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Physical limitations on quantum nonlocality in the detection of photons emitted
from positron-electron annihilation
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Recent experimental measurements of the time interval between detection of the two photons emitted in
positron-electron annihilation have indicated that collapse of the spatial part of the photon’s wave function, due
to detection of the other photon,does not occur. Although quantum nonlocality actually occurs in photons
produced through parametric down-conversion, the recent experiments give strong evidenceagainst
measurement-induced instantaneous spatial localization of high-energyg photons. A quantum-mechanical
analysis of the Einstein-Podolsky-Rosen problem is presented, which may help to explain the observed differ-
ences between photons produced through parametric down-conversion and photons produced through positron-
electron annihilation. The results are found to concur with the recent experiments involvingg photons.
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Quantum nonlocality in measurements involving polariz
tion and two-photon interference of correlated photons
been experimentally confirmed at many independent lab
tories @1–4#. It has been generally postulated that nonlo
effects may also occur in regard to the spatial wave functi
of the emitted photons. As an example, detection of one
the photons produced in parametric down-conversion is
dicted to cause ‘‘instantaneous’’ localization of the oth
photon, subsequently eliminating any uncertainty in the ti
of arrival of the second photon at a second detector. Exp
mental support of this prediction has been reported by H
et al. @4#. The two-photon interference method utilized
Ref. @4# indicates that the minimum time uncertainty, in th
time interval between detection of the two down-conver
photons, is less than 100 fs. This uncertainty in time ismuch
less than the coherence time of the initial pump photo
which subsequently gives strong indication of nonlocal c
lapse of the photon wave function.

One may expect to observe similar nonlocal effects
volving photons emitted from positron-electron annihilatio
Recent high-resolution measurements of the time interval
tween the two photons emitted in positron-electron annih
tion have been carried out by Irby@5#. The results of the
measurements indicate that theabsolute minimumuncer-
tainty in detection time between arrival of the two photons
DtQM511769 ps, which surprisingly, agrees with the life
time of positrons in bulk sodium~119 ps! predicted by quan-
tum electrodynamics@6,7#. Although nonlocal effects are ob
served to occur in the case of down-converted photons,
experimental results give strong evidenceagainstthe instan-
taneous spatial localization ofg photons emitted from anni
hilation events.

In this paper, we present a quantum-mechanical anal
of the time interval between detection of correlated photo
The analysis is basically the same as that first presente
Einstein, Podolsky, and Rosen~EPR! in 1935 @8#. The main
difference, however, is that we include time dependence
the quantum wave functions and also take into account
strictions on photon momenta due to energy conservatio

As in the original EPR paper, we assume that the to
momentum before the particles interact~or are emitted! is
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zero. In addition, we assume that the particles interac
times t,0. The total wave function can then be written~for
t>0)

C~x1 ,x2 ,t !5E
2`

`

cp~x2 ,t ! up~x1 ,t ! dp, ~1!

whereup(x1 ,t) are eigenstates of particle one’s momentu
and energy

up~x1 ,t !5eipx1 /\e2 iEt/\. ~2!

In order to conserve momentum, let us also assume

cp~x2 ,t !5e2 ip(x21xo)/\e2 iEt/\, ~3!

which are eigenstates of particle two’s momentum and
ergy. (xo is an arbitrary constant introduced in the origin
EPR paper. In this case, however, since we are including
explicit time dependence, we will setxo50.! Note that if a
measurement of particle one’s momentum yields a value
p, the total wave function collapses to

C~x1 ,x2 ,t !5cp~x2 ,t !up~x1 ,t !, ~4!

which has momentum eigenvalues ofp and 2p, respec-
tively, for particles one and two. Before any measurem
takes place, the total wavefunction is thus given by

C~x1 ,x2 ,t !5E
2`

`

eip(x12x2)/\e2 i2Et/\dp. ~5!

The total wave function can also be written in terms ofin-
stantaneousposition eigenstatesvx(x1 ,t) of particle one

C~x1 ,x2 ,t !5E
2`

`

fx~x2 ,t ! vx~x1 ,t !dx, ~6!

where particle two’s wave functionfx(x2 ,t) is yet to be
specified. Since the position eigenstates of particle one, m
©2003 The American Physical Society02-1
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sured at timet, are Diracd-functionsvx(x1 ,t)5d(x2x1),
with eigenvaluesx1, Eq. ~6! reduces to

C~x1 ,x2 ,t !5fx1
~x2 ,t !, ~7!

wherex1 now represents an eigenvalue measured at timt.
Therefore, the spatial wave function of particle two is dep
dent on the position measurementx1 of particle one,

fx1
~x2 ,t !5E

2`

`

eip(x12x2)/\e2 i2Et/\dp. ~8!

Let us first consider the case where the particles h
nonzero rest mass. If particle one’s positionx1 is measured a
t50, Eq. ~8! reduces to

fx1
~x2,0!5E

2`

`

eip(x12x2)/\ dp,

~9!
fx1

~x2,0!5\d~x12x2!,

resulting in particle two being localized atx25x1 ~which is
the same result as presented in the original EPR paper
xo50). If particle one’s positionx1 is measured at a time
other than zero, particle two’s wave function at the measu
ment timet is then explicitly given by

fx1
~x2 ,t !5E

2`

`

eip(x12x2)/\e2 i2A(pc)21(mc2)2t/\dp.

