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Existence of superposition solutions for pulse propagation in nonlinear resonant media
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Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled MaxwettiSgaro
equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of
these excitations are specific to the resonant media, with energy levels in the configuratioredfN and
arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered iden-
tities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as
single pulse trains, with widely different amplitudes, which can lead to substantially different field intensities
and population densities in different atomic levels.
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[. INTRODUCTION preserving excitations in resonant media. A great deal of at-
tention, both analytical and numerical, has been paid to the

The generation of shape preserving excitations in nonlincases in which the resonant atoms are asymptotically in the
ear media has been the subject of extensive research in djround or excited state. Pulse train solutions, characteristic
verse areas of physics, ranging from hydrodynarfiigspar-  to excited media, have been studied, for two-lepist, 15
ticle physics [2] to quantum optics[3—5], and optical and for three- and five-levgl6] configurations. Well-known
communicationg6]. Starting from the explanation of the techniques for generating solutions, e.g., inverse scattering
solitary waves in shallow watdi7], these solutions of the methods21,31,33 and Baklund transformation33] have
nonlinear wave equations have found ample experimentadlso been employed for higher-level atomic media, albeit un-
verifications. In optical context, the nonlinear nature of theder restrictive conditions on the propagation constants and
coupled Maxwell-Schidinger equation$8], describing the other parameters of these systems. Further progress, in the
interaction of classical radiation with matter in a resonantunderstanding of the dynamics of the inhomogeneously
media, has naturally generated tremendous interest in tHeroadened three-level system, has recently been achieved by
study of the pulsd3,9-13 and pulse-train solutiongl4—  the derivation of an area theorei34].

17]. Recently, the continuous pulse-train soliton solutions In this paper, we first show the existence of pulse-train
have been observed experimentally for the two-level systersolutions, specific to thé. andN type, nonlinear, resonant
[18]. For a detailed overview, the interested readers are renedia, taking recourse to the above mentioned identities,
ferred to Refs[19,20], apart from the above references. involving elliptic functions. Interestingly, these solutions can

The common factor that governs the existence of the selfeither be viewed as a linear superposition of cnoidal waves
similar excitations in various nonlinear systems is the criticalor as single cnoidal waves, with widely different, modulus
balance between nonlinearity and dispersjad]. This se- dependent amplitudes for different pulse trains. We find that,
verely restricts the set of solutions, in most of the cases, téor some of these exact solutions, the modulus parameter is
combinations of the Jacobian elliptic functiof22] and also  controlled by the oscillator strengths of the atomic transi-
leads to definite relationships between the amplitudesiions, as compared to other pulse-train solutions found so far,
widths, and velocities of these modes. The periodic ellipticwhere m appears as a free parameter. Interference effects,
functions, characterized by the modulus parameteand  originating from the superposition nature of these solutions,
smoothly interpolating between hyperbolic secant and tanlead to substantially different field intensities and population
gent to periodic cosine and sine functions, fovalues one densities in different atomic levels. We then point out the
and zero, respectively, describe localized pulsesnfer1 existence of pulse-train solutions in the four-level case, simi-
and pulse trains for &m<1. lar to those found in other multilevel systems.

In this light, the recent findings of a number of identities
involving the superposition of elliptic functiof23-25 and
their application to various nonlinear systefi2§] makes it
extremely interesting to find the implications of the same for We start with the three-leveh system, because of its
the multilevel resonant media. A number of phenomena, likavide applicability and then proceed to the four-level case,
self [27] and electromagnetically induced transparenciewith the energy levels in the configuration Kf from which
[28], pulse sharpeninR9], pulse cloning and draggif@0],  the other lower ones will follow under limiting conditions.
just to name a few, are ascribable to the existence of shap&hape preserving solutions, in the form of superposition of a

