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Coherent backscattering of light by an inhomogeneous cloud of cold atoms
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When a quasiresonant laser beam illuminates an optically thick cloud of laser-cooled rubidium atoms, the
average diffuse intensity reflected off the sample is enhanced in a narrow angular range around the direction of
exact backscattering. This phenomenon is known as coherent backscattering~CBS!. By detuning the laser from
resonance, we are able to modify the light scattering mean-free path inside the sample and we record accord-
ingly the variations of the CBS cone shape. We then compare the experimental data with theoretical calcula-
tions and Monte Carlo simulations including the effect of the light polarization and of the internal structure of
the atoms. We confirm that the internal structure strongly affects the enhancement factor of the cone and we
show that the unusual shape of the atomic medium—approximately a spherically-symmetric, Gaussian density
profile—strongly affects the width and shape of the cone.
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I. INTRODUCTION

Coherent backscattering~CBS! is an interference effec
arising when a wave propagates and is multiply scatte
inside a random medium. Its manifestation is an enhan
ment of the configuration-averaged diffuse intensity in a n
row angular range around exact backscattering, known as
CBS cone due to its distinctive shape@1#. This shape is given
by the Fourier transform of the radial intensity distributio
on the surface of the sample when illuminated by a pointl
source @2#. In a homogeneous semi-infinite medium, t
width of the cone is known to be inversely proportional
the wave transport mean-free path,* in the sample@3#. For
finite-size samples, the cone shape depends not only on
mean-free path but also on the sample geometry, and us
no analytical expression is available.

During the past decades, CBS has been thoroughly in
tigated experimentally on a variety of samples@4#, mostly in
the ‘‘slab’’ geometry. We have devised an experiment
study CBS of light on a sample of laser-cooled rubidiu
atoms@5,6#. This is an unusual situation, both because of
very peculiar properties of the atomic scatterers and of
distinctive geometry of the sample~spherical symmetry and
quasi-Gaussian density profile!. In previous publications
@6–8#, we have shown that the atomic Zeeman internal str
ture drastically reduces the contrast of the CBS interferen
even in the helicity-preserving polarization channel. Our d
cussion of double scattering from a semi-infinite medium@7#
already allowed for a qualitative understanding of the exp
mental data. The aim of the present article is to comp
quantitatively our experimental data with Monte Carlo sim
lations taking into account the vector nature of light, t
atomic internal structure and the inhomogeneous densit
the scattering medium, with emphasis on the effect of
peculiar geometry used, which strongly affects the angu
width of the CBS cone.

In Sec. II, we briefly recall the principle of the exper
ment. We describe in some detail the procedure to determ
1050-2947/2003/67~3!/033814~23!/$20.00 67 0338
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the optical thickness of the sample, the most important
perimental parameter for the comparison with the Mo
Carlo simulations. The principle of the Monte Carlo simul
tions is described in detail in Sec. III. A theoretical discu
sion of the influence of the shape of the scattering med
on the CBS cone is presented in Sec. IV. Finally, we pres
in Sec. V the results of our Monte Carlo calculations, co
pare them with our theoretical predictions and the exp
mental results obtained on classical point dipole scatte
and on atomic scatterers.

II. EXPERIMENTAL SETUP

Our experimental setup has already been described in
tail elsewhere@6#, thus we just recall here its most importa
features. The whole signal acquisition procedure is time
quenced and repeated as long as necessary to get a
signal-to-noise ratio. First, during 20 ms, we trap Rb85 atoms
from a dilute vapor into a magneto-optical trap~MOT! using
six large laser beams~diameter 2.8 cm, power 30 mW, wave
lengthl5780 nm) and a magnetic-field gradient of typical
10 G/cm ~‘‘bright’’ period !. Then, during 5 ms, the MOT
laser beams and magnetic gradient are turned off~‘‘dark’’
period!. During this period, the CBS probe laser beam
switched on ~duration 1 ms!, the CBS detection path is
opened thanks to a mechanical chopper and the CBS si
is recorded on a cooled CCD camera. This ‘‘dark’’ period
short enough so that the cold atoms do not leave the trap
area and can be recaptured during the following ‘‘brigh
period. A typical CBS image is obtained by integrating ov
several thousand cycles, corresponding to a total image
quisition duration of about 1 mn~effective signal acquisition
duration about 2 s!.

The probe laser beam is tuned on theD2 line 5S1/2
→5P3/2 of Rb85 at l5780 nm and is quasiresonant with th
corresponding hyperfine (J53→J854) transition ~natural
©2003 The American Physical Society14-1
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linewidth G/2p55.9 MHz).1 Since the other possible hype
fine transitions of theD2 line are far away from this transi
tion ~at least one order of magnitude at theG scale!, multiple
scattering is essentially driven by this unique and clo
transition. However, the important degeneracy in the grou
state (2J1157 sublevels! allows both Rayleigh and degen
erate Raman transitions between the different ground-s
Zeeman sublevels. The amplitudes associated to direct
reverse scattering paths are strongly affected by the inte
degeneracy, so that their interference gives a CBS cone m
smaller than for point-dipole scatterers@7,8#. Especially, the
so-called enhancement factor, which measures the rati
the diffuse intensity at exact backscattering to the ‘‘ba
ground’’ diffuse intensity~close to the backward direction
but outside the CBS cone!, is typically of the order of 1.05 to
1.2, instead of close to 2 for point-dipole scatterers@9#.

The polarizations of the incident and backscattered lig
play an important role. The most common choices are ei
linear or circular polarizations. This leads to four differe
polarization channels:l in i l in where both the incoming an
outgoing photons are linearly polarized along the same a
l in' l in where they are linearly polarized along orthogon
axes,hih where they are both circularly polarized with th
same helicity~because they propagate in opposite directio
they have opposite polarizations! and h'h where they are
circularly polarized with opposite helicities, i.e., same pol
ization. Large enhancement factors are observed for p
dipole scatterers in the parallel channels and especially
actly 2 in thehih channel@9,10#. For atomic scatterers, th
largest enhancement factor on the 3→4 transition is mea-
sured on the contrary in theh'h channel@6,8#.

Since we aim at a quantitative comparison with the n
merical simulations, we need to carefully characterize
cloud of cold atoms. Two measurements are performed
this end. First, we determine the cloud shape by imaging
the CCD the fluorescence induced by a detuned probe be
We use two viewing angles at 90° to have access to the c
density profiles in the three spatial dimensions. It is imp
tant to detune the probe beam from resonance so that l
atoms interaction occurs in the single scattering regime. T
ensures a uniform illumination of the atomic cloud. T
cloud shape is most of the time slightly anisotropic, depe
ing on the alignment of the trapping beams. However,
experimental results presented in this paper were obta
with a quasi-isotropic cloud whose full width at half max
mum ~FWHM! dimensions are 3.734.134.0 mm ~see Fig.
1!. The density profiles are close to a Gaussian, altho
somewhat sharper, especially at the entrance of the ligh
the medium. This has a small, yet measurable effect on
properties of the CBS cone, see Sec. V C.

Second, we measure the optical thickness at the cent
the atomic cloud@11#. A small and weak probe laser bea
~diameter 1 mm! with central angular frequencyv is sent

1In conventional spectroscopic notations, the total atomic ang
momenta are noted usingF ’s and notJ’s. We have deliberately
chosen to ignore this prescription and to stick to the notations u
in the theoretical papers@7,8#.
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through the center of the trap and the so-called ‘‘cohere
transmitted mode~selected using two diaphragms separa
by 2 m! intensity is recorded as a function of the pro
detuningd5(v2vat). Scanning the laser detuning aroun
the atomic resonance modifies the atomic response and
cordingly the depletion of the ‘‘coherent’’ beam since th
scattering cross section is@8#

s~d![s5
s res

11~2d/G!2
~1!

with s res the on-resonance scattering cross section. T
cloud transmission curveT(d) is the monochromatic trans
mission curve T0(d)5exp@2b(d)# ~Lambert-Beer’s law!
convolved by the probe laser frequency spectrum~a Lorent-
zian curve of width'2 MHz). The monochromatic optica
thicknessb(d) is readily given by

b~d![b5
bres

11~2d/G!2
, ~2!

wherebres is the on-resonance optical thickness.
From the measured data, we extract thebres value @11#.

For a Gaussian density profile ofrms-radiusr 0 in the direc-
tion of propagation of the probe, the monochromatic opti
thickness is readily given byb5A2pn0sr 05A2pr 0 /,,
wheren0 is the spatial density at the trap center. The quan
,(d)[,51/n0s is the scattering mean-free path at the ce
ter of the trap. Usually, the relevant length scale for CBS
thetransportmean-free path,* . It is related to the scattering
mean-free path , ~as obtained by optical thicknes

ar

ed

FIG. 1. Density profiles of the cold rubidium cloud used in t
CBS experiment. The profiles are obtained by illuminating t
atomic cloud by a far-detuned probe beam and by imaging
induced fluorescence signal at two orthogonal viewing angles o
CCD camera. The profiles have been shifted for the sake of cla
Axis z defines the propagation axis of the CBS probe bea
whereas axisy corresponds to the polarization axis of the pro
light ~in the linear channels!. The atomic cloud is quasiisotropi
with quasiGaussian profiles~the solid lines correspond to th
Gaussian fits! of FWHM 3.734.134.0 mm (x,y,z).
4-2
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measurement2! by the expression :,* 5,/(12^cosu&),
where the term^cosu& represents the forward-backwa
asymmetry of the radiation pattern. For a symmetric rad
tion pattern~e.g., point-dipole scatterer!, ^cosu&50 yielding
,* 5,. The same property is valid for atomic scatterers@8#.
The procedure described above allows the measureme
large optical thicknesses, without systematic errors cause
the probe laser spectrum@11#. In the experiment reported
here, the maximum on-resonance optical thickness
bres533. From thebres ~transmission! and r 0 ~fluorescence
imaging! values, one obtains the on-resonance mean-f
path , res at the center of the cloud. Assuming a unifor
population distribution among Zeeman sublevels and no
tical pumping, the on-resonance scattering cross sectio
@8#

s res5
2J811

3~2J11!

3l2

2p
, ~3!

where the first factor is unity for point-dipole scattere
which are equivalent to atomic scatterers on aJ50→J851
transition. We can also compute the peak densityn and the
total number of atomsN in the cloud. We obtain typica
values ofN543109 atoms andn05631010 cm23 in our
sample, yielding, res.135 mm. We also measured the tem
perature of the atomic cloud by the time-of-flight techniq
to be in the 100mK range ~residual rms-velocity spread
about 10 cm s21).

The on-resonance mean-free path at the center of
sample is much larger than the wavelength. We are thu
the dilute regime, wherek, res@1. The typical angular width
of the CBS cone is of the order of 0.5 to 1 mrad, well abo
the resolution limit of the apparatus~0.1 mrad!.

The CBS probe laser beam is not a true plane wave
rather a Gaussian laser beam. The waist of the laser bea
approximately located on the atomic cloud~so that the wave
fronts are planar! and the FWHM of the beam intensity is 8.
mm ~beam waist 7 mm!. Additionally, a diaphragm with di-
ameter 8 mm is added on the laser beam. The goal is tha
atoms of the atomic cloud are exposed to the same incom
field. Deviations from uniform illumination are known to b
responsible for modifications of the CBS cone shape, wh
can be taken into account in the numerical Monte Carlo c
culations, see Sec. III D.

Once the atomic cloud parameters are determined, the
tical thickness can be simply varied by adjusting the det
ing d of the CBS probe beam from exact resonance. We h
report results where the detuning is varied from 0~exact
resonance; optical thickness 33! to 4G ~optical thickness
0.5!. This makes it possible, with a fixed geometry, to cov
the whole range from a thin to a very thick medium, th
exploring various regimes of multiple scattering.

