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Relativistic wave equations for many-particle quantum systems
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In this paper, some concepts of nonrelativistic many-particle quantum mech@nics product states,
density matrix are generalized to the relativistic domain using a framework called relativistic @ney
theory (RST). By using a general ansatz, the RST framework is simplified considerably and some of its field
equations are solved directly. The RST approach is then compared with nonrelativistic quantum mechanics
(QM) for the case of a product stateonventional QM and its RST analog. It is shown that relativistic wave
equations can be derived from the RST formalism, so that they coincide in the nonrelativistic limit with the
well-known Hartree equations.
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The dynamics of a state vector in nonrelativistic quantumHowever, the RST field equations constitute a system of non-
mechanics is governed by the Sotliryer equation linear partial differential equations, which up to now has
been difficult to solve. In this paper, we solve most of the
RST field equations using a general ansatz and show how
RST deals with relativistic many-particle systems.

The essential difference between the RST approach and
Likewise, the time development of a mixture configuration isconventional quantum theory is the way in which many-

d -

given by the von Neumann equation particle states are constructed from one-particle states;
whereas conventional QM constructs many-particle states as
ﬁi —TH 2 product states from one-particle states, e.g., for two particles
ih—-p=[H,p]. @2 = .
dt (in coordinate spage

The qgantities|\lf> 'and p are elements of an infinite- W=y (X1, 1) - ha(Xo, ), (4)
dimensionablobal Hilbert space and must therefore be con-

sidered as nonlocal objects. For example, the state vect@tch that the total wave function depends on different points
|W) of an N-particle system depends on the time coordinateof space, the RST approach is considering the wave function
t and the three-coordinates (i=1,... N) at different of a many-particle system as being constructed as the direct

points of three-space. Both EqQ) and (2) are not Lorentz ~ SUM of one-particle states at teamepoint of space-time:

covariant, yet one may assume that they constitute the non- Ui(X,)

relativistic limiting case of some relativistic framework. This W(X,)=1(X,) ¢2(Xu):( (X )) .
)

is clearly true for the one-particle case: The Sclimger
theuelitllgirr:(_lc);(r)r;ggnbg congldered as the nonrelativistic limit of One of the results of this paper is to show that using the
quation _ X .
ansatz(4) in conventional QM and5) in RST leads to the
Mc) 2 same wave equations in the nonrelativistic case, namely, the
7) =0, (3) Hartree equationg7], which constitute a set of wave equa-
tions for the one-particle wave functiong, and ,. The
fadvantage of the RST approach over conventional QM lies in
the fact that it produces a set of relativistic wave equations
which reduce to the Hartree equations only in the nonrelativ-
istic limit.
Of course, the wave vect@b) must obey some dynamical
quation, which has been postulated in RST in close analogy
o the nonrelativistic equatiofi):

(5

D, DF¢+

(see Ref[1]). The generalization of this result to a system o
N particles is, however, difficult as thé space coordinates

ii of |¥) have to be replaced by space-time coordinates
Xi,, such that the vectd®¥') depends om individual par-
ticle timest; . This makes the interpretation of the state vec-
tor difficult and necessitates the construction of one glob
time out of theN individual particle times, a difficult if not

impossible task2]. For the two-particle case, this has been ihcD, W="H,T, (6)
done(cf. Bethe-Salpeter equatid]), yet there still remain . a

some unsolved problenjd]. In summary, there do not exist (D, ¥=9,¥+A,V),

generally accepted relativistic wave equations for the

N-particle case. and is referred to in the following as relativistic Sctiirger

If one was able to find a relativistic generalization of Egs.equation(RSE. The state vectoW is a local sumWhitney
(1) and (2), it should be possible to derive such relativistic sum[8]) of N one-particle wave functiorfgonstructed as in
wave equations for the many-particle case. Some years agbg. (5)]. The RSE is Lorentz and gauge covari@h}, and
a framework named relativistic Scltinger theory(RST) introduces as a new object the Hamiltonian field operator
has been propos€é®,6] as a possible step in that direction. #,, which is not a fixed quantity as in conventional QM,
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but obeys its own set of field equations. Furthermore, theuently admits to solve the RSE) for ¥ and the RNE7)
Hamiltonian is non-Hermitian?(lM#’}?#), which does not for Z. However, the link between the matter fieldsind ¥
reflect the fact that dissipation is present in the system, budnd?,, could have been obtained in a more direct way. We