pair of different cnoidal waves[like a superposition of

sn(x,m) and cnk,m)], have been obtained earlier by Hioe
*Email address: prasanta@prl.res.in and Grob€16], for the three- and five-level systems. These
"Email address: gsa@prl.res.in exact solitary waves can have a variety of shapes, because of
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interference. The solutions to be discussed here are superp@meter, characterizing the solutions. The superposed pulse-
sitions of an odd number of cnoidal waves ofj@entype train solutions, to be discussed here, appear in Bho#mdN
[no combinations involving, say both sgn) and cnk,m)], type media and can be made to satisfy a wide range of initial
with appropriately displaced arguments. As will be seen lateconditions, like no occupancy of the desired atomic levels to
in the text, these superposed solutions can have widely difpartial occupation of all the levels. It should be pointed out
ferent amplitudes. This can be understood from the fact thathat partial occupation of levels necessarily implies initially
both cnf,m) and snk,m) functions take values ranging induced coherence in the atomic system. We note that, the
from —1 to 1, whereas the dr(m) function has only posi- pulse-train solutions ofA, V, and other odd-level systems
tive values. Hence, the superposed solutions involving16], consisting of a matched pair of elliptic functions, do not
cn(x,m) and snk,m) functions can have a much smaller satisfy the nonlinear equations of thesystem.
amplitude as compared to that involving dif) function, It can be shown that the ansatz solutions
whose amplitude can be substantially higher.

For theA system consisting of the ground-statexcited- c=5 Ci= bf’é, Ce= beﬁ, Qf:Af”g’ Qe:AeEa

statee, and the intermediate statewe assume the fieldsto 3)

have slowly varying pulse envelopes: I?a(z,t)

=&, (z,t)e (®at=k? 4 ¢ c. In the rotating wave approxima- satisfy the Maxwell-Schidinger equations, provided the
tion &, and&; act on transitiongi andef, respectively. The functionsC, S, andD are as defined below and the constant
Rabi frequencie$),=2(d,&, /%), with d,, being the dipole  coefficientsb;, b, and A,A; are appropriately relate,
matrix element of thexth transition, are also slowly varying 'S, andD are linear superpositions of the Jacobi elliptic func-

functions of space and time. We assume, for simplicity thattions cn(X,m), sn(X,m), and dn,m), respectively:
all the fields are resonant with their respective transitions.

In slowly varying envelope approximations, the resonant P 4(i—1)K(m)
coupled Maxwell-Schidinger equations are 5= sr{x+ _
i=1

Qf Qe
157 Ce 7 Cim 5 Cin and C and D are analogously defined. Herp,is an odd

integer, K(m) is the complete elliptic integral of the first

) . kind andm is the modulus parameter. The above solutions

'a_rC‘:_T e are possible for odd integral values pf since the cross
terms in the right-hand side of Eq4) and(2) are canceled

P Qr because of the identities of the ty[23]
I=-Ci=— 5 Ce 1)

's,(d,+d3) + (cyclic permutations=0,

Jd . N
—Q=ipCLCE,

al ¢,(s,+53) + (cyclic permutations=0,
] ~ : .
a_gﬂe:i/-"ececi*- ) c41(d,+d3) + (cyclic permutations=0. 4

. . Here,
In above, we have neglected the relaxation terms, since the

pulse widths are taken to be smaller than the relaxation

times.C, (a=e,i,f) represents the probability amplitude of s;=sn(X,m),
finding the atom in the stater).
The parametey, is given by ~ 4K(m)
S>=S X+ ,mj,
d,’w, 2me’Nf,
/*La:47T'/\/‘| | = I}
hc mc and
where N is the density of the atoms arfg is the oscillator 8K
strength for the transition of frequenay, . The atomic sys- 5353"< + (m) ,m),
tem is assumed to be continuously distributed in a nondis-

persive host medium. The coordinatet—(z/c) measures

time relative to the pulse center age- z. and other functions are similarly defined. Although, for defi-
We look for self-similar solutions of Eq$l) and(2), i.e.,  niteness, henceforth we consider only the3 case, the

solutions depending upon a single variable=(q{—1'7). consistency conditions on the parameters, written below, are

Here,I' "1 is the pulse duration and, as will be seen later, identical for all values op. Introducing an additional param-

andI" will be related via the pulse velocity and another pa-eter u=2gI'm, for future convenience, one finds,

033817-2



EXISTENCE OF SUPERPOSITION SOLUTIONS R .. PHYSICAL REVIEW A 67, 033817 (2003

the above values ofy.— )/ ne. Hence the choice ofm
(0<m<1) determinesw through Eq.(7), which in turn
yieldsqI', throughu=2qI’m. Hence the solutions are char-

0.6 acterized by the two free parametersand I'. It can be
= easily seen thdD has a much higher amplitude as compared

0.4 to C andS; hence thee) state has a higher population. The
superposition nature of the solutions enables one to have
0.2 these widely differing amplitudes. It can be checked that
exchange o andD also leads to allowed solutions. In that

0.7 0.8 0.85 0.9 0.95 1 case thdf) state population can be made large as compared
® to |i) and|e) states.