2Optical thickness measurements actually define the extinc
length of the sample. When absorption is negligible, which is
case here, it simply reduces to the scattering mean-free-path,.
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III. MONTE CARLO CALCULATIONS

Except in rare cases, it is impossible to compute exa
the properties of the CBS cone. The few situations where
results are known in closed form are the scattering of a sc
wave by point scatterers in a semi-infinite medium or ve
thick slab@12# ~see Ref.@13# for a review! or the scattering
of an electromagnetic vector wave by point-dipole scatter
~also known as Rayleigh scatterers! @14,15#. It should also be
mentioned that, for quasiresonant scattering by an atom
J→J8 transition, the double scattering contribution from
semi-infinite medium is known exactly@8#. The case of a
slab of finite optical thickness and constant density co
also be calculated using the same techniques. For ato
scatterers, the structure of the individual scattering even
slightly more complicated than for classical point-dipo
scatterers, but it is not unlikely that the methods used in R
@15# could be extended to calculate the CBS cone for a u
form semi-infinite medium. Such an extension is howev
not straightforward. At a more fundamental level, the fa
that the atomic density in a magneto-optical trap is not u
form, makes it very difficult—if not impossible—to comput
exactly the cone properties.

The CBS cone arises in the diffuse intensity, averag
over the disordered external and internal degrees of free
of the scatterers. We choose to perform the average ove
positions of the scatterers with a Monte Carlo method and
use an internal analytical average by employing the aver
atomic scattering vertex@8,16#. This method is flexible, as i
makes it possible to compute the quantities of interest for
arbitrary atomic transition and—this is the most importa
point—for an arbitrary spatial repartition of the scatterers
also allows us to take into account some rather small, yet
negligible effects, such as the nonuniform incoming intens
sent on the sample~because a Gaussian laser beam is us!.
All calculations and simulations in this paper are perform
for a monochromaticprobe laser beam. This approximatio
seems well justified since the probe beam frequency sp
trum is sufficiently narrow in the experiment~roughly one
third of the atomic natural linewidth!. Indeed, as we shall se
in Sec. V C, the width and enhancement factor of the ato
CBS cone are only weakly dependent on the optical thi
ness and thus on the laser linewidth.

We first describe the method in the simplest case, a
dium with the shape of a slab and a uniform density of sc
terers which isotropically scatter a scalar plane wave perp
dicular to the entrance of the slab. We then show how
calculation can be extended to a medium of arbitrary sh
and density. We discuss the complications arising whe
vector ~electromagnetic! wave is considered, and finall
show how the calculation can be extended to atomic sca
ers. Our goal here is not to go in every detail or give ma
ematical proofs of the correctness of the method, but ra
to give the important ingredients and hints to enable
reader to reproduce our calculations.

A. Scalar wave in a uniform slab of point scatterers

In this simple case, the first basic ingredient is the sc
tering amplitude or its modulus square, the differential cro
section, which is isotropic and thus can be written as

n
e

4-3
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ds

dV
~V!5

s

4p
, ~4!

where s is the total scattering cross section. The seco
basic ingredient is the average amplitude propagator~inside
the medium! between two consecutive scattering events,

G~k,r !52
1

4pr
exp~ ikr !expS 2

r

2, D , ~5!

wherek is the wave vector~inside the medium! and , the
mean-free path. As we are interested in very dilute me
such that the~uniform! density of scatterersn is small

n

k3
!1, ~6!

the real part of the wave vector—at lowest order—is iden
cal inside and outside the medium. Also, the mean-free p
is simply related to the total cross section by

,5
1

ns
. ~7!

The bistatic coefficient is a dimensionless coefficie
which expresses how much of the incoming intensity is sc
tered in any direction. It is related to the scattering cro
section of the whole medium by

g~k in ,kout!5
4p

A K dS

dV
~k in→kout!L , ~8!

wherek in andkout are the incoming and outgoing wave ve
tors,A is the transverse area of the medium anddS/dV the
scattering cross section by this area of the medium~for an
infinite medium, it reduces to the cross section per unit
area!. In this expression, the brackets^•••& denote an en-
semble averaging over all positions of the scatterers, in
so-called thermodynamic limit where the number of in
vidual scatterers as well as the size of the system ten
infinity, at constant density of scatterers.

The cross-section̂ (dS/dV)(k in→kout)& involves mul-
tiple scattering events at various orders. For a dilute medi
it is possible to expand the total cross section using a
grammatic approach and to determine, order by order, wh
diagrams survive the configuration averaging and those
the dominant contributions. We refer the reader to Re
@3,17# for details. For our purpose, it is sufficient to kno
that the diffuse intensity is given by the sum of the so-cal
‘‘ladder’’ contributions—which vary smoothly in the vicinity
of the backscattered direction—and the ‘‘crosse
contributions—which vary rapidly around the exact bac
scattered direction and describe the CBS cone—to the
static coefficient,

g5gL1gC . ~9!

Each contribution can be expanded in a multiple scatte
series
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N51

`

gL
(N) , ~10!

gC5 (
N52

`

gC
(N) . ~11!

Note that there is no crossed contribution for single scat
ing N51.

For simplicity, we assume that both the in-going and o
going wave vectors are perpendicular to the slab. The cas
arbitrary incident and reflected angles can be treated a
the same lines, at the price of slightly more complicat
expressions. At scattering orderN, the ‘‘ladder’’ bistatic co-
efficient can be written as~assuming thatk in52kout is along
the z axis and that the boundary of the medium is
z50):

gL
(N)5

4p

A
nNE dr1dr2•••drN expS 2

z1

, D
3S ds

dV D
1

@16p2G~k,r12!Ḡ~k,r12!#

3S ds

dV D
2

•••S ds

dV D
N21

3@16p2G~k,rN21,N!Ḡ~k,rN21,N!#

3S ds

dV D
N

expS 2
zN

, D , ~12!

where r i j 5r j2r i and the integral over the scatterers’ po
tions has to be taken over the whole medium. The ter
exp(2z1 /,) and exp(2zN /,) represent the attenuation of re
spectively, the incoming wave between the entrance in
medium and the first scattering event and the outgoing w
between the last scattering event and the exit of the mediu3

The differential cross-sections represent the successive
tering events while Green’s functions represent the propa
tion in the effective medium in between scatterers. Note t
the phase exp(ikr) in Green’s function cancels out betweenG

and its complex conjugateḠ so that the bistatic coefficient i
positive. There is no interference effect in this bistatic co
ficient: it is actually associated with a classical transp
equation. This expression is also valid if the differential cro
section is not isotropic.

The integrand can be represented by the following d
gram:

3The ladder contribution is here calculated at backscatter
Since the direction of observation appears only in the last te
(ds/dV)Nexp(2zN /,), the ladder contribution is a very smoot
function of the scattering angle.
4-4
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~13!

where the vertical dotted lines represent the scatte
events, each vertex on the lower and upper horizontal li
represents a scattering amplitude, the horizontal lines witG

and Ḡ represent the amplitude Green function joining tw
consecutive scatterers, and the initial and final incomp
horizontal lines represent the exponential attenuation be
the first and after the last scattering events, respectively.

For single scattering from a slab of optical thicknessb,
the integration overr1 is trivial and one gets

gL
(1)5

12exp~22b!

2
~14!

for isotropic point scatterers.
The form of Eq.~12! is not suitable for a Monte Carlo

configuration averaging because of the exponential atte
tion of the Green function over a mean-free path. It is m
convenient to use relative displacements from one scatt
to the next one. For example, for isotropic point scattere
the double-scattering ladder bistatic coefficient can be rew
ten, using Eq.~5! as

gL
(2)5

n2s2

4pAE dr1dr2

exp$2~z11z21r 12!/,%

r 12
2

. ~15!

Performing the change of variables (r1 ,r2)→(r1 ,r12), the
integral over the transverse coordinates of the first scatt
is trivial. Then, using spherical coordinates for the relat
distancer12 and rescaling all positions with respect to t
mean-free path,51/ns, we get

gL
(2)5E dz1dr12

dV12

4p
exp$2~z11z21r 12!%. ~16!

The structure of this integral is clear: once the position
the first scatterer is chosen, the integral over the position
the second scatterer can be easily evaluated by the M
Carlo method: it is in a random direction from the initi
scatterer, with an exponential distribution of the distan
from it, and must be still present in the medium, i.e.,z2 must
be positive and smaller than the optical thickness of the s
~otherwise, the contribution vanishes!. Once this averaging
over r 12 andV12 is performed, one is left with a single inte
gral over z1, which also has an exponential weight. Th
integral can also be performed using a Monte Carlo meth4

For the triple-scattering contribution, the strategy is t
same, with the choice of the initial position of the first sc
terer, then the random choice of the position of the sec
scatterer with thead hoc distribution of their relative dis-
tance, and similarly the random choice of the third scatte
once the position of the second one is known.

4In the simple case of a semi-infinite medium, the integral
double scattering can be easily performed analytically, yield
gL

(2)5 ln 2/2.
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A crucial point—which saves a lot of computin
resources—is to remark that, when calculating the trip
scattering contribution, the double scattering can be obtai
at almost no extra cost. Indeed, the~random! choice of the
positions of the various scatterers is done successively s
ing from the first one, then determining the position of t
second one, then the position of the third one. Once the
two scatterers have been chosen, the contribution of this c
figuration to the double-scattering bistatic coefficient
straightforward from Eq.~15!. Thus, a scattering path withN
scattering events can be used for all orders of scattering f
1 to N ~this is the ‘‘partial photon’’ method discussed i
Appendix C of Ref.@4#!. This trick essentially saves a facto
N in the calculation, whereN is the typical scattering orde
of a path in the medium. In the diffusion approximation,N is
of the order of the square of the optical thickness of
medium. With the maximum optical thickness in the expe
ment one findsN'103, so that the saving is substantial. Th
whole procedure actually relies on the ‘‘ladder’’ structure
the diagram~13!: the diagram at scattering orderN is ob-
tained from the diagram at order (N21) by simply adding
an additional rung to the ladder.

More precisely, the algorithm is the following one.
~1! Choose randomly the depth of the first scatterer

cording to an exponential distribution.
~2! Calculate the contribution to single scattering.
~3! Choose randomly the position of the next scatterer i

random direction from the previous scatterer at a dista
given by an exponential distribution. If the chosen position
outside the medium, stop the current scattering path and
tiate a new one~go to step 1!. If not, compute the contribu-
tion to the ladder bistatic coefficient~i.e., multiply by
exp(2zN /,), wherezN is the depth of the current scatterer!.

~4! Go to step 3 in order to compute the contribution
next order.

By restarting the full procedure as soon as the position
a scatterer is outside the medium, we ensure automatic
the correct weights of the various scattering orders.

The ‘‘crossed’’ contribution, which gives the CBS con
can be calculated along the same lines. Indeed, for isotr
scatterers and a scalar wave, its contribution to the bist
coefficient at scattering orderN is

gC
(N)5

4p

A
nNE dr1dr2•••drN expS 2

z1

, D
3S ds

dV D
1

@16p2G~k,r12!Ḡ~k,r12!#

3S ds

dV D
2

•••S ds

dV D
N21

3@16p2G~k,rN21,N!Ḡ~k,rN21,N!#S ds

dV D
N

3expS 2
zN

, D3cos@~k in1kout!•~rN2r1!#. ~17!
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The corresponding ‘‘crossed diagram’’ is, for double sc
tering,

~18!

Because the scattering process has time-reversal sym
try, it is possible to unfold this diagram—so that what ent
on the left side is now the incoming field on the upp
branch, but the outgoing field in the lower branch—and
cover the ladder diagram. The price to pay is that all ph
factors do not cancel any longer, yielding the additional te
cos@(k in1kout)•(rN2r1)#, with respect to the ladder contr
bution.

Exactly the same diagrams and the same scattering p
can be used for computing the ladder and crossed contr
tions. The only difference is in the single scattering ter
which is absent in the crossed contribution. Such a proced
automatically ensures the equality of the ladder and cros
contributions in the backscattered directionkout52k in ,
where the cosine is unity. Consequently, the enhancem
factor in the backward direction is equal to 2 at all scatter
orders, except of course for single scattering, where
crossed contribution does not exist. Away from backscat
ing, the cosine term in the crossed bistatic coefficient m
be configuration averaged. Whenuuk in1koutuu is much larger
than 1/,, the cosine oscillates rapidly and configuration a
eraging causes the crossed contribution to vanish. Thi
why the crossed contribution describes the CBS peak c
tered around exact backscattering with an angular width
the order of 1/k,.

