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Quantum limits on noise in dual input-output linear optical amplifiers and attenuators
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The input-output relations for linear amplifiers and attenuators that have two input and two output channels
are used to derive inequalities that relate their gain profiles and output noise spectra. The results generalize
earlier derivations, which mainly focus their attention on single-channel devices, to the two-ended amplifiers
and attenuators often used in practical communications systems. The present inequalities are satisfied by the
results of previous calculations for specific model systems. It is shown that; in contrast to single-channel
devices, a two-ended system can act as an amplifier for some input signals and an attenuator for others, even
when all the signal frequencies are the same. The output from the two-channel amplifier has a minimum noise
determined by the sum of the gains for both input channels, even when only one input channel is used and the
other is in its vacuum state. The conditions on device construction needed to achieve equal gains for signals
that arrive at the two ends of the device are determined. The present results reduce to those of single-channel
theory in special cases where the two output channels are each separately fed by only one of the two input
channels.
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I. INTRODUCTION

The quantum limits on noise in linear amplifiers we
determined by Caves@1# in a seminal paper that consolidate
and extended a great deal of previous work. The results
ply very generally to amplifiers that are either sensitive
insensitive to the phase of the input signal and have ph
preserving or phase-conjugating characteristics. Sepa
considerations are given to narrow-band amplifiers,
which single-mode descriptions of the input and output
adequate, and to devices for which multimode theories
needed. The explicit treatment is focused on systems w
single input and output channels.

Many amplifiers and attenuators used in practice have
ear spatial structures in which signals may be incident
both the left- and the right-hand ends of the device a
whose outputs likewise emerge from both ends. A fami
example is the communications link, where the attenua
optical fiber often has amplifying sections inserted perio
cally along the line. The Caves theory applies in principle
such devices but the results are implicit. The main aim of
present paper is a more explicit account of the two-en
amplifier or attenuator. The generic device is described
linear relations between pairs of input and output signal
erators, which also include a pair of noise operators ass
ated with the amplification or attenuation process. The
sults apply generally to wide ranges of attenuating a
amplifying systems.

In Sec. II, the boson commutation properties of the sig
operators are used in conjunction with the input-output re
tions of the device to derive connections between the no
operator commutators and the four distinct signal gains
occur in reflection and transmission at the two inputs. Th

*Present address: INFM and Universita` dell’ Insubria, Diparti-
mento di Scienze, Via Valleggio 11, 22100 Como, Italy.
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are used in Sec. III to obtain minimum values for the no
power spectra that must be added by the device to the
plified or attenuated signal. It is shown in Secs. II and III th
the same device may show gain, loss, or passive charact
the same frequency depending on the observed output c
nel and on the forms of signal in the input channels. T
feature is not revealed by previous implicit treatments. T
conditions for equality of the pairs of reflection and tran
mission gains are discussed in Sec. IV. Section V treats
vices that may be adequately described by models w
single input and output channels, where the theory of
dual input-output device reduces to that derived previou
@1#. Contact is made with the effective beam-splitter rep
sentation of the device. The conclusions of the work
summarized in Sec. VI. Our calculations use a continuo
mode description of the field throughout and the results
therefore be applied to the propagation of traveling-wave
tical pulses.

II. INPUT-OUTPUT RELATIONS

The lossy dielectric plate and the lossy beam splitter
examples of the dual input-output linear attenuator that h
been considered previously@2–5#. Results have also bee
derived for the quantum-state transformations by dispers
and absorbing four-port devices@6#. The input-output rela-
tions for an amplifying slab@7,8# and the entanglement trans
formations by absorbing and amplifying four-port devic
@9# have been considered. The one-dimensional quantiza
schemes used in these calculations have been extend
three-dimensional systems@10–12#, but the theory presente
here is restricted to quasi-one-dimensional devices.

