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Quantum limits on noise in dual input-output linear optical amplifiers and attenuators
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The input-output relations for linear amplifiers and attenuators that have two input and two output channels
are used to derive inequalities that relate their gain profiles and output noise spectra. The results generalize
earlier derivations, which mainly focus their attention on single-channel devices, to the two-ended amplifiers
and attenuators often used in practical communications systems. The present inequalities are satisfied by the
results of previous calculations for specific model systems. It is shown that; in contrast to single-channel
devices, a two-ended system can act as an amplifier for some input signals and an attenuator for others, even
when all the signal frequencies are the same. The output from the two-channel amplifier has a minimum noise
determined by the sum of the gains for both input channels, even when only one input channel is used and the
other is in its vacuum state. The conditions on device construction needed to achieve equal gains for signals
that arrive at the two ends of the device are determined. The present results reduce to those of single-channel
theory in special cases where the two output channels are each separately fed by only one of the two input
channels.
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[. INTRODUCTION are used in Sec. Il to obtain minimum values for the noise
power spectra that must be added by the device to the am-
The quantum limits on noise in linear amplifiers were plified or attenuated signal. It is shown in Secs. Il and IIl that
determined by Cavedd] in a seminal paper that consolidated the same device may show gain, loss, or passive character at
and extended a great deal of previous work. The results ahe same frequency depending on the observed output chan-
ply very generally to amplifiers that are either sensitive orhel and on the forms of signal in the input channels. This
insensitive to the phase of the input signal and have phaséeature is not revealed by previous implicit treatments. The
preserving or phase-conjugating characteristics. Separag@nditions for equality of the pairs of reflection and trans-
considerations are given to narrow-band amplifiers, formission gains are discussed in Sec. IV. Section V treats de-
which single-mode descriptions of the input and output are/ices that may be adequately described by models with
adequate, and to devices for which multimode theories argingle input and output channels, where the theory of the
needed. The explicit treatment is focused on systems witdual input-output device reduces to that derived previously
single input and output channels. [1]. Contact is made with the effective beam-splitter repre-
Many amplifiers and attenuators used in practice have linsentation of the device. The conclusions of the work are
ear spatial structures in which signals may be incident orfummarized in Sec. VI. Our calculations use a continuous-
both the left- and the right-hand ends of the device andnode description of the field throughout and the results can
whose outputs likewise emerge from both ends. A familiattherefore be applied to the propagation of traveling-wave op-
example is the communications link, where the attenuatingical pulses.
optical fiber often has amplifying sections inserted periodi-
cally along the line. The Caves theory applies in principle to
such devices but the results are implicit. The main aim of the
present paper is a more explicit account of the two-ended The lossy dielectric plate and the lossy beam splitter are
amplifier or attenuator. The generic device is described bgxamples of the dual input-output linear attenuator that have
linear relations between pairs of input and output signal opbeen considered previous[R2-5]. Results have also been
erators, which also include a pair of noise operators assocderived for the quantum-state transformations by dispersive
ated with the amplification or attenuation process. The reand absorbing four-port devic¢§]. The input-output rela-
sults apply generally to wide ranges of attenuating andions for an amplifying slab7,8] and the entanglement trans-
amplifying systems. formations by absorbing and amplifying four-port devices
In Sec. Il, the boson commutation properties of the signaJ9] have been considered. The one-dimensional quantization
operators are used in conjunction with the input-output relaschemes used in these calculations have been extended to
tions of the device to derive connections between the noisehree-dimensional systerh$0—-12, but the theory presented
operator commutators and the four distinct signal gains thatere is restricted to quasi-one-dimensional devices.
occur in reflection and transmission at the two inputs. These Figure 1 shows the configuration of inputs and outputs for
the generic device, with the notations for the mode destruc-
tion and noise operators. The shaded rectangle represents a
*Present address: INFM and Universidall’ Insubria, Diparti-  linear attenuator or amplifier, or any arbitrary multilayer suc-
mento di Scienze, Via Valleggio 11, 22100 Como, Italy. cession of such elements. The input and output light beams

II. INPUT-OUTPUT RELATIONS
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ap(®) However, the left- and right-hand noise operators do not
= commute, as they result from the same noise sources inside
. the device. The forms of thR and T coefficients must be
Fy(w) such as to ensure causality in the relations between outputs
and inputg7,13].
b, () _ The two output operators are als_o required to satisfy
independent-boson commutation relations, so that
FIG. 1. Configuration of the two inputs and two outputs of an . .
amplifier or attenuator, showing notations for the four input-output [é.._(w),éﬁ(w’)]=[bR(w),b;(w’)]= Sw—w'") and
mode destruction operators and the two noise operators.