B. Scalar wave in a uniform medium with arbitrary geometry

In our experiments, the scatterers are not uniformly d
tributed in a slab. The Monte Carlo calculation can han
this complication easily. If the medium has a uniform de
sity, the propagator is not modified~as long as the photon
does not leave the medium!. Hence, only the configuration
averaging is affected. If the system does not have a tran
tional invariance perpendicularly to the incoming directio
the bistatic coefficient defined by Eq.~8! is no longer useful.
Yet, the diffuse intensity reflected off the medium can
determined using the same techniques: we calculate the
erage total cross section^(dS/dV)(k in→kout)& using an ex-
pansion in successive scattering orders and calculating
configuration average through successive random choice
the positions of the scatterers until the medium is left.5

C. Scalar wave in a medium with arbitrary geometry
and arbitrary density

In a real experiment, the density of scatterers is not u
form. As the cloud of atomic scatterers is produced in

5If we assume that the medium is convex—which is always
case in our experiments—once a photon leaves the medium
never reenters it. Nonconvex media can also be treated if one
fully checks whether the photon has really escaped or not.
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magneto-optical trap~switched off when CBS is recorded!,
the density of scatterers is usually maximal at the cente
the trap. As a rough approximation, the density of scatte
is close to an isotropic Gaussian distribution

n~r !5n0 expS 2
r2

2r 0
2D , ~19!

wheren0 is the density at the center of the trap andr 0 the
rms-radius of the trap. The maximum optical thickness of t
sample is obtained along a diameter

b5A2pn0sr 0 . ~20!

The main difference with the preceding paragraphs is that
mean-free path is no longer a constant, but varies across
sample. It reads

,~r !5
1

sn~r !
5, expS r2

2r 0
2D , ~21!

where, is theminimummean-free path, at the center of th
sample,

,5
1

n0s
5

A2pr 0

b
. ~22!

More complicated situations can be described as well.
example, it often happens that—because of the paramete
the MOT—the atomic cloud is not isotropic. In such a ca
the density of scatterers is usually well approximated by
anisotropic Gaussian distribution

n~r !5n0 expS 2
x2

2x0
2

2
y2

2y0
2

2
z2

2z0
2D . ~23!

Numerical calculations turn out to show that this may s
nificantly affect the CBS cone shape. For example, the ag
ment between the experimental CBS cone for the Stront
atoms and the numerical calculation in Ref.@18# required
taking this effect into account.

Because the mean-free path is no longer constant,
obvious that the propagator in the effective medium is a
affected. The attenuation factor, instead of decreasing ex
nentially, has simply to be replaced by the cumulative d
crease along the path. The average amplitude Green func
~which depends now on both the initial and final poin!
becomes

G~k,r1 ,r2!

52
1

4pr 12
exp~ ikr 12!expF2

s

2E0

r 12
n~r11su12!dsG ,

~24!

whereu125(r22r1)/r 12 is the unit vector joining the initial
and final points. In this expression, we assumed that

e
it

re-
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COHERENT BACKSCATTERING OF LIGHT BY AN . . . PHYSICAL REVIEW A67, 033814 ~2003!
wave-vectork does not vary inside the medium, an appro
mation which would break down at high density of scatt
ers.

The inclusion of expression~24! in the above expression
for the bistatic coefficient~or the back-reflected diffuse in
tensity! is rather straightforward. In a Monte Carlo calcul
tion, once the density of scatterersn(r ) is known, it is
enough to choose randomly the direction of propagation a
theNth scattering event and the distance to the next scatt
according to the Green function, Eq.~24!, using for example
a rejection method@19#. The additional cost induced by th
rejection method is almost negligible for the choice of t
direction of propagation~because the cross section is not
from uniform!. It is significantly more expensive for th
choice of the next scattering event along a path, and sl
down the calculation by up to one order of magnitude.
the other hand, it is extremely flexible. For special cases~e.g.
Gaussian density of scatterers!, an analytic expression in
terms of the error function exists for the integral in Eq.~24!,
and can be used for chosing the position of the next scatt
reducing the total cost.

D. Nonuniform incoming laser beam

Additional complications can be easily introduced in t
Monte Carlo calculation. For example, in our experiment
incoming beam is not exactly a plane wave but a Gaus
beam of large waist~7 mm!. The Monte Carlo calculation
can be amended by weighting properly each contributi
The weight is simply proportional to the amplitudes of t
fields entering the various diagrams~from the left!. Thus, the
ladder contribution can be written as

L5(
p
E drdDr uap~r ,Dr !E~r !u2, ~25!

whereE(r ) represents the incoming field at positionr on the
entrance plane of the medium~or any plane before the en
trance in the medium! andap(r ,Dr ) is the contribution~cal-
culated as described above! of a scattering path labeled byp
which starts at positionr on the entrance plane and exits
r1Dr . Similarly, the crossed contribution can be written

C~Dk!5(
p
E drdDrap~r ,Dr !ap̃~r ,Dr !

3E~r !Ē~r1Dr !exp~ iDk•Dr ! ~26!

with Dk5k in1kout. Here p̃ is the reverse scattering pa
associated top ~same scatterers visited but in opposite ord!
andap̃ denotes its amplitude.

For the ladder contribution, it is thus the square on
incoming field, i.e., the incident intensity which weights t
various contributions. For the crossed contribution,
weight is proportional to the product of the fields at the i
tial and final points of the scattering path. In general, t
breaks the equality of the ladder and crossed contribution
exact backscattering. Thus, a nonuniform incoming field w
generally lead to a reduction of the enhancement facto
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the waist of the incoming beam is much larger than
mean-free path of the light in the medium, then the la
intensity is locally constant over a multiple scattering pa
and the imbalance between the two fields will be negligib
the CBS cone will not be affected. On the contrary, a t
narrow incoming beam will broaden the CBS peak. If t
medium is statistically invariant by translation perpendicu
to the incoming direction~as for example the slab medium
and the Gaussian slab discussed below!, the amplitudeap
associated with a path depends only onDr , but not on the
initial point r itself. Under these conditions, the calculatio
of the ladder term is trivial6 as it appears as the product
the ladder term for an infinite medium~the quantity dis-
cussed in the previous section! multiplied by the total inten-
sity I 05*dr uE(r )u2. The structure of the crossed term
slightly more complicated. It appears as the Fourier tra
form with respect toDr of the product ofap(Dr )ap̃(Dr ) by

g~Dr !5E drE~r !Ē~r1Dr !. ~27!

The Fourier transform of a product being the convolution
the Fourier transforms, it appears that the crossed term is
convolution of the Fourier transform ofap(Dr )ap̃(Dr ) by
the Fourier transform ofg. The first Fourier transform is
nothing but the crossed termC0 for the infinite medium~the
quantity discussed above!. The Fourier transform ofg is the
modulus square of the Fourier transform of the field, i.
I (Dk)5uÊ(Dk)u2. It has a simple physical interpretation:
is the angular distribution of the intensity of the incomin
beam. Finally, one gets the simple convolution

C~Dk!5E C0~k!I ~Dk2k!dk. ~28!

Once the CBS cone shape is calculated for an incom
plane wave, it is obtained for a finite incoming beam throu
a ~two-dimensional! convolution. Obviously, this decrease
the enhancement factor at the center of the cone and
creases its width. Although the previous derivation did n
consider the polarization of the light, it is of course also va
for vector waves. It should however be emphasized that
valid only for a medium which is transversely invariant, a
thus fails for a sphere or a Gaussian sphere.

An additional complication is that some diaphragms a
present in the experiment on the incoming beam and on
optical device which collects the scattered photons. This
straightforwardly taken into account in the Monte Carlo c
culation by simply cutting the contributions of all scatterin
paths which hit a diaphragm. Altogether, the Monte Ca

6In this derivation of the ladder term~and the derivation of the
crossed term below!, we assume that the incoming laser beam h
an angular width~in radians! much smaller than unity, so that a
terms, except the phase of the interference, can be considere
constant and evaluated at normal incidence. This will fail for a po
source near the surface for example.
4-7
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calculation for a nonuniform medium is not much more e
pensive than for a uniform medium.

E. Electromagnetic wave and point-dipole scatterers

When an electromagnetic wave is considered, the si
tion is slightly more complicated, because the polarization
the wave has to be taken into account. This affects both
elementary scattering event and the propagation in the a
age medium. The scattering cross section depends of co
on the polarization of the incident and scattered light as w
as on the relative orientation of the incoming and outgo
directions. For point-dipole scatterers—classical scatte
much smaller than the wavelength and having no inter
structure—everything is known in closed analytic form@20#.
The differential cross section writes

ds

dV
~k in ,ein→kout,eout!5

3s

8p
uēin•eoutu2, ~29!

where ein ,eout denote the incoming and outgoing polariz
tions, respectively orthogonal tok in andkout.

The average amplitude propagator in the~uniform! me-
dium reads@8#

G~k,r !52
D r

4pr
exp~ ikr !expS 2

r

2, D , ~30!

where D r is the projector perpendicular tor acting in the
space of polarizations: (D r) i j 5d i j 2r i r j /r 2 and the mean-
free path, is again given by Eq.~7!.

The calculation of the bistatic coefficient is similar to th
calculation for scalar waves. The only difference is that
polarizations of the incoming, outgoing, and intermedi
photons as well as of the scattering vertex must be taken
account. Special care is needed when considering the p
ization state of scattered photons. Indeed, given a mult
scattering path, the contributions of the possible polari
tions of the photon between two consecutive scatterers m
be taken into account. For long paths, the number of con
butions increases very rapidly. However, the average am
tude propagator is the same for all polarizations, wh
means that they all are attenuated with the same mean
path.7 It is thus possible using a given multiple scatteri
path to sum exactly the various contributions having diff
ent intermediate polarizations, simply giving theD r operator
in the Green function, Eq.~30!.

The situation is different for the ladder contributions a
the crossed contributions. Indeed, the diagram associ
with the ladder contribution is

~31!

7In contrast with the intensity whose different polarization mod
decay with different characteristic lengths, see, for example, M
Stephen and G. Cwilich, Phys. Rev. B34, 7564~1986!.
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where, now, the scattering vertex by each scatterer is a q
tity that depends on the four polarization vectors: 2 incom
vectors on the upper and lower horizontal lines~left side!
and 2 outgoing vectors~right side!. In this diagram, both the
incoming field and its complex conjugate are scattered by
same scatterer: this results in the square modulus of the
tering amplitude, i.e., the scattering cross section. Thus,
pressions like Eq.~12! can be used at the price of some bo
keeping of polarizations. Another difference with the case
scalar waves discussed above is that the differential c
section is no longer isotropic, which means that all scatter
directions are not equally probable. We have used two
ferent methods: either choose randomly the scattering di
tion at each scattering event and weight the contribution
the probability of the event~proportional to the differential
cross section! or choose directly the scattering direction wi
a probability distribution matching the differential cross se
tion. We have checked that both methods give the same
sults, although the second one is more accurate, as the
grand in the Monte Carlo integration is constant. Like f
scalar waves, it is possible to use a given scattering pat
orderN to compute contributions at all orders between 1 a
N. Indeed, the basic object which has to be propagated is
following diagram:

~32!

where the final polarizations~on the right side! are not speci-
fied. This object is a polarization tensor with 33359 com-
ponents. In order to get the contribution to the bistatic co
ficient at orderN, it is enough to contract this tensor with th
tensoreout^ ēout to obtain a real positive number. The pola
ization tensor at next orderN11 is obtained again by addin
one rung to the ladder, i.e., choosing conveniently the re
tive position of the next scatterer~which takes into accoun
the scattering cross section and the exponential attenua
of Green’s function! and multiplying the polarization tenso
at orderN by the tensorD rN,N11

^ D rN,N11
~which takes into

account the polarization part of Green’s function!. For point-
dipole scatterers, the scattering vertex is the direct produc
the direct and conjugated amplitude@cf. Eq. ~29!#. Thus, the
polarization tensor is—at any step—a direct product of
type e^ ē, so that one needs only to propagate the th
components of a vector, instead of the nine components
the tensor. Physically,e is nothing but the polarization of the
photon afterN scattering events.

For the crossed contributions, the situation is more co
plicated. Indeed, the diagram is~represented here for doubl
scattering!