Figure 1 shows the configuration of inputs and outputs
the generic device, with the notations for the mode destr
tion and noise operators. The shaded rectangle represe
linear attenuator or amplifier, or any arbitrary multilayer su
cession of such elements. The input and output light bea
©2003 The American Physical Society03-1
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are assumed to propagate in the same material on either
of the device. The corresponding input-output relations fo
phase-insensitive, phase-preserving amplifier or attenu
have the forms

âL~v!5RLR~v!âR~v!1TLL~v!b̂L~v!1F̂L~v! ~2.1!

and

b̂R~v!5TRR~v!âR~v!1RRL~v!b̂L~v!1F̂R~v!.
~2.2!

The terms that includeR or T functions describe the
frequency-dependent reflection and transmission of the i
dent signals from and through the amplifier or attenua
The F̂ operators describe the noise added to the input sig
by the amplifier or attenuator; the additional noise is ass
ated with the gain or loss of energy by the signal beams
they propagate through the device.

With two inputs and two outputs, four distinct gains c
in principle be measured. Thus the reflection gain profiles
defined by

GLR~v!5uRLR~v!u2 and GRL~v!5uRRL~v!u2
~2.3!

and the transmission gains are defined by

GLL~v!5uTLL~v!u2 and GRR~v!5uTRR~v!u2.
~2.4!

The term ‘‘gain’’ is used for compactness even whenG is
less than unity and attenuation occurs.

The detailed functional forms of the coefficientsR, T, and
of the F̂ operators are determined by calculations based
models of specific devices but they are restricted by the c
mutation properties of the input and output operators. T
the input operators satisfy the usual continuous-mode c
mutation relations for independent boson operators

@ âR~v!,âR
†~v8!#5@ b̂L~v!,bL

†~v8!#5d~v2v8! and

@ âR~v!,bL
†~v8!#50 ~2.5!

and they also commute with the noise operators,

@ âR~v!,F̂L
†~v8!#5@ b̂L~v!,F̂L

†~v8!#5@ âR~v!,F̂R
†~v8!#

5@ b̂L~v!,F̂R
†~v8!#50. ~2.6!

FIG. 1. Configuration of the two inputs and two outputs of
amplifier or attenuator, showing notations for the four input-out
mode destruction operators and the two noise operators.
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However, the left- and right-hand noise operators do
commute, as they result from the same noise sources in
the device. The forms of theR and T coefficients must be
such as to ensure causality in the relations between out
and inputs@7,13#.

The two output operators are also required to sati
independent-boson commutation relations, so that

@ âL~v!,âL
†~v8!#5@ b̂R~v!,b̂R

†~v8!#5d~v2v8! and

@ âL~v!,b̂R
†~v8!#50. ~2.7!

Substitution of the expressions from Eqs.~2.1! and ~2.2!
gives the relations

@ F̂L~v!,F̂L
†~v8!#5$12GLR~v!2GLL~v!%d~v2v8!

~2.8!

and

@ F̂R~v!,F̂R
†~v8!#5$12GRR~v!2GRL~v!%d~v2v8!,

~2.9!

where Eqs.~2.3!–~2.6! have been used. It follows that th
noise operatorsF̂L(v) and F̂R(v) have the characters o
destruction operators when the sum of the relevant reflec
and transmission gains is less than unity and the device
as an overall attenuator. The noise operators have the c
acters of creation operators when the sum of the gain
greater than unity and the device acts as an overall ampli
The final relation in Eq.~2.7! leads similarly to

@ F̂L~v!,F̂R
†~v8!#52$RLR~v!TRR* ~v!

1TLL~v!RRL* ~v!%d~v2v8!.

~2.10!

The relations~2.8!–~2.10! reduce to forms derived previ
ously @4,5# when the two reflection coefficients and the tw
transmission coefficients are the same functions ofv, as in
spatially symmetric amplifiers or attenuators, whose str
tures have reflection symmetry planes at their centers.
noise operator commutators are verified with the explicit
pressions derived for a symmetric amplifying or attenuat
dielectric slab@8#.

