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Coherent backscattering of light by an inhomogeneous cloud of cold atoms

Guillaume Labeyrié¢, Dominique Delandé,Cord A. Muler,® Christian Miniatura, and Robin Kaisér
! aboratoire Ondes et Dmrdre, FRE 2302 du CNRS, 1361 route des Lucioles, 06560 Valbonne, France
2Laboratoire Kastler Brossel, Universitierre et Marie Curie, Case 74, 4 place Jussieu, 75252 Paris, France
3Max-Planck-Institut fu Physik komplexer Systeme, tNoitzer Strasse 38, D-01187 Dresden, Germany
(Received 7 October 2002; published 27 March 2003

When a quasiresonant laser beam illuminates an optically thick cloud of laser-cooled rubidium atoms, the
average diffuse intensity reflected off the sample is enhanced in a narrow angular range around the direction of
exact backscattering. This phenomenon is known as coherent backscd@®B®)gBy detuning the laser from
resonance, we are able to modify the light scattering mean-free path inside the sample and we record accord-
ingly the variations of the CBS cone shape. We then compare the experimental data with theoretical calcula-
tions and Monte Carlo simulations including the effect of the light polarization and of the internal structure of
the atoms. We confirm that the internal structure strongly affects the enhancement factor of the cone and we
show that the unusual shape of the atomic medium—approximately a spherically-symmetric, Gaussian density
profile—strongly affects the width and shape of the cone.
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[. INTRODUCTION the optical thickness of the sample, the most important ex-
perimental parameter for the comparison with the Monte
Coherent backscatteringCBS) is an interference effect Carlo simulations. The principle of the Monte Carlo simula-
arising when a wave propagates and is multiply scatteretions is described in detail in Sec. lll. A theoretical discus-
inside a random medium. Its manifestation is an enhancesion of the influence of the shape of the scattering medium
ment of the configuration-averaged diffuse intensity in a naron the CBS cone is presented in Sec. IV. Finally, we present
row angular range around exact backscattering, known as tha Sec. V the results of our Monte Carlo calculations, com-
CBS cone due to its distinctive shajid. This shape is given pare them with our theoretical predictions and the experi-

by the Fourier transform of the radial intensity distribution mental results obtained on classical point dipole scatterers
on the surface of the sample when illuminated by a pointlikegand on atomic scatterers.

source[2]. In a homogeneous semi-infinite medium, the
width of the cone is known to be inversely proportional to
the wave transport mean-free pdth in the sampld3]. For
finite-size samples, the cone shape depends not only on the
mean-free path but also on the sample geometry, and usually Our experimental setup has already been described in de-
no analytical expression is available. tail elsewherd6], thus we just recall here its most important
During the past decades, CBS has been thoroughly inveseatures. The whole signal acquisition procedure is time se-
tigated experimentally on a variety of sampléd$ mostly in quenced and repeated as long as necessary to get a good
the “slab” geometry. We have devised an experiment t0gjgnal-to-noise ratio. First, during 20 ms, we trap?Rtoms
study CBS of light on a sample of laser-cooled rubidiumgom 4 dilute vapor into a magneto-optical trégOT) using
atoms[5,6]. This is an unusual situation, both because of the;y large laser beangliameter 2.8 cm, power 30 mW, wave-

very pgculiar properties of the atomic scatterers and of th?ength)\=780 nm) and a magnetic-field gradient of typically
distinctive geometry of the samplspherical symmetry and 10 Glem (“bright” period). Then, during 5 ms, the MOT

guasi-Gaussian density profileln previous pl_Jincations laser beams and magnetic gradient are turned(‘dirk”
[6—8], we have shown that the atomic Zeeman internal struc- eriod. During this period, the CBS probe laser beam is
ture drastically reduces the contrast of the CBS interference’ ) g P ’ P

even in the helicity-preserving polarization channel. Our dis-SWitChecl on(duration 1 m3 the CBS detection path is

cussion of double scattering from a semi-infinite medjgin ~ °Pened thanks to a mechanical chopper gn‘(‘j the”CBS_ signal
already allowed for a qualitative understanding of the experi!S "écorded on a cooled CCD camera. This “dark” period is
mental data. The aim of the present article is to compar&nOrt enough so that the cold atoms do not leave the trapping
quantitatively our experimental data with Monte Carlo simu-area and can be recaptured during the following “bright”
lations taking into account the vector nature of light, thePeriod. A typical CBS image is obtained by integrating over
atomic internal structure and the inhomogeneous density dgfeveral thousand cycles, corresponding to a total image ac-
the scattering medium, with emphasis on the effect of theuisition duration of about 1 m(effective signal acquisition
peculiar geometry used, which strongly affects the angulagluration about 2)s
width of the CBS cone. The probe laser beam is tuned on tB2 line 55,

In Sec. Il, we briefly recall the principle of the experi- —5P3, of Rb® at A =780 nm and is quasiresonant with the
ment. We describe in some detail the procedure to determineorresponding hyperfineJ&3—J'=4) transition (natural

Il. EXPERIMENTAL SETUP
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linewidthI'/27r=5.9 MHz) ! Since the other possible hyper-
fine transitions of thé2 line are far away from this transi-
tion (at least one order of magnitude at thescalg, multiple
scattering is essentially driven by this unique and closed
transition. However, the important degeneracy in the ground-
state (J+1=7 sublevelsallows both Rayleigh and degen-
erate Raman transitions between the different ground-state
Zeeman sublevels. The amplitudes associated to direct and
reverse scattering paths are strongly affected by the internal
degeneracy, so that their interference gives a CBS cone much
smaller than for point-dipole scatterdig8]. Especially, the
so-called enhancement factor, which measures the ratio of
the diffuse intensity at exact backscattering to the “back- FIG. 1. Density profiles of the cold rubidium cloud used in the
ground” diffuse intensity(close to the backward direction, CBS experiment. The profiles are obtained by illuminating the
but outside the CBS coinds typically of the order of 1.05to atomic cloud by a far-detuned probe beam and by imaging the
1.2, instead of close to 2 for point-dipole scatteli@b induced fluorescence signal at two orthogonal viewing angles on a
The polarizations of the incident and backscattered light£CD camera. The profiles have been shifted for the sake of clarity.
play an important role. The most common choices are eithefxis z defines the propagation axis of the CBS probe beam,
linear or circular polarizations. This leads to four different Whereas axis/ corresponds to the polarization axis of the probe
polarization channeldin|/lin where both the incoming and Iight (in th_e Iinea_r channc_a]s The atqmic_ cloud is quasiisotropic
outgoing photons are linearly polarized along the same axe§‘f'th q_uaspaussmn profilesthe solid lines correspond to the
linLlin where they are linearly polarized along orthogonalGaussian fitsof FWHM 3.7x4.1x4.0 mm &.y.2).
axes,h||h where they are both circularly polarized with the
same helicitybecause they propagate in opposite directions . .,
they have opposite polarizationand h. h where they are ’[hrough the center of the trap and the_ so-called “coherent
circularly polarized with opposite helicities, i.e., same polar-ransmitted modeselected using two diaphragms separated
ization. Large enhancement factors are observed for poirfy 2 M intensity is recorded as a function of the probe

dipole scatterers in the parallel channels and especially ed€tuningd=(w—w,). Scanning the laser detuning around
actly 2 in theh||h channel[9,10]. For atomic scatterers, the the atomic resonance modifies the atomic response and ac-

largest enhancement factor on the-a transition is mea- Ccordingly the depletion of the “coherent” beam since the

sured on the contrary in tHeL h channel[6,8]. scattering cross section [§]
Since we aim at a quantitative comparison with the nu-
merical simulations, we need to carefully characterize our
cloud of cold atoms. Two measurements are performed to a( 5)5(7:& (1)
this end. First, we determine the cloud shape by imaging on 1+(26IT)?
the CCD the fluorescence induced by a detuned probe beam.
We use two viewing angles at 90° to have access to the cloud. . .
density profiles in the three spatial dimensions. It is impor-Wlth Tres the_ on-resonance _scatterlng cross se_ct|on. The
tant to detune the probe beam from resonance so that lighf!oud transmission curvé(s) is the monochromatic trans-
atoms interaction occurs in the single scattering regime. Thidlission curve To(6) =ex—b(5)] (Lambert-Beer's law
ensures a uniform illumination of the atomic cloud. The €Onvolved by the probe laser frequency spectfani.orent-
cloud shape is most of the time slightly anisotropic, dependZian curve of width=2 MHz). The monochromatic optical
ing on the alignment of the trapping beams. However, thdhicknessb(4) is readily given by
experimental results presented in this paper were obtained
with a quasi-isotropic cloud whose full width at half maxi- b
mum (FWHM) dimensions are 3:4.1X4.0 mm (see Fig. b(8)=b= L — 2)
1). The density profiles are close to a Gaussian, although 1+(268IT)2
somewhat sharper, especially at the entrance of the light in
the medium. This has a small, yet measurable effect on the ) ) _
properties of the CBS cone, see Sec. V C. whereb, is the on-resonance optical thickness.
Second, we measure the optical thickness at the center of From the measured data, we extract thg value[11].
the atomic cloud11]. A small and weak probe laser beam For a Gaussian density profile ohsradiusr in the direc-
(diameter 1 mm with central angular frequency is sent tion of propagation of the probe, the monochromatic optical
thickness is readily given byp=\2mnyor,=\27ry/¢,
wheren, is the spatial density at the trap center. The quantity
lin conventional spectroscopic notations, the total atomic angulaf () =€ = 1/nyo is the scattering mean-free path at the cen-
momenta are noted using’s and notJ’'s. We have deliberately ter of the trap. Usually, the relevant length scale for CBS is
chosen to ignore this prescription and to stick to the notations usethetransportmean-free patli*. It is related to the scattering
in the theoretical papeid,8]. mean-free path¢ (as obtained by optical thickness

Fluorescence (arbitrary units)

Position (mm)
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measuremeft by the expression :X* =¢/(1—{cosb)), . MONTE CARLO CALCULATIONS

where the term(cos6) represents the forward-backward  gycept in rare cases, it is impossible to compute exactly
asymmetry of the radiation pattern. For a symmetric radiathe properties of the CBS cone. The few situations where the
tion pattern(e.g., point-dipole scattergr(cosf)=0 yielding  results are known in closed form are the scattering of a scalar
€*={. The same property is valid for atomic scattef#s  wave by point scatterers in a semi-infinite medium or very
The procedure described above allows the measurement gHick slab[12] (see Ref[13] for a review or the scattering
large optical thicknesses, without systematic errors caused lpf an electromagnetic vector wave by point-dipole scatterers
the probe laser spectrufiil]. In the experiment reported (also known as Rayleigh scattergf$4,15. It should also be
here, the maximum on-resonance optical thickness wamentioned that, for quasiresonant scattering by an atom on a
bres=33. From theb, (transmissioh andr, (fluorescence J—J’ transition, the double scattering contribution from a
imaging values, one obtains the on-resonance mean-freesemi-infinite medium is known exactly8]. The case of a
path €, at the center of the cloud. Assuming a uniform slab of finite optical thickness and constant density could
population distribution among Zeeman sublevels and no opalso be calculated using the same techniques. For atomic
tical pumping, the on-resonance scattering cross section Beatterers, the structure of the individual scattering event is
(8] slightly more complicated than for classical point-dipole
scatterers, but it is not unlikely that the methods used in Ref.
[15] could be extended to calculate the CBS cone for a uni-
2)'+1 3\? form semi-infinite medium. Such an extension is however
‘Tres:m 20 S straightforward. At a more fundamental level, the fact
that the atomic density in a magneto-optical trap is not uni-
form, makes it very difficult—if not impossible—to compute
where the first factor is unity for point-dipole scatterersexactly the cone properties.
which are equivalent to atomic scatterers od=a0—J' =1 The CBS cone arises in the diffuse intensity, averaged
transition. We can also compute the peak densignd the over the disordered external and internal degrees of freedom
total number of atomsV in the cloud. We obtain typical Of the scatterers. We choose to perform the average over the
values of V'=4x10° atoms andny=6x10cm 2 in our  positions of the scatterers with a Monte Carlo method and to
sample, yieldingf =135 um. We also measured the tem- Use an internal analytical average by employing the average
perature of the atomic cloud by the time-of-flight techniqueatomic scattering verte8,16]. This method is flexible, as it
to be in the 10QuK range (residual rmsvelocity spread makes it possible to compute the quantities of interest for an
about 10 cmsh). arbitrary atomic transition and—this is the most important
The on-resonance mean-free path at the center of thRoint—for an arbitrary spatial repartition of the scatterers. It
sample is much larger than the wavelength. We are thus i8lS0 allows us to take into account some rather small, yet not
the dilute regime, wherk¢ . 1. The typical angular width negligible effects, such as the nonuniform incoming intensity
of the CBS cone is of the order of 0.5 to 1 mrad, well aboveSent on the samplbecause a Gaussian laser beam is used
the resolution limit of the apparat6.1 mrad. All calculations and simulations in this paper are performed
The CBS probe laser beam is not a true plane wave biffr @ monochromatigrobe laser beam. This approximation
rather a Gaussian laser beam. The waist of the laser beam$§ems well justified since the probe beam frequency spec-
approximately located on the atomic clo(gb that the wave trum is sufficiently narrow in the experimeftoughly one
fronts are planarand the FWHM of the beam intensity is 8.3 .thll’d of the atomlc_natural linewidjhindeed, as we shall see
mm (beam waist 7 min Additionally, a diaphragm with di- in Sec. V C, the width and enhancement factor of the atomic
ameter 8 mm is added on the laser beam. The goal is that §iBS cone are only weakly dependent on the optical thick-
atoms of the atomic cloud are exposed to the same incomin@ess and thus on the laser linewidth.
field. Deviations from uniform illumination are known to be ~ We first describe the method in the simplest case, a me-
responsible for modifications of the CBS cone shape, whicilium with the shape of a slab and a uniform density of scat-
can be taken into account in the numerical Monte Carlo calterers which isotropically scatter a scalar plane wave perpen-
culations, see Sec. III D. dicular to the entrance of the slab. We then show how the
Once the atomic cloud parameters are determined, the og@lculation can be extended to a medium of arbitrary shape
tical thickness can be simply varied by adjusting the detunand density. We discuss the complications arising when a
ing & of the CBS probe beam from exact resonance. We heréector (electromagnetic wave is considered, and finally
report results where the detuning is varied fron{eact Show how the calcu_lanon can bg extended to atomic scatter-
resonance; optical thickness )3® 4I' (optical thickness €rs. Our goal here is not to go in every detail or give math-
0.5). This makes it possible, with a fixed geometry, to coverématical proofs of the correctness of the method, but rather
the whole range from a thin to a very thick medium, thusto give the important ingredients and hints to enable the
exploring various regimes of multiple scattering. reader to reproduce our calculations.

