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Relativistic wave equations for many-particle quantum systems
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In this paper, some concepts of nonrelativistic many-particle quantum mechanics~e.g., product states,
density matrix! are generalized to the relativistic domain using a framework called relativistic Schro¨dinger
theory ~RST!. By using a general ansatz, the RST framework is simplified considerably and some of its field
equations are solved directly. The RST approach is then compared with nonrelativistic quantum mechanics
~QM! for the case of a product state~conventional QM! and its RST analog. It is shown that relativistic wave
equations can be derived from the RST formalism, so that they coincide in the nonrelativistic limit with the
well-known Hartree equations.
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The dynamics of a state vector in nonrelativistic quant
mechanics is governed by the Schro¨dinger equation

i\
d

dt
uC&5ĤuC&. ~1!

Likewise, the time development of a mixture configuration
given by the von Neumann equation

i\
d

dt
r5@Ĥ,r#. ~2!

The quantitiesuC& and r are elements of an infinite
dimensionalglobal Hilbert space and must therefore be co
sidered as nonlocal objects. For example, the state ve
uC& of an N-particle system depends on the time coordin
t and the three-coordinatesxW i ( i 51, . . . ,N) at different
points of three-space. Both Eqs.~1! and ~2! are not Lorentz
covariant, yet one may assume that they constitute the n
relativistic limiting case of some relativistic framework. Th
is clearly true for the one-particle case: The Schro¨dinger
equation~1! may be considered as the nonrelativistic limit
the Klein-Gordon equation

DmDmc1S Mc

\ D 2

c50, ~3!

~see Ref.@1#!. The generalization of this result to a system
N particles is, however, difficult as theN space coordinate
xW i of uC& have to be replaced byN space-time coordinate
xim , such that the vectoruC& depends onN individual par-
ticle timest i . This makes the interpretation of the state ve
tor difficult and necessitates the construction of one glo
time out of theN individual particle times, a difficult if not
impossible task@2#. For the two-particle case, this has be
done~cf. Bethe-Salpeter equation@3#!, yet there still remain
some unsolved problems@4#. In summary, there do not exis
generally accepted relativistic wave equations for
N-particle case.

If one was able to find a relativistic generalization of Eq
~1! and ~2!, it should be possible to derive such relativis
wave equations for the many-particle case. Some years
a framework named relativistic Schro¨dinger theory~RST!
has been proposed@5,6# as a possible step in that directio
1050-2947/2003/67~3!/034101~4!/$20.00 67 0341
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However, the RST field equations constitute a system of n
linear partial differential equations, which up to now h
been difficult to solve. In this paper, we solve most of t
RST field equations using a general ansatz and show
RST deals with relativistic many-particle systems.

The essential difference between the RST approach
conventional quantum theory is the way in which man
particle states are constructed from one-particle sta
whereas conventional QM constructs many-particle state
product states from one-particle states, e.g., for two parti
~in coordinate space!:

C5c1~xW1 ,t !•c2~xW2 ,t !, ~4!

such that the total wave function depends on different po
of space, the RST approach is considering the wave func
of a many-particle system as being constructed as the d
sum of one-particle states at thesamepoint of space-time:

C~xm!5c1~xm! % c2~xm!5S c1~xm!

c2~xm!
D . ~5!

One of the results of this paper is to show that using
ansatz~4! in conventional QM and~5! in RST leads to the
same wave equations in the nonrelativistic case, namely,
Hartree equations@7#, which constitute a set of wave equa
tions for the one-particle wave functionsc1 and c2. The
advantage of the RST approach over conventional QM lie
the fact that it produces a set of relativistic wave equatio
which reduce to the Hartree equations only in the nonrela
istic limit.

Of course, the wave vector~5! must obey some dynamica
equation, which has been postulated in RST in close ana
to the nonrelativistic equation~1!:

i\cDmC5HmC, ~6!

