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Anisotropic pseudopotential for polarized dilute quantum gases
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An anisotropic pseudopotential arising in the context of collisions of two particles polarized by an external
field is rigorously derived and its properties are investigated. Such a low-energy pseudopotential may be useful
in describing collective properties of dilute quantum gases, such as molecules polarized by an electric field or
metastablé’P, atoms polarized by a magnetic field. The pseudopotential is expressed in terms of the reactance
(K) matrix and derivatives of the Diraé function. In most applications, it may be represented as a sum of a
traditional spherically symmetric contact term and an anisotropic part. The former contribution may be param-
etrized by a generalized scattering length. The anisotropic part of the pseudopotential may be characterized by
the off-diagonal scattering length for dipolar interactions and off-diagonal scattering volume for quadrupolar
interactions. The two-body matrix element of the pseudopotential in a basis of plane waves is also derived.
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I. INTRODUCTION AND PROBLEM SETUP Here the long-range forces are dominated by interactions of
atomic quadrupolegl8]. It should be noted that the applica-
The concept of a pseudopotential, i.e., full interparticletion of external magnetic or electric field is important in all
interaction being replaced by some less complicated “effecthese examples—the field fixes quantization axis and a con-
tive” potential, plays an important role in many subfields of densate may be described in terms of a single order param-
physics[1]. In particular, the properties of traditional Bose- eter.
Einstein condensat¢8EC) may be well understood justin  |n all the enumerated examples the collision process may
terms of as-function potential, with its strength determined be formalized using Fig. 1. Here we show a pair of identical
by a single parameter—scattering lenf2B] that character- particles interacting in the presence of an external uniform
izes low-energy scattering between two particles. A rigorougie|d. Thez axis is chosen along the direction of the field and

derivation of a pseudopotential for spherically symmetric in-3g1e g determines the orientation of collisidinteratomio
teractions has been carried out by Huang and YdhgHere

| extend their derivation ta@nisotropicinteractions. | also
evaluate a matrix element of the derived anisotropic pseud
potential in the basis of plane waves; this matrix elemen

may be useful in studies of many-body properties of quancould end up pointing in the direction opposite to the field

tum degenerate gasses. I . ) C .
Unusual collective properties of bosons and fermions withWe will disregard these nonadiabatic collisions. Then the in-

anisotropic interactions have generated a considerable intetr'::'ra(:ﬁf)n between the particles may be des_cribeql by a unique
est over the last few years, see, e.g., RE§s.14]. Below | potential V(r,#). Without loss of generality, this axially

enumerate several systems where the results of my analys?¥_mmemC potential may be expanded into Legendre polyno-

may be applicable. First, Yi and Yoi5] considered an ap- Mials PL(cos6)
plication of strong electric field to an atomic condensate. The

electric field induces atomic electric dipoles and thus aniso-

tropic dipole-dipole interactions between the atoms. Another

novel systems where the anisotropic interactions dominate at

large separations are heteronuclear molec[#¢sHere an

application of electric field is required to freeze the rotations

A zZ
)
of the molecules and to align the intrinsic molecular dipole y

axis r with respect to the field. At large separationshe
(particles are polarized along the direction of the field. In the
fnost general case, as a result of a collision, a change in
polarization may occufe.g. dipole moment of a molecule

Field

moments with the fieldMagneticdipole-dipole interactions ;
are present even for well-studied alkali-metal atoms. These /

interactions may be amplified for more complex atoms such !

as europium and chromiufl5-17 with larger magnetic 1

momenta of the ground atomic state. The influence of such -

magnetic dipolar interactions on the condensate properties

was discussed in Re0]. New systems where the anisotropy

of interactions may be also of interest are metastaifle

alkaline-earth-metal atoms placed in external magnetic field. F|G. 1. Geometry of collision process. At large separations col-
liding particles are polarized along external field. During the
collision the particles are assumed to follow a unique adiabatic
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V(r,0) =V 1) +Vandr,0), ) free-particle basis is evaluated in Sec. V. Finally, the Appen-
dix contains a derivation of certain low-energy limits of the

K matrix in the Born approximation.
Vandr,0)= > Vi(r)Pi(coso). (2)

- Il. ANISOTROPIC PSEUDOPOTENTIAL
Here Vg,((r) and Vyydr,6) are spherically symmetricL(
=0) and nonspherical contributions respectively. Although
all evenL contribute, at sufficiently large the anisotropic