A. Scalar wave in a uniform slab of point scatterers

20Optical thickness measurements actually define the extinction In this simple case, the first basic ingredient is the scat-
length of the sample. When absorption is negligible, which is thetering amplitude or its modulus square, the differential cross-
case here, it simply reduces to the scattering mean-freeépath section, which is isotropic and thus can be written as
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do o ~ "
qo W=7 4 yLZNZl N (10)
where o is the total scattering cross section. The second
basic ingredient is the average amplitude propagéhside o
the medium between two consecutive scattering events, Ye= E_ Yy (12)
G(k,r)= ! ik [ 5

Note that there is no crossed contribution for single scatter-

wherek is the wave vectofinside the mediunand ¢ the INgN=1. o
mean-free path. As we are interested in very dilute media, For simplicity, we assume that both the in-going and out-

such that theuniform) density of scatterers is small going wave vectors are perpendicular to the slab. The case of
arbitrary incident and reflected angles can be treated along

n the same lines, at the price of slightly more complicated
=<1 (6) expressions. At scattering ordsl the “ladder” bistatic co-
k efficient can be written a@ssuming thalk;,= — k. is along

. .the z axis and that the boundary of the medium is at
the real part of the wave vector—at lowest order—is |dent|—ﬁzo).

cal inside and outside the medium. Also, the mean-free pat
is simply related to the total cross section by

4 z
1 (N7 N j _a
= @ YL AN dridr,---dry exp< 7
no
do ) —
The bistatic coefficient is a dimensionless coefficient X| g/ [167°G(kr1)G(k,r1))]
which expresses how much of the incoming intensity is scat- 1
tered in any direction. It is related to the scattering cross do do
section of the whole medium by x(m)z- .(m>Nl
4qr [ dS ) —
y(kin!kouazf m(kin_’kout) ) (8) X[16m G(kurN—l,N)G(krrN—l,N)]
i i ) dO' ZN
wherek;, andk, are the incoming and outgoing wave vec- X qql A7) (12
tors, A is the transverse area of the medium axfd() the N

scattering cross section by this area of the medifon an
infinite medium, it reduces to the cross section per unit of . , .
area. In this expression, the brackets- -) denote an en- wherer;;=r;—r; and the integral over the scatterers’ posi-

semble averaging over all positions of the scatterers, in thidons has to be taken over the whole medium. _The terms
so-called thermodynamic limit where the number of indi- €XP("Z/€) and exp{-zy/¢) represent the attenuation of re-

vidual scatterers as well as the size of the system tend ec_tively, the inc_oming wave between the entrance in the
infinity, at constant density of scatterers medium and the first scattering event and the outgoing wave

The cross-sectior (d3/dQ)(ky— ko)) involves mul- between the last scattering event and the exit of the medium.
n ou

tiple scattering events at various orders. For a dilute mediumTh_e differential C_I’OSS-SECt’IOHS represent the successive scat-
ering events while Green'’s functions represent the propaga-

it is possible to expand the total cross section using a diatern: . S
grammatic approach and to determine, order by order whicﬁ?n in the effective medium in between scatterers. Note that
diagrams survive the configuration averaging and those givi'® Phase exiir) in Green's function cancels out betwe@n
the dominant contributions. We refer the reader to Refsand its complex conjugai® so that the bistatic coefficient is
[3,17] for details. For our purpose, it is sufficient to know Positive. There is no interference effect in this bistatic coef-
that the diffuse intensity is given by the sum of the so-calledficient: it is actually associated with a classical transport
“ladder” contributions—which vary smoothly in the vicinity €quation. This expression is also valid if the differential cross
of the backscattered directon—and the “crossed”Section Is notisotropic. S
contributions—which vary rapidly around the exact back- The integrand can be represented by the following dia-
scattered direction and describe the CBS cone—to the b@ram:

static coefficient,

Y=y.+vc. 9 3The ladder contribution is here calculated at backscattering.
Since the direction of observation appears only in the last term
Each contribution can be expanded in a multiple scatteringds/dQ)yexp(—zy/€), the ladder contribution is a very smooth
series function of the scattering angle.
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—G—G —G— A crucial point—which saves a lot of computing
a5 _a (13 resources—is to remark that, when calculating the triple-

scattering contribution, the double scattering can be obtained
where the vertical dotted lines represent the scatteringt almost no extra cost. Indeed, trandom choice of the
events, each vertex on the lower and upper horizontal linepositions of the various scatterers is done successively start-
represents a scattering amplitude, the horizontal lines @ith ing from the first one, then determining the position of the
and G represent the amplitude Green function joining twosecond one, then the position of the third one. Once the first
consecutive scatterers, and the initial and final incompletéwo scatterers have been chosen, the contribution of this con-
horizontal lines represent the exponential attenuation beforéiguration to the double-scattering bistatic coefficient is
the first and after the last scattering events, respectively. straightforward from Eq(15). Thus, a scattering path witk
For single scattering from a slab of optical thickndss scattering events can be used for all orders of scattering from

the integration over, is trivial and one gets 1 to N (this is the “partial photon” method discussed in
Appendix C of Ref[4]). This trick essentially saves a factor
,y(Ll): 1—exp—2b) (14) N in the calculation, wher&\ is the typical scattering order

2

of a path in the medium. In the diffusion approximatidhis

of the order of the square of the optical thickness of the
medium. With the maximum optical thickness in the experi-
. . X . ment one finddN~10?, so that the saving is substantial. The
configuration averaging because of the exponential attenuggy e procedure actually relies on the “ladder” structure of

tion of the Green function over a mean-free path. It is morgy diagram(13): the diagram at scattering ordaris ob-
convenient to use relative displacements from one scatter? '

to the next one. For example, for isotropic point scatterers bined from the diagram at ordeN(-1) by simply adding

. Do . ~an additional rung to the ladder.
the double-scattering ladder bistatic coefficient can be rewrit- More precisely, the algorithm is the following one.

ten, using Eq(5) as (1) Choose randomly the depth of the first scatterer ac-

for isotropic point scatterers.
The form of Eq.(12) is not suitable for a Monte Carlo

2 2 B cording to an exponential distribution.
y(LZ):n g f drldrzexp{ (Zl+22+r12)/€}. (15) (2) Calculate the contribution to single scattering.
4mA riz (3) Choose randomly the position of the next scatterer in a

_ _ random direction from the previous scatterer at a distance
Performing the change of variables (r;) —(r1.r12), the  given by an exponential distribution. If the chosen position is
integral over the transverse coordinates of the first scatterjutside the medium, stop the current scattering path and ini-
is trivial. Then, using spherical coordinates for the relativetigte a new onégo to step 1 If not, compute the contribu-
distancer, and rescaling all positions with respect to thetion to the ladder bistatic coefficienti.e., multiply by
mean-free patif =1/no, we get exp(—zy/€), wherezy is the depth of the current scattexer
(4) Go to step 3 in order to compute the contribution at
y(z)zj dz.dr €y expl—(z3+2,+11)}.  (16)  nextorder.
t 2 4 LRk By restarting the full procedure as soon as the position of

Th f this | lis clear: h " fa scatterer is outside the medium, we ensure automatically
e structure of this integral Is clear: once the position o the correct weights of the various scattering orders.

the first scatterer is chosen, the integral over the position of 114 «crossed” contribution. which gives the CBS cone

the second scatterer can be easily evaluated by the Monig,, e cajculated along the same lines. Indeed, for isotropic

Carlo method: it is in a random direction from the initial g-awerers and a scalar wave, its contribution to the bistatic
scatterer, with an exponential distribution of the d'Stancecoefficient at scattering ordet is

from it, and must be still present in the medium, i&.must

be positive and smaller than the optical thickness of the slab

(otherwise, the contribution vanishe®©nce this averaging 4
. i . . ! o Zq

overr, and(},, is performed, one is left with a single inte- 7§;N):_an drodr,---dry ex;{ — _>

gral overz;, which also has an exponential weight. This A ¢

integral can also be performed using a Monte Carlo method.

For the triple-scattering contribution, the strategy is the X

same, with the choice of the initial position of the first scat-

terer, then the random choice of the position of the second

scatterer with thead hocdistribution of their relative dis- X

tance, and similarly the random choice of the third scatterer

once the position of the second one is known.

d—”) [1672G(K,r15)G(K,I15)]
dQ/, 1 1

dO’) (d(r)
dQ ) dQ N_1

— do
X[16772G(k1rN—1,N)G(k:rN—l,N)]( )
N

do
4In the simple case of a semi-infinite medium, the integral for

double scattering can be easily performed analytically, yielding Xexy{ _Z_N

y(LZ):|n2/2_ ><C()5’—L(kin‘|'kout)'(rN_rl)]- (17)
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The corresponding “crossed diagram” is, for double scat-magneto-optical tragswitched off when CBS is recordgd
tering, the density of scatterers is usually maximal at the center of
the trap. As a rough approximation, the density of scatterers
is close to an isotropic Gaussian distribution

_G_ (18 2
n(r)=ng exp( —2—) (19

Because the scattering process has time-reversal symme- r2
try, it is possible to unfold this diagram—so that what enters 0

on the left side is now the incoming field on the UPPer\yheren, is the density at the center of the trap angthe

branch, but the outgoing field in the lower branch—and ey radius of the trap. The maximum optical thickness of the
cover the ladder diagram. The price to pay is that all phasgamme is obtained along a diameter

factors do not cancel any longer, yielding the additional term
cos (Kin+Kou) - (rn—r1) 1, with respect to the ladder contri- b=\2mneat, (20)
bution. ’

Exactly the same diagrams and the same scattering path$,e main difference with the preceding paragraphs is that the

can be used for computing the ladder and crossed contribypean.-free path is no longer a constant, but varies across the
tions. The only difference is in the single scattering termlsample. It reads

which is absent in the crossed contribution. Such a procedure

automatically ensures the equality of the ladder and crossed r2
contributions in the backscattered directidq,= —Ki,, e(r)= = p(—z) (2D
where the cosine is unity. Consequently, the enhancement on(r) )

factor in the backward direction is equal to 2 at all scattering

orders, except of course for single scattering, where thahere¢ is theminimummean-free path, at the center of the

crossed contribution does not exist. Away from backscattersample,

ing, the cosine term in the crossed bistatic coefficient must

be configuration averaged. Whék;,+ Ko,| is much larger 1 V2,

than 1#, the cosine oscillates rapidly and configuration av- t= no_g_ b

eraging causes the crossed contribution to vanish. This is

why the crossed contribution describes the CBS peak cen- More complicated situations can be described as well. For

tered around exact backscattering with an angular width ogxample, it often happens that—because of the parameters of

the order of 1K¢. the MOT—the atomic cloud is not isotropic. In such a case,
the density of scatterers is usually well approximated by an