F (@)

, , __ [aL(w),bh(w")]=0. 27
are assumed to propagate in the same material on either side
of the device. The corresponding input-output relations for &Substitution of the expressions from Ed2.1) and (2.2
phase-insensitive, phase-preserving amplifier or attenuat@ives the relations
have the forms R R
[FL(@),F{(0)]={1-GLr(®)~GL ()} 50— ')

8, (0) =R p(0)ar(0)+ T, (0)b (0)+F (0) (2. 2.8
and and
Br(0) = Trel ) 8r( @) + Rey (@) (@) + Frlw). [Fr(w) FR(0)]={1~ Crr(w) = Gri(w)}d(w=w’),
(2.2) (2.9

The terms that includeR or T functions describe the where Egs.(2.3—(2.6) have been used. It follows that the

frequency-dependent reflection and transmission of the incidoise operators- () and Fr(w) have the characters of
dent signals from and through the amplifier or attenuatordestruction operators when the sum of the relevant reflection

The £ operators describe the noise added to the input signafy'd transmission gains is less than unity and the device acts
by the amplifier or attenuator; the additional noise is associ?s an overall a_ttenuator. The noise operators have thg chgr-
cters of creation operators when the sum of the gains is

ith th i I f he signal . . o
?ﬁgs glép;ggtgiwrgggﬁii: digﬁ:rgy by the signal beams agreater than unity and the device acts as an overall amplifier.

With two inputs and two outputs, four distinct gains can The final relation in Eq(2.7) leads similarly to
in principle be measured. Thus the reflection gain profiles are

defined by [FL(w),Fi(o)]=—{Rip(0) TR(®)
+T  (0)RE ()} d(w—w").
GLR(w):|RLR(w)|2 and GRL(w):|RRL(w)|2 Lle)Red rol )
(2.3 (2.10
and the transmission gains are defined by The relations(2.8—(2.10 reduce to forms derived previ-
ously [4,5] when the two reflection coefficients and the two
G (w)=|T (0)|? and Grrlw)=|Trr(®)|>. transmission coefficients are the same functionso#és in

2.9 spatially symmetric amplifiers or attenuators, whose struc-
e i tures have reflection symmetry planes at their centers. The
The term “gain” is used for compactness even wheris  5ise operator commutators are verified with the explicit ex-
less than unity and attenuation occurs. pressions derived for a symmetric amplifying or attenuating
The detailed functional forms of the coefficieRsT, and  iclectric slal8].
of the F operators are determined by calculations based on The noise operators are allowed to vanish only for a pas-
models of specific devices but they are restricted by the comsive device that neither adds nor subtracts energy to or from
mutation properties of the input and output operators. Thushe propagating light beams. The quantities in the curly
the input operators satisfy the usual continuous-mode conbrackets in Eqs(2.8)—(2.10 then all vanish. The resulting

mutation relations for independent boson operators relations
[ar(w),ak(w')]=[b (»),b/ (0 )]=8(0—w') and GLr(®) + G (0)=Grr(w) + G (w)=1 (2.11)
[8R(w),b] (0")]=0 (2.5 and

* * —
and they also commute with the noise operators, Rir(@) Tre(®) + T (@) R (0)=0 (2.12

. At " At . At are the same as those ordinarily found for a lossless slab or
[ar(w),Fl(0")]=[bL(w),F(0")]=[ar(w),Fr(w’)] beam splittef3,14]. They lead to the conditions