The noise operators are allowed to vanish only for a p
sive device that neither adds nor subtracts energy to or f
the propagating light beams. The quantities in the cu
brackets in Eqs.~2.8!–~2.10! then all vanish. The resulting
relations

GLR~v!1GLL~v!5GRR~v!1GRL~v!51 ~2.11!

and

RLR~v!TRR* ~v!1TLL~v!RRL* ~v!50 ~2.12!

are the same as those ordinarily found for a lossless sla
beam splitter@3,14#. They lead to the conditions

uRLR~v!u5uRRL~v!u, uTLL~v!u5uTRR~v!u, and

t

3-2
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fLR1fRL2fLL2fRR56p, ~2.13!

where thef are the phase angles of the reflection and tra
mission coefficients in an obvious notation. The reflect
and transmission gains defined in Eqs.~2.3! and ~2.4! are
thus related by

GLR~v!5GRL~v! and GLL~v!5GRR~v!.
~2.14!

These same relations for a passive device can also
derived from the condition for energy conservation for
coming and outgoing light beams at frequencyv, in the form

aL
†~v!âL~v!1b̂R

†~v!b̂R~v!5âR
†~v!âR~v!1b̂L

†~v!b̂L~v!.
~2.15!

Substitution of Eqs.~2.1! and ~2.2! with the noise operators
removed on the left-hand side then leads to the relations

GLR~v!1GRR~v!5GLL~v!1GRL~v!51 ~2.16!

and

RLR~v!TLL* ~v!1TRR~v!RRL* ~v!50. ~2.17!

These differ slightly from Eqs.~2.11! and ~2.12! but it is
readily verified that they are equivalent and they lead to
same conditions as in Eq.~2.13!. It is emphasized that the
equalities in Eqs.~2.13! and ~2.14! are valid, in general, for
passive devices with arbitrary structures. They also hold
the spatially symmetric attenuators or amplifiers mention
above.

The energy conservation relation~2.15! is no longer valid
in the presence of loss or gain. For a specific pair of in
signals, the device acts as an overall amplifier when the
pectation value of the left-hand side of Eq.~2.15! exceeds
that of the right-hand side and as an attenuator when
expectation value of the right-hand side exceeds that of
left-hand side. We adopt these criteria as the definitions
the amplifying or attenuating character of the device and
emphasize that the distinction depends, in principle, not o
on the device construction but also on the nature of the in
signals. It is instructive to consider the common practi
system with coherent signals in both input arms of the
vice. We therefore take expectation values of the input
output energies for coherent-state signalsuaR(v)& and
ubL(v)& @14#. The input-output relations hold for all value
of the input amplitudes and we consider a classical li
where the input signals are sufficiently intense that the
tenuated or amplified signal components in the outp
greatly exceed the noise contributions. Substitution of E
~2.1! and ~2.2! in the output energy on the left-hand side
Eq. ~2.15!, with neglect of the noise operators, then leads
the inequalities

uRLRaR1TLLbLu21uTRRaR1RRLbLu2"uaRu21ubLu2,

~2.18!

where thev dependences are omitted for simplicity and t
upper and lower symbols refer to the attenuator and the
03380
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plifier, respectively. The special cases of these relations
bL50 andaR50 then lead to the inequalities

GLR~v!1GRR~v!"1 and GLL~v!1GRL~v!"1,
~2.19!

which must be satisfied for net overall attenuation or am
fication of the single input signals. Another special case
that of equal-amplitude signals withuaRu5ubLu in the two
inputs, when Eq.~2.18! leads to

uRLR~v!TLL* ~v!1TRR~v!RRL* ~v!u

,u12 1
2 $GLR~v!1GRR~v!1GLL~v!1GRL~v!%u,

~2.20!

which is valid both for joint attenuation and amplification
the two coherent inputs.

