculations. It was first shown byion, we impose the additional homogeneous conditioR at
Wigner and Eisenbuf] that theR matrix permits a conver- =R;. Let® (¢) be the real-valued hyperspherical adiabatic
gent spectral expansion. A similar representation was used lghannel functionsi.e., the eigenfunctions df,y) calculated
Schneider and Walker to derive tfematrix propagation at R=R;®, form a complete basis set on the hypersphere
equations within the scope of the diabatic-by-sector schemand we assume the boundary conditioRatR; in a general
[3]. Essentially, the same method was also given later byorm
Baluja Burke, and Morgari4] and the modifications for
adiabatic-by-sector approach were proposed in REfs[6]. <q)

We have shown recently that the spectral representation v
can be obtained also for the scattering wave function itself
[7]. This provides a very stable numerical technique for solvavhere(®,|¥) stands for the integral on the hypersph&e
ing both homogeneous and inhomogeneous Sthger =R;,
equations with arbitrary boundary conditions. The method
has_been _used for studying dissociative electro_n_attachment (‘I’V|‘I’>EJ ® (&R (R;,0)du(@), (5)
to di-atomic molecules and proved to be very efficigit In Q
these previous papers, the emphasis was mostly given to the
numerical efficiency, but the significance of the method carwith du(¢) being an appropriate measure. Hereafter, we
go far beyond just the numerical method. In the case of inwill use the notation(--+|---) for integration over the full-
homogeneous Schilinger equation, the spectral expansiondimensional configuration spad@x[0,R;] with the mea-
of the solution leads to the same representation for Green'sure R?dR du(¢). The matrix A, is a complex-valued
function. The latter yields, in principle, full information boundary matrix determined from the type of Green’s func-
about the system, which can be easily extracted due to wetlon and the corresponding boundary condition. Below we
established properties of the basis functions in the spectralill discuss the case of outgoing Green’s function.
expansion. In the present work, we calculate the density of The Hamiltoniank + H .4 is not Hermitian due to the sur-
states in the scattering system and illustrate the method biace term aR=R; in the kinetic-energy operator. The latter
calculating the resonances in the three-body Coulombic Sy§san be recast in the forti=K — L, wherekK is the symme-

tem ofdtu molecule. trized operator and thdloch operator Lrepresents the

We start with a brief derivation of Green’s function, ap- asymmetric part. In the space of square integrable functions
propriate for the three-body problem. We use the mass-scaled

: . Satisfying zero boundary condition at the origiq. (3)], K
hyperspherical coordinaté€s= (R, ¢), wheree denotes a set : : )
of angle variables on the hyperspheie We confine the andL are completely determined by the corresponding ma

system in the boXRe[0,R;] and consider the inhomoge- trix elements,

dw| &
ﬁ> = 3 A, ), @

neous problem ~ 1 Ry R oV, v,
v, | K¥ E—f d f dR -
[K+Had ;R) —EJ¥(R,¢)=x(R,¢), &) (FilK¥2)=3 I IR 4R
; _ 2 2 2 15 Ry
with K= — (1/2R?) (d/dR) R? (a/dR) + (15/8R?) +_f dmo)f ARV, W, ©)
(2 8 Ja 0
and V¥ (0,0)=0. 3  and
Here,¥ (R, ¢) is the wave function of the three-body system (W4|L| W)= (R?/2) <\If1|(ﬁ/(}’R)\If2>_ (7)

multiplied by R®? and the adiabatic Hamiltoniahl .4 de-
pends onR parametrically. Inhomogeneous paitR,¢) is  The R-matrix basis is now defined in the usual way by the
equation
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This eigenvalue problem supplies real-valudg, and E, <R: with its derivatives at the boundafg=R;. On the
which are futher used to expand the solution of intedests  contrary, the present result is valid for arbitrary values of the
argumentsRk, R’, and Green’s function explicitly includes
‘I’zz C\v,. (99 the boundary conditions for the scattering wave function.
" Starting from Eq(15), one can obtain similar representation
for any physical quantity of interest. Here, we derive a useful