~DmC[]mC1AmC!,

and is referred to in the following as relativistic Schro¨dinger
equation~RSE!. The state vectorC is a local sum~Whitney
sum@8#! of N one-particle wave functions@constructed as in
Eq. ~5!#. The RSE is Lorentz and gauge covariant@5#, and
introduces as a new object the Hamiltonian field opera
Hm , which is not a fixed quantity as in conventional QM
©2003 The American Physical Society01-1
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but obeys its own set of field equations. Furthermore,
Hamiltonian is non-Hermitian (HmÞH̄m), which does not
reflect the fact that dissipation is present in the system,
merely that the local modulus (C̄C) of the wave functionC
is variable. For concrete applications, the HamiltonianHm
may be considered as anN3N complex matrix of one-forms
taking its values in the Lie algebra gl(N,C).

As the relativistic analog of the von Neumann equat
~2!, the relativistic von Neumann equation~RNE! was pro-
posed:

DmI5
i

\c
~I•H̄m2Hm•I! ~7!

DmI[]mI1@Am ,I#.

The Hermitian intensity matrixI5Ī may be formally con-
sidered as the relativistic analog of the density matrix.

The essential new feature of the RST is clearly the us
of a Hamiltonian one-formHm as a dynamical object. Th
field equations forHm must be postulated in such a way th
solutions to Eqs.~6! and~7! exist, which leads to the follow-
ing curl equation:

DmHn2DnHm1
i

\c
@Hm ,Hn#5 i\cFmn , ~8!

referred to as the integrability condition.Fmn is the field
strength operator of the gauge fieldAm which carries the
interaction and is defined as usual in Yang-Mills theory:

Fmn5]mAn2]nAm1@Am ,An#. ~9!

It obeys the Yang-Mills equations

DmFmn54pa* Jn , ~10!

(a* is the coupling constant! which reduce to the usua
Maxwell equations in the Abelian case (a* 5e2/\c).

The source equation forHm guarantees the conservatio
of certain quantitites~such as charges, etc.! and differs for
matter with and without spin. For spinless particles, we h

DmHm2
i

\c
H mHm52 i\cS Mc

\ D 2

~11!

and for spin-1/2 particles,

DmHm2
i

\c
H mHm52 i\cS Mc

\ D 2

2 i\cSmnFmn ,

~12!

which is equivalent to@5#

gmH m5Mc21 ~13!

@note that contracting Eq.~13! with gnDn from the left yields
Eq. ~12!#.

Until now, it was very difficult to obtain solutions to thi
coupled system of field equations. It was necessary to
solve the Hamiltonian dynamics~11!–~13! which subse-
03410
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quently admits to solve the RSE~6! for C and the RNE~7!
for I. However, the link between the matter fieldsI andC
andHm could have been obtained in a more direct way. W
will show that both, the matter fields and the Hamiltoni
may be constructed from the same object, a group elem
gPGL(N,C).

The key point to obtain this result is the fact that t
integrability condition~8! can be solved by the following
ansatz forHm :

Hm5 i\c~Dmg!g215 i\c@~]mg! g211Am#, ~14!

~Dmg[]mg1Amg!

with gPGL(N,C). Note that Eq.~14! constitutes locally the
general solution of Eq.~8! ~see Ref.@9#!. The Hamiltonian
Hm is therefore identified as being the sum of the Maur
Cartan form (]mg)g21 of a group elementgPGL(N,C) and
the gauge fieldAm , which take their values in the Lie alge
bra gl(N,C) and in the gauge algebra, respectively, which
fixed by the type of interaction. The knowledge of the ge
eral form ofHm ~14! makes it possible to solve the RSE~6!
and the RNE~7! directly, which yields for the RSE

C5gC* ~15!

(C* being a constant complexN vector! and

I5gg* ḡ ~16!

for the RNE (g* being a constant HermitianN3N matrix!.
The adjoint operatorḡ is the Hermitian conjugateg† multi-
plied by a constant unitary matrix~in the case of Klein-
Gordon~KG! particles, this unitary matrix is1, and for Dirac
particles, it isg0). By use of the ansatz~14!, one finds that
the conservation equation~11! is satisfied by putting

DmDmg2S Mc

\ D 2

g50, ~17!

where the mass operatorM has been set proportional t
unity (M;1 for indistinguishable particles!, and for satisfy-
ing Eq. ~13!, one can put

i\gmDmg5Mcg, ~18!

which are nothing else than the Klein-Gordon and Dir
equations for a group elementg instead of a complex scala
c or a Dirac spinorC. To recover the usual KG and Dira
equations, it is sufficient to let the operator equations~17!
and ~18! act upon the constant elementC* and exploit the
definiton of the wave functionC ~15!.