We should note that there exist devices for which a p
ticular superposition of coherent input signals experien
net gain but the orthogonal superposition experiences
loss. In this case, the different values ofaR and bL corre-
sponding to these superpositions satisfy Eq.~2.18! with dif-
ferent inequality signs. A simple example is provided by t
special case in which both reflection coefficients equalR,
both transmission coefficients equalT, and aR and bL are
both real. The device then amplifies the input withaR5bL
and attenuates the input withaR52bL if

uR1Tu2.1 and uR2Tu2,1. ~2.21!

Values ofR andT that satisfy these conditions are, of cours
readily found. The device may also show passive charac
istics for some superpositions, with equality of the two sid
of Eq. ~2.18!, and an example of such hybrid behavior
given in Sec. III. The relation~2.18! applies with a fixed
inequality sign only for fully attenuating~amplifying! de-
vices, in which net loss~gain! occurs for all possible inpu
states.

III. OUTPUT NOISE POWER SPECTRA

We follow the method of Caves@1# to derive minimum
values for the noise outputs of the amplifying or attenuat
device. We consider systems for which the expectation v
ues of the noise operators can be set equal to zero,

^F̂L~v!&5^F̂R~v!&50. ~3.1!

We also restrict attention to devices for which the add
noise is time stationary. This condition restricts the mome
of the noise operators in the operating state to satisfy@1#

^F̂ I~v!F̂ I
†~v8!1F̂ I

†~v8!F̂ I~v!&5NI~v!d~v2v8!,
~3.2!

where subscriptI denotesL or R. The spectraNI(v) are
dimensionless real and positive semidefinite functions t
determine the amount of noise added by the amplifier
attenuator.
3-3
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The commutators of the noise operators from Eqs.~2.8!
and ~2.9! have the form

@ F̂ I~v!,F̂ I
†~v8!#5$12GIR~v!2GIL~v!%d~v2v8!

[CI~v!d~v2v8!, ~3.3!

where theCI(v) are real functions that are positive for a
attenuator but negative for an amplifier. The combination
Eq. ~3.2! with Eq. ~3.3! gives

^F̂ I~v!F̂ I
†~v8!&5 1

2 @NI~v!1CI~v!#d~v2v8! ~3.4!

and

^F̂ I
†~v8!F̂ I~v!&5 1

2 @NI~v!2CI~v!#d~v2v8!. ~3.5!

It is straightforward to show that the quantities in the squ
brackets in Eqs.~3.4! and~3.5! must be positive semidefinite
Thus, consider the operator

f̂ Ia5E dvF̂ I~v!a~v!, ~3.6!

wherea~v! is any complex function ofv. It follows from
Eqs.~3.4! and ~3.5! that

^ f̂ Ia , f̂ Ia
† &5 1

2 dv@NI~v!1CI~v!#ua~v!u2 ~3.7!
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^ f̂ Ia
† f̂ Ia&5 1

2 E dv@NI~v!2CI~v!#ua~v!u2. ~3.8!

These moments correspond to the norms of the statesf̂ Ia
† uc&

and f̂ I auc&, where uc& is the operating state, and they a
therefore necessarily positive semidefinite for all functio
a~v!. It follows that the added noise spectra satisfy

NI~v!>uCI~v!u5u12GIR~v!2GIL~v!u, ~3.9!

where the equality sets the minimum level of added no
Thus, from Eq.~3.2!,

^F̂ I~v!F̂ I
†~v8!1F̂ I

†~v8!F̂ I~v!&

>u12GIR~v!2GIL~v!ud~v2v8!. ~3.10!

This relation between the output noise spectra and the
profiles generalizes Eqs.~4.19b! and ~4.21! of Ref. @1#,
which refer to a system with a single input and a sing
output. They have previously been quoted without proof
the special case of a spatially symmetric system@8#, where
the two reflection gains and the two transmission gains
equal, as in Eq.~2.14!; the explicit expressions derived fo
the gains and the noise operators in a symmetric dielec
slab indeed satisfy these noise inequalities@8#.