It is worth noting that the coefficients in this expansion are : )
generally complex valued and so are the wave functign expression for the density of state¢E) and study reso-

which is determined by the boundary conditidgy. (4)], and ~ nances in the scattering system.
the inhomogeneous termp Substituting Eq(9) into Eq. (1) We introducep(E) by the standard formula

and using Eq(7), one obtains p(E)= (1/m) Im[Tré*(E)]
i 4
IR
Now the unknown solution? enters only into the surface
term and the boundary condition BRt=R; can be used to
determineC,,. Using the orthogonality of the adiabatic chan-

nel functions on the hypersphere, the last term in (&) is
rewritten as

o

R2
“E_E (‘Pnlx)+7f<‘1’n . (10 = (1/7) Im JRfRZng du(¢)G*(R,RE), (17
0

whereG " (R,R,E) is the outgoing Green’s function. In scat-
tering problems, one usually defin€s" by attaching an in-
finitesimal positive imaginary quantity to the enerBy In

our formulation,E is real while the matrixA,, in Eq. (4)
must correspond to outgoing solutions of the inhomogeneous

dJ _ equation. Inserting Eq.15) into Eq. (17) and using the or-
<\Pn a_R\P> _g (VPN (1D thogonality of ¥',,, we obtain
2 _
where by definition\ ,=(® ,|(3/dR)¥). From Egs.(9)- (E)=ilm &2 (V| ®)[(1-AR) *A], (P ,|Py)
(11) and the boundary conditiofEq. (4)], A, are easily T 2 o (En—E)? '
found as (18
L (D[¥)(Valx) The summation oven just gives theE derivative of theR
A= [(1-AR)'A],, > —e_g (12 matrixin Eq.(13) and we come to the following practically
o 3 n useful formula:
where p(E)= (1/m) Im{Tr[(dR/dE) (1-AR) *A]}. (19

W (W | D) (13) It is worthwhile to note that the spectral representation is not
En—E required any more to evaluatgE) in Eq. (19). Any of the
well developed methods oR-matrix propagation can be
implemented to calculat® at R=Rs.
Our purpose is to determine the energy posititnand
the widthI" of the resonance from the behaviordiE). It is
R¢ known from the general scattering theory that the density
V(R,¢)= fo R'2dR’ fﬂdﬂ(so')G(R,%R',sO')X(R',SO'), of states[Eq. (17)] contains the resonant contribution
(14) (1/ar)[dS(E)/DE] [11], where 8(E) is the scattering phase
shift exg 2i (E)]=detS(E) [12,13. For a short-range poten-

Rf < (@,
RVM=7;

is theR matrix atR=R;. Once\, are foundW is given by
Egs. (9)—(11). The solution can be written in the integral
form

where the kernel is nothing but Green’s function tial, the same result follows directly from E@L9). Thus, by
, cut-
G(R,R’ E)ZE Wn(R)Wn(R') ting off the nonadiabatic couplings between channels at
o n E,—E R=R;, we can define the asymptotic states &3
R? =(1Nk,R)e*™R® ). In this approximation, A,,
f

—+

CamPn(R)¥r(R') =[ik (E)—(1/R)15,, and Eq.(19) gi
2% E BE-D (15) [ik,(E)—(1/R¢)]6,, anﬂ a.( )givfi o
p(E)= (1/m) [R; Tr(1/k)—Tr((1+KkRkR) 1 (1/k) R)
ith
" " + (dS(E)/dE)], (20)

Com= 21 (V| )[(1-AR) AL, (P, V). (18 wherek stands for the corresponding diagonal matrix and