FIG. 1. Graph of the modulus parameter versus x=(u. For the purpose of comparison, we consider the nonsuper-
— ) pe. posedp=1 case. TakingC;=b;sn(X,m) and replacingD
and C by corresponding cnoidal waves one finds, after ap-
propriately choosing the fields, that, the parameter relation-
ships as obtained in Eq5) and (6) are unchanged. How-
ever, the probability conservation now yields substantially

|A2=4T2mbe,
o

different result:
IAf|2=4F2m{&—1}, (5)
’ 1 _» ( ! 1) +1 )
L) [y 2 selm |
o
© It is clear from the above expression that, fof=1, no
A} pulse-train solutions are possible, as=1, for this case.
bi=——, (6)  Sinceu/u, lies between zero and one, it follows from Eq.
Ae (9) that, |b;|? takes values ranging fromn and 1. It should

and also the constraini.= us. The positive definite char- ]E:_)e [:I)|0|r|1t(fed thﬁt’ rl:ke t?e previous casEe; o= 1dt?”‘? 'S:]h‘?”

acter of the pulse intensity, requires that=u nally left with three free parameters, m andb;, In their
The superposed characier of the solutioné for higher Valgpproprlate range of values. It is possible to obtain another

ues ofp, leads to significant differences between di1‘ferent50|mIon by exchanging dix,m) with cn(X,m), in the above

pulse-train and electron amplitudes, as will be explicateoansatz' This choice leads to the constraint

later. It also manifests in the conservation of probabilities for 1 1
the electrons. For thp=3 case2,|C,|?=1 leads to _:(1_ ﬁ)__ (10)
|bi|? Me/ M
1 4 . -
L (@)
He™ K _ m m (7) Ill. PULSE-TRAIN SOLUTIONS OF THE N SYSTEM
fre £_1+3 (q+1)2— m In case of theN system, one needs to consider seven
m m (q+1)? coupled equations, due to the presence of an additional en-
B ergy statglv), in between the statgge) and|f), of the A
Here,q=dn(3K(m),m) and satisfies system. Here, one has the additional parameiey,
5 5 5 =(2mwe’Nf,)/mc, f, being the corresponding oscillator
g*+293-2(1—m)g—(1-m)=0. (8) strength. These nonlinear equations have been recently found

to possess propagating pulse solutiph3]. Introducing, the

The v_alues ofg range from one to zero continuously, when additional electron amplitudé:v:bvf) and the Rabi fre-
m varies between zero and one. It can be checked that, WheHUencyQ —A Cin the ansatz solutions. we only write be-
v 1 L]

m=1, the conservaﬂon law is !dent_lcally satisfied, m‘."‘k'nglow, the new and modified parametric relations, as compared
the above equation vacuous; in this case one obtains tr}g the A system

pulse solutions of thé\ system. Fom=0, right-hand side

takes value one, which is ruled out on physical grounds. For 2qIm=p, , (1)
other values ofm, the above equation can be numerically

solved to obtain the range of values pffor a givenu,. It Lo

should be noted that, sincg.=u, the variable fi, |AU|2=4F2m[1— —}

— wu)! e takes values between zero and one. It is found that B

for the superposed solutions to exist, the condition 0.59 2

=(pe— m)/ ne<1 should be satisfied. As depicted in Fig. 1, |Ae|2=41“2mi, (12)
the modulus parameten can lie between one and zero, for Mgy
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igA, ~ 4K(m)
b,= P adn(x,m)=|dn(ax,m)+dn| ax+ 3 ,m
Al +d + 8K (m) ” (18
n ax+——-mj|,
bf:__fﬂs_ (13) @ 3
AL Mt

where
Note that herew, determines gI'm, unlike theA system.
The positive definite character of the pulse intensities now