B. Scalar wave in a uniform medium with arbitrary geometry anisotropic Gaussian distribution

x2 y2 7 23
2x3 2y 2z3)

(22)

tributed in a slab. The Monte Carlo calculation can handle n(r)=ny ex
this complication easily. If the medium has a uniform den-

sity, the propagator is not modifi@s long as the photon

does not leave the mediymHence, only the configuration Numerical calculations turn out to show that this may sig-

averaging is affected. If the system does not have a translaificantly affect the CBS cone shape. For example, the agree-
tional invariance perpendicularly to the incoming direction,ment between the experimental CBS cone for the Strontium
the bistatic coefficient defined by E@) is no longer useful. atoms and the numerical calculation in REES] required

Yet, the diffuse intensity reflected off the medium can betaking this effect into account.

determined using the same techniques: we calculate the av- Because the mean-free path is no longer constant, it is
erage total cross sectigqfd>/dQ)(ki,—Ko)) using an ex-  obvious that the propagator in the effective medium is also
pansion in successive scattering orders and calculating theffected. The attenuation factor, instead of decreasing expo-
configuration average through successive random choices egntially, has simply to be replaced by the cumulative de-

In our experiments, the scatterers are not uniformly dis- p(

the positions of the scatterers until the medium isJeft. crease along the path. The average amplitude Green function
(which depends now on both the initial and final pojnts
C. Scalar wave in a medium with arbitrary geometry becomes

and arbitrary density

In a real experiment, the density of scatterers is not uni-G(k’rl’rZ)

form. As the cloud of atomic scatterers is produced in a

’7Tr12

1 ] o (12
=-— exp(ikrp)ex ——f n(r,+su;)ds|,
4 2Jo

5If we assume that the medium is convex—which is always the (29
case in our experiments—once a photon leaves the medium, it
never reenters it. Nonconvex media can also be treated if one carg¢hereu,,=(r,—r)/r, is the unit vector joining the initial
fully checks whether the photon has really escaped or not. and final points. In this expression, we assumed that the
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wave-vectork does not vary inside the medium, an approxi-the waist of the incoming beam is much larger than the
mation which would break down at high density of scatter-mean-free path of the light in the medium, then the laser
ers. intensity is locally constant over a multiple scattering path
The inclusion of expressiof24) in the above expressions and the imbalance between the two fields will be negligible:
for the bistatic coefficienfor the back-reflected diffuse in- the CBS cone will not be affected. On the contrary, a too
tensity is rather straightforward. In a Monte Carlo calcula- narrow incoming beam will broaden the CBS peak. If the
tion, once the density of scatterergr) is known, it is medium is statistically invariant by translation perpendicular
enough to choose randomly the direction of propagation afteto the incoming directionfas for example the slab medium
theNth scattering event and the distance to the next scatter@nd the Gaussian slab discussed bglawe amplitudea,
according to the Green function, E@4), using for example associated with a path depends only &n, but not on the
a rejection methodl19]. The additional cost induced by the initial point r itself. Under these conditions, the calculation
rejection method is almost negligible for the choice of theof the ladder term is trividlas it appears as the product of
direction of propagatioribecause the cross section is not farthe ladder term for an infinite mediurtthe quantity dis-
from uniform). It is significantly more expensive for the cussed in the previous sectjomultiplied by the total inten-
choice of the next scattering event along a path, and slowsity 1,=[dr|&(r)|2. The structure of the crossed term is
down the calculation by up to one order of magnitude. Onrslightly more complicated. It appears as the Fourier trans-
the other hand, it is extremely flexible. For special caseg ~ form with respect taAr of the product ofa,(Ar)ag(Ar) by
Gaussian density of scattergran analytic expression in
terms of the error function exists for the integral in E24), _
and can be used for chosing the position of the next scatterer, g(Ar)= J dr&(r)&(r+Ar). (27)
reducing the total cost.

The Fourier transform of a product being the convolution of
the Fourier transforms, it appears that the crossed term is the
Additional complications can be easily introduced in theconvolution of the Fourier transform af,(Ar)ag(Ar) by
Monte Carlo calculation. For example, in our experiment thethe Fourier transform of). The first Fourier transform is
incoming beam is not exactly a plane wave but a Gaussianothing but the crossed ter@y for the infinite medium(the
beam of large waist7 mm). The Monte Carlo calculation quantity discussed abonelhe Fourier transform of is the
can be amended by weighting properly each contributionmodulus square of the Fourier transform of the field, i.e.,
The weight is simply proportional to the amplitudes of the|(Ak)=|£(Ak)|2. It has a simple physical interpretation: it
fields entering the various diagrartfeom the lefy. Thus, the s the angular distribution of the intensity of the incoming
ladder contribution can be written as beam. Finally, one gets the simple convolution

D. Nonuniform incoming laser beam

_ 2
L_% fdrdmap(r’“)g(r)' ! @9 C(Ak)zfco(k)l(Ak—k)dk. 29)

where&(r) represents the incoming field at positioon the i , ,
entrance plane of the mediufor any plane before the en- Once the _C_BS cone shape is _cal_culate_d for an incoming
trance in the mediuinanday(r,Ar) is the contributiorcal- plane wave, it is obtained for_ a finite incoming _beam through
culated as described abow a scattering path labeled lpy & (two-dimensional convolution. Obviously, this decreases

which starts at position on the entrance plane and exits at ("€ €nhancement factor at the center of the cone and in-
r+Ar. Similarly, the crossed contribution can be written asC'€ases its width. Although the previous derivation did not
consider the polarization of the light, it is of course also valid

for vector waves. It should however be emphasized that it is
C(Ak)=, J drdAray(r,Ar)ap(r,Ar) valid only for a medium which is transversely invariant, and
p thus fails for a sphere or a Gaussian sphere.

An additional complication is that some diaphragms are
present in the experiment on the incoming beam and on the
- optical device which collects the scattered photons. This is
with Ak=ki,+Kkoy. Herep is the reverse scattering path straightforwardly taken into account in the Monte Carlo cal-
associated tp (same scatterers visited but in opposite order cylation by simply cutting the contributions of all scattering

andag denotes its amplitude. paths which hit a diaphragm. Altogether, the Monte Carlo
For the ladder contribution, it is thus the square on the

incoming field, i.e., the incident intensity which weights the
various - contributions. For the crossed contribution, the 6 this derivation of the ladder terrfand the derivation of the
weight is proportional to the product of the fields at the ini- ¢rossed term belowwe assume that the incoming laser beam has

tial and final points of the scattering path. In general, thisan angular width(in radiang much smaller than unity, so that all
breaks the equality of the ladder and crossed contributions &rms, except the phase of the interference, can be considered as

exact backscattering. Thus, a nonuniform incoming field willconstant and evaluated at normal incidence. This will fail for a point
generally lead to a reduction of the enhancement factor. I§ource near the surface for example.

X E(r)E(r+Ar)exp(iAk- Ar) (26)
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calculation for a nonuniform medium is not much more ex-where, now, the scattering vertex by each scatterer is a quan-
pensive than for a uniform medium. tity that depends on the four polarization vectors: 2 incoming
vectors on the upper and lower horizontal lingsft side
and 2 outgoing vectorgight side. In this diagram, both the
) ) ) _incoming field and its complex conjugate are scattered by the
When an electromagnetic wave is considered, the situasame scatterer: this results in the square modulus of the scat-
tion is slightly more complicated, because the polarization otering amplitude, i.e., the scattering cross section. Thus, ex-
the wave has to be taken into account. This affects both thsressions like quZ) can be used at the price of some book
elementary scattering event and the propagation in the avekeeping of polarizations. Another difference with the case of
age medium. The scattering cross section depends of coursgalar waves discussed above is that the differential cross
on the polarization of the incident and scattered light as welkection is no longer isotropic, which means that all scattering
as on the relative orientation of the incoming and outgoingdirections are not equally probable. We have used two dif-
directions. For pOint-dipOle scatterers—classical Scattererﬁarent methods: either choose rand0m|y the scattering direc-
much smaller than the wavelength and having no internajion at each scattering event and weight the contribution by
structure—everything is known in closed analytic fo20].  the probability of the eventproportional to the differential
The differential cross section writes cross sectionor choose directly the scattering direction with
dor 30 _ a probability distribution matching the differential Cross sec-
— (Kin» €n— Kout: €out) = =— | €n" €oul % (29)  tion. We have checked that both methods give the same re-
dQ 8w sults, although the second one is more accurate, as the inte-
grand in the Monte Carlo integration is constant. Like for
where €, €,; denote the incoming and outgoing polariza- scalar waves, it is possible to use a given scattering path at

E. Electromagnetic wave and point-dipole scatterers

tions, respectively orthogonal tq, andkg. orderN to compute contributions at all orders between 1 and
The average amplitude propagator in thmiform) me-  N. Indeed, the basic object which has to be propagated is the
dium readd8] following diagram:
A r €in G G G @2
___-r . _ 32
G(k,r) ype exmkr)ex;{ 2] (30 e el =

where the final polarization®n the right sidgare not speci-
where A, is the projector perpendicular to acting in the fied. This object is a polarization tensor wittk3=9 com-
space of polarizations:A();; = & frirj/r2 and the mean- ponents. In order to get the contribution to the bistatic coef-
free path( is again given by Eq(7). ficient at ordeiN, it is enough to contract this tensor with the
The calculation of the bistatic coefficient is similar to the tensoreout@):out to obtain a real positive number. The polar-
calculation for scalar waves. The only difference is that thezation tensor at next ordét+ 1 is obtained again by adding
polarizations of the incoming, outgoing, and intermediateone rung to the ladder, i.e., choosing conveniently the rela-
photons as well as of the scattering vertex must be taken intiive position of the next scatteréwhich takes into account
account. Special care is needed when considering the polaihe scattering cross section and the exponential attenuation
ization state of scattered photons. Indeed, given a multiplef Green’s functioh and multiplying the polarization tensor
scattering path, the contributions of the possible polarizaat orderN by the tenSOIArN N+1®ArN - (which takes into

tions of the photon between two consecutive scatterers MUglcount the polarization part of Green’s funclioRor point-
be taken into account. For long paths, the number of contrigiole scatterers, the scattering vertex is the direct product of
butions increases very rapidly. However, the_ average ampllfhe direct and conjugated amplitupief. Eq. (29)]. Thus, the
tude propagator is the same for all polarizations, whichyg\arization tensor is—at any step—a direct product of the

means that they all are attenuated with the same mean-fr%gpe ene so that one needs only to propagate the three

ath’ It is thus possible using a given multiple scatterin ) .
P P gag P gcomponents of a vector, instead of the nine components on

path to sum exactly the various contributions having differ- . ) ) N
: . A : o the tensor. Physically is nothing but the polarization of the
ent intermediate polarizations, simply giving the operator photon aftem scattering events,

in the Green function, E30). For the crossed contributions, the situation is more com-
The situation is different for the ladder contributions and foutions, tuation |

the crossed contributions. Indeed, the diagram associateod'cated‘ Indeed, the diagram @epresented here for double

. T rin
with the ladder contribution is Scattering
_ 5in—-,:Gj,—»-—‘Eout
€in C G C Cout (33)
_ = = Ein_'v'Gl"_fout’.
€in h - - “out (31 Because of time reversal invariance, the scattering vertex is

not affected when the lower line is returned. It is thus pos-
sible to unfold the diagram completely,
’In contrast with the intensity whose different polarization modes
decay with different characteristic lengths, see, for example, M. J. €in G €out
Stephen and G. Cwilich, Phys. Rev.3, 7564(1986.