It is often more convenient to work with the noise oper
tor moment defined in Eq.~3.5!, instead of the symmetrized
noise operator combination in Eq.~3.10!; the former satisfies
^F̂ I
†~v8!F̂ I~v!&>H 0 for GIR~v!1GIL~v!<1

$GIR~v!1GIL~v!21%d~v2v8! for GIR~v!1GIL~v!>1.
~3.11!
The first inequality refers to devices whose individual o
puts I 5L or R show attenuation of the input signals, whi
the second inequality refers to devices whose individual o
puts show amplification of the input signals. The noise pow
added by an attenuator is allowed to vanish but an amp
ing device inevitably adds some noise to the output sig
The minimum noise is achieved, for example, in an invert
population amplifier when all of the population is in the u
per level of the active pair@14#. Note that the minimum noise
for the two-channel amplifying device includes the sum
the gains for the two input signals, even when only one in
channel is excited. This represents an increase in the ou
noise over that for a comparable single-channel amplifie

An example of a non-spatially-symmetric system is p
vided by a gas laser below threshold with mirrors of differe
intensity transmission ratesgL andgR at the left- and right-
hand ends of the cavity@15,16#. This is one of the few sys
tems with complete available expressions for the gain par
eters. When total population inversion of the active levels
assumed, the expressions for theR and T functions are ob-
tained from Sec. IV A of@16# as
-

t-
r
-
l.
-

f
t
ut

-
t

-
s

TLL~v!5TRR~v!5
~gLgR!1/2

2 iv1 1
2 ~gL1gR!~12C!

~3.12!

and

R
RL
LR~v!5

iv6 1
2 ~gL2gR!1 1

2 ~gL1gR!C

2 iv1 1
2 ~gL1gR!~12C!

. ~3.13!

The corresponding gains, defined as in Eqs.~2.3! and ~2.4!,
are thus

GLL~v!5GRR~v!5
gLgR

v21 1
4 ~gL1gR!2~12C!2

~3.14!

and
3-4
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G
RL
LR~v!5

v21 1
4 @6~gL2gR!1~gL1gR!C#2

v21 1
4 ~gL1gR!2~12C!2

.

~3.15!

HereC is the cooperation parameter of the laser, in the ra
0<C<1, whereC50 corresponds to zero pumping andC
51 to threshold pumping. The device has equal transmis
gains but the reflection gains are generally different. Th
become equal only for a spatially symmetric laser cav
with gL5gR . The quantity that occurs in Eq.~2.10! is given
by

RLR~v!TRR* ~v!1TLL~v!RRL* ~v!

5
~gLgR!1/2~gL1gR!C

v21 1
4 ~gL1gR!2~12C!2

~3.16!

and the similar quantity on the left of Eq.~2.20! is given by
the same expression. The corresponding output noise sp
on the left and right of the laser cavity are obtained on m
tiplication of Eq.~4.24! of Ref. @16# by gL andgR , respec-
tively, to give

^F̂L
†~v8!F̂L~v!&5

gL~gL1gR!C

v21 1
4 ~gL1gR!2~12C!2

d~v2v8!.

~3.17!

The expression for the noise spectrum on the right of
cavity is the same but withgL andgR interchanged.

