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Physical limitations on quantum nonlocality in the detection of photons emitted
from positron-electron annihilation
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Recent experimental measurements of the time interval between detection of the two photons emitted in
positron-electron annihilation have indicated that collapse of the spatial part of the photon’s wave function, due
to detection of the other photodpes not occurAlthough quantum nonlocality actually occurs in photons
produced through parametric down-conversion, the recent experiments give strong evialgiost
measurement-induced instantaneous spatial localization of high-epemyotons. A quantum-mechanical
analysis of the Einstein-Podolsky-Rosen problem is presented, which may help to explain the observed differ-
ences between photons produced through parametric down-conversion and photons produced through positron-
electron annihilation. The results are found to concur with the recent experiments invglyhgtons.
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Quantum nonlocality in measurements involving polariza-zero. In addition, we assume that the particles interact at
tion and two-photon interference of correlated photons hasimest<0. The total wave function can then be writtéar
been experimentally confirmed at many independent labora=0)
tories[1-4]. It has been generally postulated that nonlocal
effects may also occur in regard to the spatial wave functions oo
of the emitted photons. As an example, detection of one of ‘I’(Xl,Xzyt)=f Pp(Xa,t) Up(Xq,t) dp, (6N
the photons produced in parametric down-conversion is pre- o
dicted to cause “mstan_ta_neo.us" Iocallzatlon. of .the Otherwhereup(xl,t) are eigenstates of particle one’s momentum
photon, subsequently eliminating any uncertainty in the time, energy
of arrival of the second photon at a second detector. Experi-
mental support of this prediction has been reported by Hong Uy (X, 1) = eiPXa Mg —iEUH )
et al. [4]. The two-photon interference method utilized in P '

Ref. [4] indicates that the mir_1imum time uncertainty, in the |, order to conserve momentum, let us also assume
time interval between detection of the two down-converted
photons, is less than 100 fs. This uncertainty in timeigch
lessthan the coherence time of the initial pump photons,

which subsequently gives strong indication of nonlocal colyyhich are eigenstates of particle two’s momentum and en-

lapse of the photon wave function. _ergy. (x, is an arbitrary constant introduced in the original
One may expect to observe similar nonlocal effects in-gpR paper. In this case, however, since we are including the
volving photons emitted from positron-electron a”n'h”at'on-explicit time dependence, we will set=0.) Note that if a
Recent high-resolution measurements of the time interval b&yeasurement of particle one’s momentum yields a value of
tween the two photons emitted in positron-electron annihila-p, the total wave function collapses to
tion have been carried out by Irdp]. The results of the
measurements indicate that tladsolute minimunmuncer-
tainty in detection time between arrival of the two photons is V(X1 X2, ) =Xz, D Up(X1.1), @

Atgum=117+9 ps, which surprisingly, agrees with the life- \yhich has momentum eigenvalues pfand —p, respec-
time of positrons in bulk sodiurtl19 pg predicted by quan- ey, for particles one and two. Before any measurement

tum electrodynamicgs, 7). Although nonlocal effects are ob- (akes place, the total wavefunction is thus given by
served to occur in the case of down-converted photons, the

experimental results give strong evideragginstthe instan- w0
taneous spatial localization of photons emitted from anni- W(xl,xz,t)zf e'PCa—x)lhgmi2BURG (5
hilation events. -

In this paper, we present a quantum-mechanical analysi . . . .
of the time interval between detection of correlated photonsL.Fhe total wave.f.unctl_on can also be written n termsirof
The analysis is basically the same as that first presented bi;antaneousposmon eigenstates,(x,,t) of particle one
Einstein, Podolsky, and Ros¢BPR in 1935[8]. The main
difference, however, is that we include time dependence in _ "
the quantum wave functions and also take into account re- Y0 x20) fﬁwqu(xz,t) ox(xg ©
strictions on photon momenta due to energy conservation.

As in the original EPR paper, we assume that the totalvhere particle two’s wave functiow,(x,,t) is yet to be
momentum before the particles interdor are emitteflis  specified. Since the position eigenstates of particle one, mea-

l//p(Xz,t)=e’iP(X2+Xo)/ﬁe7iEt/h, 3
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sured at timet, are Diracd-functionsv,(x,t) = 8(X—Xx4), Ap centered ap=mc in order for energy to be conserved.

with eigenvalues,, Eq.(6) reduces to In order to take into account conservation of energy, let
|f(p)|2dp be the probability of photons having momenta be-
W(Xq,Xp,t)= ¢x1(xz 1), (7)  tweenpandp+dp. The total wave function is then given by

wherex; now represents an eigenvalue measured at time o
Therefore, the spatial wave function of particle two is depen- W(X1,X2,t)= Jiwf(p)wp(xbt)up(xlrt)d p. (12
dent on the position measurementof particle one,