(39

€out G €in
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It thus appears that the incoming and outaoing fields aré"md on the incident and scattered polarizations. As the atoms
pp 9 going roduced in a MOT are not in a well-defined internal state,

scattered along the same multiple-scattering path. In th ut rather in a statistical mixture of Zeeman states, the cal-

EQJL':eICnggi}gnczﬁpfgﬁ ac‘:)er1jLegaal1t2n?n Ef[ﬂiusaga'gem:ggm tr{:.i_}ulation of the bistatic coefficient requires, in addition to the
oroduct of the two scattering amplitudes is nothing but the sual configuration averaging, an averaging over the internal

. L2 . L2 state of the atom. A first solution could be to perform the
cross section, so that the situation is essentially similar to th? tter averaging using a brute force Monte Carlo approach
scattering of scalar waves. The crossed bistatic coefficient he individual scattering amplitudes are well knovsee ’
exact _back scattering s equal to the ladder bIStat'cRef. [8] for explicit expressions However, the average am-
coefficient—except for single scattering—and a large en-

hancement factor is expected. This is indeed what is ex erF—)IitUde Green's function is extremely complicated if no as-
_EXp Y .y i P sumption is made on the internal state of the atom. The sim-
mentally observed in the “parallel” channelsn|lin and

o ) . plest assumption is that the atoms are completely
hi[h [4]. In_add_mon, in theh||h ch_anngl, the s_mgle—scattgrmg depolarized, i.e., described by a scalar density matrix in their
cross section in the backward direction vanishes, leading to

around state. Then, as shown in Red], the average ampli-
factor 2 enhancement for the CBS cone. .
. : ) 's f kes th f han f
In the “perpendicular” channelsinLlin andhLh , the tude Green's function takes the same form, €39), than for

. ) . o . point-dipole scatterers. This assumption on the internal state
incoming and outgoing polarizations are not complex conju

S ' is likely to be correct for atoms produced in a MOT. When
g?r:g'r nga:gztggpt:ggg?n is slightly more complicated. An'exposed to a polarized incoming beam, it could be that some

optical pumping takes place. We have used weak probe
beams in the experiment in order to minimize optical
pumping.

As the scalar density matrix hypothesis is needed to get a
simple amplitude Green'’s function in the medium, it can also
be used to simplify the calculation of the bistatic coefficient.
In Ref.[8], it has been shown that averaging over the internal
has to be propagated in the Monte Carlo calculation. It is ntate can be performed analytically for each individual scat-
longer the cross section that appears in expressions like Etgring event. The average differential cross section now reads
(12), but products of two scattering amplitud&s. However,
the Monte Car_lq method can still be L_Jsed, by _choosing ran- <d_‘7> :3_U(Wl|?in' 6out|2+W2|€in' Eout|2+W3)u (36)
domly the position of the next scattering evéwith an ex- dQ/ 8w
ponential distribution of the distance in a uniform medjum )
and the relative direction of scattering, taking into accountVhere the weights are,=23/56, w,= —3/14, w3=15/56
the weight due to the product of various scattering amplifor the present casé=3—J"=4. The single-scattering ver-
tudes through the polarization tensor. Again, this polarizatiof€X thus contains all three possible contractions between the
tensor is a direct product of two vectors, which makes itsPolarization vectors and will be represented by a vertical
propagation slightly simpler. ribbon m_stead of a ;lr}gle dotted Ime_. The co_ntrll_Ju_tlon to the

For a medium with a nonuniform density of scatterers, thdadder bistatic coefficient can be writtéfor simplicity, we
method developed for scalar waves in Sec. Ill C can be ea§how the diagram for double scatterjras
ily used, at the price of modifying the amplitude Green func- € G ot
tion. As the latter does not depend on the choice of polariza- (37)
tion, the extension is straightforward. Ein G e

Q
1}

1}

€in

o

(o

€out

(35

In complete similarity with point-dipole scatterers discussed
F. Electromagnetic wave and atomic scatterers above, we can propagate in the Monte Carlo calculation a

o , polarization tensor which is “initialized(on the left side
When the individual scatterer has some internal structure

the situation isnuchmore complicated. We consider here the\év'tgtzce:a?t':i%t pzra(\)/ilrj]?siig%‘:gcrng ;{2'2;}2”5% '; éagig]ted
case of an atom in a well-defined hyperfine lewahgular- y 9 :

momentumy) exposed to a light quasiresonant with a dipoleThe only difference with point-dipole scatterers is that the

transition to another hyperfine level with angular-momentur‘rpdanzatlon tensor cannot any longer be written as a direct
3" (with the usual selection rulg)’ —J|=<1). When it scat- product of two vectors. Hence, the(@ompleX components

ters the incoming light, the atom may stay in the same Zee(—)f the polarization tensor have to be propagat_ed (_1ur|ng the
2 . - - “Monte Carlo calculation. At each step, the contribution to the
man sublevel—this is a Rayleigh transition—or change it

magnetic quantum number—this is a degenerate Raman treﬁr?—dder bistatic coefficient is obtained by contracting the po-

sition. In both cases, if recoil and Doppler effects are negliJarization tensor witheo,® €ou. _

gible (which one expects to be the case for our cold atomic For the crossed contribution, the diagréfor double scat-
cloud), the scattered photon has the same frequency as tigring is

incoming photon: the scattering is elastic.

The scattering amplitude by a single atom depends on the i X Cout
initial and final Zeeman sublevels, on the scattering direction En out (38
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The unfolding of the diagram is slightly more complicated. scattering—and more generally of low-order scattering—will
Indeed, the expression of the scattering vertex is such that ie largely enhanced.
is no longer invariant when the lower line is returned. Dia- (4) Photons, which are off the axis of the atomic cloud do
grammatically, the returned crossed contribution not enter the medium perpendicularly, which may affect the
_ intensity scattered backward. Considering the rather weak
€in €out dependence on the initial incident angle for a semi-infinite
K—z x (39 medium[13], this effect is expected to be small.
. It is nota priori obvious which effegs) will dominate. In
is not equal to order to clarify this issue, we have performed several Monte
Carlo calculations with the following geometries:
Slah Slab medium with uniform density,

€out €in

G v
ol €out

€in

(40

€out G €in
However, as the structure of the scattering vertex is
known exactly, the propagation of another polarization tensofp,q optical thickness ib=ngoT .
for the crossed diagrams is easily handled in the Monte Carlo G4 ssian slabSlab medium with a nonuniform Gaussian
calculation through the substitutiom,« w5 [8]. Altogether, density,
the extra cost to be paid for atomic scatterers is rather mod-

n(ry=n, for 0<z=<r,; O otherwise. (41)

est. Note that, even for parallel polarization channels, the 22

complication introduced by the atomic structure breaks the n(r)=ng exp( - —2) (42
equality of the ladder and crossed contributions at exact I'o

backscattering. This is why enhancement factors smaller than

2 (and usually much smaliler than are observed. The sim- The optical thickness ib= y2mn,o .

plest case of d=0—J'=1 transition is an exception: be-  Sphere Sphere uniformly filled with scatterers,
cause the ground state is not degenerate, the atom actually n(r)=n, for r<ro: 0 otherwise. 43

behaves like a classical point-dipole scattdtke scattering
vertex is the same as;=1 andw,=w3;=0) and a large
enhancement factor in thd|h channel is observeld 8].

The extension to nonuniform media follows exactly the
same lines than for electromagnetic field and point-dipole

scatterers. 2
n(r)=ng exp( —2—) (44)

2
IV. INFLUENCE OF THE SHAPE I'o
OF THE SCATTERING MEDIUM

The maximal optical thickness(for x=y=0) is b
= 2n00'r0.
Gaussian spherdsotropic Gaussian density of scatterers,

The maximal optical thickness(for x=y=0) is b
While experiments on multiple scattering are often using= \/ﬂnogro_
scattering media with simple shapiise simplest case being  |n all cases, we will assume that the maximum density of
a semi-infinite medium with uniform dens)tythis is difficult scatterers, is fixed, so that the minimum mean-free-pﬁth
with cold atoms. Indeed cooling and trapping techniques pro¢at the center of the mediunis also fixed. We will also
vide finite-size atomic samples with nonuniform density dis-compare different geometries for a fixed optical thickness
tributions. As a first apprOXimation, the atomic cloud denSityof the Samp|e, adjustingo according|y_ For the Sphere and
in our MOT is described by a Gaussian densigptropic or  the Gaussian sphere, the optical thickness is measured along
anisotropig¢. This has important consequences for the multi-the diameter, where it is maximum.
ply scattered light in general and the CBS cone in particular. The Gaussian slab will be sensitive to the spatial varia-
Some of the effecténonexhaustive ligtare as following. tions of the mean-free path, but not to the other effects dis-
(1) The mean-free path of the photons is not uniformcyssed above. On the contrary, the sphere will be sensitive to
across the medium. It is maximum at the center of the cloudihe transverse effects but keeping a constant mean-free path.
Because the angular width of the CBS cone is inversely proThe Gaussian sphere—more or less the experimental

portional to the mean-free path, this effect is likely to influ- medium—will show a mixture of both types of effects.
ence strongly the CBS cone’s shape and width.

(2) Because the medium is finite in the transverse direc-
tion, photons can more easily escape the medium. Compared _ . .
to a slab with the same optical thickness, it is thus expected In this section, we show that, akactbackscattering, the

that the effect of high-scattering orders will be smaller for antotal bistatic coefficient for a Gaussian slabesactlyequal
atomic cloud. to the total bistatic coefficient for a slab with the same opti-

(3) If the incoming laser beam has a transverse widthcal thickness. An even stronger result is established: at each
comparable to or larger than the cloud sfméich is the case scattering ordeN, the ladder bistatic coefﬁciem{N) is iden-
in the experiment the photons which are far off the axis of tical for the uniform slab and the Gaussian slab; the same
the atomic cloud feel a very small optical thickness and willproperty is valid for the crossed bistatic coefficieyﬁ\‘) at
be mainly scattered once. Thus, the role of singleexact backscattering. This is a very general result, valid for

A. Multiple scattering by a Gaussian slab
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scalar as well as electromagnetic waves, in the latter case farchange of variable for every vector joining two consecutive
point-dipole scatterers and for atomic scatterers. Also, thgcatterers, such that the angular varialslgs, \ , on- 1 are
precise shape of the density of scatterers does not matter, thet touched, but the distance is nonlinearly rescaled like
only important point being that it has a translational invari-

ance in the X,y) plane perpendicular to the incoming beam.

As far as we know, such a property, although quite simple, Z(ZN—1FN—1N COSON_1N) — Z(ZN-1)
has not been previously noticed. Rn-1n= COSOn_1n :
For simplicity, we prove this equality for scalar waves and ' (50)

isotropic point scatterers and for double scattering. The ex-
tension to more complicated cases is straightforward.

~ We start from Eq(12), using the amplitude Green’s func- jth such a change of variables, the ladder bistatic coeffi-
tion (24) for an inhomogeneous medium. We obtain cient for the nonuniform slab is mapped on the coefficient
for the uniform slab with identical optical thickness.
le n(z)dz For the crossed bistatic coefficient, the situation is slightly
o more complicated. Indeed, the rescaling of the relative dis-
tance between successive scatterers preserves the angular
} (45) variables(i.e., the relative orientation between consecutive
' scatterers but not the relative distance. It thus happens that
the transverse displacememty(q n,Yn-1n) Will be mapped
The translational invariance in th&,f/) makes it possible to (Xy—1n,Vn-1n) With the same direction but a different
to perform trivially the integral ovex, andy,, leaving a length. For each pair of scatterers, the rescaling of the
four-dimensional integral over, and the three components length is different, which means that there is no simple
of ry,. For the latter, we will use spherical coordinates forconnection between x(—X;,Yn—Y1)=(X—X1,Y2— Y1)
the relative distance;, and)1,=(601,,¢1,). +(X3—X2,Y3—Y2) + - F(XN—Xn—1,YN— Yn-1) and (X
The key point is then to remark that this expression es—X1,Yy—Y1). Thus, the term cogki,+ Koy - (rn—r1)] in
sentially depends on the density of scatterg® integrated the crossed bistatic coefficient is not easily taken into ac-
between successivecoordinates of the scattereiand simi-  count. However, at exact backscatterikg;+ Ky,=0 and the
lar contributions for the incoming and outgoing pathsis  cosine is unity for all spatial configurations. In this case, the
thus possible to rewrite the integral using a nonlinear changtfansverse variables are irrelevant and one gets for a nonuni-
of variable, form medium the same contribution than for a uniform me-
dium. As a consequence, at exact backscattering, the bistatic
z coefficients at each ordéincluding single scatterincare all
mn(s)ds. (46) equal for a uniform or nonuniform medium; the enhance-
ment factors are thus equal in both cases.
Z is nothing but the optical depth of the current point. We The proof has been given for a scalar wave. However, its
thus perform the changes of varialte— Z,=2(z;) and €xtension to an electromagnetic wave of arbitrary polariza-