We consider a solution of the Scldiager equation for a
relative motion of two particles interacting through a poten-

contribution may be dominated by a sindleterm. In par- tial V(r)
ticular, we will focus on two practically interesting cases— 52
dipolar (L=2) ﬂ(vz+ k3D (r)=V(r)d(r), (6)
C
Vanis(r,a)—NDD:—; P,(cosf), r—x, (3) wherew is the reduced mass of the pair aads the relative
r linear momentum. We assume that at sufficiently large sepa-

rationsr>r., r2V(r)—0 for any directionr. We also as-

sume that the particles are contained in some large volume

c with the characteristic size much larger than the extent of the

Vaniér,a)HVQQ:—: P,(cosh), r—w (4) _potentialrc. Some arbitrary boundary conditions may be
r imposed on the surface of the enclosing volumer At . the

. . . wave function®(r) may be expanded in free-particle solu-
interactions. In the above equations constaiits ; param- tions

etrize strengths of interactions and are proportional to the

squares of respective multipole momefgsy., molecular di-

pole moment Do) =2 [@imii (KN = Bimni(kN1Yim(6,0),  (7)
Realistic interaction potentialg¢(r) are singular at small m

interparticle separatlpns and thls smgulanty leads to .We”'wherej,(kr) andn,(kr) are spherical Bessel and Neumann
known problems 19] m_formulatmg perturbative eXpansion ¢, ctions respectively, and,,, and 3, are integration con-
for many-body properties. In particular, the matrix element ' ' m m

of the intgraction in basis of_free-pa_rticle is divgrgent. ToStaELS”'Ong Ref.[4] the pseudopotential is determined by
remedy this problem, the full |nteAract|oln potenﬂﬂhs usy- acting with72/2,(V 2+ k?) on the asymptotic forn(?)
ally replaced by a pseudopotentigl A rigorous derivation
of the pseudopotential for spherically symmetric interactions 52
has been carried out Hy]. Here | extend their method to  Vd..(r)=— =— 2, BimYim( 6, @)
anisotropic interactions. 21 m

Previously, for anisotropic dipolar interactions, Yi and ®
You [5] proposed the following pseudopotential:

and quadrupolarl(=4)

I=D)!(+1) &(r)
kl+1 r|+2'

Thus the original potentia¥/(r) is replaced by a sum over

c “lumped” multipole sources placed at=0. To complete the

f)éé=g§(r)+—:P2(cos¢9). (5 construction of the pseudopotential, we need to determine
r coefficients B, in terms of ®(r). First we relate the inte-

i i i i ration constantg,,,, and 8, by requiring the complete so-
Here the first term is related to the spherically symmetric parf sion & to be regular at =0

of the full potential(2) and the second contribution is simply

the long-range dipolar interactiof3). This pseudopotential L

has been employed in a large number of studies of the prop- Bim= 2 IClmm Q- 9)

erties of BECs with dipolar interactions, see, e.g., Refs. Im’

[5—-12. Although straightforward to work with in applica- U _

tions, the pseudopotentiéh) has certain shortcomings. For HereK," are the elements of the reactarioe K) matrix

example, it is not valid in the vicinity of resonances. Theused to parametrize multichannel scatteriag]. It is worth

pseudospotential derived here resolves these shortcomingdloting that the entire dependence of the pseudopotential on
The goal of this work is to consistently develop a pseudolhe original p_otentlal will be encapsulated in matrix elements

potential method for nonspherical interaction potentials. I1©of the K matrix. . o

will be required that two-body wave functions obtained with ~ Let us review some properties of the matrix. First

the pseudopotential’ and full original potentialV to be Itis rglated tp nl(ire familiar scatterlng ”.‘at“s via S

equal at large interparticle separations. The derivation of this_ (1+iK)(1- '_’C) and further to trans_mlssmn al'rmatnx

pseudopotential is carried out in Sec. Il. Certain properties o hroughS.: 1-1T. For Iow-engrgy collision&~—3T. The

the derived pseudopotential are discussed in Sec. Ill and wis Matrix is real and symmetric

specialize the discussion to dipolar and quadrupolar interac- . Im

tions in Sec. IV. The matrix element of the pseudopotential in Kim™ (K) =K,/ (K). (10)
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For identical bosongfermiong only even (odd) partial  of conventional phase shifts, EGL1). Upon substitution of
waves need to be considered. TRamatrix is diagonal inl Eqg. (11) into pseudopotentiall3) we recover as a limiting

andm for spherically symmetric potentials case the result of Ref4]. As the pseudopotential of Huang
. and Yang [4] the anisotropic pseudopotential is non-
[Kspﬂlmm =)' Smmytansd , (11 Hermitian and velocity dependent.