- Once photon one is detected, photon two’s wave function is
by (%o t):f elP (= xa)lh g =i2EURG (8) then given by
1 ’ e :
Let us first consider the case where the particles have ¢x1(X2,t)=f f(p)elPtaxe-2etltg (13)

nonzero rest mass. If particle one’s positigris measured at -

t=0, Eq.(8) reduces to N . .
a-® which is no longer equal to a Dirag-function. As Eq.(13)

indicates, restrictions on emitted photon momepiahibit

b (X2,0)= fm e'PCa=x)/f g, instantaneous and complete localization of the second pho-
- ton.
9) The prohibition on nonlocality indicated above may also
¢X1(x2,0)=h5(x1—x2), be described in terms of partial entanglemghtlQ]. As is

well known in the quantum-optics community, if a particular
resulting in particle two being localized &y=x, (which is  observable is subject to physical restrictions, any other con-
the same result as presented in the original EPR paper witigate observable, associated with a noncommuting operator,
Xo= 0) If partic|e one’s position(l is measured at a time will exhibit a Corresponding restriction in terms of nonlocal-
other than zero, particle two’s wave function at the measureity- This can be more easily shown in terms of spin measure-

ment timet is then explicitly given by ments. _ .
Let us assume that two particles are emitted such that the
© total spin wave function, measured along thaxis, is given
. cn [T N2, D\ 2, ! !
¢X1(X2’t):f_melp(xl—xz)/ﬁe—|2\/(pc)2+(mc2)2t/hdp‘ by
(10)

W =alT)all)2=bl 1)l 1)z, (14
Thus, if particle one’s positior,; is measured at a time other —_— S )
thant=0, particle twowill not be localized Particle two is Wherea“+b“=1. If a=b, then individual spin measure-
only localized at one instant, namety= 0. Furthermore, re- Ments(alongx) for either particle are unrestricted and com-
wave function will always immediately and rapidly disperse €ithera or b is equal to zero, spin measurements are com-
as time progresses. pletely restr_lcFed. Note that the abpve wave function will
In contrast, sinc&= pc for photons, dispersion no longer always exhibit maximum nonlocalityfor measurements
of [1); will always yield|]),.
w Particle spin along the axis, however, is a conjugate
¢>Xl(x2,t)=f glPa—xe=2¢0/hg observable. For spin measurements alongztheis, the total
o a1 wave function can easily be shown to be
¢>x1(x2,t)=h5(x1—x2—20t). 1
Vo= = Rl
Thus, after measurement of photon one’s locakipmt time ’ \/§|T>1{ V2 )2 V2
t, photon two is instantaneously localizedxat=x; — 2ct. In
contrast with particles of nonzero rest mass, once photon two n i|l> (a+b) a-b)
is localized, it will remain localizedpropagating at). L2 2 V2
The result, given in Eq11) above, contradicts the experi-
mental measurements. Localization of the second photon |f a=b, observables associated with spin measurements
shouldeliminateany uncertainty in arrival time between the alongx are unrestricted. For spin measurements alrigg.
two photons. This glaring contradiction between theory and15) reduces tdwith a=b)
experiment can, however, be alleviated by properly taking
into account necessary restrictions on photon momenta.
For the case of positron-electron annihilation, the emitted Po=— i|T>1|l>2+ i|l)1|T>2- (16)
photons are restricted to a small range of possible momenta ‘ J2 2

(a—bh) (a+b)
- |l>2]

(
T)2—

|l>2]- (15
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In this case, spin measurements along thexis exhibit 1 1 1
maximum nonlocality, or maximum entanglement. V,=—|11 —=I1)2— =)
In contrast, let us assunae=0.8 andb=0.6. In this case, 2 2 V2
spin measurements alongare only slightly restricted. For 1 1 1
spin measurements along the z axis, 8d) reduces to F )] — — )yt (18)
\/§| >1 \/§|T>2 \/El >2

In this case, measurement of particle one’s sfiies not in
1 any way influenceghe measurement of the spin of particle
V,=—=[1)1{0.1411),—0.989),} two. Nonlocality is erased.
V2 As the above analysis indicates, measurements involving
1 a particular observablmay or may noexhibit nonlocality,
il _ depending upon the degree of physical restraints that may
* \/§|l>1{0'989T>2 0.14%1)2}- (47 exist on conjugate observables. In the case of photons being
emitted from positron-electron annihilation, photon momenta
are, for all practical purposesjaximally restrictedThis then
. . ... essentially eliminates nonlocality in the conjugate position
In this case, spin measurements alango longer exhibit  opgapyapies. Thereforé\toy#0. (However, partial en-
maximum nonlocality. If a measurement of particle one’sianglement still, nonetheless, exists. In the limit of well-
spin yields| 1)1, only 98% of the time will particle two yield gefined momentaptoy—c for the case of no entangle-
[1)2. ment) In striking contrast, parametric down-converted
On the other extreme, §=0, the observables associated photons exhibit anuch stronger correlatioin time than that
with spin measurements alongare maximally restricted. of y photons. This may be attributed to the fact that down-
For spin measurements along thexis, Eq.(15 reduces to  converted photons possess much larger uncertainties in emis-

(with b=0) sion energy than those of photons.
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