2

@=_7 | gr.dr n(ry)n(r )i exp —
YL 47A 14r2li(h 2 riz o

2 M2
+f n(z)dz+f n(r,+su;,)ds
0

—o0

Z(z)zaf

r1,—R1,, Where tion scattered by either point-dipole scatterers or atomic scat-
terers is trivial. Indeed, the proof involves a nonlinear rescal-

Z(24+ 115 €0S015) — Z(24) ing of the distance between consecutive scatterers, but fully

12= cos6y, : (47 preserves their relative angular orientation. Thus, the angular

dependence of the scattering amplitude, and the orientation
This change of coordinates is such that the Jacobian exactBf the polarization, are not affected by the rescaling and the
compensates tha(r;)n(r,) term in Eq.(45). This finally ~ proof for scalar wave and isotropic scatterers remains valid.
gives The proof has been given for an incoming plane wave
which uniformly illuminates the medium. For a nonuniform
@ 12 laser beam(such as a Gaussian beaneach contribution
YL —f ledezﬁ exp{— (211 22+ Ryp}, (48 must be conveniently weighted by the laser amplitude, as
explained in Sec. Il D. The weights involve the transverse

where properties of the medium and are thus not invariant under the
nonlinear rescaling, Eq50). Thus, the equality of the bi-
Zo=2(2p) = Z1+ R4, COSO45 (49 static coefficients for a slab and a Gaussian slab does not
hold for an incoming Gaussian laser beam. It will remain
is the optical depth of the second scatterer. approximately valid only if the waist of the laser beam is
In Eq. (48), the integration oveZ; and R4, is restricted  much larger than the mean-free path.
to values such that€8 Z;, Z,<h. Equation(498) is thus iden- If the enhancement factor of the CBS cone is not affected

tical to Eq.(16), which establishes the equality of the ladderby a nonuniform density, the shape chan@ese discussion
double-scattering bistatic coefficients for a uniform and aabove and it is difficult to draw general conclusions or make
nonuniform medium. The generalization to higher order ofexplicit calculations. One can however make the following
scattering is immediate. Indeed, one simply needs to perforrabservations.
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(a) Typically, Ry-qy is of order unity that implies that b
rn—1n is of the order of the local mean-free path. The total In/2In—
b N2

transverse displacement,g,y;n) Will thus be the sum of ~

individual displacements which may be of very different z~—r, 21In - . (52
lengths, depending whether the path explores deep regions V2 /2 n b
V2

inside the medium—where the mean-free path is short — or
stays in the outer layers—where the mean-free path is much

larger. _ , _ At this point, the density of scatterers is
(b) For double scattering, the first and second scattering
events typically take place at optical depth of order unity. [ b
Thus the angular width of the double-scattering CBS cone 4 In—
will be of the order of 1€, wheref is the mean-free patét fieng V2w (53
unit optical depth For a very thick medium, this takes place b

in the wings of the Gaussian describingr) and? may be

much larger than the mean-free pdthat the center of the and the mean-free-path

sample. This means that the CBS cone may be much nar- 5 Mo

rower than naively expected froith {~ ——. (54
(c) For higher scattering orders, a typical path will explore b

denser regions of the medium with shorter mean-free paths, 21In E

resulting in a globally slower spread of the transverse dis-

placementicompared to uniform densityThus, the contri- The latter equation implies that, apart fromlagarithmic

but_lons of the h|gher °rd‘?r_3 9f. scattering to the CBS_CO_necorrection, the mean-free path at the first scattering event is
which, for a uniform semi-infinite medium, decrease in in-

: 32 and wh idth d 12 il essentially equal to the size of the medium, much larger than
t(;nsnyhasN 3” Whose wi t ) ecreasef '*E » Wi the mean-free path at the center of the medium! For a semi-
show the same decrease in intengitge proot a ovebut a infinite uniform medium, the angular width of a CBS cone is
slower decrease of the width. Thus, the tip of the CBS con

hich h lebrated tri lar oh ¢ €of order of 1k¢, with a prefactor depending on the scalar or
which has a celebrated triangular shape-@6]) for a sca-  yoctor nature of the wave and on the polarization channel.

lar wave or an electromagnetic wave scattered by pointg, 5 seajar wave or a vector wave in the parallel channel,
dipole scatterers in the parallel polarization channels, will bethe full width at half maximum{FWHM) is roughly 0.7k¢

rour(;d?:d for a n.onumform me(rjllum];r fthe i | It results from the superposition of CBS cones whose inten-
( ) or atomic scatterers, t. ee e(_:t of the interna Struc'sity and width decrease with the scattering orderThe
ture is to reduce the contribution of higher orders of Scatter'double-scattering contribution is 10 times broader

ing to the CBS cone. Thus, the rounding of the cone tip is For a Gaussian slab, it is thus reasonable to expect that the

already present for a uniform slab. The modification due todouble—scattering contribution will be dominated by paths

nonuniform dgnsny is thus expected_ to be small. scattered at unit optical depth, and thus will have a FWHM
The numerical results presented in Sec. V show the rela- ~ . .
tive importance of those various remarks of the order of few M¢. Higher orders of scattering will

penetrate deeper inside the medium, and will thus feel a re-
duction of the local mean-free path. Compared to a uniform
B. Width of the CBS cone in nonuniform media medium, the typical transverse excursion of a multiple scat-

It is possible to get some interesting insight on the widthtering path will thus be reduced, and the width of the corre-

and shape of the CBS cone using the Gaussian slab geofPonding CBS cone increased. To estimate the importance of
etry. Using Egs.(42) and (46), we obtain for the optical this effect, it is useful to study how fast the mean-free path

depth: varies. From the equality=1/n(z) o, one gets
b 7 d¢ 27 z 2
=_ — =T exp — |- 55
Z=3 erfc( \/Ero)’ (51) 4z~ b 1o 212 (55

) At unity optical depth and for large optical thickness, one
where erfc denotes the error integral funct{@1] andb the  fings, using Eq(52)

optical thickness given by E¢20).

We now assume that the medium is optically thick, i.e., de -
b>1. The first scattering event will typically take place at E(Z)
optical depthZ of the order of unity. For a thick medium,
this is in the outer layers of the medium, where the density isn other words, the local mean-free path varies significantly
still low and the mean-free path quite long. Using thewhen the optical depth changes by one unit. This implies that
asymptotic expression[21] erfc(x)~(1/\/7|x|)exp(~x?)  for higher orders of scattering—deeper inside the medium—
valid for x— —oo, one obtains that the first scattering eventthe transverse excursion is strongly reduced. Thus, the CBS
takes place around cones arising from higher orders of scattering is not expected

~1. (56)
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to be significantly narrower than the double-scatteringvariation of the density which is the major ingredient, not the
contribution® Thus, we predict that the width of the CBS transverse variations. The reduced transverse extension will
cone for a Gaussian slab will be of the order of the double<certainly cut the very long scattering pattvghich may es-

scattering width and will be given by cape transverselybut it is unlikely to strongly affect the
CBS cone width. The approximate expression, &), is
B thus expected to be valid for a Gaussian sphere, i.e., for our
Ao~ @ (57) experimental conditions.

(iv) Similarly, for a sphere with uniform density and large

with 8 a numerical constant depending on the polarizatiorPPtical thickness, we expect that the CBS cone will be domi-
channel, but typically between 1 and 2. Plugging Esf)  nated by the interface. Cone widths slightly larger but com-

finally gives parable to the widths for a slab medium are thus expected
(v) Equation(58), valid also for a Gaussian sphere, seems

B b to suggest that the width of the CBS cone is nothing but—

A~ —A[2In — (58 apart from a logarithmic correction—the diffraction angle
fo 27 associated with the scattering medium. This interpretation is

_ . definitely incorrect It is not the transverse dimension that
or, using the mean-free pathat the center of the medium, determines the CBS cone width, but the longitudinal varia-
tion of the density. The best proof is that the width is only

B b weakly affected when the transverse size increases toward
k€A~ —~[4mIn — . (59 infinity (toward a Gaussian slabsee numerical results in
b N2 Sec. V.

For a uniform slab medium, this dimensionless product
k€A tends to a constantof the order of 0.7 for scalar V. RESULTS
waves and electromagnetic waves scattered by point-dipole

scatterers, in the parallel polarization chanpalen the op- In this section, we present various results of Monte Carlo

tical thickness tends to infinity. On the contrary, for a GaussSimulations using either scalar or electromagnetic waves, in
' the latter case either with point-dipole or atomic scatterers.

ian sl he CB n narrower, roughl he inver . ) .
an slab, the CBS cone gets narrower, roughly as the inve he goal of these calculations is to explore the influence of

of the optical thickness. This is a very dramatic effectth rical " £ h tteri di th
which—as far as we know—has never been reported, prob: € geometrical properties of the scattering medium on the

ably because standard CBS experiments use sharp interfac%?S signal, and to test the qualitative ideas and quantitative

and media with constant density. approximations introduced above. The emphasis is put on the

The summary of our analysis of the Gaussian slab case I@aussuan sphere geometry, which is the one used in the ex-

that we know exactly the enhancement factor of the CBéa_eriments. we al_so report new experimental results_on point-
cone (see Sec. Il A and have an approximate prediction, dipole and atomic scatterers, anq compare them with the re-
Eq. (58), for its width. sults of our Monte Carlo calculations.

Various remarks can be made as follows.
(i) The narrowing of the CBS cone is after all a rather A. Scalar wave
trivial effect. It is because scatterers that contribute to the Scalar waves and

CBS signal stem from the external layers of the medium. ~q;n\h16 “hecause they allow to concentrate on effects purely

(ii). A ;imilar width is expected for a scalar Wave, in_ all due to the geometry of the medium, leaving aside the com-
polarization channels for a vector wave and point-dipole lications introduced by the polarization channels and the
scatterers and even for atomic scatterers, although the ef-

. S ternal degree of freedom of atomic scatterers.
hancement factors can be very different. This is because the

i ) . : _ Figure 2 shows the enhancement factocomputed nu-
width for a Gaussian slab is dominated by double scattenngmerically as a function of the optical thicknelsf the me-
whose width and shape are similar in all cases.

i E G ) h i | cal thick dium, for various geometries. The enhancement factor is de-
h ('”z] ora aussan”sp here wit ?rge c&ptlﬁa (t:EI,CS N€SSfined as the ratio of the average intensity scattered in the
the physics Is essentially the same. Indeed, the SI9NAact backward direction to the average intensity scattered

will essentially originate fro_m the outer Iay_ers of the _sph_ere lose to the backward direction, but outside the CBS cone. It
where the mean-free path is very large. It is the longitudina s related to the bistatic coefficients through

YLt vc(6=0)
o= ——
7L

isotropic scatterers are especially

8f |d¢/dZ is much smaller than unity, the medium is locally (60)
uniform and a diffusion approximatiofwith a slowly varying dif-
fusion constantcan be used. Ifd¢/dz is much larger than unity, . . . ) o
on the contrary, an abrupt approximation could be used with a sharyith the convention that the single-scattering contribuj@n
interface at the entrance in the medium. For a Gaussian density, i8 included in the ladder contributiop, . For scalar waves
turns out than neither the diffusion, nor the abrupt approximatiorr €lectromagnetic waves scattered by point-dipole scatterers
can be used. This phenomenon is accidental for Gaussian density the parallel channels, the reciprocity theorem implies that

and no deep physics is hidden behind it. vc(0=0)+ ys= 7y, [10] and thus

033814-13



LABEYRIE et al. PHYSICAL REVIEW A 67, 033814 (2003

2

S 10'

Q

By

L4 %

S 4

qE,) 0

: = 4

o { - +—e Slab

LI:J 1.2 —o glpa:e(rznd Gaussian slab) | | —a gphen? b

—a > »——X (Gaussian slal o
1 § | +—+§ausslan sphfre . +—+ Gaussian sphere|
0 10 20 30 40 10 1 10
Optical thickness b Optical thickness b

FIG. 2. Enhancement factfas defined in Eq(60)] of the CBS FIG. 3. Normalized widttk¢A 6 of the CBS cone for a scalar

cone for a scalar wave scattered by point isotropic scatterers, fQfaye scattered by point isotropic scatterers, for various geometries
various geometries of the medium, as a function of the opticalyt the medium:k is the wave vector of the light, the mean-free
thicknessb. It is significantly smaller for a Gaussian sphere—the path at the center of the sample, ahd the full angular width at
geometry used in experiments on cold atoms—than for a slab, b&;aif maximum(FWHM) of the CBS cone. For the slab and sphere
cause long scattering paths are cut, which increases the relat'\éfeometries—where the density of scatterers and consequently the

weight of single scattering. mean-free path are constant across the sample—it decreases toward
a constant value of the order of unity las>%. On the contrary, for