Although the main concern of our paper are the R
states~5!, which constitute a subset of the pure states
should be noticed that it is posssible to distinguish~as in
conventional quantum mechanics! between pure states an
mixtures in RST by using the following criterion@10#:
1-2
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detIH .0 : positive mixtures

50 : pure states

,0 : negative mixtures

~19!

~in conventional QM, one considers only the positive m
tures!. Although the intensity matrix is a local quantity, var
ing from one space-time point to another space-time po
the sign of detI is always fixed, as can be seen immediat
from Eq. ~16!:

detI5det~g g* ḡ!5udet~g!u2det~g* !, ~20!

such that detI depends only on the sign of the consta
det(g* ). A pure state~det I50) can therefore only be ap
proached by a mixture if det(g)⇒0 in a region of space
time.

Most of the recent papers on RST have been conside
mixture configurations@10,11#. Clearly, the relationship be
tween mixtures and pure states is very important and in
esting, however, if one wants to link RST and conventio
QM, it is more instructive to consider a very simple ca
first, namely, that of two particles with electromagnetic
teractions approximated by a pure state of the form~5! @be-
ing the equivalent of the product state~4! of conventional
QM#.

In conventional QM, the problem of two bound particl
in the field of a nucleus~with chargeZ) is given by the
Schrödinger equation~1! and the following HamiltonianĤ:

Ĥ52
\2

2m
~D11D2!2

Ze2

uxW1u
2

Ze2

uxW2u
1

e2

uxW12xW2u
. ~21!

To get a lowest-order approximative solution to Eq.~1!, let
us assume that this solution may be written as a product s
of the form ~4!. The optimal single-particle wave function
c1 and c2 are then determined by minimizing the ener
functional E5^CuĤuC& constructed from the static Schro¨-
dinger equation

EuC&5ĤuC& ~22!

using the ansatz~4! for uC& in time-independent form~see,
e.g., Ref.@12#!. The constraint that the one-particle wa
functions have to be normalized to unity@* uc i(x)u2dV51#
is taken into account by adding Lagrangian multiplierse i ,
such that the functionalF to be minimized is of the follow-
ing form:

F5^CuĤuC&2(
i

e i S E uc i~x!u2dV21D . ~23!

The result of this variation process are the Hartree equat

S 2
\2

2M
D i2

Ze2

xW i

1Vi~xW i !D c i~xW i !5e ic i~xW i !, ~24!

with the potentialsVi being defined as
03410
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Vi~xW i !5(
j Þ i

E e2

uxW i2xW j u
uc j~xj

W !u2d3xj . ~25!

For our special problem of two particles, we put (i , j
51,2).

The Lagrangian parameterse i are interpreted as the ion
ization energy of thei th particle under the assumption th
all the other one-particle states remain unchanged~Koop-
mans’ theorem@13#!. The Hartree equations~24! are local
equations for thec i , i.e., involve only quantities at the sam
space pointxW5xW i( i 51, . . . ,N). However, they involve po-
tentials which depend on an integration of the other wa
functionsc j ( j Þ i ) over the whole three-space. This is wh
the potentials~25! are considered as nonlocal quantities
some authors. These integrals may however be considere
being derived from a certain form oflocal Maxwell equa-
tions ~see below!.

How is the same problem treated in RST? Again, we
strict ourselves to the case of two particles. We then spec
ize the group elementg to a 232 matrix, put one column to
zero and retain only the other one. Equation~17! is then
reduced to the following vector equation:

~]m1A m!~]m1Am!S c1

c2
D 1S Mc

\ D 2S c1

c2
D 50. ~26!

We now specialize the gauge field to the case of the elec
magnetic interactions. We put@14#

Am5
ie

\c S A2m 0

0 A1m
D 5

ie

\c
~A2mP11A1mP2! ~27!

and using the Yang-Mills equations~10! in component form,
we find

]mFimn54pa* ~ j in1 j n
(ex)!, ~28!

( i 51,2). The conserved currentsj in can be derived from the
field equations~26! and are given by

j in5
i\

2Mc S c i* ]nc i2c i]nc i* 12
ie

\c
Aj nc ic i* D , ~29!

