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Existence of superposition solutions for pulse propagation in nonlinear resonant media
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Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schro¨dinger
equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of
these excitations are specific to the resonant media, with energy levels in the configurations ofL andN and
arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered iden-
tities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as
single pulse trains, with widely different amplitudes, which can lead to substantially different field intensities
and population densities in different atomic levels.
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I. INTRODUCTION

The generation of shape preserving excitations in non
ear media has been the subject of extensive research i
verse areas of physics, ranging from hydrodynamics@1#, par-
ticle physics @2# to quantum optics@3–5#, and optical
communications@6#. Starting from the explanation of th
solitary waves in shallow water@7#, these solutions of the
nonlinear wave equations have found ample experime
verifications. In optical context, the nonlinear nature of t
coupled Maxwell-Schro¨dinger equations@8#, describing the
interaction of classical radiation with matter in a reson
media, has naturally generated tremendous interest in
study of the pulse@3,9–13# and pulse-train solutions@14–
17#. Recently, the continuous pulse-train soliton solutio
have been observed experimentally for the two-level sys
@18#. For a detailed overview, the interested readers are
ferred to Refs.@19,20#, apart from the above references.

The common factor that governs the existence of the s
similar excitations in various nonlinear systems is the criti
balance between nonlinearity and dispersion@21#. This se-
verely restricts the set of solutions, in most of the cases
combinations of the Jacobian elliptic functions@22# and also
leads to definite relationships between the amplitud
widths, and velocities of these modes. The periodic ellip
functions, characterized by the modulus parameterm and
smoothly interpolating between hyperbolic secant and t
gent to periodic cosine and sine functions, form values one
and zero, respectively, describe localized pulses form51
and pulse trains for 0<m,1.

In this light, the recent findings of a number of identiti
involving the superposition of elliptic functions@23–25# and
their application to various nonlinear systems@26# makes it
extremely interesting to find the implications of the same
the multilevel resonant media. A number of phenomena,
self @27# and electromagnetically induced transparenc
@28#, pulse sharpening@29#, pulse cloning and dragging@30#,
just to name a few, are ascribable to the existence of sh
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preserving excitations in resonant media. A great deal of
tention, both analytical and numerical, has been paid to
cases in which the resonant atoms are asymptotically in
ground or excited state. Pulse train solutions, character
to excited media, have been studied, for two-level@14,15#
and for three- and five-level@16# configurations. Well-known
techniques for generating solutions, e.g., inverse scatte
methods@21,31,32# and Bäcklund transformations@33# have
also been employed for higher-level atomic media, albeit
der restrictive conditions on the propagation constants
other parameters of these systems. Further progress, in
understanding of the dynamics of the inhomogeneou
broadened three-level system, has recently been achieve
the derivation of an area theorem@34#.

In this paper, we first show the existence of pulse-tr
solutions, specific to theL and N type, nonlinear, resonan
media, taking recourse to the above mentioned identit
involving elliptic functions. Interestingly, these solutions c
either be viewed as a linear superposition of cnoidal wa
or as single cnoidal waves, with widely different, modul
dependent amplitudes for different pulse trains. We find th
for some of these exact solutions, the modulus paramete
controlled by the oscillator strengths of the atomic tran
tions, as compared to other pulse-train solutions found so
where m appears as a free parameter. Interference effe
originating from the superposition nature of these solutio
lead to substantially different field intensities and populat
densities in different atomic levels. We then point out t
existence of pulse-train solutions in the four-level case, si
lar to those found in other multilevel systems.

II. SUPERPOSED PULSE TRAINS IN L SYSTEMS

We start with the three-levelL system, because of it
wide applicability and then proceed to the four-level ca
with the energy levels in the configuration ofN, from which
the other lower ones will follow under limiting conditions
Shape preserving solutions, in the form of superposition o
pair of different cnoidal waves@like a superposition of
sn(x,m) and cn(x,m)], have been obtained earlier by Hio
and Grobe@16#, for the three- and five-level systems. The
exact solitary waves can have a variety of shapes, becau
©2003 The American Physical Society17-1
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interference. The solutions to be discussed here are supe
sitions of an odd number of cnoidal waves of agiven type
@no combinations involving, say both sn(x,m) and cn(x,m)],
with appropriately displaced arguments. As will be seen la
in the text, these superposed solutions can have widely
ferent amplitudes. This can be understood from the fact t
both cn(x,m) and sn(x,m) functions take values rangin
from 21 to 1, whereas the dn(x,m) function has only posi-
tive values. Hence, the superposed solutions involv
cn(x,m) and sn(x,m) functions can have a much small
amplitude as compared to that involving dn(x,m) function,
whose amplitude can be substantially higher.