~33!

Because of time reversal invariance, the scattering verte
not affected when the lower line is returned. It is thus po
sible to unfold the diagram completely,

~34!

s
J.
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COHERENT BACKSCATTERING OF LIGHT BY AN . . . PHYSICAL REVIEW A67, 033814 ~2003!
It thus appears that the incoming and outgoing fields
scattered along the same multiple-scattering path. In
l in i l in channel,ein and eout are real and equal; in thehih
channel, they are complex conjugate. In this case, again
product of the two scattering amplitudes is nothing but
cross section, so that the situation is essentially similar to
scattering of scalar waves. The crossed bistatic coefficien
exact back scattering is equal to the ladder bista
coefficient—except for single scattering—and a large
hancement factor is expected. This is indeed what is exp
mentally observed in the ‘‘parallel’’ channelsl in i l in and
hih @4#. In addition, in thehih channel, the single-scatterin
cross section in the backward direction vanishes, leading
factor 2 enhancement for the CBS cone.

In the ‘‘perpendicular’’ channelsl in' l in and h'h , the
incoming and outgoing polarizations are not complex con
gate, and the propagation is slightly more complicated. A
other polarization tensor,

~35!

has to be propagated in the Monte Carlo calculation. It is
longer the cross section that appears in expressions like
~12!, but products of two scattering amplitudes@8#. However,
the Monte Carlo method can still be used, by choosing r
domly the position of the next scattering event~with an ex-
ponential distribution of the distance in a uniform mediu!
and the relative direction of scattering, taking into acco
the weight due to the product of various scattering am
tudes through the polarization tensor. Again, this polarizat
tensor is a direct product of two vectors, which makes
propagation slightly simpler.

For a medium with a nonuniform density of scatterers,
method developed for scalar waves in Sec. III C can be e
ily used, at the price of modifying the amplitude Green fun
tion. As the latter does not depend on the choice of polar
tion, the extension is straightforward.

F. Electromagnetic wave and atomic scatterers

When the individual scatterer has some internal struct
the situation ismuchmore complicated. We consider here t
case of an atom in a well-defined hyperfine level~angular-
momentumJ) exposed to a light quasiresonant with a dipo
transition to another hyperfine level with angular-moment
J8 ~with the usual selection ruleuJ82Ju<1). When it scat-
ters the incoming light, the atom may stay in the same Z
man sublevel—this is a Rayleigh transition—or change
magnetic quantum number—this is a degenerate Raman
sition. In both cases, if recoil and Doppler effects are ne
gible ~which one expects to be the case for our cold atom
cloud!, the scattered photon has the same frequency as
incoming photon: the scattering is elastic.

The scattering amplitude by a single atom depends on
initial and final Zeeman sublevels, on the scattering direct
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and on the incident and scattered polarizations. As the at
produced in a MOT are not in a well-defined internal sta
but rather in a statistical mixture of Zeeman states, the
culation of the bistatic coefficient requires, in addition to t
usual configuration averaging, an averaging over the inte
state of the atom. A first solution could be to perform t
latter averaging using a brute force Monte Carlo approa
The individual scattering amplitudes are well known~see
Ref. @8# for explicit expressions!. However, the average am
plitude Green’s function is extremely complicated if no a
sumption is made on the internal state of the atom. The s
plest assumption is that the atoms are complet
depolarized, i.e., described by a scalar density matrix in th
ground state. Then, as shown in Ref.@8#, the average ampli-
tude Green’s function takes the same form, Eq.~30!, than for
point-dipole scatterers. This assumption on the internal s
is likely to be correct for atoms produced in a MOT. Whe
exposed to a polarized incoming beam, it could be that so
optical pumping takes place. We have used weak pr
beams in the experiment in order to minimize optic
pumping.

As the scalar density matrix hypothesis is needed to g
simple amplitude Green’s function in the medium, it can a
be used to simplify the calculation of the bistatic coefficie
In Ref. @8#, it has been shown that averaging over the inter
state can be performed analytically for each individual sc
tering event. The average differential cross section now re

K ds

dV L 5
3s

8p
~w1uēin•eoutu21w2uein•eoutu21w3!, ~36!

where the weights arew1523/56, w2523/14, w3515/56
for the present caseJ53→J854. The single-scattering ver
tex thus contains all three possible contractions between
polarization vectors and will be represented by a verti
ribbon instead of a single dotted line. The contribution to t
ladder bistatic coefficient can be written~for simplicity, we
show the diagram for double scattering! as

~37!

In complete similarity with point-dipole scatterers discuss
above, we can propagate in the Monte Carlo calculatio
polarization tensor which is ‘‘initialized’’~on the left side!
with the direct productein^ ēin . How this tensor is affected
by a scattering event is described in detail in Refs.@8,16#.
The only difference with point-dipole scatterers is that t
polarization tensor cannot any longer be written as a dir
product of two vectors. Hence, the 9~complex! components
of the polarization tensor have to be propagated during
Monte Carlo calculation. At each step, the contribution to
ladder bistatic coefficient is obtained by contracting the p
larization tensor witheout^ ēout.

For the crossed contribution, the diagram~for double scat-
tering! is

~38!
4-9



d
at
ia

i
so
ar

o
th
th
a

th
-
-
ua

he
ol

in
g

ro
is
ity

lti
la

rm
u
ro

u-

ec
ar
te
an

dt

f
il

gl

ill

do
the
eak
ite

nte

n

rs,

of

s
d
long

ria-
is-
e to
path.
ntal

ti-
ach

me

for

LABEYRIE et al. PHYSICAL REVIEW A 67, 033814 ~2003!
The unfolding of the diagram is slightly more complicate
Indeed, the expression of the scattering vertex is such th
is no longer invariant when the lower line is returned. D
grammatically, the returned crossed contribution

~39!

is not equal to

~40!

However, as the structure of the scattering vertex
known exactly, the propagation of another polarization ten
for the crossed diagrams is easily handled in the Monte C
calculation through the substitutionw2↔w3 @8#. Altogether,
the extra cost to be paid for atomic scatterers is rather m
est. Note that, even for parallel polarization channels,
complication introduced by the atomic structure breaks
equality of the ladder and crossed contributions at ex
backscattering. This is why enhancement factors smaller
2 ~and usually much smaller than 2! are observed. The sim
plest case of aJ50→J851 transition is an exception: be
cause the ground state is not degenerate, the atom act
behaves like a classical point-dipole scatterer~the scattering
vertex is the same asw151 and w25w350) and a large
enhancement factor in thehih channel is observed@18#.

The extension to nonuniform media follows exactly t
same lines than for electromagnetic field and point-dip
scatterers.

IV. INFLUENCE OF THE SHAPE
OF THE SCATTERING MEDIUM

While experiments on multiple scattering are often us
scattering media with simple shapes~the simplest case bein
a semi-infinite medium with uniform density!, this is difficult
with cold atoms. Indeed cooling and trapping techniques p
vide finite-size atomic samples with nonuniform density d
tributions. As a first approximation, the atomic cloud dens
in our MOT is described by a Gaussian density~isotropic or
anisotropic!. This has important consequences for the mu
ply scattered light in general and the CBS cone in particu
Some of the effects~nonexhaustive list! are as following.

~1! The mean-free path of the photons is not unifo
across the medium. It is maximum at the center of the clo
Because the angular width of the CBS cone is inversely p
portional to the mean-free path, this effect is likely to infl
ence strongly the CBS cone’s shape and width.

~2! Because the medium is finite in the transverse dir
tion, photons can more easily escape the medium. Comp
to a slab with the same optical thickness, it is thus expec
that the effect of high-scattering orders will be smaller for
atomic cloud.

~3! If the incoming laser beam has a transverse wi
comparable to or larger than the cloud size~which is the case
in the experiment!, the photons which are far off the axis o
the atomic cloud feel a very small optical thickness and w
be mainly scattered once. Thus, the role of sin
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scattering—and more generally of low-order scattering—w
be largely enhanced.

~4! Photons, which are off the axis of the atomic cloud
not enter the medium perpendicularly, which may affect
intensity scattered backward. Considering the rather w
dependence on the initial incident angle for a semi-infin
medium@13#, this effect is expected to be small.

It is not a priori obvious which effect~s! will dominate. In
order to clarify this issue, we have performed several Mo
Carlo calculations with the following geometries:

Slab. Slab medium with uniform density,

n~r !5n0 for 0<z<r 0 ; 0 otherwise. ~41!

The optical thickness isb5n0sr 0.
Gaussian slab. Slab medium with a nonuniform Gaussia

density,

n~r !5n0 expS 2
z2

2r 0
2D . ~42!

The optical thickness isb5A2pn0sr 0.
Sphere. Sphere uniformly filled with scatterers,

n~r !5n0 for r<r 0 ; 0 otherwise. ~43!

The maximal optical thickness~for x5y50) is b
52n0sr 0.

Gaussian sphere. Isotropic Gaussian density of scattere

n~r !5n0 expS 2
r 2

2r 0
2D . ~44!

The maximal optical thickness~for x5y50) is b
5A2pn0sr 0.

In all cases, we will assume that the maximum density
scatterersn0 is fixed, so that the minimum mean-free-path,
~at the center of the medium! is also fixed. We will also
compare different geometries for a fixed optical thicknesb
of the sample, adjustingr 0 accordingly. For the sphere an
the Gaussian sphere, the optical thickness is measured a
the diameter, where it is maximum.

The Gaussian slab will be sensitive to the spatial va
tions of the mean-free path, but not to the other effects d
cussed above. On the contrary, the sphere will be sensitiv
the transverse effects but keeping a constant mean-free
The Gaussian sphere—more or less the experime
medium—will show a mixture of both types of effects.

A. Multiple scattering by a Gaussian slab

In this section, we show that, atexactbackscattering, the
total bistatic coefficient for a Gaussian slab isexactlyequal
to the total bistatic coefficient for a slab with the same op
cal thickness. An even stronger result is established: at e
scattering orderN, the ladder bistatic coefficientgL

(N) is iden-
tical for the uniform slab and the Gaussian slab; the sa
property is valid for the crossed bistatic coefficientgC

(N) at
exact backscattering. This is a very general result, valid
4-10
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COHERENT BACKSCATTERING OF LIGHT BY AN . . . PHYSICAL REVIEW A67, 033814 ~2003!
scalar as well as electromagnetic waves, in the latter cas
point-dipole scatterers and for atomic scatterers. Also,
precise shape of the density of scatterers does not matte
only important point being that it has a translational inva
ance in the (x,y) plane perpendicular to the incoming bea
As far as we know, such a property, although quite simp
has not been previously noticed.

For simplicity, we prove this equality for scalar waves a
isotropic point scatterers and for double scattering. The
tension to more complicated cases is straightforward.

We start from Eq.~12!, using the amplitude Green’s func
tion ~24! for an inhomogeneous medium. We obtain

gL
(2)5

s2

4pAE dr1dr2n~r1!n~r2!
1

r 12
2

expH 2sF E
2`

z1
n~z!dz

1E
2`

z2
n~z!dz1E

0

r 12
n~r11su12!dsG J . ~45!

The translational invariance in the (x,y) makes it possible
to perform trivially the integral overx1 and y1, leaving a
four-dimensional integral overz1 and the three componen
of r12. For the latter, we will use spherical coordinates
the relative distancer 12 andV125(u12,f12).

The key point is then to remark that this expression
sentially depends on the density of scatterersn(z) integrated
between successivez coordinates of the scatterers~and simi-
lar contributions for the incoming and outgoing paths!. It is
thus possible to rewrite the integral using a nonlinear cha
of variable,

Z~z!5sE
2`

z

n~s!ds. ~46!

Z is nothing but the optical depth of the current point. W
thus perform the changes of variablez1→Z1[Z(z1) and
r 12→R12, where

R12[
Z~z11r 12 cosu12!2Z~z1!

cosu12
. ~47!