Vs the Gaussian slab and the Gaussian sphere, it continues to decrease
a=2— " (61)  quickly with increasingp, roughly like 1b. This is due to the mul-

tiple scattering in the external layers of the medium, where the
mean-free path is much larger than the mean-free path at the center

We numerically checked that the enhancement factors for thgf the sample. Note the double logarithmic scale

slab and Gaussian slab geometries are equal forbaras
proved in Seg. il C. For s_mallb, t_he. enhancement factor and saturates aroukd A =1 asb—oc. On the contrary, for
goes to unity in all geometries. This is due to single scatter- . . . )
. . : . Gaussian geometries, the cone width continues to decrease
ing that is dominant at smali and does not contribute to the ~ . . . i
CBS signal. The enhancement factor increases Wwitgmd quickly even at Iargeb_, roughly like 1b. Th|s agrees with
saturates to.a constant valuebas «. Eor the slab geometr the qualitative prediction of Sec. Ill C and is due to the mul-

i ) 9 Yo tiple scattering in the external layers of the medium, where
we checked that the numerical results agree perfectly with)

the prediction of Ref[22] obtained by numerically solving t?eeel_m;?:}gmaeﬁ?,grg;?::f]é; zh': gﬁhléagvir;r;nggg rt?\il?rt]t;is
the Milne equation. For example, the saturation value a{ P bi€.

b= is 1.88, limited by single scattering. In the other ge- phenomenon is similar for the Gaussian slab and the Gauss-

ometries, the saturation valliland more generally, the full lan sphere, which proves that itfit due to the reduction of

curvea(b)] is lower, as these geometries reduce the Weightéhe transverse dimension of the scattering medium, but a

of the long scattering pathghe photon exits more easily in gﬁgiggzence of the nonuniform density in tbagitudinal

the transverse directionsin all cases, the limiting value at L . .
R ! . A quantitative test of the theory developed in Sec. IV B is

b=o is reached rather slowly—with a H/behavior— o

becausey, contains significant contributions from very long prese_nted In Fig. 4, where we plot the prodokt A 0 Versus

paths that are cut at finite The most important conclusion b, using now linear scales. In other words, we multiply the

which can be drawn from this figure is that the enhanceme ata of Fig. 3 byb in order to compensate for the principal

factor can be strongly reduced by purely geometrical effects /b decrease. For the two Gaussian geometries, we observe
o ; that bk¢ A 6 increases slowly witth for the Gaussian slab
for example from 1.8 to 1.4 &=4 when going from a slab

to a Gaussian sphere geometry and the Gaussian sphere geometries. The asymptotic expres-
Figure 3 shows the width 9 (I.:WHM) of the CBS cone sion, Eq.(59), predicts ayIn(b) increase at largb, but suf-

(normalized with respect to B¢, wherek is the wave vector fers frpm an unphysmall smgularlty for smalil qu the

of the light and{¢ the mean-free pathat the center of the Gaussian s_lab—the m¢d|um for which the theory is done—
sample, as a function of the optical thicknebsfor various the numerical calculation shows that .the prodbdnf.AH .
geometries. Note that both axes are plotted in Iogarithmic9Oes to zero ab_—>0. We thus regularize the logarithmic
scales. One can see that in all situations the proléatd asymptotic behavior using

decreases with increasing optical thickness. Indeed, at fixed

mean-free path, increasiny means increasing the sample KCA O~ E, /27rln( 1+ b_) (62)
size, which increases the relative proportion of long scatter- b 2w

ing paths. Those yield narrow cones, thus the total CBS cone

gets narrower. For uniforrfi.e., constant density of scatter-  This function is plottedfor 8=1) in Fig. 4. It reproduces
ers geometries, the CBS cone gets narrower at incredsing the observed behavior, especially the slow logarithmic in-
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the CBS cone is imposed by thengitudinal variations of

the mean-free path, whereas the diffraction limit is due to the

transversevariations of the density. For a Gaussian sphere,

they are of the same order of magnitude, hence a confusion is
possible. Note first that the width of the CBS cone has a

2 logarithmic increase at lardg which is absent in the diffrac-
3 tion limit, and second that the Gaussian slab has the same
S 4 x—x Gaussian slab 1 dependence while no diffraction argument applies there as
+—— Gaussian sphere the medium is transversely infinite.
0¥ = Theory ] The numerically computed CBS cones themselves are

shown in Fig. 5 forb=100 in the four geometries. Clearly,
‘ ‘ ‘ ‘ they behave differently depending whether the density of
0 20 40 60 80 100 scatterers is uniform or not. For the uniform slab and sphere
Optical thickness b geometries, the cone is relatively broad, but spiky at exact
backscattering. This is a distinct signature of scattering at
FIG. 4. Same data as in Fig. 3, but multiplied byn order to  very large orderscontribution of very long scattering paths
compensate for the globall/decrease. The produttk¢A¢ is  On the contrary, for Gaussian geometries, the CBS cone is
approximately constant for the Gaussian slab and Gaussian sphetiguch narroweltypically 50 times narrower fob=100), as
geometries, which implies that the CBS cone gets narrower roughlgiscussed above, and the top is rounded. As we have proved
like the inverse of the optical thickness. The dashed line is thehat, for a Gaussian slab, the contributions of the various
(regularized with3=1) prediction at largé, Eq. (62), which dis-  gcattering orders are identical to the slab situation, this is not
plays a logarithmic increase at largein agreement with the nu- g6 to a reduction of scattering at large orders. It is rather
merical result for a Gaussian slab and, to a lesser extent, for fhat long scattering paths go deeply inside the Gaussian me-
Gaussian spher_e. The fluctuations in the curves are due to a 199,y and explore regions, where the mean-free path is sig-
small sampling in the Monte Carlo calculation. nificantly reduced. This slows down the transverse transport

. . and kills the narrowing of the contributions with the order
crease at large optical thickness. Note, however, that the R scattering. The contributions at variobé have similar

merlcal result increases sl|glhtly more slowly that the pred'c'widths(instead of the 1N decrease for a uniform mediom
tion of Eq.(62). The reason is that we here use a consfant leading to a overall smooth CBS cone

parameter.8 is supposed to model the width of the CBS 9 '

cone(in units of 1k¢) for a uniform medium. From Fig. 3,

such a width is clearly much larger than unity for thin slab B. Vector wave and point-dipole scatterers

and sphere media. Thus, the prodb&f A # for a Gaussian
sample results from the combination of the logarithmic in-
crease in Eq(62) and the slow decrease gfwith b. At large

We now turn to the results obtained for a vector wave
scattered by point-dipole scatterers. As discussed above, the

b, the logarithmic divergence overcomes but, at modeate polarization channel is a crucial parameter. Parallel channels
they more or less compensate, yielding an almost consta@ € €XPected to behave similarly to a scalar wave while, in
value. This is especially true for the Gaussian sphere, wherg"Pendicular channels, very long scattering paths should
B apparently varies more rapidly with—see the slab and play a minor role, leading to less intense and broader CBS
sphere curves in Fig. 3—and the logarithmic increase is verﬁorlfs' 6 sh h h ¢ i thalli

slow even ath=100. Altogether, for realistic optical thick- igure 6 shows the enhancement factor in hre| n
nesses of a Gaussian sphere, the prodkéth 6 can be con- channel as a function of the optical thickness, for various

sidered as almost constant. which means that the CBS co ometries. Again, it is identical for the slab and Gaussian
itself gets narrower as the inverse of the optical thickness. slab geometry. A comparison with Fig. 2 immediately shows

It is instructive to compare the angular width of the CBS'[hat CBSin this'channel behaves qualitativgly like (.:BS fpr a
cone with the so-called diffraction limit. Indeed, when illu- scalar wave, with an enhancement factor increasing with

minated by a plane wave with wave-vectara Gaussian up to a saturation value below (Because of single scatter-
sphere will—in the thin medium limit—diffract the initial ing), depending on the geometry. In thgh channel, there is

wave producing a Gaussian diffraction figure at infinity no sin_gle scattering, SO that the enhancement f_actor c_)f an
whose angular width is given by incoming plane wave is equal to 2, for all geometries. This is

because pairs of time-reversed scattering paths always have

KT oA Ogitraction= 21N 2, (63)  the same amplitude, leading to perfect contrast of the inter-
ferences.
which gives The enhancement factor in thie Llin channel is shown
in Fig. 7, for various geometries. At smdi] the CBS signal
bk€ A bitraction= V87 IN2=4.17. (64) is dominated by double scatterifgjngle scattering is zero in

this channel for which the ladder and crossed contributions
It could thus be thought that the angular width of the CBSare equal. Thus, the enhancement factor is close to 2. For
cone is nothing but the diffraction limit of the sample. How- multiple-scattering beyond second order, the amplitudes of a
ever, this is not true. Indeed, as shown above, the width opair of time-reversed paths are no longer equal, which im-
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, . : FIG. 7. Enhancement factpas defined in Eq(60)] of the CBS
1_0_6 04 -02 00 02 04 06 cone for a vector wave scattered by point-dipole scatterers in the

k40 linLlin channel, for various geometries of the medium, as a func-
tion of the optical thicknes$. It is close to 2 at smalb where
FIG. 5. The CBS cones numerically computed for optical thick- double scattering dominates and decreases toward rather small val-
nessb=100 and various geometries. The cone is relatively broad,es wherb— .
and spiky for geometries with uniform density of scatterers, but

narrow and smooth for the Gaussian geometfiege the different . . . . .
horizontal scalés The two latter features confirm that the cBs double-scattering—for which the interfering amplitudes are

cone in Gaussian geometries are due to multiple scattering in th@dual—plays an important role while large order scattering is
external layers of the medium, where the mean-free path is larggtill fairly small. This results in a maximum of the enhance-
and decreases rapidly with the optical depth. ment factor forb around few units; the precise position of the
maximum as well as the maximum enhancement factor de-
plies a decrease of the crosgederferencgcontribution and  pends on the geometry. Altogether, the h is the least fa-
finally to a rather small enhancement factorbas . Note  vorable one for the observation of CBS by point-dipole scat-
that the rather large enhancement fa¢fio6) observed in the terers.
linLlin channel for CBS by a cloud of Sr atopi8] is We have also calculated the width of the CBS cone in the
obtained in the regime of rather small(=2 in the experi-  various geometries. It is essentially the same for all polariza-
mend, where double scattering is dominant. Cold Sr atomsgjon channels, and very similar to the data displayed in Fig. 3
behave like point-dipole scatterers when exposed to a lasgy g scalar wave. For example, the results forlifiie chan-
beam quasiresonant with the resonadeed—J"'=1line.  pe| (not shown are almost indistinguishable from the scalar
In the other perpendicular channél.h , the enhance- aye simulation on a double logarithmic scédifference of
ment factor, shown in Fig. 8, is small for small because o orger of 109 The results for thérL h channel are dis-
single scattering is important, but also rather small at l&arge layed in Fig. 9, on a double logarithmic scale. In the uni-

hecause the pa|r.of t|me-reversed.paths. Which |.nterferel h rm geometriegslab and sphejethe width decreases with
unbalanced amplitudes. However, in an intermediate regime . . .
ihcreasingb until toward a asymptotic valuk¢A 6 of the

order of 5. In the nonuniform channe{§aussian slab and

2
Gaussian spherek¢A# continues to decrease ds— o,
5 18| roughly like 1b. The only noticeable difference with the
- scalar wave, Fig. 3, is that the saturation valuédateo is
© e .
=46l significantly (about 6 timeg larger than for a scalar wave.
s The reason is that, in such a nonreciprocal channel, the con-
QE, tribution of high-order scattering is very small and the width
g 14 is essentially given by the double scattering contribution,
.f:: Siab (and Gaussian siab) without the narrowing effect due to higher-orders observed
w 12 = a Sphere y 1 in the parallel channels. In Fig. 10, we plot the product
+—+ Gaussian sphere bk€A 6 versus the optical thickness, on a linear scale, to-
1 0 10 20 % 20 gether with the analytic prediction, E2). Similarly to the

scalar wave, one can clearly observe the logarithmic increase
at large b, both for the Gaussian slab and the Gaussian
FIG. 6. Enhancement factas defined in Eqi60)] of the CBS ~ SPhere. The agreement with the prediction is even better than

cone for a vector wave scattered by point-dipole scatterers in thér the scalar wave. This is most probably because, in this
lin|lin channel, for various geometries of the medium, as a funchonreciprocal channel, the CBS cone in the slab geometry

tion of the optical thickness. It behaves very similarly to scalar does not narrow significantly with increasiry (because
waves, see Fig. 2. high-scattering orders weakly contribund the pure loga-