For theL system consisting of the ground-statei, excited-
statee, and the intermediate statef, we assume the fields t
have slowly varying pulse envelopes: EW a(z,t)
5EWa(z,t)e2 i (vat2kaz)1c.c. In the rotating wave approxima
tion EWe , andEW f act on transitionsei ande f, respectively. The
Rabi frequenciesVa52(dW aEWa /\), with dW a being the dipole
matrix element of theath transition, are also slowly varying
functions of space and time. We assume, for simplicity th
all the fields are resonant with their respective transitions

In slowly varying envelope approximations, the reson
coupled Maxwell-Schro¨dinger equations are

i
]

]t
Ce52

V f

2
Cf2

Ve

2
Ci ,

i
]

]t
Ci52

Ve
!

2
Ce ,

i
]

]t
Cf52

V f
!

2
Ce, ~1!

]

]z
V f5 im fCeCf

! ,

]

]z
Ve5 imeCeCi

! . ~2!

In above, we have neglected the relaxation terms, since
pulse widths are taken to be smaller than the relaxa
times.Ca (a5e,i , f ) represents the probability amplitude
finding the atom in the stateua&.

The parameterma is given by

ma54pN udau2va

\c
5

2pe2Nf a

mc
,

whereN is the density of the atoms andf a is the oscillator
strength for the transition of frequencyva . The atomic sys-
tem is assumed to be continuously distributed in a non
persive host medium. The coordinatet5t2(z/c) measures
time relative to the pulse center andz5z.

We look for self-similar solutions of Eqs.~1! and~2!, i.e.,
solutions depending upon a single variableX5(qz2Gt).
Here,G21 is the pulse duration and, as will be seen laterq
andG will be related via the pulse velocity and another p
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rameter, characterizing the solutions. The superposed pu
train solutions, to be discussed here, appear in bothL andN
type media and can be made to satisfy a wide range of in
conditions, like no occupancy of the desired atomic levels
partial occupation of all the levels. It should be pointed o
that partial occupation of levels necessarily implies initia
induced coherence in the atomic system. We note that,
pulse-train solutions ofL, V, and other odd-level system
@16#, consisting of a matched pair of elliptic functions, do n
satisfy the nonlinear equations of theN system.

It can be shown that the ansatz solutions

Ci5S̃, Cf5bfC̃, Ce5beD̃, V f5AfS̃, Ve5AeC̃,
~3!

satisfy the Maxwell-Schro¨dinger equations, provided th
functionsC̃, S̃, andD̃ are as defined below and the consta
coefficientsbf , be and Ae ,Af are appropriately related.C̃,
S̃, andD̃ are linear superpositions of the Jacobi elliptic fun
tions cn(X,m), sn(X,m), and dn(X,m), respectively:

S̃5(
i 51

p

snFX1
4~ i 21!K~m!

p
,mG

and C̃ and D̃ are analogously defined. Here,p is an odd
integer, K(m) is the complete elliptic integral of the firs
kind andm is the modulus parameter. The above solutio
are possible for odd integral values ofp, since the cross
terms in the right-hand side of Eqs.~1! and~2! are canceled
because of the identities of the type@23#

s̃1~ d̃21d̃3!1~cyclic permutations!50,

c̃1~ s̃21 s̃3!1~cyclic permutations!50,

c̃1~ d̃21d̃3!1~cyclic permutations!50. ~4!

Here,

s̃1[sn~X,m!,

s̃2[snS X1
4K~m!

p
,mD ,

and

s̃3[snS X1
8K~m!

p
,mD ,

and other functions are similarly defined. Although, for de
niteness, henceforth we consider only thep53 case, the
consistency conditions on the parameters, written below,
identical for all values ofp. Introducing an additional param
eterm52qGm, for future convenience, one finds,
7-2
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uAeu254G2m
me

m
,

uAf u254G2mFme

m
21G , ~5!

be5
iqAe

me
,

bf52
Af

!

Ae
!

, ~6!

and also the constraint,me5m f . The positive definite char
acter of the pulse intensity, requires thatme>m.