The pseudopotentigll3) may be separated into spheri-
where §, is the phase shift for partial wave Compared to cally symmetricfjsph and anisotropid,; parts,
spherically symmetric cas@nisotropic potentials addition-
ally couple different partial waves. For example, dipolar in- V= {;s o+ f)anis, (16)
teractions, Eq(3), couples and d waves so thaf Kppl39 P
#0 and quadrupolar interactiori$) couples andg waves.  where
The scalar parv*P{r) of the potential(2) assures nonvan- 5
ishing C39. In practice, thek matrix for nonspherical inter- P ﬁ_ S mi) pim (17)
actions may be found from a solution of coupled radial equa- AU VIS - Fim
tions[21]. In particular, it may be shown that for potentials

parametrized by Eq2), K!|/™ « 8oy , i.€., theK matrix is ~ @nd
diagonal with respect to magnetic quantum numbers. In Ap- 52
pendix, | derive some elements of thkematrix in the Born Vanic= — i > glr’nm’(k) (;:r’nm’ﬂ}:')‘m,)_ (18)

approximation for dipolar and quadrupolar interaction.

At this point, we related the integration constaats, and
Bim Vvia elements of theK matrix, Eq.(9). Further, in the
low-energy limitkr.<1, the integration constantg,,, may
be expressed in terms df..(r) [4],

(tmy>(1"m’)

In simplifying the anisotropic part we used symmetry prop-
erty (10) of the K matrix.

Let us focus first on the spherically symmetric part of the
pseudopotential and in the following section we will con-

1 10/ d\2+L sider the anisotropic part of the pseudopotential for dipolar
W= _IHd_) ( '+1J Y*m(Q)q)w(r)dQH and quadrupolar interactions. We expect that as in traditional
21 k r r=0 BECs of dilute atomic gasses with spherically symmetric

(12 interactions, the effect dAfsph on collective properties will be

determined mainly by the wave contribution, i.e.|=0m

Finally, combining Eqs(8)—(12) we arrive at a generaliza- ’
Y g Eas(8)~(12) g =0 term in Eq.(17),

tion of pseudopotential for anisotropic interactions,

hZ ~ ﬁz IC88A 00
Pon=—— 3 4@ em], 13 Vo™ "M Tk Voo
Y Im Ulm ) M
Iml’m’
h It may be shown that for realistic potentials the following
where low-energy limit is finite:
Allm!
o™ d(r) K o3(k)
ags= —lim OIZ , (19
(2hi(1+1) )5(r) k—0
=m0 Timle) =
2 r*2 this quantity is a generalized scattering length. With this defi-
g2+ nition, the truncated pseudopotential reduces to
X E) (r"*lf Yf,m,(mcp(r,mdn)) : 52 5
-0 Vapi® (=4 1rass a(n--[r ®(1)],
(14
o where we used(r)= 8(r)/(4r?) consistent with Ref[4].
m’ k)= Im (15) Finally, for sufficiently slowly varying wave function,
&im (K= K+ |dIn®/dInr|<1, we recover a conventional contact pseudo-
potential
andM =2 is a mass of the collision partner. 52
Vopir= 4 255 8(r) (20)
I1l. SOME PROPERTIES OF A PSEUDOPOTENTIAL

The derived anisotropic pseudopotentiE®) is one of the  widely employed in studies of BECs.
main results of this work. The spherically symmetric pseudo- Having discussed the spherically symmetric part of the
potential of Huang and Yanf#] is subsumed in this equa- pseudopotential, in the following section we consider the an-
tion. Indeed, for spherically symmetric interactions tke isotropic part of pseudopotentigl8) for dipolar and quadru-
matrix is diagonal id,|” andm,m’ and is expressed in terms polar interactions.
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IV. DIPOLAR AND QUADRUPOLAR INTERACTIONS 2

M
QQ . —
At this point we derived an anisotropic pseudopotential, 459~ 7 52 %

Eq. (13). We separated the pseudopotential into spherically

symmetric and anisotropic contributions. We found that the

spherically symmetric contribution reduces to a familiar con-It is worth noting that the above results are valid only away
tact term(20), widely employed in studies of Bose conden- from resonances. In a general case one has to find off-
sates; the only modification being an introduction of generdiagonal scattering length or volume by solving correspond-
alized scattering lengttiL9). In this section we focus on the ing scattering problem.

anisotropic contribution and illustrate some of its properties Finally the total truncated pseudopotential is given by

for dipolar and quadrupolar interactions of identical bosons.