The individual gains in Eqs.~3.14! and~3.15! are larger or
smaller than unity depending on the values of the vari
parameters but the sums of the pairs of gains that occu
Eqs. ~2.19! and ~3.11! are always greater than unity, exce
for C50 when they equal unity. The left-hand side of E
~2.18! gives

uRLRaR1TLLbLu21uTRRaR1RRLbLu2

5H 21
~gL1gR!@gL1gR12~gLgR!1/2cosw#C

v21 1
4 ~gL1gR!2~12C!2 J uaRu2,

~3.18!

for equal-amplitude input signals,uaRu5ubLu, with phase
differencew. The inequalities~2.18! and ~2.20! are thus sat-
isfied by the expressions in Eqs.~3.12!–~3.15!, except for a
symmetric cavity withgL5gR , where the symmetric supe
position of input coherent states withw50 sees net gain bu
the antisymmetric superposition withw5p sees neither gain
nor loss. Thus Eq.~2.18! holds as an equality for the sym
metric cavity whenaR(v)52bL(v) and, more trivially, for
zero pumping withC50. It is also readily verified that Eq
~3.11! is satisfied as an equality, corresponding to the m
mum added noise.

Note that the same noise power expressed by Eq.~3.17! is
present in measurements of the output on the left of the
vice for inputs that are either reflected or transmitted, e
though the respective gains are generally different. A sim
remark applies to the noise in the output on the right of
03380
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device. Again, although the two transmission gains are eq
the noise that accompanies the transmitted signal is gene
different for the two directions of propagation. The deriv
tion of the expressions in Eqs.~3.12!–~3.17! assumes com-
plete population inversion of the active levels. The form
expressions for the gains remain the same in the presenc
some population in the lower of the two active levels but t
value of the cooperation parameter is reduced for a gi
pumping of the upper level and the noise is increased@16# so
that the inequality~3.11! is no longer satisfied as an equalit
The laser above threshold, with cooperation parameteC
.1, also acts as an amplifier over a limited range ofC but
the behavior of the device is complicated by the genera
of two or more output frequencies for a monochromatic
put, and we do not consider it here.

IV. SYMMETRY PROPERTIES

Considerations of time-reversal symmetry were appl
by Stokes@17# to the transmission and reflection of light
an interface. His analysis of the effects of reversal of
directions of propagation of the input and output light bea
is valid for the transmission and reflection of light at a pa
sive or lossless slab and, in the notation of the present pa
it shows that

RLR~v!TRR* ~v!1TRR~v!RRL* ~v!50 ~4.1!

and

uRLR~v!u21TLL~v!TRR* ~v!51. ~4.2!

These relations lead to conditions additional to Eq.~2.13! on
the phase angles of the reflection and transmission co
cients, given by

fLR1fRL22fLL56p and fLL5fRR. ~4.3!

It follows that

TLL5TRR ~4.4!

and the transmission coefficients are equal in both amplit
and phase.

The symmetry operation of time reversal can, in princip
also be applied to the amplifying or attenuating device. Ho
ever, reversal of the propagation directions of the inputs
outputs interchanges the natures of amplifiers and atte
tors, and the study of this phenomenon lies in the realm
retrodiction theory@18#, which endeavours to determine th
nature of the input to a communication channel from
knowledge of its output. Thus time reversal does not lead
any restrictions on the phase angles of the reflection
transmission coefficients for the amplifier or the attenuato
such. Furthermore, in the absence of energy conservation
the incoming and outgoing light beams of an amplifier
attenuator, the relations in Eq.~2.14! between the reflection
and transmission gains cannot be established on this ba

The explicit example considered in Sec. III indeed sho
a case of unequal reflection gains when the two cavity m
rors are different, withgLÞgR . It is easy to understand how
3-5
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the reflection gains can be different. Thus, for example,
sertion of a two-sided partial mirror in the interior of a d
vice, with different amplifying and/or attenuating sections
its two sides, ensures that the outputs in reflection on the
and on the right have experienced regions of different g
characteristics within the device. The effect of a perfect
flector, considered below in Sec. V, provides a simple
ample of this.