. R=[1+(1/R;)R] 'R is theR matrix for the wave function
Note the essential difference of E@.5) from the ordinary multiplied by the hyper-radiuR. We assume that the lifetime
spectral expansion of Green’s function in the formall'~! of the resonance is much longer than the characteristic
R-matrix theory[9,10]. In the latter case, Green’s function scattering timeR;Tr(1/k). Then, atE close toE,, the term
appears as a kernel of the integral representation which reté§/dE~I" dominates and the resonant behaviopE) has
lates the value of the wave function in the inner regi®n the Breit-Wigner form
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r 1 . 6
2m (E—Eg)2+ (T'24) @) 5

p(E)~

The short-range approximation is twofold. First, it implies
that R is much larger than the size of the resonance wave
function. If this is not the case, the resonance component of
p(E) is R; dependent. This can be easily seen, for example,
by expressing Green'’s function in E.9) via Siegert states
[14]. Generally, Eq.(21) must be multiplied by a smooth
function of Ry which approaches unity at infinite;. Sec-
ond, the above analysis is based on the diagonal adiabatic

boundary matrixA, , . There are such cases, of course, that 020 015 010 005 000 005 of0 015
the long-range part of the interaction should be properly (E-E) (10* ma.u,)

taken into account outside the radi&s. In general, the
boundary condition readsee Eq.(4)]

p(E) (10° ma.u.)

FIG. 1. Density of states in the vicinity of the resonanceéEat

=—0.134529. The points represent numerical results obtained by
A=0'0"1 (22) Eqg. (19). The solid line is the Breit-Wigner formula, E(R1), with
the parameters from the table.

with 1). The accuracy of the calculations was verified by changing

0,i=(®,|¥) and O, =(®,|(d/dR)¥;"), (23 Ry within the interval[500, 640 and using 30, 40, and 50
adiabatic channels. For the lowest eight resonances, the re
Where\lfi+ are the appropriately found outgoing solutions in sults were stable but for the next two resonances, the widths

the outer regioR>R; . The diagonal form o corresponds ~ did not converge with respect & . This indicates the de-
to the simplest approximatioly *=f . localized character of the resonance wave function and
We implemented the method described above to stud trong_mfluence of the Iong-range_ interaction. This can be
resonances ity molecule for zero total angular momen- t@Ken into account properly by taking more accurate outgo-

tum. Recently, there has been a lot of attention on this systerﬁg goundary conditions without cutting off the couplings at
=R;.

due to its important role in muon catalyzed fusidrb—20. . . . : .
The lowest resonances iftu have been detected previously . For thls purpose, it is most essential to conS|der the dipole
interaction in thed+tu channel. In the corresponding mass-

and a number of resul{d4,21-25 are available. Although weighed Jacobi coordinate§ Y, 6, with Y for the internal

the different methods give fairly close values for the reso'coordinate, the wave function has the formp

nance energies, there are orders of magnitude discrepancy IZHEme(X)fm(Y 6), wheref, are the Coulomb functions.

the widths. The present results resolve this discrepancy. : n )
. o : To define the boundary condition correctly, one needs to find
To propagate th&® matrix, we divide the whole interval . 4 .
xni(X) in the outer region. In the present work, we take into

[OR] into small equal sectors of the size of 5 ma.u. At thea(:count only the most important long-range part of the inter
boundaries of sectors, the adiabatic eigenvalue problem for~ }’2 ) P g-range p .
: : ' - : action (~X~ <), which comes from the dipole matrix ele-
H.qis solved using the hyperspherical elliptic coordinates. In . R
. : . .. ments between degenerate std4. In this approximation,

these coordinates, one can nicely remove the singularities

due to Coulombic potential frontd,4 [26]. The adiabatic nfunctlonsxn,, 1=0,1,..n—1 satisfy the system of equa-
X . . t&ons
channel functions have been calculated using direct produc

of DVR (discrete variable representatjdmasis sets for two 1 i , 1 _ 1 .. A mi. _
hyperangles with the accuracy not worse than six significant | X2 ax X xz sl +D+Da]+2{ B+ 551 1X=0,
digits in the adiabatic energies. Within each se¢®y,R,], (25
the R matrix R(R) is propagated according to the conven- , o .