~10!

Thus, if particle one’s positionx1 is measured at a time othe
than t50, particle twowill not be localized. Particle two is
only localized at one instant, namely,t50. Furthermore, re-
gardless ofwhen particle two is localized, particle two’s
wave function will always immediately and rapidly disper
as time progresses.

In contrast, sinceE5pc for photons, dispersion no longe
exists. The spatial wave function for photons is given by

fx1
~x2 ,t !5E

2`

`

eip(x12x222ct)/\dp,

~11!

fx1
~x2 ,t !5\d~x12x222ct!.

Thus, after measurement of photon one’s locationx1 at time
t, photon two is instantaneously localized atx25x122ct. In
contrast with particles of nonzero rest mass, once photon
is localized, it will remain localized~propagating atc).

The result, given in Eq.~11! above, contradicts the exper
mental measurements. Localization of the second pho
shouldeliminateany uncertainty in arrival time between th
two photons. This glaring contradiction between theory a
experiment can, however, be alleviated by properly tak
into account necessary restrictions on photon momenta.

For the case of positron-electron annihilation, the emit
photons are restricted to a small range of possible mom
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Dp centered atp5mc in order for energy to be conserved
In order to take into account conservation of energy,
u f (p)u2dp be the probability of photons having momenta b
tweenp andp1dp. The total wave function is then given b

C~x1 ,x2 ,t !5E
2`

`

f ~p!cp~x2 ,t !up~x1 ,t !dp. ~12!

Once photon one is detected, photon two’s wave function
then given by

fx1
~x2 ,t !5E

2`

`

f ~p!eip(x12x222ct)/\dp, ~13!

which is no longer equal to a Diracd-function. As Eq.~13!
indicates, restrictions on emitted photon momentaprohibit
instantaneous and complete localization of the second p
ton.

The prohibition on nonlocality indicated above may al
be described in terms of partial entanglement@9,10#. As is
well known in the quantum-optics community, if a particul
observable is subject to physical restrictions, any other c
jugate observable, associated with a noncommuting oper
will exhibit a corresponding restriction in terms of nonloca
ity. This can be more easily shown in terms of spin measu
ments.

Let us assume that two particles are emitted such that
total spin wave function, measured along thex axis, is given
by

Cx5au↑&1u↓&22bu↓&1u↑&2 , ~14!

where a21b251. If a5b, then individual spin measure
ments~alongx) for either particle are unrestricted and com
pletely uncertain. IfaÞb, there exists partial restriction. I
either a or b is equal to zero, spin measurements are co
pletely restricted. Note that the above wave function w
always exhibit maximum nonlocality~for measurements
alongx) regardless of the values ofa andb. A measurement
of u↑&1 will always yield u↓&2.

Particle spin along thez axis, however, is a conjugat
observable. For spin measurements along thez axis, the total
wave function can easily be shown to be

Cz5
1

A2
u↑&1H ~a2b!

A2
u↑&22

~a1b!

A2
u↓&2J

1
1

A2
u↓&1H ~a1b!

A2
u↑&22

~a2b!

A2
u↓&2J . ~15!

If a5b, observables associated with spin measureme
alongx are unrestricted. For spin measurements alongz, Eq.
~15! reduces to~with a5b)

Cz52
1

A2
u↑&1u↓&21

1

A2
u↓&1u↑&2 . ~16!
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In this case, spin measurements along thez axis exhibit
maximum nonlocality, or maximum entanglement.

In contrast, let us assumea50.8 andb50.6. In this case,
spin measurements alongx are only slightly restricted. Fo
spin measurements along the z axis, Eq.~15! reduces to

Cz5
1

A2
u↑&1$0.141u↑&220.989u↓&2%

1
1

A2
u↓&1$0.989u↑&220.141u↓&2%. ~17!

In this case, spin measurements alongz no longer exhibit
maximum nonlocality. If a measurement of particle on
spin yieldsu↑&1, only 98% of the time will particle two yield
u↓&2.

On the other extreme, ifb50, the observables associate
with spin measurements alongx are maximally restricted
For spin measurements along thez axis, Eq.~15! reduces to
~with b50)
/

03410
Cz5
1

A2
u↑&1H 1

A2
u↑&22

1

A2
u↓&2J

1
1

A2
u↓&1H 1

A2
u↑&22

1

A2
u↓&2J . ~18!

In this case, measurement of particle one’s spindoes not in
any way influencethe measurement of the spin of partic
two. Nonlocality is erased.

As the above analysis indicates, measurements involv
a particular observablemay or may notexhibit nonlocality,
depending upon the degree of physical restraints that m
exist on conjugate observables. In the case of photons b
emitted from positron-electron annihilation, photon mome
are, for all practical purposes,maximally restricted. This then
essentially eliminates nonlocality in the conjugate posit
observables. ThereforentQMÞ0. ~However, partial en-
tanglement still, nonetheless, exists. In the limit of we
defined momenta,ntQM→` for the case of no entangle
ment.! In striking contrast, parametric down-converte
photons exhibit amuch stronger correlationin time than that
of g photons. This may be attributed to the fact that dow
converted photons possess much larger uncertainties in e
sion energy than those ofg photons.
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