Optical thickness b
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FIG. 8. Enhancement factpas defined in Eq(60)] of the CBS P

cone for a vector wave scattered by point-dipole scatterers in the F|G. 10. Same data as in Fig. 9, but multiplied tbjn order to
hLh channel, for various geometries of the medium, as a functiorgompensate for the global l/decrease. The dashed line is the
scattering dominatesand for largeb (where high-order scattering gjsplays a logarithmic increase at larein agreement with the

dominates and present a maximum for optical thickness of few nymerical result for a Gaussian slab and a Gaussian sphere.
units.

rithmic increase expected for the double-scattering contribu®’ 0utgoing polarization, or at 45° from j23]. We have

tion is thus more visible studied the produdik¢A 6 as a function of the optical thick-
In the linear channels, the situation is slightly more com-"€SS in the Gaussian sphere geometry for various polariza-

plex because the CBS cone does not have an azimuthal syr%g,n channels(anq fpr Sc.a'?“ wavgsand found that all the
metry around the backscattering direction. In tie||lin widths are very .S|m|IafW|th|n afaCtorz at mostand foI_Iow
channel, it is rather anisotropic and two widths can be meat-he logarithmic Increase predicted by E2). As explained .
sured, a large one in the direction parallel to the polarizatio bovg, th_e perpend|cular Cha”r.‘e's foIIow_more closely th_|s
axis and a small one perpendicular t¢6{. Similarly, in the ogarithmic increase becau_se high scattering orders contrib-
ute less. However, it remains true that the most important

linLlin channel, the CBS cone has a four-fold symmetry ) ) o

and 2 widths can be measured, either parallel to the incomin ffect is the narrowing gffect due to scattering in the_ external
yers of the cloud. This proves that the CBS cone in such a

geometry is essentially dominated by low-order multiple

scattering in the external layers of the sample.

The CBS cones themselves, calculated fber 100 and
various geometries are shown in Figs. 11 and 12, irhffre
andhl h channels, respectively. In tHg|h channel, where
the enhancement factor is equal to 2, the cone shapes are
very similar to those obtained for a scalar wave, see Fig. 5:
they are broad and spiky in the uniform geometries and nar-
row and smooth in the Gaussian geometries, as expected
from the discussion in Sec. V A. In thelL h channel, the
situation is different: the cones are significantly broader than
. . in theh||h channel and smooth in the four geometries. This is
1 10 because pairs of long time-reversed scattering paths have

Optical thickness b typically unbalanced amplitudes and thus contribute little to
the CBS interference.

In Fig. 13, we show the CBS cone experimentally ob-
served on a suspension of TiQarticles. The particles are
sufficiently small so that they behave like point-dipole scat-
terers[9]. The scattering medium is a slab of very large

o

[ |#—e Slab
=——=a Sphere

x—x Gaussian slab
+——+ Gaussian sphere

FIG. 9. Normalized widtrk¢A 6 of the CBS cone for a vector
wave in thehL h channel, scattered by point-dipole scatterers, for
various geometries of the mediutnis the wave vector of the light,
¢ the mean-free path at the center of the sample, /aadhe full
angular width at half maximurtFWHM) of the CBS cone. For the

consequently the mean-free path are constant across the sample Ve A
decreases toward a constant value of the order ofts-as. Onthe  the standard prediction is a factor 2. The Monte Carlo calcu-

contrary, for the Gaussian slab and the Gaussian sphere, it continuion, also shown in the figure as a dotted line, is done with
to decrease quickly with increasitg roughly like 1b. Thisis due ~ an optical thicknes®=100, but it is almost indistinguish-
to the multiple scattering in the external layers of the medium,able from the cone obtained for largervalues. The com-
where the mean-free path is much larger than the mean-free path puted curve agrees remarkably well with the experimental
the center of the sample. Note the double-logarithmic scale. observation, even in the far wings of the cone. The only

033814-17



LABEYRIE et al. PHYSICAL REVIEW A 67, 033814 (2003

2 2 t ‘
L2
_ 187 — Slab Experiment
g ---- Sphere 1.8 L~ Plane wave
S 16 BN EEEEE Gaussian laser beam
(7] —_
0 1.4 ©
is] c I
a IS 1.6
12 n
"0 10 @ 14
2 &)
1 —— Gaussian slab 12t
= 8 r ---- Gaussian sphere]|
swetr 4y e T
() 1 ‘ - : : ‘ ] ]
014 -10 -8 6 -4 -2 0 2 4 6 8 10
m
o 0 (mrad)
12 ¢
N P FIG. 13. The CBS cone observed experimentally on a slab of
-06 -04 -02 00 02 04 0.6 TiO, particles with very large optical thickness, in thgh channel.

k6 It is compared with a Monte Carlo calculation using either an in-
FIG. 11. The CBS cones numerically computed for optical coming plane wavédotted line; in this case, the enhancement fac-
e tor is exactly 2 or a Gaussian plane wave, which can be exactly

thicknessb=100 and various geometries, in thgh channel. The Ken i h h lut ith " £ th
cone is relatively broad and spiky for geometries with uniform den-,ta en !nto account through convolution ‘,N't a Gaussian. Even if the
ncoming laser beam has a large wast the present case, the

sity of scatterers, but narrow and smooth for the Gaussian geonl WHM of the | . ity is 32 ti h f aith
etries. The two latter features confirm that the CBS cone in Gausé_E of the laser intensity is 32 times the mean-free p

ian geometries are due to multiple scattering in the external |ayerg1duces a significant decrease of the enhancement factor and a

of the medium, where the mean-free path is large and decreasé%unding of the cone tip. The agreement with the experimentally
served cone is excellent.

rapidly with the optical depth. 0

] ] ) ] ~laser beam, this can be exactly taken into account through a
noticeable difference is near the tip of the cone, see the ins@bnvolution of the signal with the angular distribution of the
in the figure. Three effects may explain this difference: first,aser beam. Third, the imperfections in the optics are respon-
the finite resolution of the optical apparatus used for thesjple for a contamination of thie|h by thehL h channel. As
analysis of the CBS con@f the order of 0.1 mraxcertainly  the Jatter channel has a small enhancement fa@ad a
rc_)unds the top of Fhe tip. Second,.the finite transverse extenarge contribution of single scatteringthe net effect is a
sion of the incoming laser beam induces, as shown in Segeguction of the enhancement factor, estimated here to be of
II'D an imbalance of the amplitudes of the time-reversedine order of few percents. The first two effects can be taken
scattering paths which interfere. In the specific case of a slajtq account by convolving the CBS cone for a plane wave
geometry(as used in our experimergxposed to a Gaussian py a Gaussian(or similarly doing the calculation for a

Gaussian laser beam with proper angular widilve show
1.4 ; : : such a calculation as a dashed line in Fig. 13. It reproduces
—— Slab almost perfectly the observed CBS cone. This gives us con-
13 ¢ o [omoo Sehere) fidence that the experimental setup is adequate for the obser-
vation of CBS; the same optical apparatus is used for obser-
vation of the CBS cone on a cloud of cold Rb atoms. This
gives us also confidence that the Monte Carlo method used is
reliable. In Fig. 14, we plot the experimentally measured
angular width of the CBS cone as a function of the optical
1.4 . . : . . thickness. The experimental data are obtained by varying the
—— Gaussian slab geometrical thickness of the sample while keeping constant
131 ~, |-~ Gaussian sphere| 4 the density of scatterers and consequently the mean-free
path. The experimental curve behaves as predicted by the
Monte Carlo simulation: it decreases when the optical thick-
ness increases and saturates to a constant valle-as.
The agreement with the Monte Carlo calculation is very
o6 o4 o2 o0 o2 o021 o6 goo<_:i. Note however that the _Mo_ntt_e Car!o calculqtion does
' ' ' 20 ' ' ' not include the effect of the liquid in which the Tj(par-
k ticles are in suspension. Thus, the computed cufives the

FIG. 12. Same as Fig. 11, but in the h channel. The cones are €ffective thickness of the samplare rescaled in order to
less intense, slightly broader, and smoother for the uniform geomtake into account—in a very approximate way—this effect. It
etries. This is because the interference contrast of long scattering thus not surprising that some deviation is observed at
paths is very small in this channel. smallb.

1.2

CBS signal

CBS signal
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uniform slab of TiQ particles(in the h||h channel as a function of k0o

the optical thicknes®. It shows that the width decreases with the

optical thickness, but slowly in the slab geometry, in accordance FIG. 15. The CBS cones numerically computed for Rb atoms
with the Monte Carlo calculation. This is in sharp contrast with thewith optical thicknessh=100 and various geometries, in théh
behavior observed on a cloud of cold atoms, see Fig. 18, where théhannel. The cone is smooth is all geometries, like in ltheh

width quickly decreases with, an effect directly related to the channel for point-dipole scatterers, relatively broad for geometries
nonuniform density of atoms. Note the double logarithmic scale. with uniform density of scatterers, but narrow for the Gaussian
geometries. This again confirms that the CBS cone in Gaussian
geometries is due to multiple scattering in the external layers of the
medium, where the mean free-path is large and decreases rapidly

In this section, we present experimental results as well awith the optical depth.
numerical calculations using a Monte Carlo method, for scat-
tering of a vector wavéight) by a sample of cold Rb atoms. ment factor is expected in thel h channel. This is surpris-
The frequency of the laser beam is chosen close to th#d, because it is the worst channel for point-dipole scatter-
J=3—J'=4 resonance line, see Sec. Il. We assume that thers. The experimental resul{§,6] as well the numerical
initial atomic state is completely unpolarized and that inelascalculations published elsewhe24] fully confirm this un-
tic transitions to other hyperfine levels are negligible. Bothexpected behavior.
assumptions are likely to be valid in our experimental con- Figure 16 shows the measured CBS cone infthé po-
ditions. larization channel ab=19 (detuning=0.43") and its com-

In Ref. [24], we show a detailed analysis of the cone parison to a Monte Carlo simulation performed with the ex-
shape in the various channels. In the present paper, we rathegrimentally measured parameters for the atomic cloud and
concentrate on the influence of the optical thickness and théhe laser beam. We performed two different calculations, us-
geometry of the medium. ing for the density of scatterers either a Gaussian function

We first show in Fig. 15 the computed CBS cone in thel(this is the Gaussian sphere geomptyan exp-r4/rg) den-
h||h channel and large optical thicknelss- 100 for various  sSity [which we will note “exp(r*)” geometry]. There is no
geometries. The comparison with the same plot for pointadjustable parameter. The 2D images obtained from the CCD
dipole scatterers, Fig. 11, shows dramatic effects: the erare angularly averaged to improve signal-to-nofd@s is
hancement factor is enormously redu¢tdm 2 to 1.05, the  safe since the cone is isotropic in the circular polarization
cones are slightly broader and the tip is rounded even in thehannels As one clearly sees, the experimental cone shape
slab and sphere geometries. This is a direct proof that this intermediate between the two computed ones. This is not
internal structure of the atoms is responsible for a strongeally surprising as the experimentally measured density is a
reduction of interference effects even in the parallel polarizabit sharper than a Gaussian—see the plot in Fig. 1—but less
tion channels. It turns out that the cones in the figure aresharp than exp(r“/rg). The experimentally measured angu-
qualitatively similar to those observed for point-dipole scat-lar width (0.72 mrad is half-way between the computed an-
terers in theh L h channel(see Fig. 12 where interference gular widths for the Gaussian sphere geomé@np4 mrad
effects are reduced because of the chosen polarization. Froamd the exptr*) geometry(0.90 mrad.
the figure, we also learn that the narrowing effect in the Next we study the angular width of the cofabtained in
Gaussian geometries, discussed above for a scalar wawhe hl h channel as a function of the optical thickness. We
equally applies for a cloud of cold atoms, where the CBSmeasure the cone widitin mrad as a function of the laser
cone essentially arises from multiple scattering in the extereetuning. This is shown in Fig. 17 together with simulations
nal layers of the cloud. in spherical geometries. All experimental poiftsll circles

A careful analysis of the atomic scattering vertexin the figure correspond to cones recorded with th@me
[8,25,29 shows that indeed a small enhancement factor istomic cloud, but for different laser detunings. We thus take
expected in then||h channel, but that the largest enhance-advantage of the resonant scattering cross section of the at-

C. Vector waves and atomic scatterers
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FIG. 16. The experimentally observed CBS cone on a cloud of F|G. 18. Normalized width¢A 6 of the CBS cone for a vector
cold rubidium atoms(optical thickness 10in the hLh channel,  wave in thehLh channel, scattered by Rb atoms, for various ge-
compared with the cone computed using a Monte Carlo method fopmetries of the mediunk is the wave vector of the light the
a Gaussian sphere geometry and a exf){ geometry. The en- mean-free path at the center of the sample, Afdhe full angular
hancement factor is well reproduced, as well as the shape. Thgidth at half maximum(FWHM) of the CBS cone. For the slab and
angular width of the experimental cone is intermediate betweeRphere geometries—where the density of scatterers and conse-
those computed for the two geometries. This is probably becausguently the mean-free path are constant across the sample—it de-
the density of the actual experimental medium is close to a Gausgreases toward a constant value of the order of B-ase. On the
ian, but slightly sharper like the exp(*) geometry. contrary, for the Gaussian slab and the Gaussian sphere, it continues

to decrease quickly with increasitgroughly like 1b, in complete
oms to vary the optical thickness without changing thesimilarity with a scalar wave or a vector wave scattered by point
sample geometry. Although the mean-free-pdthvaries  dipole scatterers, compare with Figs. 3 and 9. Note the double loga-
roughly by a factor 65, one can see that the cone widttithmic scal_e. The experimental curve follow_s roughly ah) He-
changes at most by a factor 2.6. Under the same condition§rease, WhI.Ch shows that the dominant multlple-scatterlng events
the cone width obtained for the uniform sphere changes by glke place in th_e exter_nal layers of the atomic cloud, where the
factor 25. This is a strong signature of the effect of the inho-Mean-ree path is considerably larger than at the center.
mogeneous density in the sample.