4K(m) 8K(m)
requires the inequalities a=dn(0m)+dn ——,m/+dn ——,m
e 14 nd
In the present case, the conservation of probability yields (1-7)?
L et (19
__1+_(62+a) (1+q)“(1+2q)

Me™ My _ m m (15) _ _ _

T ~ m ' with g=dn $K(m),m]. For the snk,m) and cnk,m) func-
m_ 1+ m (q+1)%— @+ 1)2 tions, the formulas have same widths in right-hand side as in

dn(x,m); however, the amplitude is replaced by3, given

This leads to the constraint on the oscillator strengths: O.SQy
<(pe— p,) <1, for 0<m<1. Itis worth noting that, as
compared toA system, in the present case the oscillator B= 4K (m) )+ n(SK(m)
strengths determine modulus parameter 3 7 3

The uniform group velocity, as determined by our solu- (20
tions is given by

cn(0,m)+cn ,m

The facts that, dn(;m) takes only positive values and
cn(x,m) have values ranging front 1 to — 1, can be seen to
> - (16 be the reason behind the large valuexcdis compared to that
2I'm of B. Hence, the superposed cnoidal waves can have widely

varying amplitudes, which lead to significant differences in
As the width of the pulse train becomes shortér gets  atomic level occupations.

largen, the group velocity approaches the background me-
dium velocity; however, for smaller values of, the pulse-
train velocity can be significantly smaller than the medium
velocity. We have checked that a different superposition type Since the four-level system has not been systematically
solution, e.g.,C;=S and exchange of and D for other analyzed for pulse-train solutions, we would like to point out
fields, does not alter the above conclusions. However, ththat, like the two-level case, pure cnoidal waves, with com-
population of different levels, as well as the field amplitudesparable electron and field amplitudes, can also be obtained as
can be substantially different, from the earlier case. It issolutions to theN system. As has been mentioned earlier,
straightforward to see, from Egéll) and (15), that unlike = matched pair-type pulse-train solutions of the odd-level
the A system, theN system is characterized by one free atomic system$16] are not solutions of the four-level sys-

+

< |

1w
Cc

IV. PURE CNOIDAL SOLUTIONS FOR THE N SYSTEM

parametei. tem. It can be seen that the ansatz solutions
It is worth noting that, for the two-level case, correspond-
ing to we=pu,=us, as well as for thé/ system, for which Ci=b;jsn(X,m), Cs;=bsdn(X,m),
Me= i, , the constraint equation originating from the prob-
ability conservation yields Ce=becn(X,m), C,=b,dn(X,m), (21)
m=1+4(g*+0). (17 and

Since 0<=m=1 andq>0, it is easy to see that, the above Q;=A;snX,m), Q.=Adn(X,m), Q,=A,dn(X,m),
equation cannot be satisfied. Hence these types of excitations (22
are exclusive to\ andN type systems.

A better understanding of the above solutions can be prosatisfy the Maxwell-Schidinger equations, provideb;|?
vided by a dual interpretation of these excitations, through a<1 and the constant coefficieris, b ,b.,b, andAg,As A,
set of generalized Landen transformations, found recentlare related. The consistency conditions on all the parameters
For thep=3 case, the transformation formula yields are now modified
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b2 = m y . (23 FIG. 2. (a) Plot depicting the superpos&j{X,m) (solid curve
i

and its three dri{,m) constituentgdotted curves for m=0.7. (b)

gllot depicting the superpos&(X,m) (solid curve and its three

For a given ground-state occupancy, the modulus parameter" 4
cnoidal constituentgédotted curve for m=0.7.

m is determined by Eq(23). The velocity is now modified

2
and depends upoip;|*, tions, for theA andV system. This result is expected since

2 matched pair type superposition solutions are not possible
1.1, M (24)  for theN system.
v C  2Im For the purpose of better appreciation of the relative am-
plitude variations of the superposed solutions, as compared
For the purpose of considering limiting cases of teys-  to the pure cnoidal ones, Fig. 2 depicts two of the pulse
tem, we observe that, when the modulus paramatequals  trains with their cnoidal constituents. The widely different
one, the cnoidal functions go over to hyperbolic onesamplitudes of the superposed &n) and sn¥K,m) type
thereby yielding localized pulse solutions. The pulse traingnoidal waves and their respective constituents are clearly
are obtained, when @m<1, them=0 value being ruled Visible. _ . _
out in the present case. Sinced— u,)/ u¢ is positive, it is Figure 3 shows, the superposed S.O|U.IIOI’IS with the|r.non—
clear from Eq.(23) that, for theN system,|bi|2 must be less Superposed counterparts, clearly bringing out their differ-