:[BL((‘))"A:L((‘)’)]:O' (2.6) IR r(0)[=|Rr(®)], [T (0)]=|Tr(w)|, and

033803-2



QUANTUM LIMITS ON NOISE IN DUAL INPUT-. .. PHYSICAL REVIEW A 67, 033803 (2003

dLrt PrL— dLL— Prr= T T, (2.13 plifier, respectively. The special cases of these relations for
BL=0 andar=0 then lead to the inequalities
where theg are the phase angles of the reflection and trans-
mission coefficients in an obvious notation. The reflection G gr(w)+Grr(w)S1 and G (w)+Gr(w)S1,
and transmission gains defined in E48.3 and (2.4) are (2.19

thus related b
Y which must be satisfied for net overall attenuation or ampli-

G r(w)=Gr(w) and G  (w)=Ggrrw). fication of the single input signals. Another special case is
(2.14  that of equal-amplitude signals witlag|=|8.| in the two

_ ) . inputs, when Eq(2.18 leads to
These same relations for a passive device can also be

derived from the condition for energy conservation for in'|RLR(w)TfL(w)+TRR(w)R§L(w)|
coming and outgoing light beams at frequengyin the form
. . A A <|1-3{Gr(w)+Grr(®) + G| () +Gr(w)}],
al () () +bi(w)br(w) = ax(w)ar(w) + bl (w)by (o). (2.20

(2.1

Substitution of Eqs(2.1) and(2.2) with the noise operators
removed on the left-hand side then leads to the relations

which is valid both for joint attenuation and amplification of
the two coherent inputs.
We should note that there exist devices for which a par-
_ _ ticular superposition of coherent input signals experiences
CLr(@) T Crl@)=Cri(@) TCril0)=1 (216 o gain but the orthogonal superposition experiences net
and loss. In this case, the different values ®§ and 8, corre-
sponding to these superpositions satisfy £918 with dif-
Rir(@)T¥ () + Tre(@)RE (w)=0. (2.17  ferentinequality signs. A simple example is provided by the
special case in which both reflection coefficients egRal
These differ slightly from Eqgs(2.11) and (2.12 but it is  both transmission coefficients equil and ar and g, are
readily verified that they are equivalent and they lead to théoth real. The device then amplifies the input with= 3,
same conditions as in Eq2.13. It is emphasized that the and attenuates the input wittg=— g3 if
equalities in Egqs(2.13 and(2.14) are valid, in general, for

passive devices with arbitrary structures. They also hold for [R+T|>>1 and |R-T[?<1. (2.21
the spatially symmetric attenuators or amplifiers mentioned ) N
above. Values ofRandT that satisfy these conditions are, of course,

The energy conservation relatié®.15 is no longer valid ~ réadily found. The device may also show passive character-
in the presence of loss or gain. For a specific pair of inputStics for some superpositions, with equality qf the t\NO_Sld_es
signals, the device acts as an overall amplifier when the ex@f Ed. (2.18, and an example of such hybrid behavior is
pectation value of the left-hand side of E@.15 exceeds 9iven in Sec. lll. The relatior(2.18 applies with a fixed
that of the right-hand side and as an attenuator when thiequality sign only for fully attenuatingamplifying) de-
expectation value of the right-hand side exceeds that of th¥iceS, in which net losggain occurs for all possible input
left-hand side. We adopt these criteria as the definitions oftates.
the amplifying or attenuating character of the device and we
emphasize that the distinction depends, in principle, not only Ill. OUTPUT NOISE POWER SPECTRA

on the device construction but also on the nature of the input . -
signals. It is instructive to consider the common practical We follow the method of Cavel] to derive minimum

system with coherent signals in both input arms of the deyalues for the noise outputs of the amplifying or attenuating

vice. We therefore take expectation values of the input an&ievic?ﬂ\]Ne C(_)nsider s;:stems fol; Whifh theletxpectation val-
output energies for coherent-state signas(w)) and Ues ot the noise operators can be set equal o zero,

| BL(w)) [14]. The input-output relations hold for all values R e _

of the input amplitudes and we consider a classical limit (FL(@))=(Fg(w))=0. 3.1

where the input signals are sufficiently intense that the at-

tenuated or amplified signal components in the outputéNe also restrict attention to devices for which the added

greatly exceed the noise contributions. Substitution of Eqsn0|se is time stationary. This condition restricts the moments