tional relation[4,5] wherem is the reduced mass ¢f. atom,| is the diagonal

matrix of angular momentum, anﬁn is the off-diagonal
R(R)=MTI—MTIMED+R(R)]IMED (24 matrix of the dipole interaction. After diagonalization of the
constant matrix 1 (T+1)+D,], Eq. (25 is solved analyti-
cally. This gives the adiabatic outgoing solutions in the outer
region and the logarithmic derivative matrix is determined
by the matching procedure given by E82). Let us estimate
the validity of the short-range potential approximation for

where the auxiliary sector matricés“? explicitly depend
on the total energ¥ and are evaluated by the method of Ref.
[6]. Differentiation of Eq.(24) with respect toE gives the
second equation for propagatiniR/dE. We have first cal-

culatedp(E) taking the logarithmic derivative matriR,, the energies belowu (n=2) threshold. In the case of

=6,,(ik,—1/R;), wherek, is the local momentum for the h i el Bt / h
channelv atR; . We have found a series of distinct resonance_z,’ the nondiagonal elements Db are _6(M, m), where
is the reduced mass for the relative motioftw. The

peaks ranging from about six to seven orders of magnitudé/I - .
higher than the nonresonant part pfE). The observed corresponding eigenvalues ofl(l+1)+D,] are 1
peaks can be perfectly fitted to the Breit-Wigner form of Eq.++/1+36M?/m?, the negative component of which corre-
(21) in a very wide interval of magnitude gf(E) (see Fig. sponds to the attractive potential that supports infinite num-
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TABLE I. The lowestL=0 resonances idtu (in ma.u)

Ref.[21] Ref. [24] Present Refl14] Ref.[22] Ref.[23]
-E -E 10T -Eo 0T 10T 10°T 10T
0.159195  0.159194 0.640 0.1591939  0.341 0.354 0Bt 0.36x10°
0.145302  0.145302 5.56 0.1453019  0.829 0.839 A%  0.50x10
0.134526  0.134530  0.37107 0.134529 1.14 1.15 0.2010°  0.12x10°
0.126967 0.126976  0.5910° 0.126 978 0.960 0.1210"
0.123569  0.123572  0.31(? 0.123573 0.270 0.1810°
0.122497  0.122498  0.3610% 0.122 500 0.108 0.5010°

0.121753  0.121756  0.3610 0.121 758 0.267
0.121102 0.121104  0.621(% 0.121 105 0.095
0.1207 0.120776  0.2610° 0.120777 0.029
0.12061 2.84 0.12061 0.03

ber of bound states. The analysis of this equation shows théitmed the widths obtained by the Siegert-states mefthd{

the approximation becomes invaljthe first significant digit

in the logarithmic derivative of the wave function disagpees

when 2(E+m/8)X< ~10. If we takeX=500, this condi-

This supports our confidence in the present method.

In conclusion, we have implemented the novel represen-

tation of Green’s function to evaluate density of states and

tion indicates that the approximation does not hold at enerresonances. The method has been applied to the three-body
gies higher tham~—0.1207. This rough estimate correlates Coulombicdtu system, and demonstrated to reproduce the
well with our numerical results. We redefined the part of theresults well for the lowest three resonances obtained by the
matrix A for d+tu channel and repeated the calculations.Siegert-states method. We have also calculated the higher
We reproduced the lowest eight resonances and also coutdsonances, the energies of which are in good agreement

obtain the stabilized widths of the resonances Eg
=-0.120777 and-0.12061. Table | presents our final re-

with the previous calculations. Finally, we would like to note

that in comparison with the Siegert-state representation, the

sults. The positions of the resonances are in perfect agregresent method is much easier to implement numerically and

ment with the previous scattering calculatiof24] and

may find applications in a variety of collision processes.
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