The superposed character of the solutions, for higher
ues of p, leads to significant differences between differe
pulse-train and electron amplitudes, as will be explica
later. It also manifests in the conservation of probabilities
the electrons. For thep53 case,(auCau251 leads to

me2m

me
5

1

m
211

4

m
~ q̃21q̃!

1

m
211

2

mF ~ q̃11!22
m

~ q̃11!2G . ~7!

Here,q̃5dn„2
3 K(m),m… and satisfies

q̃412q̃322~12m!q̃2~12m!50. ~8!

The values ofq̃ range from one to zero continuously, whe
m varies between zero and one. It can be checked that, w
m51, the conservation law is identically satisfied, maki
the above equation vacuous; in this case one obtains
pulse solutions of theL system. Form50, right-hand side
takes value one, which is ruled out on physical grounds.
other values ofm, the above equation can be numerica
solved to obtain the range of values ofm for a givenme . It
should be noted that, sinceme>m, the variable (me
2m)/me takes values between zero and one. It is found t
for the superposed solutions to exist, the condition 0
&(me2m)/me,1 should be satisfied. As depicted in Fig.
the modulus parameterm can lie between one and zero, fo

FIG. 1. Graph of the modulus parameterm versus x5(me

2m)/me .
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the above values of (me2m)/me . Hence the choice ofm
(0,m,1) determinesm through Eq.~7!, which in turn
yieldsqG, throughm52qGm. Hence the solutions are cha
acterized by the two free parametersm and G. It can be
easily seen thatD̃ has a much higher amplitude as compar
to C̃ andS̃; hence theue& state has a higher population. Th
superposition nature of the solutions enables one to h
these widely differing amplitudes. It can be checked th
exchange ofC̃ andD̃ also leads to allowed solutions. In tha
case theu f & state population can be made large as compa
to u i & and ue& states.

For the purpose of comparison, we consider the nonsu
posedp51 case. TakingCi5bisn(X,m) and replacingD̃

and C̃ by corresponding cnoidal waves one finds, after a
propriately choosing the fields, that, the parameter relati
ships as obtained in Eqs.~5! and ~6! are unchanged. How
ever, the probability conservation now yields substantia
different result:

1

ubi u2
5

m

me
S 1

m
21D11. ~9!

It is clear from the above expression that, for,bi51, no
pulse-train solutions are possible, asm51, for this case.
Sincem/me lies between zero and one, it follows from E
~9! that, ubi u2 takes values ranging fromm and 1. It should
be pointed that, like the previous case, 0,m,1. One is then
finally left with three free parameters,G, m andbi , in their
appropriate range of values. It is possible to obtain anot
solution by exchanging dn(X,m) with cn(X,m), in the above
ansatz. This choice leads to the constraint

1

ubi u2
5S 12

m

me
D 1

m
. ~10!

III. PULSE-TRAIN SOLUTIONS OF THE N SYSTEM

In case of theN system, one needs to consider sev
coupled equations, due to the presence of an additional
ergy stateuv&, in between the statesue& and u f &, of the L
system. Here, one has the additional parameter,mv
5(2pe2Nf v)/mc, f v being the corresponding oscillato
strength. These nonlinear equations have been recently fo
to possess propagating pulse solutions@13#. Introducing, the
additional electron amplitudeCv5bvD̃ and the Rabi fre-
quencyVv5AvC̃ in the ansatz solutions, we only write be
low, the new and modified parametric relations, as compa
to theL system

2qGm5mv , ~11!

uAvu254G2mF12
me

m f
G ,

uAeu254G2m
me

2

m fmv
, ~12!
7-3
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bv5
iqAv

mv
,

bf52
Af

!

Ae
!

me

m f
. ~13!

Note that here,mv determines 2qGm, unlike theL system.
The positive definite character of the pulse intensities n
requires the inequalities

m f>me>mv . ~14!

In the present case, the conservation of probability yie

me2mv

m f
5

1

m
211

4

m
~ q̃21q̃!

1

m
211

2

mF ~ q̃11!22
m

~ q̃11!2G . ~15!

This leads to the constraint on the oscillator strengths: 0
&(me2mv)/m f,1, for 0,m,1. It is worth noting that, as
compared toL system, in the present case the oscilla
strengths determine modulus parameterm.

The uniform group velocity, as determined by our so
tions is given by

1

v
5

1

c
1

mv

2G2m
. ~16!