(2.1) and(2.2) in the output energy on the left-hand side of of the noise operators in the operating state to salisfy
Eq. (2.15, with neglect of the noise operators, then leads to . N T S ,
the inequalities (Fil@)F{(e0")+F/(0)F(@))=N|(0)do-o ),(3 )
+ 24 + 2< 24 2
Rerart T A"+ [Trrart Rl = el |'8L(|2’18) where subscript denotesL or R. The spectraN,(w) are
' dimensionless real and positive semidefinite functions that

where thew dependences are omitted for simplicity and thedetermine the amount of noise added by the amplifier or
upper and lower symbols refer to the attenuator and the anattenuator.
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The commutators of the noise operators from E@sB) s L )
and(2.9) have the form <f|af|a>:§J do[Ni(@)—Ci(w)][a(w)|?. (3.9
A~ A T ’ _ ! 3
[Fi(@),F(0")]={1-Gr(w)=GL(0)}d(w—-w") These moments correspond to the norms of the stdtes)
=C/(0)8(w—w'), (3.3  andf.|4), where|y) is the operating state, and they are

therefore necessarily positive semidefinite for all functions
where theC,(w) are real functions that are positive for an a(w). It follows that the added noise spectra satisfy
attenuator but negative for an amplifier. The combination of
Eq. (3.2 with Eq. (3.3 gives Ni(0)=|Ci(w)|=][1-Ggr(w) =G| L(w)], (3.9

= Etw )= 1IN e So—w') (3.0 where the equality sets the minimum level of added noise.
(Fil@)Fl(0))=3N()+Ci(@)]d0—e) (@4 JI8E TS CLED

and . . ot .
o (Fi()F{(0")+F](0")F ()
(Fl(@")F\())=3[N)(0) = C|(@)]8(w=w’). (3.5 1 Gin(0)— Gy ()] S@—w’). (3.10

It is straightforward to show that the quantities in the squar
brackets in Eqs(3.4) and(3.5) must be positive semidefinite.
Thus, consider the operator

®This relation between the output noise spectra and the gain
profiles generalizes Eq94.190 and (4.21) of Ref. [1],
which refer to a system with a single input and a single
R R output. They have previously been quoted without proof for
f,a=f doF|(w)a(w), (3.6)  the special case of a spatially symmetric sys{@&i where

the two reflection gains and the two transmission gains are

where a(w) is any complex function ofv. It follows from  €qual, as in Eq(2.14); the explicit expressions derived for

Egs.(3.4) and(3.5) that the gains and the noise operators in a symmetric dielectric
slab indeed satisfy these noise inequalifigk
<%|a ,%m: $dw[N)()+C)(w)]|a(w)|? (3.7 It is often more convenient to work with the noise opera-
tor moment defined in Eq3.5), instead of the symmetrized
and noise operator combination in E@.10); the former satisfies

0 for G|R((1))+G|L((l))$l

AN PNAY = >
(FH@DFI@)Z1 15 ) 4Gy (0) - 1 s(@—0') for Gir(e)+ Gy (0)=1. 319
|
The first inequality refers to devices whose individual out- (yLyr) Y
puts| =L or R show attenuation of the input signals, while Ti(w)=Trr(w)=— FEVIUNRYORpS
the second inequality refers to devices whose individual out- totz (vt yr)( ) (3.12
puts show amplification of the input signals. The noise power '

added by an attenuator is allowed to vanish but an amplify-

ing device inevitably adds some noise to the output signaland

The minimum noise is achieved, for example, in an inverted-

population amplifier when all of the population is in the up- i~ 1(y— )+ 27+ 7e)C

per level of the active pa[r14]. Note that the minimum noise Run(w)= —— 2L WRITZNTIRIZ 5y

for the two-channel amplifying device includes the sum of RL —iw+3(y +yr)(1-C)

the gains for the two input signals, even when only one input

channel is excited. This represents an increase in the outp

noise over that for a comparable single-channel amplifier.
An example of a non-spatially-symmetric system is pro-

vided by a gas laser below threshold with mirrors of different

intensity transmission rateg and yg at the left- and right- YLYR

hand ends of the cavity15,16. This is one of the few sys- GLi(w)=GCrrlw)= P L 2 1-C)2