than one, for the latter type of solutions. However, for the®NCes. _
two-level case, wheres,=pu,=u, the above restriction Figure 4 reveals the same for different parameter values.
) v ]

does not apply. In that case,= 1 and one obtains the cnoi- One sees that, fom=0.3 the amplitude of superposed

dal solutions, similar to a set of solutions, obtained bySN(X,m) solution attains a very small value. It is extremely

Arecchiet al. and independently by Crisp in RéfL4], inan  INteresting to observe that, the excited-state p_rpbablllty den-
inhomogeneous media. Exchanging Xim) with cn(X,m) sity can be made very sma.II and other densmes enhanced,
in the above ansatz, leads [tn|2=m: in this case one ob- thro'ugh these solgtlons, which is not pQSS|bIe through pure
tains the solutions, analogous to another set of solution§hoidal waves. It is clear that, this desirable feature of the
given in Ref.[14], under inhomogeneous conditions. This is pulse trains owes its origin to the superposition nature of the

also clear from the analysis of the system, which is ob- Solutions. o ,
tained from theN system under the conditiop,.= s, with It is natural to inquire the effect of detunings on the above

w=p,. The above point also indicates that for thesys- solutic_)ns and_to find if the previous methods of incorporating
tem, obtained as a limiting casfy;|2<1, in order for the detuning(particularly the casé.=A¢ in the A system(12])
pulse-train solution to exist. One obtains localized pulse so¥ould also work for deriving the pulse-train solutions.
lutions for |b;|?=1, since in that casm=1. For theV sys-
tem, for which =, , the conclusions are similar to the
two-level case. A comparison with RdfL6] shows that the In summary, we have found that delicate interference phe-
above solutions form a subclass of the matched pair solutaomena involving cnoidal waves give rise to certain shape-

V. CONCLUSIONS
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FIG. 3. (a) Plots depicting the superposed solutibx{X,m) FIG. 4. (a) Plots depicting the superposB{X,m) (solid curve

(solid curve of Eq. (3) and its nonsuperposed counterp@wtted  and its nonsuperposed counterp@itted curvein the same units,
curve in the same units, fom=0.7. These plots represent the for m=0.3. (b) Plots depicting the superposed Xnf) solution

electron amplitudes in the stafe) of the A system.(b) Plots de-  (solid curvg and its pure cnoidal counterpaiotted curvg, for

picting the superposed s¥(m) solution (solid curve of Eq. (3) m=0.3 andb;=0.9568.

and its pure cnoidal counterpadotted curve for m=0.7 andb;

=0.9869. Withb; =1 these plots represent the field strengthsof various systems. The modulus parametewhich appears in
the A system, in the same units. the velocities and also controls the periBdm) is deter-

) o ) ) mined by the propagation constants. In light of the potential
preserving excitations, exclusive fo andN type multilevel  ysefulness of the multilevel systems, starting from informa-
atomic media. It was also observed that matched pair-typeion storage[35,36 to quantum computatiof87], we hope
self-similar solutions, possible in odd-level systems, do nothat, some of these desirable features of the excitations may
occur in the even-leveN system, although a variety of find practical applications. It is interesting to observe that,
simple pulse-train solutions are possible in the latter caseyresence of additional nonlinearities leads to chirping of the
Interestingly, the superposition nature of the above menpulse train of the two-level systemi38]. The effect of simi-
tioned excitations of the nonlinear media, makes it possibléar nonlinearities on the superposed and nonsuperposed
for different atomic levels to have widely different popula- pulse-trains solutions, for the three- and four-level systems is
tion densities and different pulse trains possess significantlyorth further investigation.
differing amplitudes, features not present in simple pulse-
train solutions. For theN system, the frequencies of the
propagating pulses, which govern the spatiotemporal behav-
ior of the atomic population densities, are not arbitrary, as One of the author$P.K.P) acknowledges useful discus-
has been the case so far, with the pulse-train solutions dfions with Professor A. Khare.
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