As the width of the pulse train becomes shorter (G gets
larger!, the group velocity approaches the background m
dium velocity; however, for smaller values ofm, the pulse-
train velocity can be significantly smaller than the mediu
velocity. We have checked that a different superposition t
solution, e.g.,Ci5S̃ and exchange ofC̃ and D̃ for other
fields, does not alter the above conclusions. However,
population of different levels, as well as the field amplitud
can be substantially different, from the earlier case. It
straightforward to see, from Eqs.~11! and ~15!, that unlike
the L system, theN system is characterized by one fre
parameterG.

It is worth noting that, for the two-level case, correspon
ing to me5mv5m f , as well as for theV system, for which
me5mv , the constraint equation originating from the pro
ability conservation yields

m5114~ q̃21q̃!. ~17!

Since 0<m<1 and q̃.0, it is easy to see that, the abov
equation cannot be satisfied. Hence these types of excita
are exclusive toL andN type systems.

A better understanding of the above solutions can be p
vided by a dual interpretation of these excitations, throug
set of generalized Landen transformations, found recen
For thep53 case, the transformation formula yields
03381
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adn~x,m̃!5Fdn~ax,m!1dnS ax1
4K~m!

3
,mD

1dnS ax1
8K~m!

3
,mD G , ~18!

where

a5Fdn~0,m!1dnS 4K~m!

3
,mD1dnS 8K~m!

3
,mD G

and

m̃5m
~12q̃!2

~11q̃!2~112q̃!2
, ~19!

with q̃5dn@ 2
3 K(m),m#. For the sn(x,m̃) and cn(x,m̃) func-

tions, the formulas have same widths in right-hand side a
dn(x,m̃); however, the amplitudea is replaced byb, given
by

b5Fcn~0,m!1cnS 4K~m!

3
,mD1cnS 8K~m!

3
,mD G .

~20!

The facts that, dn(x,m) takes only positive values an
cn(x,m) have values ranging from11 to 21, can be seen to
be the reason behind the large value ofa as compared to tha
of b. Hence, the superposed cnoidal waves can have wi
varying amplitudes, which lead to significant differences
atomic level occupations.

IV. PURE CNOIDAL SOLUTIONS FOR THE N SYSTEM

Since the four-level system has not been systematic
analyzed for pulse-train solutions, we would like to point o
that, like the two-level case, pure cnoidal waves, with co
parable electron and field amplitudes, can also be obtaine
solutions to theN system. As has been mentioned earli
matched pair-type pulse-train solutions of the odd-le
atomic systems@16# are not solutions of the four-level sys
tem. It can be seen that the ansatz solutions

Ci5bisn~X,m!, Cf5bfdn~X,m!,

Ce5becn~X,m!, Cv5bvdn~X,m!, ~21!

and

V f5Afsn~X,m!, Ve5Aedn~X,m!, Vv5Avdn~X,m!,
~22!

satisfy the Maxwell-Schro¨dinger equations, providedubi u2
,1 and the constant coefficientsbi ,bf ,be ,bv andAe ,Af ,Av
are related. The consistency conditions on all the parame
are now modified
7-4
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2qGm

ubi u2
5mv ,

uAvu254G2F12
me

m f
G ,

uAf u254G2mFme

mv
21G ,

uAeu254G2
me

2

m fmv
,

be5
imvAebi

2meG
,

bv5
iAvbi

2G
,

bf52
Af

!

Ae
!

mebi

mm f
,

1

ubi u2
5F11

12m

m S me2mv

m f
D G . ~23!

For a given ground-state occupancy, the modulus param
m is determined by Eq.~23!. The velocity is now modified
and depends uponubi u2,

1

v
5

1

c
1

mvubi u2

2G2m
. ~24!