tems with complete available expressions for the gain param- @™t a(nt v ) 31

eters. When total population inversion of the active levels is (314

assumed, the expressions for fReand T functions are ob-

tained from Sec. IV A of16] as and

!ﬁ]e corresponding gains, defined as in EGs3) and (2.4),
are thus
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2, i _ 2 device. Again, although the two transmission gains are equal,
ot al =y (1t ye)Cl . the noise%hat accomganies the transmitted signal is gengrally
w’+3(y +vr)%(1-C)? different for the two directions of propagation. The deriva-
(3.19 tion of the expressions in Eq&3.12—(3.17 assumes com-
) ) ) plete population inversion of the active levels. The formal
HereC is the cooperation parameter of the laser, in the ranggypressions for the gains remain the same in the presence of
0=C=1, whereC=0 corresponds to zero pumping a8d  some population in the lower of the two active levels but the
=1 to threshold pumping. The device has equal transmissiopa|ye of the cooperation parameter is reduced for a given
gains but the reflection gains are generally _dlfferent. Th@bumping of the upper level and the noise is incredd&iso
become equal only for a spatially symmetric laser cavityihat the inequality3.11) is no longer satisfied as an equality.
with y_ = yr. The quantity that occurs in EQ.10 is given  The |aser above threshold, with cooperation paraméter

Gin(w)=

by >1, also acts as an amplifier over a limited rangeCaput

the behavior of the device is complicated by the generation
* *
Rir(@)Trr(@) + TuL(@)Re (@) of two or more output frequencies for a monochromatic in-
_ (v v Yy + vR)C 316 put, and we do not consider it here.
2,1 201 _ 2 ’
o +i(ntyr(1-C) IV. SYMMETRY PROPERTIES

and the similar quantity on the left of E(2.20 is given by Considerations of time-reversal symmetry were applied

the same expression. The corresponding output noise spectig Stokeg17] to the transmission and reflection of light at
on the left and right of the laser cavity are obtained on mul-an interface. His analysis of the effects of reversal of the
tiplication of Eq.(4.24 of Ref.[16] by y, and yg, respec- directions of propagation of the input and output light beams

tively, to give is valid for the transmission and reflection of light at a pas-
| sive or lossless slab and, in the notation of the present paper,
At A (vt yrC . it shows that
(Fl(o)F(@)=— TSy CRUR]
w2+ 1L _

SR 317 Rir(@) The(@) + Tre(@)RE(0) =0 (4.1
The expression for the noise spectrum on the right of theand
cavity is the same but with, and vy interchanged. IRLR(0) |24+ T (0) Thg(w)=1. 4.2

The individual gains in Eq€$3.14) and(3.15 are larger or

smaller than unity depending on the values of the varioushese relations lead to conditions additional to E413 on
parameters but the sums of the pairs of gains that occur ithe phase angles of the reflection and transmission coeffi-
Egs.(2.19 and(3.1) are always greater than unity, except cients, given by

for C=0 when they equal unity. The left-hand side of Eg.

(2.18 gives bRt dri—2¢0 =7 and ¢ =drr. (4.3

IRLrar+ TLLBLI?+|Trrar+ RruBL|? It follows that

L ettt 2(yLyr)Y%cosp]C
w®+3(y+ yR)%(1-C)?

2 T =Tgrr (4.9

’

={2

lag
and the transmission coefficients are equal in both amplitude
(3.18 and phase.

The symmetry operation of time reversal can, in principle,
for equal-amplitude input signal$eg|=|B.|, with phase also be applied to the amplifying or attenuating device. How-
differencee. The inequalities2.18 and(2.20 are thus sat- ever, reversal of the propagation directions of the inputs and
isfied by the expressions in Eq8.12—(3.15), except for a  outputs interchanges the natures of amplifiers and attenua-
symmetric cavity withy, = yr, where the symmetric super- tors, and the study of this phenomenon lies in the realm of
position of input coherent states with=0 sees net gain but retrodiction theory{ 18], which endeavours to determine the
the antisymmetric superposition with= 7 sees neither gain nature of the input to a communication channel from a
nor loss. Thus Eq(2.18 holds as an equality for the sym- knowledge of its output. Thus time reversal does not lead to
metric cavity wherxg(w)=— B, (w) and, more trivially, for —any restrictions on the phase angles of the reflection and
zero pumping withC=0. It is also readily verified that Eq. transmission coefficients for the amplifier or the attenuator as
(3.11) is satisfied as an equality, corresponding to the minisuch. Furthermore, in the absence of energy conservation for
mum added noise. the incoming and outgoing light beams of an amplifier or