Consider, however, the corresponding gains in transm
sion, where the situation is more complicated. Each in
beam must now propagate through the entire device to re
the output on its far side. Both beams thus experience a
the amplifying and attenuating sections in a composite
vice and two cases can be distinguished. The first case
cludes devices where the gain or loss in each section is
dependent of the direction of signal propagation. The ove
transmission gains in the two directions are thus deri
from products of the same gain or loss factors and their m
nitudes are expected to be the same. The equality ca
proved rigorously for a multilayer stack of attenuating ma
rials @19,20# and the proof can be extended to a combinat
of amplifying and attenuating sections for stacks in wh
the gain in no part of the system exceeds lasing thresh
The two transmission gains are then the same, as in the
ond equality in Eq.~2.14!, and the below-threshold lase
gains in Eq.~3.14! provide an example.

The second case includes amplifiers and attenua
where the gain or loss in at least one section of the compo
device depends on the direction of signal propagation.
overall transmission gains are then clearly different. E
amples are provided by devices driven by a traveling-w
pump, as in Raman and Brillouin amplifiers. For the exam
of the Brillouin amplifier, phase-matching requirements p
duce zero gain for signals that propagate in the same d
tion as the pump and amplification occurs only for sign
propagation in the opposite direction@21#. This is an extreme
case of the inequality of the two transmission gains. Tim
reversal symmetry relates the transmission gains for sig
incident on opposite ends of a pair of amplifiers for whi
the directions of the pump propagation are also rever
@22#, but there are no overall restrictions on the two tra
mission gains for the same amplifier.

V. LIMIT OF SINGLE INPUT AND OUTPUT CHANNELS

The results derived in previous sections are readily s
cialized to amplifiers and attenuators that have single in
and output channels. Thus, if the right-hand boundary of
device is made perfectly reflecting, we can set

RRL51, TLL5TRR50, and F̂R50. ~5.1!

The input-output relations then separate into two indep
dent equations, where Eq.~2.2! merely expresses the perfe
reflection on the right and the remaining nontrivial inpu
output relation~2.1! reduces to

âL~v!5RLR~v!âR~v!1F̂L~v!. ~5.2!

The commutation relation from Eq.~2.8! is
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@ F̂L~v!,F̂L
†~v8!#5$12GLR~v!%d~v2v8!; ~5.3!

the inequality~3.9! for the added noise spectrum reduces

NL~v!>u12GLR~v!u ~5.4!

and the limits~3.11! to

^F̂L
†~v8!F̂L~v!&

>H 0 for GLR~v!<1

$GLR~v!21%d~v2v8! for GLR~v!>1.

~5.5!

These expressions reproduce the standard results@1# for a
phase-insensitive phase-preserving linear amplifier with
input channel and one output channel.

An example of these conditions is provided by the belo
threshold laser amplifier of Sec. III whengR50. Then Eqs.
~3.14!, ~3.15!, and~3.17! reduce to

GLL~v!5GRR~v!50, ~5.6!

GLR~v!5
v21 1

4 gL
2~11C!2

v21 1
4 gL

2~12C!2
, GRL~v!51, ~5.7!

and

^F̂L
†~v8!F̂L~v!&5

gL
2C

v21 1
4 gL

2~12C!2
d~v2v8!. ~5.8!

It is readily verified that Eqs.~5.4! and ~5.5! are satisfied
with NL(v) taking its minimum possible value.

The basic input-output relation~5.2! can be put in a form
identical to that for a lossless beam splitter whenGLR(v)
,1 and the device acts as an attenuator. Thus, defining
fective transmission and reflection coefficientst(v) and
r (v) by

t~v!5RLR~v! and r ~v! f̂ L~v!5F̂L~v!, ~5.9!

with a normalized noise operatorf̂ L(v) that satisfies the
commutation relation

@ f̂ L~v!, f̂ L
†~v8!#5d~v2v8!, ~5.10!

the commutator~5.3! gives

15ut~v!u21ur ~v!u2, ~5.11!

which is the standard beam-splitter condition@14#. The
input-output relation~5.2! takes the form

âL~v!5t~v!âR~v!1r ~v! f̂ L~v! ~5.12!

appropriate to a beam splitter whose output acquires co
butions from a signal inputâR(v) and a noise inputf̂ L(v).
In this commonly used representation of a single-chan
3-6
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attenuator, the beam splitter is itself passive or lossless
the noise associated with the loss enters via a noise oscil
mode at the second input.