For the purpose of considering limiting cases of theN sys-
tem, we observe that, when the modulus parameterm equals
one, the cnoidal functions go over to hyperbolic on
thereby yielding localized pulse solutions. The pulse tra
are obtained, when 0,m,1, the m50 value being ruled
out in the present case. Since (me2mv)/m f is positive, it is
clear from Eq.~23! that, for theN system,ubi u2 must be less
than one, for the latter type of solutions. However, for t
two-level case, whereme5mv5m f , the above restriction
does not apply. In that case,bi51 and one obtains the cno
dal solutions, similar to a set of solutions, obtained
Arecchiet al. and independently by Crisp in Ref.@14#, in an
inhomogeneous media. Exchanging dn(X,m) with cn(X,m)
in the above ansatz, leads toubi u25m; in this case one ob
tains the solutions, analogous to another set of soluti
given in Ref.@14#, under inhomogeneous conditions. This
also clear from the analysis of theL system, which is ob-
tained from theN system under the condition,me5m f , with
m5mv . The above point also indicates that for theL sys-
tem, obtained as a limiting case,ubi u2,1, in order for the
pulse-train solution to exist. One obtains localized pulse
lutions for ubi u251, since in that casem51. For theV sys-
tem, for whichme5mv , the conclusions are similar to th
two-level case. A comparison with Ref.@16# shows that the
above solutions form a subclass of the matched pair s
03381
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tions, for theL andV system. This result is expected sinc
matched pair type superposition solutions are not poss
for the N system.

For the purpose of better appreciation of the relative a
plitude variations of the superposed solutions, as compa
to the pure cnoidal ones, Fig. 2 depicts two of the pu
trains with their cnoidal constituents. The widely differe
amplitudes of the superposed dn(X,m) and sn(X,m) type
cnoidal waves and their respective constituents are cle
visible.

Figure 3 shows, the superposed solutions with their n
superposed counterparts, clearly bringing out their diff
ences.

Figure 4 reveals the same for different parameter valu
One sees that, form50.3 the amplitude of superpose
sn(X,m) solution attains a very small value. It is extreme
interesting to observe that, the excited-state probability d
sity can be made very small and other densities enhan
through these solutions, which is not possible through p
cnoidal waves. It is clear that, this desirable feature of
pulse trains owes its origin to the superposition nature of
solutions.

It is natural to inquire the effect of detunings on the abo
solutions and to find if the previous methods of incorporat
detuning~particularly the caseDe5D f in theL system@12#!
would also work for deriving the pulse-train solutions.

V. CONCLUSIONS

In summary, we have found that delicate interference p
nomena involving cnoidal waves give rise to certain sha

FIG. 2. ~a! Plot depicting the superposedD̃(X,m) ~solid curve!
and its three dn(X,m) constituents~dotted curves!, for m50.7. ~b!

Plot depicting the superposedS̃(X,m) ~solid curve! and its three
cnoidal constituents~dotted curve!, for m50.7.
7-5
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preserving excitations, exclusive toL andN type multilevel
atomic media. It was also observed that matched pair-t
self-similar solutions, possible in odd-level systems, do
occur in the even-levelN system, although a variety o
simple pulse-train solutions are possible in the latter ca
Interestingly, the superposition nature of the above m
tioned excitations of the nonlinear media, makes it poss
for different atomic levels to have widely different popul
tion densities and different pulse trains possess significa
differing amplitudes, features not present in simple pul
train solutions. For theN system, the frequencies of th
propagating pulses, which govern the spatiotemporal beh
ior of the atomic population densities, are not arbitrary,
has been the case so far, with the pulse-train solution

FIG. 3. ~a! Plots depicting the superposed solutionD̃(X,m)
~solid curve! of Eq. ~3! and its nonsuperposed counterpart~dotted
curve! in the same units, form50.7. These plots represent th
electron amplitudes in the stateue& of the L system.~b! Plots de-
picting the superposed sn(X,m) solution ~solid curve! of Eq. ~3!
and its pure cnoidal counterpart~dotted curve!, for m50.7 andbi

50.9869. Withbi51 these plots represent the field strengthsV f of
the L system, in the same units.
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various systems. The modulus parameterm, which appears in
the velocities and also controls the periodK(m) is deter-
mined by the propagation constants. In light of the poten
usefulness of the multilevel systems, starting from inform
tion storage@35,36# to quantum computation@37#, we hope
that, some of these desirable features of the excitations
find practical applications. It is interesting to observe th
presence of additional nonlinearities leads to chirping of
pulse train of the two-level systems@38#. The effect of simi-
lar nonlinearities on the superposed and nonsuperpo
pulse-trains solutions, for the three- and four-level system
worth further investigation.
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FIG. 4. ~a! Plots depicting the superposedD̃(X,m) ~solid curve!
and its nonsuperposed counterpart~dotted curve! in the same units,
for m50.3. ~b! Plots depicting the superposed sn(X,m) solution
~solid curve! and its pure cnoidal counterpart~dotted curve!, for
m50.3 andbi50.9568.
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