Note that the same noise power expressed by(E47) is  attenuator, the relations in E(R.14) between the reflection
present in measurements of the output on the left of the deand transmission gains cannot be established on this basis.
vice for inputs that are either reflected or transmitted, even The explicit example considered in Sec. Il indeed shows
though the respective gains are generally different. A similaa case of unequal reflection gains when the two cavity mir-
remark applies to the noise in the output on the right of theors are different, withy, # yg. It is easy to understand how
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the _reflectlon gains can be_ dlffe.rent.. Thus,_for gxample, in- [F,_(w),F[(w’)]={1—G,_R(w)}é(w—w’); (5.3
sertion of a two-sided partial mirror in the interior of a de-
vice, with different amplifying and/or attenuating sections onthe inequality(3.9) for the added noise spectrum reduces to
its two sides, ensures that the outputs in reflection on the left
and on the right have experienced regions of different gain N (0)=]|1-G ()] (5.9
characteristics within the device. The effect of a perfect re-
flector, considered below in Sec. V, provides a simple ex-and the limits(3.11) to
ample of this. A A

Consider, however, the corresponding gains in transmis- (F[(w’)F,_(w))
sion, where the situation is more complicated. Each input
beam must now propagate through the entire device to reach = 0 for Gg(w)<1
the output on its far side. Both beams thus experience all of {Glr(w)—1}8(w—w") for G g(w)=1.
the amplifying and attenuating sections in a composite de- 5.5
vice and two cases can be distinguished. The first case in- :

cludes devices where the gain or loss in each section is ifrpese expressions reproduce the standard refdjitfor a

dependent of the direction of signal propagation. The overalbpase.-insensitive phase-preserving linear amplifier with one
transmission gains in the two directions are thus denveqlnput channel and one output channel.

from products of the same gain or loss factors and their mag- -~ 5p, example of these conditions is provided by the below-

nitudes are expected to be the same. The equality can Rgreshold laser amplifier of Sec. Il whep,=0. Then Egs.
proved rigorously for a multilayer stack of attenuating mate—(3_14) (3.15, and(3.17) reduce to

rials[19,20 and the proof can be extended to a combination

of amplifying and attenuating sections for stacks in which G (0)=Ggrr(w)=0, (5.6)
the gain in no part of the system exceeds lasing threshold.

The two transmission gains are then the same, as in the sec- w?+192(1+C)?

ond equality in Eq.(2.14), and the below-threshold laser Gr(w)= 4L Gr(w)=1, (5.7

gains in Eq.(3.14 provide an example. w?+1y2(1-C)%
The second case includes amplifiers and attenuators

where the gain or loss in at least one section of the composit@nd

device depends on the direction of signal propagation. The 5

overall transmission gains are then clearly different. Ex- Et W E . 7. C

amples are provided by devices driven by a traveling-wave (Fl(o")F (@)= w?+142(1-C)2

pump, as in Raman and Brillouin amplifiers. For the example et

of the Brillouin amplifier, phase-matching requirements pro-jt is readily verified that Eqs(5.4) and (5.5) are satisfied

duce zero gain for signals that propagate in the same direggith N, (o) taking its minimum possible value.

tion as the pump and amplification occurs only for signal  The pasic input-output relatiofs.2) can be put in a form

propagation in the opposite directipl]. This is an extreme  jgentical to that for a lossless beam splitter wheng(w)

case of the inequality of the two transmission gains. Time-—1 and the device acts as an attenuator. Thus, defining ef-

_rev_ersal symmetry relates the tran_smission _g_ains for Sig_”""'l%ctive transmission and reflection coefficierta) and
incident on opposite ends of a pair of amplifiers for WhIChr(w) by

the directions of the pump propagation are also reversed
[22], but there are no overall restrictions on the two trans- t(w)=R and r(o)f —F 59
mission gains for the same amplifier. (@)=Rir(w) (@ (@)=F(w). (59

w—w'). (5.8

with a normalized noise operatdf (w) that satisfies the
V. LIMIT OF SINGLE INPUT AND OUTPUT CHANNELS commutation relation