An analogous effective beam-splitter representation
plies whenGLR(v).1 and the device acts as an amplifie
The relations~5.9! and ~5.10! continue to apply, except tha
the normalized noise operator now has the nature of a
ation operator defined by

r ~v! f̂ L
†~v!5F̂L~v! ~5.13!

and the commutator~5.3! gives

15ut~v!u22ur ~v!u2. ~5.14!

This condition has been used previously for the effect
amplifying beam splitter@14,23,24#. The input-output rela-
tion ~5.2! takes the form

âL~v!5t~v!âR~v!1r ~v! f̂ L
†~v! ~5.15!

appropriate to a beam splitter whose output acquires co
butions from an input signalâR(v) and a noise inputf̂ L

†(v).
This representation of a single-channel amplifier again ha
passive effective beam splitter and the noise associated
the gain enters via an inverted harmonic oscillator mode
the second input.

Other examples of devices with single inputs and outp
are produced when the generic system shown in Fig.
assumed to have antireflection coatings, so that Eqs.~2.1!
and ~2.3! reduce to

âL~v!5TLL~v!b̂L~v!1F̂L~v! ~5.16!

and

b̂R~v!5TRR~v!âR~v!1F̂R~v!. ~5.17!

The effective beam-splitter theory outlined above can be
plied to the separate devices represented by these two
tions.

VI. CONCLUSIONS

The main results of the paper are the limits expressed
Eqs. ~3.9!–~3.11! for the added output noise properties
amplifiers or attenuators that are modeled by the input-ou
relations ~2.1! and ~2.2!. The model applies to the typica
components of optical communication systems, where e
linear element may have input and output signals at b
ends. As compared to a device that has a single input
output, the minimum noise for an attenuator retains its z
ys

s
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value but that for an amplifier is increased by the gain at
measured output end associated with the second input c
nel. This increase in the minimum noise occurs, of cour
even when only the first input channel has a nonzero sig
incident on the amplifier. It is also shown that the same d
input-output device may display passive, amplifying, or
tenuating behavior for different combinations of signals
the two inputs. The limits on the noise power spectra
illustrated by their application to model results for a gas la
in an unsymmetrical Fabry-Perot cavity.

The two reflection gains of the model gas laser are diff
ent when the cavity mirrors have different reflectivities. Th
inequality of the reflection gains is a general property
systems that are spatially unsymmetric around the cente
the device, as signals incident on the two ends experience
optical components within the amplifier or attenuator to d
ferent extents. The two transmission gains, on the other h
can be equal or unequal even for devices that are spat
unsymmetric.Equalityoccurs for devices whose componen
have gains or losses that are independent of the directio
propagation of the input signal, as the overall effect of t
device is determined by a product of the same factors for
two directions; the gas laser, with common transmiss
gains given by Eq.~3.14!, is an example.Inequality of the
transmission gains occurs for devices whose component
clude at least one for which the gain or loss is different
the two directions of propagation; the Brillouin amplifie
driven by a traveling-wave pump provides an extreme
ample, where the gain is zero for signal propagation para
to the pump and nonzero for antiparallel propagation.

Finally, it is shown how the results derived for the amp
fier and attenuator with two inputs and two outputs reduce
the more familiar relations that apply for devices with
single input and output. As is well known, the simpler d
vices can be represented by effective beam splitters, with
input and output devoted to the signal and the other in
devoted to the noise. No such simple beam-splitter mo
can represent the more commonly used devices with pair
inputs and outputs, but the general results for the no
power spectra derived here are easily applied to the spe
amplifiers and attenuators that are used in practical com
nication systems.
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