This change of coordinates is such that the Jacobian exa
compensates then(r1)n(r2) term in Eq. ~45!. This finally
gives

gL
(2)5E dZ1dR12

dV12

4p
exp$2~Z11Z21R12!%, ~48!

where

Z2[Z~z2!5Z11R12 cosu12 ~49!

is the optical depth of the second scatterer.
In Eq. ~48!, the integration overZ1 andR12 is restricted

to values such that 0<Z1 ,Z2<b. Equation~48! is thus iden-
tical to Eq.~16!, which establishes the equality of the ladd
double-scattering bistatic coefficients for a uniform and
nonuniform medium. The generalization to higher order
scattering is immediate. Indeed, one simply needs to perf
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a change of variable for every vector joining two consecut
scatterers, such that the angular variablesuN21,N ,fN21,N are
not touched, but the distance is nonlinearly rescaled like

RN21,N[
Z~zN211r N21,N cosuN21,N!2Z~zN21!

cosuN21,N
.

~50!

With such a change of variables, the ladder bistatic coe
cient for the nonuniform slab is mapped on the coefficie
for the uniform slab with identical optical thickness.

For the crossed bistatic coefficient, the situation is sligh
more complicated. Indeed, the rescaling of the relative d
tance between successive scatterers preserves the an
variables~i.e., the relative orientation between consecut
scatterers!, but not the relative distance. It thus happens t
the transverse displacement (xN21,N ,yN21,N) will be mapped
to (XN21,N ,YN21,N) with the same direction but a differen
length. For each pair of scatterers, the rescaling of
length is different, which means that there is no simp
connection between (xN2x1 ,yN2y1)5(x22x1 ,y22y1)
1(x32x2 ,y32y2)1•••1(xN2xN21 ,yN2yN21) and (XN
2X1 ,YN2Y1). Thus, the term cos@(k in1kout)•(rN2r1)# in
the crossed bistatic coefficient is not easily taken into
count. However, at exact backscattering,k in1kout50 and the
cosine is unity for all spatial configurations. In this case,
transverse variables are irrelevant and one gets for a non
form medium the same contribution than for a uniform m
dium. As a consequence, at exact backscattering, the bis
coefficients at each order~including single scattering! are all
equal for a uniform or nonuniform medium; the enhanc
ment factors are thus equal in both cases.

The proof has been given for a scalar wave. However,
extension to an electromagnetic wave of arbitrary polari
tion scattered by either point-dipole scatterers or atomic s
terers is trivial. Indeed, the proof involves a nonlinear resc
ing of the distance between consecutive scatterers, but f
preserves their relative angular orientation. Thus, the ang
dependence of the scattering amplitude, and the orienta
of the polarization, are not affected by the rescaling and
proof for scalar wave and isotropic scatterers remains va

The proof has been given for an incoming plane wa
which uniformly illuminates the medium. For a nonunifor
laser beam~such as a Gaussian beam!, each contribution
must be conveniently weighted by the laser amplitude,
explained in Sec. III D. The weights involve the transver
properties of the medium and are thus not invariant under
nonlinear rescaling, Eq.~50!. Thus, the equality of the bi-
static coefficients for a slab and a Gaussian slab does
hold for an incoming Gaussian laser beam. It will rema
approximately valid only if the waist of the laser beam
much larger than the mean-free path.

If the enhancement factor of the CBS cone is not affec
by a nonuniform density, the shape changes~see discussion
above! and it is difficult to draw general conclusions or ma
explicit calculations. One can however make the followi
observations.
4-11



t
ta

nt
io
o

u

rin
ity
n

e

na

re
th
is

n
in-

n

in
b

uc
te

i
t

el

th
o

e.
at
,
y
he

n

t is
han
mi-
is
or
nel.
nel,

en-

t the
hs
M

l
re-
rm
at-
re-
e of
ath

ne

tly
hat
—
BS
ted

LABEYRIE et al. PHYSICAL REVIEW A 67, 033814 ~2003!
~a! Typically, RN21,N is of order unity that implies tha
r N21,N is of the order of the local mean-free path. The to
transverse displacement (x1N ,y1N) will thus be the sum of
individual displacements which may be of very differe
lengths, depending whether the path explores deep reg
inside the medium—where the mean-free path is short —
stays in the outer layers—where the mean-free path is m
larger.

~b! For double scattering, the first and second scatte
events typically take place at optical depth of order un
Thus the angular width of the double-scattering CBS co
will be of the order of 1/k,̃, where,̃ is the mean-free pathat
unit optical depth. For a very thick medium, this takes plac
in the wings of the Gaussian describingn(r ) and ,̃ may be
much larger than the mean-free path, at the center of the
sample. This means that the CBS cone may be much
rower than naively expected from,.

~c! For higher scattering orders, a typical path will explo
denser regions of the medium with shorter mean-free pa
resulting in a globally slower spread of the transverse d
placement~compared to uniform density!. Thus, the contri-
butions of the higher orders of scattering to the CBS co
which, for a uniform semi-infinite medium, decrease in
tensity asN23/2 and whose width decrease asN21/2, will
show the same decrease in intensity~see proof above! but a
slower decrease of the width. Thus, the tip of the CBS co
which has a celebrated triangular shape (12auuu) for a sca-
lar wave or an electromagnetic wave scattered by po
dipole scatterers in the parallel polarization channels, will
rounded for a nonuniform medium.

~d! For atomic scatterers, the effect of the internal str
ture is to reduce the contribution of higher orders of scat
ing to the CBS cone. Thus, the rounding of the cone tip
already present for a uniform slab. The modification due
nonuniform density is thus expected to be small.

The numerical results presented in Sec. V show the r
tive importance of those various remarks.

B. Width of the CBS cone in nonuniform media

It is possible to get some interesting insight on the wid
and shape of the CBS cone using the Gaussian slab ge
etry. Using Eqs.~42! and ~46!, we obtain for the optical
depth:

Z5
b

2
erfcS z

A2r 0
D , ~51!

where erfc denotes the error integral function@21# andb the
optical thickness given by Eq.~20!.

We now assume that the medium is optically thick, i.
b@1. The first scattering event will typically take place
optical depthZ of the order of unity. For a thick medium
this is in the outer layers of the medium, where the densit
still low and the mean-free path quite long. Using t
asymptotic expression@21# erfc(x)'(1/Apuxu)exp(2x2)
valid for x→2`, one obtains that the first scattering eve
takes place around
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z̃'2r 0SA2 ln
b

A2p
2

lnA2 ln
b

A2p

A2 ln
b

A2 p

D . ~52!

At this point, the density of scatterers is

ñ'n0

A4p ln
b

A2p

b
~53!

and the mean-free-path

,̃'
r 0

A2 ln
b

A2p

. ~54!

The latter equation implies that, apart from alogarithmic
correction, the mean-free path at the first scattering even
essentially equal to the size of the medium, much larger t
the mean-free path at the center of the medium! For a se
infinite uniform medium, the angular width of a CBS cone
of order of 1/k,, with a prefactor depending on the scalar
vector nature of the wave and on the polarization chan
For a scalar wave or a vector wave in the parallel chan
the full width at half maximum~FWHM! is roughly 0.7/k,.
It results from the superposition of CBS cones whose int
sity and width decrease with the scattering orderN. The
double-scattering contribution is'10 times broader.

For a Gaussian slab, it is thus reasonable to expect tha
double-scattering contribution will be dominated by pat
scattered at unit optical depth, and thus will have a FWH
of the order of few 1/k,̃. Higher orders of scattering wil
penetrate deeper inside the medium, and will thus feel a
duction of the local mean-free path. Compared to a unifo
medium, the typical transverse excursion of a multiple sc
tering path will thus be reduced, and the width of the cor
sponding CBS cone increased. To estimate the importanc
this effect, it is useful to study how fast the mean-free p
varies. From the equality,51/n(z)s, one gets

d,

dz
5

A2p

b

z

r 0
expS z2

2r 0
2D . ~55!

At unity optical depth and for large optical thickness, o
finds, using Eq.~52!

Ud,

dz
~ z̃!U'1. ~56!

In other words, the local mean-free path varies significan
when the optical depth changes by one unit. This implies t
for higher orders of scattering—deeper inside the medium
the transverse excursion is strongly reduced. Thus, the C
cones arising from higher orders of scattering is not expec
4-12
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COHERENT BACKSCATTERING OF LIGHT BY AN . . . PHYSICAL REVIEW A67, 033814 ~2003!
to be significantly narrower than the double-scatter
contribution.8 Thus, we predict that the width of the CB
cone for a Gaussian slab will be of the order of the doub
scattering width and will be given by

Du'
b

k,̃
~57!

with b a numerical constant depending on the polarizat
channel, but typically between 1 and 2. Plugging Eq.~54!
finally gives

Du'
b

kr0
A2 ln

b

A2p
~58!

or, using the mean-free path, at the center of the medium

k,Du'
b

b
A4p ln

b

A2p
. ~59!

For a uniform slab medium, this dimensionless prod
k,Du tends to a constant~of the order of 0.7 for scala
waves and electromagnetic waves scattered by point-di
scatterers, in the parallel polarization channels! when the op-
tical thickness tends to infinity. On the contrary, for a Gau
ian slab, the CBS cone gets narrower, roughly as the inv
of the optical thickness. This is a very dramatic effe
which—as far as we know—has never been reported, p
ably because standard CBS experiments use sharp inter
and media with constant density.

The summary of our analysis of the Gaussian slab cas
that we know exactly the enhancement factor of the C
cone ~see Sec. III A! and have an approximate predictio
Eq. ~58!, for its width.

Various remarks can be made as follows.
~i! The narrowing of the CBS cone is after all a rath

trivial effect. It is because scatterers that contribute to
CBS signal stem from the external layers of the medium

~ii ! A similar width is expected for a scalar wave, in a
polarization channels for a vector wave and point-dip
scatterers and even for atomic scatterers, although the
hancement factors can be very different. This is because
width for a Gaussian slab is dominated by double scatter
whose width and shape are similar in all cases.

~iii ! For a Gaussian sphere with large optical thickne
the physics is essentially the same. Indeed, the CBS si
will essentially originate from the outer layers of the sphe
where the mean-free path is very large. It is the longitudi

8If ud,/dzu is much smaller than unity, the medium is local
uniform and a diffusion approximation~with a slowly varying dif-
fusion constant! can be used. Ifud,/dzu is much larger than unity,
on the contrary, an abrupt approximation could be used with a s
interface at the entrance in the medium. For a Gaussian dens
turns out than neither the diffusion, nor the abrupt approximat
can be used. This phenomenon is accidental for Gaussian de
and no deep physics is hidden behind it.
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variation of the density which is the major ingredient, not t
transverse variations. The reduced transverse extension
certainly cut the very long scattering paths~which may es-
cape transversely! but it is unlikely to strongly affect the
CBS cone width. The approximate expression, Eq.~58!, is
thus expected to be valid for a Gaussian sphere, i.e., for
experimental conditions.

~iv! Similarly, for a sphere with uniform density and larg
optical thickness, we expect that the CBS cone will be do
nated by the interface. Cone widths slightly larger but co
parable to the widths for a slab medium are thus expecte

~v! Equation~58!, valid also for a Gaussian sphere, see
to suggest that the width of the CBS cone is nothing bu
apart from a logarithmic correction—the diffraction ang
associated with the scattering medium. This interpretatio
definitely incorrect. It is not the transverse dimension th
determines the CBS cone width, but the longitudinal var
tion of the density. The best proof is that the width is on
weakly affected when the transverse size increases tow
infinity ~toward a Gaussian slab!, see numerical results in
Sec. V.

V. RESULTS

In this section, we present various results of Monte Ca
simulations using either scalar or electromagnetic waves
the latter case either with point-dipole or atomic scattere
The goal of these calculations is to explore the influence
the geometrical properties of the scattering medium on
CBS signal, and to test the qualitative ideas and quantita
approximations introduced above. The emphasis is put on
Gaussian sphere geometry, which is the one used in the
periments. We also report new experimental results on po
dipole and atomic scatterers, and compare them with the
sults of our Monte Carlo calculations.

A. Scalar wave

Scalar waves and isotropic scatterers are espec
simple, because they allow to concentrate on effects pu
due to the geometry of the medium, leaving aside the co
plications introduced by the polarization channels and
internal degree of freedom of atomic scatterers.