The results derived in previous sections are readily spe- R it ,
cialized to amplifiers and attenuators that have single input [fL(w) fl(e0")]=dw-o’), (5.10
and output channels. Thus, if the right-hand boundary of the .
device is made perfectly reflecting, we can set the commutators.3) gives

~ — 2 2
RRL:l, TLL:TRR:O’ and FRZO (51) 1 |t(0))| +|r(w)| ! (511)

The input-output relations then separate into two indepen/Nich is the standard beam-splitter conditiph4]. The
dent equations, where E(2.2) merely expresses the perfect NPut-output relatior(s.2) takes the form

reflection on the right and the remaining nontrivial input-

output relation(2.1) reduces to aL(0)=t(w)ar(w) +r(o)f (o) (5.12
A, () =R r(®)ar(®)+F (). (5.2 appropriate to a beam splitter whose output acqtiires contri-

butions from a signal inpuir(w) and a noise input, (w).
The commutation relation from E@2.8) is In this commonly used representation of a single-channel

033803-6



QUANTUM LIMITS ON NOISE IN DUAL INPUT-. .. PHYSICAL REVIEW A 67, 033803 (2003

attenuator, the beam splitter is itself passive or lossless andhlue but that for an amplifier is increased by the gain at the
the noise associated with the loss enters via a noise oscillatoneasured output end associated with the second input chan-
mode at the second input. nel. This increase in the minimum noise occurs, of course,
An analogous effective beam-splitter representation apeven when only the first input channel has a nonzero signal
plies whenG, g(w)>1 and the device acts as an amplifier. incident on the ampilifier. It is also shown that the same dual
The relationg5.9) and(5.10 continue to apply, except that input-output device may display passive, amplifying, or at-
the normalized noise operator now has the nature of a crdenuating behavior for different combinations of signals at

ation operator defined by the two inputs. The limits on the noise power spectra are
R R illustrated by their application to model results for a gas laser

r(w)f[(w)=FL(w) (5.13 in an unsymmetrical Fabry-Perot cavity.
) The two reflection gains of the model gas laser are differ-
and the commutato5.3) gives ent when the cavity mirrors have different reflectivities. This
1= |t(w)[2= |1 (w)[2 (5.14) inequality of the reflection gains is a general property of

systems that are spatially unsymmetric around the center of

This condition has been used previously for the effectivdne device, as signals incident on the two ends experience the
amplifying beam splittef14,23,24. The input-output rela- optical components within the amplifier or attenuator to dif-

tion (5.2 takes the form ferent extents. The two transmission gains, on the other hand,
can be equal or unequal even for devices that are spatially
a (0)=t(w)ag(w)+r(w)f (o) (5.15  unsymmetricEqualityoccurs for devices whose components

have gains or losses that are independent of the direction of
appropriate to a beam splitter whose output acquires contripropagation of the input signal, as the overall effect of the
butions from an input signax(w) and a noise input; (). device is determined by a product of the same factors for the

This representation of a single-channel amplifier again has V0 directions; the gas laser, with common transmission
passive effective beam splitter and the noise associated wi§ins given by Eq(3.14), is an examplelnequality of the
the gain enters via an inverted harmonic oscillator mode aff@nsmission gains occurs for devices whose components in-
the second input. clude at Ie_ast one for which the_ gain or Ios_s is dlﬁerent_ for
Other examples of devices with single inputs and outputdn® two directions of propagation; the Brillouin amplifier
are produced when the generic system shown in Fig. 1 idriven by a traveling-wave pump provides an extreme ex-

assumed to have antireflection coatings, so that Ej2) ample, where the gain is zero for. signal propagatiqn parallel
and (2.3 reduce to to the pump and nonzero for antiparallel propagation.