merely that the local modulusﬂ‘l’) of the wave function will show that both, the matter fields and the Hamiltonian
is variable. For concrete applications, the Hamiltontdp =~ M3 be constructed from the same object, a group element

may be considered as &hx N complex matrix of one-forms 9 € GL(N,C). . . . .
taking its values in the Lie algebra gi(C). The key point to obtain this result is the fact that the

As the relativistic analog of the von Neumann equationintegrability condition(8) can be solved by the following
(2), the relativistic von Neumann equatigRNE) was pro- ansatz fork,,:

posed: ; —1_; -1
| H,=ihc(D,9)g "=ihc[(d,9) g "+A,], (14
| J—
D I= 5 (T-H,~H, D) @) (D,9=d,9+A,9)
D,I=0,I+[ A, TI]. with g e GL(N,C). Note that Eq(14) constitutes locally the

e general solution of Eq(8) (see Ref[9]). The Hamiltonian
The Hermitian intensity matriZ=7 may be formally con- 37 s therefore identified as being the sum of the Maurer-
sidered as the relativistic analog of the density matrix. Cartan form (;Mg)gfl of a group elemeng e GL(N,C) and

The essential new feature of the RST is clearly the usagghe gauge fieldd,,, which take their values in the Lie alge-

of a Hamiltonian one-forn#{, as a dynamical object. The pra gI(N,C) and in the gauge algebra, respectively, which is
field equations fof{, must be postulated in such a way that fixed by the type of interaction. The knowledge of the gen-
_solutions to Eqs(G) and(7) exist, which leads to the follow- gra| form of 1, (14) makes it possible to solve the R$6)
ing curl equation: and the RNE(7) directly, which yields for the RSE

i .
DyHy= DyHut [ My H 1= 1HCF,,, (8) V=gV, (15)

referred to as the integrability conditiott,, is the field (P, being a constant compleX vecto) and
strength operator of the gauge fieldi, which carries the

interaction and is defined as usual in Yang-Mills theory: I=gg*5 (16
Fur=0, A= A+ [ AL A 9 for the RNE @, being a constant Hermitiah x N matrix).
It obeys the Yang-Mills equations The adjoint operatog is the Hermitian conjugatg” multi-
plied by a constant unitary matrign the case of Klein-
DF,,=4ma,J,, (10 Gordon(KG) particles, this unitary matrix i§, and for Dirac

) ) ] particles, it isyp). By use of the ansat{l4), one finds that
(a, is the coupling constantwhich reduce to the usual the conservation equatidi) is satisfied by putting
Maxwell equations in the Abelian case (= e?/%c).

The source equation fdk,, guarantees the conservation Mc) 2
of certain quantititegsuch as charges, etand differs for DMD/‘g—(T> g=0, a7
matter with and without spin. For spinless particles, we have

i ) Mc\? where the mass operato¥! has been set proportional to
DrHy= 7R M=l ﬁC(T) (1) unity (M~1 for indistinguishable particlesand for satisfy-
ing Eq. (13), one can put

and for spin-1/2 particles,

: | Me|? ity*D,g=Mcg, (18

DFH,— %H“Hﬁz—lhc(T) —ihCX ' F,,, . . ) .

which are nothing else than the Klein-Gordon and Dirac

(12 equations for a group elemegtinstead of a complex scalar

¢ or a Dirac spinor¥’. To recover the usual KG and Dirac

which is equivalent t45] equations, it is sufficient to let the operator equati¢h®

y#H”=Mczl (13y  and(18) act upon the constant elemefit, and exploit the
definiton of the wave functioW (15).
[note that contracting Eq13) with y, D" from the left yields Although the main concern of our paper are the RST
Eqg. (12)]. states(5), which constitute a subset of the pure states, it