Figure 2 shows the enhancement factora computed nu-
merically as a function of the optical thicknessb of the me-
dium, for various geometries. The enhancement factor is
fined as the ratio of the average intensity scattered in
exact backward direction to the average intensity scatte
close to the backward direction, but outside the CBS cone
is related to the bistatic coefficients through

a5
gL1gC~u50!

gL
~60!

with the convention that the single-scattering contributiongS
is included in the ladder contributiongL . For scalar waves
or electromagnetic waves scattered by point-dipole scatte
in the parallel channels, the reciprocity theorem implies t
gC(u50)1gS5gL @10# and thus

rp
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n
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a522
gS

gL
. ~61!

We numerically checked that the enhancement factors for
slab and Gaussian slab geometries are equal for anyb, as
proved in Sec. III C. For smallb, the enhancement facto
goes to unity in all geometries. This is due to single scat
ing that is dominant at smallb and does not contribute to th
CBS signal. The enhancement factor increases withb and
saturates to a constant value asb→`. For the slab geometry
we checked that the numerical results agree perfectly w
the prediction of Ref.@22# obtained by numerically solving
the Milne equation. For example, the saturation value
b5` is 1.88, limited by single scattering. In the other g
ometries, the saturation value@and more generally, the ful
curvea(b)] is lower, as these geometries reduce the weig
of the long scattering paths~the photon exits more easily i
the transverse directions!. In all cases, the limiting value a
b5` is reached rather slowly—with a 1/b behavior—
becausegL contains significant contributions from very lon
paths that are cut at finiteb. The most important conclusio
which can be drawn from this figure is that the enhancem
factor can be strongly reduced by purely geometrical effe
for example from 1.8 to 1.4 atb54 when going from a slab
to a Gaussian sphere geometry.

Figure 3 shows the widthDu ~FWHM! of the CBS cone
~normalized with respect to 1/k,, wherek is the wave vector
of the light and, the mean-free pathat the center of the
sample!, as a function of the optical thicknessb for various
geometries. Note that both axes are plotted in logarith
scales. One can see that in all situations the productk,Du
decreases with increasing optical thickness. Indeed, at fi
mean-free path, increasingb means increasing the samp
size, which increases the relative proportion of long scat
ing paths. Those yield narrow cones, thus the total CBS c
gets narrower. For uniform~i.e., constant density of scatte
ers! geometries, the CBS cone gets narrower at increasinb

FIG. 2. Enhancement factor@as defined in Eq.~60!# of the CBS
cone for a scalar wave scattered by point isotropic scatterers
various geometries of the medium, as a function of the opt
thicknessb. It is significantly smaller for a Gaussian sphere—t
geometry used in experiments on cold atoms—than for a slab,
cause long scattering paths are cut, which increases the rel
weight of single scattering.
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and saturates aroundk,Du.1 asb→`. On the contrary, for
Gaussian geometries, the cone width continues to decr
quickly even at largeb, roughly like 1/b. This agrees with
the qualitative prediction of Sec. III C and is due to the m
tiple scattering in the external layers of the medium, wh
the local mean-free-path,(r ) is much larger than the mean
free-path, at the center of the sample. We also note that t
phenomenon is similar for the Gaussian slab and the Ga
ian sphere, which proves that it isnot due to the reduction of
the transverse dimension of the scattering medium, bu
consequence of the nonuniform density in thelongitudinal
direction.

A quantitative test of the theory developed in Sec. IV B
presented in Fig. 4, where we plot the productbk,Du versus
b, using now linear scales. In other words, we multiply t
data of Fig. 3 byb in order to compensate for the princip
1/b decrease. For the two Gaussian geometries, we obs
that bk,Du increases slowly withb for the Gaussian slab
and the Gaussian sphere geometries. The asymptotic ex
sion, Eq.~59!, predicts aAln(b) increase at largeb, but suf-
fers from an unphysical singularity for smallb. For the
Gaussian slab—the medium for which the theory is done
the numerical calculation shows that the productbk,Du
goes to zero asb→0. We thus regularize the logarithmi
asymptotic behavior using

k,Du'
b

b
A2p lnS 11

b2

2p D . ~62!

This function is plotted~for b51) in Fig. 4. It reproduces
the observed behavior, especially the slow logarithmic

or
l

e-
ive

FIG. 3. Normalized widthk,Du of the CBS cone for a scala
wave scattered by point isotropic scatterers, for various geome
of the medium;k is the wave vector of the light,, the mean-free
path at the center of the sample, andDu the full angular width at
half maximum~FWHM! of the CBS cone. For the slab and sphe
geometries—where the density of scatterers and consequentl
mean-free path are constant across the sample—it decreases t
a constant value of the order of unity asb→`. On the contrary, for
the Gaussian slab and the Gaussian sphere, it continues to dec
quickly with increasingb, roughly like 1/b. This is due to the mul-
tiple scattering in the external layers of the medium, where
mean-free path is much larger than the mean-free path at the c
of the sample. Note the double logarithmic scale.
4-14
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COHERENT BACKSCATTERING OF LIGHT BY AN . . . PHYSICAL REVIEW A67, 033814 ~2003!
crease at large optical thickness. Note, however, that the
merical result increases slightly more slowly that the pred
tion of Eq. ~62!. The reason is that we here use a constanb
parameter.b is supposed to model the width of the CB
cone~in units of 1/k,) for a uniform medium. From Fig. 3
such a width is clearly much larger than unity for thin sl
and sphere media. Thus, the productbk,Du for a Gaussian
sample results from the combination of the logarithmic
crease in Eq.~62! and the slow decrease ofb with b. At large
b, the logarithmic divergence overcomes but, at moderatb,
they more or less compensate, yielding an almost cons
value. This is especially true for the Gaussian sphere, wh
b apparently varies more rapidly withb—see the slab and
sphere curves in Fig. 3—and the logarithmic increase is v
slow even atb5100. Altogether, for realistic optical thick
nesses of a Gaussian sphere, the productbk,Du can be con-
sidered as almost constant, which means that the CBS
itself gets narrower as the inverse of the optical thicknes

It is instructive to compare the angular width of the CB
cone with the so-called diffraction limit. Indeed, when illu
minated by a plane wave with wave-vectork, a Gaussian
sphere will—in the thin medium limit—diffract the initia
wave producing a Gaussian diffraction figure at infin
whose angular width is given by

kr0Dudiffraction52Aln 2, ~63!

which gives

bk,Dudiffraction5A8p ln 254.17. ~64!

It could thus be thought that the angular width of the C
cone is nothing but the diffraction limit of the sample. How
ever, this is not true. Indeed, as shown above, the width

FIG. 4. Same data as in Fig. 3, but multiplied byb in order to
compensate for the global 1/b decrease. The productbk,Du is
approximately constant for the Gaussian slab and Gaussian sp
geometries, which implies that the CBS cone gets narrower rou
like the inverse of the optical thickness. The dashed line is
~regularized withb51) prediction at largeb, Eq. ~62!, which dis-
plays a logarithmic increase at largeb, in agreement with the nu
merical result for a Gaussian slab and, to a lesser extent, f
Gaussian sphere. The fluctuations in the curves are due to a
small sampling in the Monte Carlo calculation.
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the CBS cone is imposed by thelongitudinal variations of
the mean-free path, whereas the diffraction limit is due to
transversevariations of the density. For a Gaussian sphe
they are of the same order of magnitude, hence a confusio
possible. Note first that the width of the CBS cone has
logarithmic increase at largeb, which is absent in the diffrac-
tion limit, and second that the Gaussian slab has the s
dependence while no diffraction argument applies there
the medium is transversely infinite.

The numerically computed CBS cones themselves
shown in Fig. 5 forb5100 in the four geometries. Clearly
they behave differently depending whether the density
scatterers is uniform or not. For the uniform slab and sph
geometries, the cone is relatively broad, but spiky at ex
backscattering. This is a distinct signature of scattering
very large orders~contribution of very long scattering paths!.
On the contrary, for Gaussian geometries, the CBS con
much narrower~typically 50 times narrower forb5100), as
discussed above, and the top is rounded. As we have pro
that, for a Gaussian slab, the contributions of the vario
scattering orders are identical to the slab situation, this is
due to a reduction of scattering at large orders. It is rat
that long scattering paths go deeply inside the Gaussian
dium and explore regions, where the mean-free path is
nificantly reduced. This slows down the transverse transp
and kills the narrowing of the contributions with the orderN
of scattering. The contributions at variousN have similar
widths~instead of the 1/AN decrease for a uniform medium!,
leading to a overall smooth CBS cone.

B. Vector wave and point-dipole scatterers

We now turn to the results obtained for a vector wa
scattered by point-dipole scatterers. As discussed above
polarization channel is a crucial parameter. Parallel chan
are expected to behave similarly to a scalar wave while
perpendicular channels, very long scattering paths sho
play a minor role, leading to less intense and broader C
cones.

Figure 6 shows the enhancement factor in thel in i l in
channel as a function of the optical thickness, for vario
geometries. Again, it is identical for the slab and Gauss
slab geometry. A comparison with Fig. 2 immediately sho
that CBS in this channel behaves qualitatively like CBS fo
scalar wave, with an enhancement factor increasing witb
up to a saturation value below 2~because of single scatte
ing!, depending on the geometry. In thehih channel, there is
no single scattering, so that the enhancement factor o
incoming plane wave is equal to 2, for all geometries. This
because pairs of time-reversed scattering paths always
the same amplitude, leading to perfect contrast of the in
ferences.

The enhancement factor in thel in' l in channel is shown
in Fig. 7, for various geometries. At smallb, the CBS signal
is dominated by double scattering~single scattering is zero in
this channel!, for which the ladder and crossed contributio
are equal. Thus, the enhancement factor is close to 2.
multiple-scattering beyond second order, the amplitudes
pair of time-reversed paths are no longer equal, which
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plies a decrease of the crossed~interference! contribution and
finally to a rather small enhancement factor asb→`. Note
that the rather large enhancement factor~1.6! observed in the
l in' l in channel for CBS by a cloud of Sr atom@18# is
obtained in the regime of rather smallb (52 in the experi-
ment!, where double scattering is dominant. Cold Sr ato
behave like point-dipole scatterers when exposed to a l
beam quasiresonant with the resonanceJ50→J851 line.

In the other perpendicular channel,h'h , the enhance-
ment factor, shown in Fig. 8, is small for smallb, because
single scattering is important, but also rather small at largb
because the pair of time-reversed paths which interfere
unbalanced amplitudes. However, in an intermediate regi

FIG. 5. The CBS cones numerically computed for optical thic
nessb5100 and various geometries. The cone is relatively bro
and spiky for geometries with uniform density of scatterers,
narrow and smooth for the Gaussian geometries~note the different
horizontal scales!. The two latter features confirm that the CB
cone in Gaussian geometries are due to multiple scattering in
external layers of the medium, where the mean-free path is l
and decreases rapidly with the optical depth.

FIG. 6. Enhancement factor@as defined in Eq.~60!# of the CBS
cone for a vector wave scattered by point-dipole scatterers in
l in i l in channel, for various geometries of the medium, as a fu
tion of the optical thicknessb. It behaves very similarly to scala
waves, see Fig. 2.
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double-scattering—for which the interfering amplitudes a
equal—plays an important role while large order scattering
still fairly small. This results in a maximum of the enhanc
ment factor forb around few units; the precise position of th
maximum as well as the maximum enhancement factor
pends on the geometry. Altogether, theh'h is the least fa-
vorable one for the observation of CBS by point-dipole sc
terers.