Finally, it is shown how the results derived for the ampli-
3 (0)=T, (0)b (0)+F (») (5.1 fier and attenuator with two inputs and two outputs reduce to

the more familiar relations that apply for devices with a

and single input and output. As is well known, the simpler de-
R R vices can be represented by effective beam splitters, with one
br(w)=Trr(w)ag(w)+Fr(w). (5.17 input and output devoted to the signal and the other input
) ) ) devoted to the noise. No such simple beam-splitter model
The effective beam-splitter theory outlined above can be apgan represent the more commonly used devices with pairs of
plied to the separate devices represented by these two re'ﬁ‘fputs and outputs, but the general results for the noise

tions. power spectra derived here are easily applied to the specific

amplifiers and attenuators that are used in practical commu-
VI. CONCLUSIONS nication systems.

The main results of the paper are the limits expressed by
Egs. (3.9—(3.1)) for the added output noise properties of
amplifiers or attenuators that are modeled by the input-output This work was supported by the UK Engineering and
relations(2.1) and (2.2). The model applies to the typical Physical Sciences Research Council, the Royal Society of
components of optical communication systems, where eacBdinburgh, and the Scottish Executive Education and Life-
linear element may have input and output signals at botliong Learning Department. We thank Bryan Dalton, Claire
ends. As compared to a device that has a single input an@ilson, and Masud Mansuripur for helpful advice on sym-
output, the minimum noise for an attenuator retains its zeranetry properties.

ACKNOWLEDGMENTS

[1] C. M. Caves, Phys. Rev. P6, 1817(1982. Rev. Lett.77, 1739(1996.

[2] R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, Phys. [5] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Phys. Rev. A
Rev. A52, 4823(1995. 57, 2134(1998.

[3] T. Gruner and D.-G. Welsch, Phys. Rev5A, 1661(1996. [6] L. Knoll, S. Scheel, E. Schmidt, D.-G. Welsch, and A. V.

[4] S. M. Barnett, C. R. Gilson, B. Huttner, and N. Imoto, Phys. Chizov, Phys. Rev. A9, 4716(1999.

033803-7



LOUDON et al. PHYSICAL REVIEW A 67, 033803 (2003

[7] J. Jeffers, S. M. Barnett, R. Loudon, R. Matloob, and M. Ar- Phys. Rev. A48, 681(1993.

toni, Opt. Commun131, 66 (1996. [17] G. G. Stokes, Cambridge and Dublin Math.4]).1 (1849,

[8] R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jef- reprinted in G. G. Stokesylathematical and Physical Papers
fers, Phys. Rev. A5, 1623(1997). (Johnson Reprint Corporation, New York, 196%0l. 2.

[9] S. Scheel, L. Kilb, T. Opatrny, and D.-G. Welsch, Phys. Rev. [18] S. M. Barnett, D. T. Pegg, J. Jeffers, O. Jedrkiewicz, and R.
A 62, 043803(2000. Loudon, Phys. Rev. /2, 022313(2000.

[10] '("1-9285)“”9: L. Kndl, and D.-G. Welsch, Phys. Rev.3, 3931 [19] p. Yeh, Optical Waves in Layered MediéViley, New York,

[11] S. Scheel, L. Kilh, and D.-G. Welsch, Phys. Rev. B8, 700 1983,

[20] M. Mansuripur,Classical Optics and its Application&Cam-
bridge University Press, Cambridge, 2002

[21] D. Cotter, J. Opt. Commur, 10(1983; Opt. Quantum Elec-
tron. 19, 1 (1987.

[22] R. Loudon, J. Raman Spectros;.10 (1978.

(1998.

[12] R. Matloob, Phys. Rev. A0, 50 (1999.

[13] C. W. Gardiner and M. J. Collett, Phys. Rev. 34, 3761
(1985.

[14] R. Loudon, The Quantum Theory of Ligh8rd ed.(Oxford . . . .
University Press, Oxford, 2000 [23] R. J. Glauber, irfFrontiers in Quantum Opticsedited by E. R.

[15] G. L. Mander, R. Loudon, and T. J. Shepherd, Phys. Re\0. A Pike and S. Sarkadam Hilger, Bristol, 1986 p. 534.
5753(1989. [24] J. R. Jeffers, N. Imoto, and R. Loudon, Phys. Rev7A3346

[16] R. Loudon, M. Harris, T. J. Shepherd, and J. M. Vaughan, (1993.

033803-8