Indeed, Fig. 17 Clearlghows that the experimental results are in excellent agree-
ment with the predictions for a medium whose density varies
| smoothly[either a Gaussian sphere or a exp) geometry

@---@Experiment but are in complete disagreement with the prediction for a

+ Gaussian Sphere sphere of constant density.
................ "exp(~r")" sphere

=—a Sphere (width divided by 4)

Jry
(3]

The same data are used for Fig. 18, which shows the
normalized CBS cone widthk¢A# measured in thérlL h
channel as a function of the optical thickn¢dsduced from
the laser detuning and the on-resonance vélygthrough
Eqg. 2 at the center of the atomic cloud. A set of numerical
predictions for different geometries is shown together with
the experimental result. Their behaviors are similar to what is
observed for a scalar wave, Fig. 3, and point-dipole scatter-
ers, Fig. 9. In the uniform geometries, the width decreases
with increasingo and saturates & A ~5 whenb—o. On
the contrary, for Gaussian geometries, for the exf) ge-
ometry and for the experimental results, it continues to de-
L . crease quickly, roughly like b/ The experimentally ob-
Detuning (in units of I') served behavior clearly follows the prediction for an

FIG. 17. Angular widthiin mrad of the atomic CBS cone in the '”homogef‘eous density, confirming the pertlnence of the
h. h channel, as a function of the detuning of the CBS probe bear’r#:-’hys'c_:al picture EXPOSE‘?' before. Thus the width of the CBS
Note the small variation of the cone width factor 2.6 for the ~ CONE in our experiment isot determined by the mean-free-
experiment and the inhomogeneous model geometries althbigh Path¢ at the center of the cloud, but by the mean-free jpath
varied by a factor 65. The width obtained for the sphere geometryiNit optical depthAs long as the width of the CBS cone is
have been divided by 4 to appear on the same scale; its value &9ncerned, the most important effect is the smooth spatial
well as its dependence vs the optical thickness is completely incomvariation of the mean free-path associated with the dominant
patible with the experimental results. This clearly rules out themultiple scattering events taking place in the external layers
spherical geometry with uniform density. of the atomic cloud.

Width A6 of the CBS cone (mrad)
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Optical thickness b FIG. 20. Enhancement factpas defined in E¢60)] of the CBS
cone for a vector wave scattered by a cloud of rubidium atoms in
the hl h channel, for various geometries of the medium, as a func-
. o o i tion of the optical thicknesb (in logarithmic scalg The Gaussian
the (regularized with3=2.7) prediction at largé, Eq. (62), which profile of the laser beam used in the experiment is taken into ac-

dlspla)_/s ? Iogelltrl';hmlccl;ncree_\se alt ll)argedln aGgreen’_lent W:h th?t ¢ iount in the simulations. The enhancement factor is small both for
humerical resuft for a aussian siab and a taussian sphere. 110G, , (where single-scattering dominatesnd for largeb (where
lows remarkably well the experimental result. Note that, for a

. . o high-order scattering dominajesind present a maximum for opti-
spherical density of the type exp(rg), the width is larger than cal thickness of few units, where doulilend low-ordey scattering

the experimgntal re;ult. This agrees with the fact that Fhe EXPETlis most important. The experimental result follows the same behav-
mental atomic dens4|t)‘/1 varies more sharply than a Gaussian, but le%r, although it is slightly but significantly larger. This discrepancy
sharply than exp{r/ro). could be due to some residual optical pumping of the atoms by the
CBS probe beam.

When the 16 decrease observed in Fig. 18 is compen-
sated for, see Fig. 19, we again observe the logarithmic infactor. As the optical thickness increases, the relative contri-
crease withb for the Gaussian geometries, in agreement withbution of doubletand more generally low order Jo§catter-
the theoretical prediction, Eq62). The experimental result ing increases; as these short scattering paths have a rather
itself follows very well the logarithmic prediction, which high interference contrast, the enhancement factor increases.
proves that our model catches the essential part of the phy#t large b, the long paths with small interference contrast
ics of multiple scattering of light by a cloud of cold atoms. come into play and the enhancement factor diminishes. The
For the expfr?) geometry, the theory developed above isfact that, for the three geometries, a similar behavior is ob-
not supposed to be valid as the derivation of the logarithmiserved shows that the phenomenon is robust.
term explicitly involves the shape of the density of scatterers. In all cases, the enhancement factor increases fraat 1
However, it does not lie too far from the result for the Gauss-b=0) to a maximum value reached aroumd 5 then slowly
ian sphere. This means—as explained in Sec. IV B—that thdecreases toward an asymptotic value when«. In prac-
1/b decrease of the width is a very general phenomenon fotice, the asymptotic value is reached abdve 20. The
media, where the density varies smoothly. The edges of thagreement is, however, not perfect, the observed enhance-
exp(—r* geometry are sharper, that is closer to a sharp inment factor being systematically larger than the computed
terface like in the sphere geometry; it is thus not surprisingralue. It is only in the asymptotic regidn— < that the value
that the width is intermediate between the width for thel.16 computed for the Gaussian sphere geometry is reached.
Gaussian sphere and the width for the sphere. The same e are not yet sure of the reason for this discrepancy. Some
valid for the experimental result, consistently with the ob-possibilities are as follows.
served density profiles that are sharper than a Gaussian func- (i) Imperfections of the optical apparat(is particular the
tion. Note also that all the observed widths are significantlyquality of the incoming and detected polarization states
larger than the “diffraction” limit, Eq.(64), which proves This can be ruled out: the largest enhancement factor is ob-
that they are due to longitudinal effects in the multiple-tained in thehl h channel, any optical imperfection is thus
scattering phenomenon, and not to a trivial transverse effeclikely to decrease the observed value, not to increase it.

We now turn to the CBS enhancement factor as a function (ii) In the absence of the atomic cloGab MOT), there is
of the optical thickness. In Fig. 20, we compare experimentastill some light scattered by various parts of the experimental
results with Monte Carlo simulations for various atomic ge-setup that reach the detector. Most of this background is due
ometries. One clearly sees in the three spherical geometriés the dilute vapor of hot atoms filling the cell. This back-
as well as in the experiment, the initial increase of the enground, which represents less than 10% of the signal re-
hancement factor with the optical thickness, followed by acorded in the presence of the atomic cloud, is subtracted
drop at largeb. The physical interpretation is clear: at small before calculation of the enhancement factor. However, the
b (far from resonande the medium is optically thin and contribution of the “hot” background may depend on the
single-scattering dominates, which kills the enhancemenpresence or not of th@ptically thick cloud of cold atoms.

FIG. 19. Same data as in Fig. 18, but multipliedibin order to
compensate for the globaltitlecrease. The theofdashed lingis
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This could lead to an overestimation of the enhancement (vi) Nonuniform distribution of the initial atomic state
factor by at most 0.01. over the Zeeman sublevels. A basic assumption of our calcu-

(i) Non-Gaussian shape of the medium. Indeed, the extation is that the initial atomic state is completely depolar-
perimentally recorded density profiles, Fig. 1, are far fromized, a reasonable assumption for atoms produced in a MOT.
perfectly Gaussian. We also computed in Fig. 20 the enWe cannot however exclude some residual polarization, even
hancement factor using a exp(“/rg) density profile in the after the magnetic field of the MOT is switched off. This
medium, which reproduces more faithfully the rather sharpvould affect the enhancement factor.
edges of the atomic cloud. Obviously, this does not suppress (vii) Optical pumping. The CBS probe beam is rather
the discrepancy. Additionally, we have considered the case ofeak but, especially when it is circularly polarized, it may
an anisotropic Gaussian medium. We have calculated theptically pump the atoms in a nonuniform distribution over
CBS cone forb=26 with an anisotropy factor 3/2plate  the Zeeman sub-levels. This effect is difficult to estimate in
shape and 2/3(cigar shapgin the directions perpendicular optically thick media, because, except close to the entrance
to the incoming beam. This slightly modifies the width of the of the medium, the atoms are exposed not only to the incom-
CBS cone(of the order of 20% but alters only marginally ing beam but mainly to the light scattered by other atoms.
the enhancement factor. If a different anisotropy factor isRecent experimental resu[t24] seem to indicate that, with a
taken in the two directions perpendicular to the incomingweaker probe beam, the discrepancy between the calculation
beam, the CBS cone in the helicity channels loses its aziand the experiment is reduced. We are thus inclined to think
muthal symmetry. The experimentally recorded CBS cone#hat optical pumping is the relevant phenomenon.
in the h.l.h channel are almost perfectly circular; we thus
think that there is no significant transverse anisotropy. In VI. CONCLUSION
summary, it is unlikely that deviation from a Gaussian shape
of the medium is responsible for the discrepancy.

(iv) Stray magnetic field. It is known that even a rather
small magnetic fieldof the order of 1 G modifies the prop-
erties of CB23]. However, it is unlikely that the atoms are
exposed to more than 0.1 G in the experiment.

(v) Role of the other atomic transitions. Although the CB
probe beam is quasiresonant with the 3—J' =4 transi-
tion, there is a small probability that an atom scati@las-
tically or not a photon on a another transition. Taking into
accountinelastic transitions to other ground-statésuch as
J=3—-J'=3—-J"=2) would be rather difficult in Monte
Carlo calculations because then the propagator at various fr
guencies would have to be usé&fastic scattering, where the
other accessible excited levels are probed=38—J’
=4,3,2—J=3), could be treated along the lines described
in this paper, as the full scattering amplitude is the coherent
superposition of the contributions from the varialisstates.
Luckily, the detuning used in our experiment for the closest We thank the CNRS and the PACA Region for financial
transition (3—3) is always much largeat least a factor 6) support. We also thank the Groupe de Recherche PRIMA of
than the detuning for the-3 4 transition, so that the effect of CNRS. We gratefully acknowledge the important contribu-
other transitions on the CBS cone is likely to be small. Thistion of J.-C. Bernard to the development of the experiment.
is supported by preliminary experimental results where thé.aboratoire Kastler-Brossel de I'Universikierre et Marie
CBS enhancement factor was measured for both positive ar@urie et de I'Ecole Normale Sugeure is UniteMixte de
negative detunings. A quantitative estimate, however, reRecherche 8552 du CNRS. CPU on a Cray SX5 computer

We have presented in this paper both experimental and
numerical results on coherent backscattering of light by a
cloud of cold rubidium atoms. We have shown that the inho-
mogeneous density profile in the cloud plays a key role in
determining the angular width of the CBS cone, in sharp
gcontrast with what is observed for media with uniform den-
sity of scatterers. Especially, for a medium with a spherically
symmetry Gaussian density, the properties of the CBS cone
are essentially determined by the lowest orders of multiple
scattering, when the photon is scattered in the outer layers of
the cloud. Monte Carlo simulations which take fully into
ccount the internal structure of the atoms correctly predict

e CBS cone shape and angular width as well as the en-
hancement factor.
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