We have also calculated the width of the CBS cone in
various geometries. It is essentially the same for all polari
tion channels, and very similar to the data displayed in Fig
for a scalar wave. For example, the results for thehih chan-
nel ~not shown! are almost indistinguishable from the scal
wave simulation on a double logarithmic scale~difference of
the order of 10%!. The results for theh'h channel are dis-
played in Fig. 9, on a double logarithmic scale. In the u
form geometries~slab and sphere!, the width decreases with
increasingb until toward a asymptotic valuek,Du of the
order of 5. In the nonuniform channels~Gaussian slab and
Gaussian sphere!, k,Du continues to decrease asb→`,
roughly like 1/b. The only noticeable difference with th
scalar wave, Fig. 3, is that the saturation value atb5` is
significantly ~about 6 times! larger than for a scalar wave
The reason is that, in such a nonreciprocal channel, the
tribution of high-order scattering is very small and the wid
is essentially given by the double scattering contributio
without the narrowing effect due to higher-orders observ
in the parallel channels. In Fig. 10, we plot the produ
bk,Du versus the optical thickness, on a linear scale,
gether with the analytic prediction, Eq.~62!. Similarly to the
scalar wave, one can clearly observe the logarithmic incre
at large b, both for the Gaussian slab and the Gauss
sphere. The agreement with the prediction is even better
for the scalar wave. This is most probably because, in
nonreciprocal channel, the CBS cone in the slab geom
does not narrow significantly with increasingb ~because
high-scattering orders weakly contribute! and the pure loga-
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FIG. 7. Enhancement factor@as defined in Eq.~60!# of the CBS
cone for a vector wave scattered by point-dipole scatterers in
l in' l in channel, for various geometries of the medium, as a fu
tion of the optical thicknessb. It is close to 2 at smallb where
double scattering dominates and decreases toward rather smal
ues whenb→`.
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rithmic increase expected for the double-scattering contr
tion is thus more visible.

In the linear channels, the situation is slightly more co
plex because the CBS cone does not have an azimuthal
metry around the backscattering direction. In thel in i l in
channel, it is rather anisotropic and two widths can be m
sured, a large one in the direction parallel to the polarizat
axis and a small one perpendicular to it@6#. Similarly, in the
l in' l in channel, the CBS cone has a four-fold symme
and 2 widths can be measured, either parallel to the incom

FIG. 8. Enhancement factor@as defined in Eq.~60!# of the CBS
cone for a vector wave scattered by point-dipole scatterers in
h'h channel, for various geometries of the medium, as a func
of the optical thicknessb. It is small both for smallb ~where single-
scattering dominates! and for largeb ~where high-order scattering
dominates!, and present a maximum for optical thickness of fe
units.

FIG. 9. Normalized widthk,Du of the CBS cone for a vecto
wave in theh'h channel, scattered by point-dipole scatterers,
various geometries of the medium;k is the wave vector of the light
, the mean-free path at the center of the sample, andDu the full
angular width at half maximum~FWHM! of the CBS cone. For the
slab and sphere geometries—where the density of scatterers
consequently the mean-free path are constant across the samp
decreases toward a constant value of the order of 5 asb→`. On the
contrary, for the Gaussian slab and the Gaussian sphere, it cont
to decrease quickly with increasingb, roughly like 1/b. This is due
to the multiple scattering in the external layers of the mediu
where the mean-free path is much larger than the mean-free pa
the center of the sample. Note the double-logarithmic scale.
03381
-

-
m-

a-
n

y
g

or outgoing polarization, or at 45° from it@23#. We have
studied the productbk,Du as a function of the optical thick
ness in the Gaussian sphere geometry for various pola
tion channels~and for scalar waves! and found that all the
widths are very similar~within a factor 2 at most! and follow
the logarithmic increase predicted by Eq.~62!. As explained
above, the perpendicular channels follow more closely t
logarithmic increase because high scattering orders con
ute less. However, it remains true that the most import
effect is the narrowing effect due to scattering in the exter
layers of the cloud. This proves that the CBS cone in suc
geometry is essentially dominated by low-order multip
scattering in the external layers of the sample.

The CBS cones themselves, calculated forb5100 and
various geometries are shown in Figs. 11 and 12, in thehih
and h'h channels, respectively. In thehih channel, where
the enhancement factor is equal to 2, the cone shapes
very similar to those obtained for a scalar wave, see Fig
they are broad and spiky in the uniform geometries and n
row and smooth in the Gaussian geometries, as expe
from the discussion in Sec. V A. In theh'h channel, the
situation is different: the cones are significantly broader th
in thehih channel and smooth in the four geometries. This
because pairs of long time-reversed scattering paths h
typically unbalanced amplitudes and thus contribute little
the CBS interference.

In Fig. 13, we show the CBS cone experimentally o
served on a suspension of TiO2 particles. The particles are
sufficiently small so that they behave like point-dipole sc
terers @9#. The scattering medium is a slab of very larg
optical thickness, almost a semi-infinite medium. In thehih
channel, we observe an enhancement factor of 1.92, w
the standard prediction is a factor 2. The Monte Carlo cal
lation, also shown in the figure as a dotted line, is done w
an optical thicknessb5100, but it is almost indistinguish
able from the cone obtained for largerb values. The com-
puted curve agrees remarkably well with the experimen
observation, even in the far wings of the cone. The o
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FIG. 10. Same data as in Fig. 9, but multiplied byb in order to
compensate for the global 1/b decrease. The dashed line is th
~regularized withb52.7) prediction at largeb, Eq. ~62!, which
displays a logarithmic increase at largeb, in agreement with the
numerical result for a Gaussian slab and a Gaussian sphere.
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noticeable difference is near the tip of the cone, see the i
in the figure. Three effects may explain this difference: fir
the finite resolution of the optical apparatus used for
analysis of the CBS cone~of the order of 0.1 mrad! certainly
rounds the top of the tip. Second, the finite transverse ex
sion of the incoming laser beam induces, as shown in S
III D an imbalance of the amplitudes of the time-revers
scattering paths which interfere. In the specific case of a
geometry~as used in our experiment! exposed to a Gaussia

FIG. 11. The CBS cones numerically computed for opti
thicknessb5100 and various geometries, in thehih channel. The
cone is relatively broad and spiky for geometries with uniform d
sity of scatterers, but narrow and smooth for the Gaussian ge
etries. The two latter features confirm that the CBS cone in Ga
ian geometries are due to multiple scattering in the external la
of the medium, where the mean-free path is large and decre
rapidly with the optical depth.

FIG. 12. Same as Fig. 11, but in theh'h channel. The cones ar
less intense, slightly broader, and smoother for the uniform ge
etries. This is because the interference contrast of long scatte
paths is very small in this channel.
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laser beam, this can be exactly taken into account throug
convolution of the signal with the angular distribution of th
laser beam. Third, the imperfections in the optics are resp
sible for a contamination of thehih by theh'h channel. As
the latter channel has a small enhancement factor~and a
large contribution of single scattering!, the net effect is a
reduction of the enhancement factor, estimated here to b
the order of few percents. The first two effects can be ta
into account by convolving the CBS cone for a plane wa
by a Gaussian~or similarly doing the calculation for a
Gaussian laser beam with proper angular width!. We show
such a calculation as a dashed line in Fig. 13. It reprodu
almost perfectly the observed CBS cone. This gives us c
fidence that the experimental setup is adequate for the ob
vation of CBS; the same optical apparatus is used for ob
vation of the CBS cone on a cloud of cold Rb atoms. T
gives us also confidence that the Monte Carlo method use
reliable. In Fig. 14, we plot the experimentally measur
angular width of the CBS cone as a function of the opti
thickness. The experimental data are obtained by varying
geometrical thickness of the sample while keeping cons
the density of scatterers and consequently the mean-
path. The experimental curve behaves as predicted by
Monte Carlo simulation: it decreases when the optical thi
ness increases and saturates to a constant value asb→`.
The agreement with the Monte Carlo calculation is ve
good. Note however that the Monte Carlo calculation do
not include the effect of the liquid in which the TiO2 par-
ticles are in suspension. Thus, the computed curves~i.e., the
effective thickness of the sample! are rescaled in order to
take into account—in a very approximate way—this effect
is thus not surprising that some deviation is observed
small b.

l
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FIG. 13. The CBS cone observed experimentally on a slab
TiO2 particles with very large optical thickness, in thehih channel.
It is compared with a Monte Carlo calculation using either an
coming plane wave~dotted line; in this case, the enhancement fa
tor is exactly 2! or a Gaussian plane wave, which can be exac
taken into account through convolution with a Gaussian. Even if
incoming laser beam has a large waist~in the present case, th
FWHM of the laser intensity is 32 times the mean-free path!, it
induces a significant decrease of the enhancement factor a
rounding of the cone tip. The agreement with the experiment
observed cone is excellent.
4-18



ll a
a
.
th
th

as
th
n

ne
at
t

he

in
e

th
th
n

za
ar
at

r
h
a

BS
te

ex
r
e

ter-

x-
and
us-
tion

CD

ion
ape
not
is a
less
u-
n-

e
r
ns

ke
e at-

n

e
nc
he
t

.

ms

ries
ian
sian
the
pidly
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C. Vector waves and atomic scatterers

In this section, we present experimental results as we
numerical calculations using a Monte Carlo method, for sc
tering of a vector wave~light! by a sample of cold Rb atoms
The frequency of the laser beam is chosen close to
J53→J854 resonance line, see Sec. II. We assume that
initial atomic state is completely unpolarized and that inel
tic transitions to other hyperfine levels are negligible. Bo
assumptions are likely to be valid in our experimental co
ditions.

In Ref. @24#, we show a detailed analysis of the co
shape in the various channels. In the present paper, we r
concentrate on the influence of the optical thickness and
geometry of the medium.

We first show in Fig. 15 the computed CBS cone in t
hih channel and large optical thicknessb5100 for various
geometries. The comparison with the same plot for po
dipole scatterers, Fig. 11, shows dramatic effects: the
hancement factor is enormously reduced~from 2 to 1.05!, the
cones are slightly broader and the tip is rounded even in
slab and sphere geometries. This is a direct proof that
internal structure of the atoms is responsible for a stro
reduction of interference effects even in the parallel polari
tion channels. It turns out that the cones in the figure
qualitatively similar to those observed for point-dipole sc
terers in theh'h channel~see Fig. 12!, where interference
effects are reduced because of the chosen polarization. F
the figure, we also learn that the narrowing effect in t
Gaussian geometries, discussed above for a scalar w
equally applies for a cloud of cold atoms, where the C
cone essentially arises from multiple scattering in the ex
nal layers of the cloud.

A careful analysis of the atomic scattering vert
@8,25,26# shows that indeed a small enhancement facto
expected in thehih channel, but that the largest enhanc

FIG. 14. Width of the CBS cone experimentally observed o
uniform slab of TiO2 particles~in thehih channel! as a function of
the optical thicknessb. It shows that the width decreases with th
optical thickness, but slowly in the slab geometry, in accorda
with the Monte Carlo calculation. This is in sharp contrast with t
behavior observed on a cloud of cold atoms, see Fig. 18, where
width quickly decreases withb, an effect directly related to the
nonuniform density of atoms. Note the double logarithmic scale
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ment factor is expected in theh'h channel. This is surpris-
ing, because it is the worst channel for point-dipole scat
ers. The experimental results@5,6# as well the numerical
calculations published elsewhere@24# fully confirm this un-
expected behavior.

Figure 16 shows the measured CBS cone in theh'h po-
larization channel atb519 (detuning50.43G) and its com-
parison to a Monte Carlo simulation performed with the e
perimentally measured parameters for the atomic cloud
the laser beam. We performed two different calculations,
ing for the density of scatterers either a Gaussian func
~this is the Gaussian sphere geometry! or an exp(2r4/r0

4) den-
sity @which we will note ‘‘exp(2r4)’’ geometry#. There is no
adjustable parameter. The 2D images obtained from the C
are angularly averaged to improve signal-to-noise~this is
safe since the cone is isotropic in the circular polarizat
channels!. As one clearly sees, the experimental cone sh
is intermediate between the two computed ones. This is
really surprising as the experimentally measured density
bit sharper than a Gaussian—see the plot in Fig. 1—but
sharp than exp(2r4/r0

4). The experimentally measured ang
lar width ~0.72 mrad! is half-way between the computed a
gular widths for the Gaussian sphere geometry~0.54 mrad!
and the exp(2r4) geometry~0.90 mrad!.