Until now, it was very difficult to obtain solutions to this should be noticed that it is posssible to distinguigls in
coupled system of field equations. It was necessary to firstonventional quantum mechanidsetween pure states and
solve the Hamiltonian dynamic§l1)—(13) which subse- mixtures in RST by using the following criteridr.0]:
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>0 : positive mixtures . 2 e? o
Vi(X;)= ——— | ;i (X; de°x; . 25
detZ =0 : purestates (19) I( I) = J |Xi—Xj||l//J( J)| J ( )
<0 : negative mixtures

For our special problem of two particles, we put,j(
(in conventional QM, one considers only the positive mix-=1,2).
tures. Although the intensity matrix is a local quantity, vary- ~ The Lagrangian parametees are interpreted as the ion-
ing from one space-time point to another space-time pointization energy of theth particle under the assumption that
the sign of def is always fixed, as can be seen immediatelyall the other one-particle states remain unchang@eabp-

from Eq. (16): mans’ theoren{13]). The Hartree equation&®4) are local
- equations for they; , i.e., involve only quantities at the same
detZ=de{g g, g) =|detg)|?det g, ), (200 space poink=x(i=1, ... N). However, they involve po-

tentials which depend on an integration of the other wave
such that detZ depends only on the sign of the constantfunctions;(j#i) over the whole three-space. This is why
det(g,). A pure state(det 7=0) can therefore only be ap- the potential25) are considered as nonlocal quantities by
proached by a mixture if deg)=0 in a region of space- some authors. These integrals may however be considered as

time. being derived from a certain form dbcal Maxwell equa-
Most of the recent papers on RST have been consideringons (see below:.
mixture configurationg10,11]. Clearly, the relationship be- How is the same problem treated in RST? Again, we re-

tween mixtures and pure states is very important and interstrict ourselves to the case of two particles. We then special-

esting, however, if one wants to link RST and conventionalize the group elemeny to a 2x 2 matrix, put one column to

QM, it is more instructive to consider a very simple casezero and retain only the other one. Equatid®) is then

first, namely, that of two particles with electromagnetic in-reduced to the following vector equation:

teractions approximated by a pure state of the f@bim be-

ing the equivalent of the product stat¢) of conventional U Mc\?[ ¥

QM] (0“+A”)(6’M+AM) (ﬁ' + T lp
In conventional QM, the problem of two bound particles 2 2

in the field of a nucleugwith chargeZ) is given by the e now specialize the gauge field to the case of the electro-

=0. (26

Schralinger equatior(1) and the following Hamiltoniam: magnetic interactions. We p{it4]
. h? ze Z¢é e? ie (A, O ) ie
H=—-—(A+A) ——=———=—+—=——=". (21 A=~ = 7= (A2, Pi+ALPr)  (27)
N AR A A #Thel 0 Ay, TR

To get a lowest-order approximative solution to Egj, let ~ nd using the Yang-Mills equatioris0) in component form,
us assume that this solution may be written as a product staf¢€ find
of the form (4). The optimal single-particle wave functions
Y, and ¢, are then determined by minimizing the energy

functional E=(W|H|¥) constructed from the static SCAro (j=1,2). The conserved currerjts can be derived from the
dinger equation field equationg26) and are given by

=4ma, (ji,+i), (28)

4

I*F

[§73%

E[W)=H|V¥) (22) iR .. .ie .
Jiv=5Me Ui 9,4 — ;0¥ +2%Aju¢i'ﬁi , (29
using the ansatgd) for |¥) in time-independent fornisee,
e.g., Ref.[12]). The constraint that the one-particle wave
functions have to be normalized to unjty|;(x)|2dv=1]

is taken into account by adding Lagrangian multipliers
such that the functionaF to be minimized is of the follow-
ing form:

(i,j=1,2ii#]). The external curren{(®=(j{) jE) s
generated by the static point charge of the nuclgg?
=j{™=—-75(x),]®=0]. By using the ansat£27) for
A, , the self-energy problem is avoidéidr more details on
this point, see Ref.14]). Using the Lorentz gauge condition

(0"A;,=0), we get two wave equations from E@8)
. (23

A= o [ lnoorav-1
' DA, =4me(j;,+®). (30)

The result of this variation process are the Hartree equationsg,, equations for the matter fiel@@6) and the gauge fields

52 (30) constitute the set of relativistic wave equations which
_ l/,,(;,): e d/,()-({) (24) have to be solved in the RST approach. Note that both mag-
2M S netic as well as retardation effects are included into these
equations, whereas the exchange interactions are neglected
with the potentialsV; being defined as by the simplified ansat).

ze? -
Ai_ T‘f‘vi(xi)
Xi
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We now consider a static solution to E¢86) and(30) by  and therefore the potentials(x) are given by
making the following ansatz for the wave functio#s:

- Ze
. (31 ViX)=——=+ (37

|

f elwi&')lzdgx,_

x—x|

hi(X,)= tﬁi(i)exr{ - Iﬁit

Note that both wave functions are taken at siaenepoint of

space-time, so that there is no distinction between differenfOr the sake of simplicity, we have limited our discussion to
- = S - the two-particle case, the generalization to theparticle
space positionx;, X, for the two wave functiongi.e., x : ) .
case is however obvious, as one just has to replace the two-

=X,=X,). The four—potentiaAiV=£Ai0,,&i) is reduced to its  particle ansatz27) for the gauge potentiall, by
static form by the ansat4;,= (V;(x),0), such that only the
zeroth component of the currents, is different from zero: 1 je

L . i 1 i i AM:m%i%i AmPi. (38)

]i(X)EJiO(X):W(Gi_evj)wi(x)'pi*(x)- (32
The normalization factor 1I§—1) is necessary so that the

Inserting the static form of the currents into HGO) al-  ith particle feels theaveragepotential of the N—1) other
lows one to integrate this equation formally to yield particles, and the projectof® have been defined in EQR7)
in an obvious way.

Ji(x)+j®x") P In summary, the RST formalism has been simplified con-

Vix)=e |>Z—>?’| (33 siderably by making use of the ans#i#) and the relation-
ship between the matter fieldsand¥ and the Hamiltonian,
Equation(25) is simplified by this ansatz to one-form #,, has been clarified. Moreover, it has been
shown using the special ansd® that the RST formalism
[#2C2A+(&—eV,+Mc?)(&—eV,—Mc?)]y;(x)=0. can be used to obtain relativistic many-particle wave equa-

(34 tions (26) which take into account both magnetic as well as

) , .. retardation effects and coincide with the Hartree equations in

In order to compare with conventional QM, we now considerihe nonrelativistic static limit. This has been made possible
the nonrelativistic limit by first noting that the energy, is by a suitable choice of the gauge field operator (27) and

given by the rest mass plus the additional binding energy;3g in such a way that the self-energy problem is avoided.
&=Mc?+¢/ . We now suppose thaf —eV;<Mc? and ob- By making use of a nondiagonal operatdy,, it should be

tain the following wave equtions: possible to also derive a relativistic analog of the Hartree-
52 Fock equationgin preparation The RST formalism seems

( — o A+e Vi | gi(x) =€ ¢i(X). (35)  toallow the generalization of the nonrelativistic mixture con-

2M cept to the relativistic domain; further investigations into this

field are necessary. As a final point, it remains to be seen if
the creation-annihilation processes of quantum field theory
may also be included into the RST appproach.

One is easily convinced that E@5) coincides with the Har-
tree equation§24) by noting that the currengs reduce in the
nonrelativistic limit to

. . 12 The author wishes to thank Dr. M. Sorg for valuable dis-
1) =g () ¢ () =g (%) (36)  cussions.
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