( i , j 51,2;iÞ j ). The external currentj n
(ex)5( j 0

(ex) , jW (ex)) is
generated by the static point charge of the nucleus@ j (ex)

[ j 0
(ex)52Zd(xW ), jW (ex)50W #. By using the ansatz~27! for

Am , the self-energy problem is avoided~for more details on
this point, see Ref.@14#!. Using the Lorentz gauge conditio
(]nAin50), we get two wave equations from Eq.~28!

hAin54p e~ j in1 j n
(ex)!. ~30!

The equations for the matter fields~26! and the gauge fields
~30! constitute the set of relativistic wave equations whi
have to be solved in the RST approach. Note that both m
netic as well as retardation effects are included into th
equations, whereas the exchange interactions are negle
by the simplified ansatz~5!.
1-3
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We now consider a static solution to Eqs.~26! and~30! by
making the following ansatz for the wave functionsc i :

c i~xm!5c i~xW !expF2
i e i

\
t G . ~31!

Note that both wave functions are taken at thesamepoint of
space-time, so that there is no distinction between differ
space positionsxW1 , xW2 for the two wave functions~i.e., xW

5xW15xW2). The four-potentialAin5(Ai0 ,AW i) is reduced to its
static form by the ansatzAin5„Vi(xW ),0…, such that only the
zeroth component of the currentsj in is different from zero:

j i~xW ![ j i0~xW !5
1

Mc2
~e i2eVj !c i~xW !c i* ~xW !. ~32!

Inserting the static form of the currents into Eq.~30! al-
lows one to integrate this equation formally to yield

Vi~xW !5eE j i~xW8!1 j (ex)~xW8!

uxW2xW8u
d3x8. ~33!

Equation~25! is simplified by this ansatz to

@\2c2D1~e i2eVj1Mc2!~e i2eVj2Mc2!#c i~xW !50.
~34!

In order to compare with conventional QM, we now consid
the nonrelativistic limit by first noting that the energy,e i is
given by the rest mass plus the additional binding ene
e i5Mc21e i8 . We now suppose thate i82eVj!Mc2 and ob-
tain the following wave equtions:

S 2
\2

2M
D1e Vj Dc i~xW !5e i8c i~xW !. ~35!

One is easily convinced that Eq.~35! coincides with the Har-
tree equations~24! by noting that the currentsj i reduce in the
nonrelativistic limit to

j i~xW !5c i~xW !c i* ~xW !5uc i~xW !u2 ~36!
ry

03410
nt

r

y,

and therefore the potentialsVi(xW ) are given by

Vi~xW !52
Ze

uxW u
1E e uc i~xW8!u2

uxW2xW8u
d3x8. ~37!

For the sake of simplicity, we have limited our discussion
the two-particle case, the generalization to theN-particle
case is however obvious, as one just has to replace the
particle ansatz~27! for the gauge potentialAm by

Am5
1

N21

ie

\c (
i , j Þ i

Aj mPi . ~38!

The normalization factor 1/(N21) is necessary so that th
i th particle feels theaveragepotential of the (N21) other
particles, and the projectorsPi have been defined in Eq.~27!
in an obvious way.

In summary, the RST formalism has been simplified co
siderably by making use of the ansatz~14! and the relation-
ship between the matter fieldsI andC and the Hamiltonian,
one-form Hm , has been clarified. Moreover, it has be
shown using the special ansatz~5! that the RST formalism
can be used to obtain relativistic many-particle wave eq
tions ~26! which take into account both magnetic as well
retardation effects and coincide with the Hartree equation
the nonrelativistic static limit. This has been made possi
by a suitable choice of the gauge field operatorAm ~27! and
~38! in such a way that the self-energy problem is avoid
By making use of a nondiagonal operatorAm , it should be
possible to also derive a relativistic analog of the Hartr
Fock equations~in preparation!. The RST formalism seem
to allow the generalization of the nonrelativistic mixture co
cept to the relativistic domain; further investigations into th
field are necessary. As a final point, it remains to be see
the creation-annihilation processes of quantum field the
may also be included into the RST appproach.

The author wishes to thank Dr. M. Sorg for valuable d
cussions.
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