Next we study the angular width of the cone~obtained in
the h'h channel! as a function of the optical thickness. W
measure the cone width~in mrad! as a function of the lase
detuning. This is shown in Fig. 17 together with simulatio
in spherical geometries. All experimental points~full circles
in the figure! correspond to cones recorded with thesame
atomic cloud, but for different laser detunings. We thus ta
advantage of the resonant scattering cross section of th

a
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FIG. 15. The CBS cones numerically computed for Rb ato
with optical thicknessb5100 and various geometries, in thehih
channel. The cone is smooth is all geometries, like in theh'h
channel for point-dipole scatterers, relatively broad for geomet
with uniform density of scatterers, but narrow for the Gauss
geometries. This again confirms that the CBS cone in Gaus
geometries is due to multiple scattering in the external layers of
medium, where the mean free-path is large and decreases ra
with the optical depth.
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oms to vary the optical thickness without changing t
sample geometry. Although the mean-free-path, varies
roughly by a factor 65, one can see that the cone wi
changes at most by a factor 2.6. Under the same conditi
the cone width obtained for the uniform sphere changes b
factor 25. This is a strong signature of the effect of the inh
mogeneous density in the sample. Indeed, Fig. 17 cle

FIG. 16. The experimentally observed CBS cone on a cloud
cold rubidium atoms~optical thickness 19! in the h'h channel,
compared with the cone computed using a Monte Carlo method
a Gaussian sphere geometry and a exp(2r4) geometry. The en-
hancement factor is well reproduced, as well as the shape.
angular width of the experimental cone is intermediate betw
those computed for the two geometries. This is probably beca
the density of the actual experimental medium is close to a Ga
ian, but slightly sharper like the exp(2r4) geometry.

FIG. 17. Angular width~in mrad! of the atomic CBS cone in the
h'h channel, as a function of the detuning of the CBS probe be
Note the small variation of the cone width~a factor 2.6! for the
experiment and the inhomogeneous model geometries although, is
varied by a factor 65. The width obtained for the sphere geom
have been divided by 4 to appear on the same scale; its valu
well as its dependence vs the optical thickness is completely inc
patible with the experimental results. This clearly rules out
spherical geometry with uniform density.
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shows that the experimental results are in excellent ag
ment with the predictions for a medium whose density var
smoothly@either a Gaussian sphere or a exp(2r4) geometry#
but are in complete disagreement with the prediction fo
sphere of constant density.

The same data are used for Fig. 18, which shows
normalized CBS cone widthk,Du measured in theh'h
channel as a function of the optical thickness@deduced from
the laser detuning and the on-resonance valuebres through
Eq. 2# at the center of the atomic cloud. A set of numeric
predictions for different geometries is shown together w
the experimental result. Their behaviors are similar to wha
observed for a scalar wave, Fig. 3, and point-dipole scat
ers, Fig. 9. In the uniform geometries, the width decrea
with increasingb and saturates atk,Du'5 whenb→`. On
the contrary, for Gaussian geometries, for the exp(2r4) ge-
ometry and for the experimental results, it continues to
crease quickly, roughly like 1/b. The experimentally ob-
served behavior clearly follows the prediction for a
inhomogeneous density, confirming the pertinence of
physical picture exposed before. Thus the width of the C
cone in our experiment isnot determined by the mean-free
path, at the center of the cloud, but by the mean-free pathat
unit optical depth. As long as the width of the CBS cone
concerned, the most important effect is the smooth spa
variation of the mean free-path associated with the domin
multiple scattering events taking place in the external lay
of the atomic cloud.
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FIG. 18. Normalized widthk,Du of the CBS cone for a vecto
wave in theh'h channel, scattered by Rb atoms, for various g
ometries of the medium;k is the wave vector of the light,, the
mean-free path at the center of the sample, andDu the full angular
width at half maximum~FWHM! of the CBS cone. For the slab an
sphere geometries—where the density of scatterers and co
quently the mean-free path are constant across the sample—i
creases toward a constant value of the order of 5 asb→`. On the
contrary, for the Gaussian slab and the Gaussian sphere, it cont
to decrease quickly with increasingb, roughly like 1/b, in complete
similarity with a scalar wave or a vector wave scattered by po
dipole scatterers, compare with Figs. 3 and 9. Note the double lo
rithmic scale. The experimental curve follows roughly a 1/b de-
crease, which shows that the dominant multiple-scattering ev
take place in the external layers of the atomic cloud, where
mean-free path is considerably larger than at the center.
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When the 1/b decrease observed in Fig. 18 is compe
sated for, see Fig. 19, we again observe the logarithmic
crease withb for the Gaussian geometries, in agreement w
the theoretical prediction, Eq.~62!. The experimental resul
itself follows very well the logarithmic prediction, which
proves that our model catches the essential part of the p
ics of multiple scattering of light by a cloud of cold atom
For the exp(2r4) geometry, the theory developed above
not supposed to be valid as the derivation of the logarith
term explicitly involves the shape of the density of scattere
However, it does not lie too far from the result for the Gau
ian sphere. This means—as explained in Sec. IV B—that
1/b decrease of the width is a very general phenomenon
media, where the density varies smoothly. The edges of
exp(2r4) geometry are sharper, that is closer to a sharp
terface like in the sphere geometry; it is thus not surpris
that the width is intermediate between the width for t
Gaussian sphere and the width for the sphere. The sam
valid for the experimental result, consistently with the o
served density profiles that are sharper than a Gaussian
tion. Note also that all the observed widths are significan
larger than the ‘‘diffraction’’ limit, Eq.~64!, which proves
that they are due to longitudinal effects in the multip
scattering phenomenon, and not to a trivial transverse ef

We now turn to the CBS enhancement factor as a func
of the optical thickness. In Fig. 20, we compare experimen
results with Monte Carlo simulations for various atomic g
ometries. One clearly sees in the three spherical geome
as well as in the experiment, the initial increase of the
hancement factor with the optical thickness, followed by
drop at largeb. The physical interpretation is clear: at sma
b ~far from resonance!, the medium is optically thin and
single-scattering dominates, which kills the enhancem

FIG. 19. Same data as in Fig. 18, but multiplied byb in order to
compensate for the global 1/b decrease. The theory~dashed line! is
the ~regularized withb52.7) prediction at largeb, Eq. ~62!, which
displays a logarithmic increase at largeb, in agreement with the
numerical result for a Gaussian slab and a Gaussian sphere. I
lows remarkably well the experimental result. Note that, for
spherical density of the type exp(2r4/r0

4), the width is larger than
the experimental result. This agrees with the fact that the exp
mental atomic density varies more sharply than a Gaussian, but
sharply than exp(2r4/r0

4).
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factor. As the optical thickness increases, the relative con
bution of double-~and more generally low order of! scatter-
ing increases; as these short scattering paths have a r
high interference contrast, the enhancement factor increa
At large b, the long paths with small interference contra
come into play and the enhancement factor diminishes.
fact that, for the three geometries, a similar behavior is
served shows that the phenomenon is robust.

In all cases, the enhancement factor increases from 1~at
b50) to a maximum value reached aroundb55 then slowly
decreases toward an asymptotic value whenb→`. In prac-
tice, the asymptotic value is reached aboveb520. The
agreement is, however, not perfect, the observed enha
ment factor being systematically larger than the compu
value. It is only in the asymptotic regionb→` that the value
1.16 computed for the Gaussian sphere geometry is reac
We are not yet sure of the reason for this discrepancy. So
possibilities are as follows.

~i! Imperfections of the optical apparatus~in particular the
quality of the incoming and detected polarization state!.
This can be ruled out: the largest enhancement factor is
tained in theh'h channel, any optical imperfection is thu
likely to decrease the observed value, not to increase it.

~ii ! In the absence of the atomic cloud~no MOT!, there is
still some light scattered by various parts of the experimen
setup that reach the detector. Most of this background is
to the dilute vapor of hot atoms filling the cell. This bac
ground, which represents less than 10% of the signal
corded in the presence of the atomic cloud, is subtrac
before calculation of the enhancement factor. However,
contribution of the ‘‘hot’’ background may depend on th
presence or not of the~optically thick! cloud of cold atoms.

ol-

ri-
ss

FIG. 20. Enhancement factor@as defined in Eq.~60!# of the CBS
cone for a vector wave scattered by a cloud of rubidium atoms
theh'h channel, for various geometries of the medium, as a fu
tion of the optical thicknessb ~in logarithmic scale!. The Gaussian
profile of the laser beam used in the experiment is taken into
count in the simulations. The enhancement factor is small both
small b ~where single-scattering dominates! and for largeb ~where
high-order scattering dominates!, and present a maximum for opti
cal thickness of few units, where double~and low-order! scattering
is most important. The experimental result follows the same beh
ior, although it is slightly but significantly larger. This discrepan
could be due to some residual optical pumping of the atoms by
CBS probe beam.
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This could lead to an overestimation of the enhancem
factor by at most 0.01.

~iii ! Non-Gaussian shape of the medium. Indeed, the
perimentally recorded density profiles, Fig. 1, are far fro
perfectly Gaussian. We also computed in Fig. 20 the
hancement factor using a exp(2r4/r0

4) density profile in the
medium, which reproduces more faithfully the rather sh
edges of the atomic cloud. Obviously, this does not supp
the discrepancy. Additionally, we have considered the cas
an anisotropic Gaussian medium. We have calculated
CBS cone forb526 with an anisotropy factor 3/2~plate
shape! and 2/3~cigar shape! in the directions perpendicula
to the incoming beam. This slightly modifies the width of t
CBS cone~of the order of 20%! but alters only marginally
the enhancement factor. If a different anisotropy factor
taken in the two directions perpendicular to the incom
beam, the CBS cone in the helicity channels loses its
muthal symmetry. The experimentally recorded CBS co
in the h'h channel are almost perfectly circular; we th
think that there is no significant transverse anisotropy.
summary, it is unlikely that deviation from a Gaussian sha
of the medium is responsible for the discrepancy.

~iv! Stray magnetic field. It is known that even a rath
small magnetic field~of the order of 1 G! modifies the prop-
erties of CBS@23#. However, it is unlikely that the atoms ar
exposed to more than 0.1 G in the experiment.

~v! Role of the other atomic transitions. Although the CB
probe beam is quasiresonant with theJ53→J854 transi-
tion, there is a small probability that an atom scatters~elas-
tically or not! a photon on a another transition. Taking in
accountinelastic transitions to other ground-states~such as
J53→J853→J952) would be rather difficult in Monte
Carlo calculations because then the propagator at various
quencies would have to be used.Elasticscattering, where the
other accessible excited levels are probed (J53→J8
54,3,2→J53), could be treated along the lines describ
in this paper, as the full scattering amplitude is the coher
superposition of the contributions from the variousJ8 states.
Luckily, the detuning used in our experiment for the clos
transition (3→3) is always much larger~at least a factor 6)
than the detuning for the 3→4 transition, so that the effect o
other transitions on the CBS cone is likely to be small. T
is supported by preliminary experimental results where
CBS enhancement factor was measured for both positive
negative detunings. A quantitative estimate, however,
quires further studies@27#.
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~vi! Nonuniform distribution of the initial atomic stat
over the Zeeman sublevels. A basic assumption of our ca
lation is that the initial atomic state is completely depola
ized, a reasonable assumption for atoms produced in a M
We cannot however exclude some residual polarization, e
after the magnetic field of the MOT is switched off. Th
would affect the enhancement factor.

~vii ! Optical pumping. The CBS probe beam is rath
weak but, especially when it is circularly polarized, it ma
optically pump the atoms in a nonuniform distribution ov
the Zeeman sub-levels. This effect is difficult to estimate
optically thick media, because, except close to the entra
of the medium, the atoms are exposed not only to the inco
ing beam but mainly to the light scattered by other atom
Recent experimental results@24# seem to indicate that, with a
weaker probe beam, the discrepancy between the calcula
and the experiment is reduced. We are thus inclined to th
that optical pumping is the relevant phenomenon.

VI. CONCLUSION

We have presented in this paper both experimental
numerical results on coherent backscattering of light b
cloud of cold rubidium atoms. We have shown that the inh
mogeneous density profile in the cloud plays a key role
determining the angular width of the CBS cone, in sha
contrast with what is observed for media with uniform de
sity of scatterers. Especially, for a medium with a spherica
symmetry Gaussian density, the properties of the CBS c
are essentially determined by the lowest orders of multi
scattering, when the photon is scattered in the outer layer
the cloud. Monte Carlo simulations which take fully int
account the internal structure of the atoms correctly pre
the CBS cone shape and angular width as well as the
hancement factor.
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