These interactions were defined in the introductory section as 2

- h -
potentials that at large separatianare dominated by V4w agd(r)+ VIR (25)
DD Cs

Vanid I 0)—>r—3 P,(cos6) 2D with

for dipolar interactions and 42 aPb
~ sd
Ce Vgrﬁsq’(r)NM? 5
Vr, o)—>r—5 P4(cos#) (22)

1 a\°
X gé(r) E) r sz(cosa)d)(r)dQ

for quadrupolar interactions.

Anisotropic interactions mix different partial wavelsn)
and ('m’) via off-diagonal elements of thi€ matrix. From +9@P (cos)
examining Eq(A2) in the Appendix, one may determine that 42
angular selection rules lead to couplingsdindd waves for
dipolar interactions and andg waves for quadrupolar inter- ) i )
actions. In the following we assume that the dominant anisofOr dipolar interactions and
tropic effect on condensate properties arises due to these par-

d
ol @(r)]LO] (26)

ticular couplings. Therefore, 2 3QQ
7)QQ ~ s9
9 120 Vanisq)(r)"“gm K2
0D ﬁ__OO(Azo_i_ ~0
anis M 3 Voo™ V20

J 9
x[ﬁ(r)[(g) r5f P4(cose)<I>(r)dQ}

2 140
A 00 A A
VaQrgsm_MF(vég"_Ugo)' S(r) J
+5(8!)—6P4(cose) E[r D(r)]
r —
For dipolar interactions it may be showRefs.[22,23 and 0
the Appendix of this papérthat the following low-energy 27
limit is finite:
20 for quadrupolar interactions. Quantitiéér)/r" may be rec-
aPP= — Jim Kad(k) 23) ognized as the™ derivatives of the Dirac delta-function.
sd o Ko The constructed pseudopotential depends on the relative

momentumk, i.e., the potential is velocity dependent. In
We will call this quantity off-diagonal scattering length. practice, the velocity dependence is most easily treated in the

Similarly, for quadrupolar interactions we may introduce off- momentum representation and in the following section we
diagonal scattering volume evaluate the matrix element of the derived pseudopotential in
the basis of plane waves.

sg . (24)
k-0 K V. MATRIX ELEMENT OF ANISOTROPIC

PSEUDOPOTENTIAL IN FREE-PARTICLE BASIS

In the Appendix we employ the Born approximation and find . S S .
PP ploy PP While considering effects of two-particle interactions on

1 M properties of a quantum many-body system, one may require
Dc?% —— —C,, a matrix element of the derived pseudopotential in free-
s 12\/3 72 particle (plane-wave basis. We define this matrix element as
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. 1 _ _ partial waves for dipolar interactions and due to mixingsof
V(kq,ky,kq k)= —GJ drdr’e kiTgmiker’ andg waves for quadrupolar interactions. The corresponding
(2m) truncated matrix elemeriB80) may be represented as

XV(r—r")elkirelke (28) B 1 42
A v(k,k’)m—zm{assnL]-‘(k,k’)} (31
The pseudopotentidl, Eq. (13), depends on the momentum 2
of relative motion of the interacting paik=3(P—p’),  with F replaced by

wherep andp’ are momenta conjugated taandr’, respec-

tively. To separate center of mass and relative motions, we - ) oD

change the variables = (r+r’)/2 andry,=r—r’. With FPP(K,k')=—agg| V5P,(cosby)
such a substitution

2 k ’
V(kl'kZ'ki'ké):(z%);;ékﬁké,kﬁ@(_%) + NG k’) Pz(COSGk)]
for dipolar interactions and by
X 2 , §:r;1m,(k/)f dryp
mm o fQQ(k,k’):a§§| 3(K')2P4(coSby)
xexd —ik-riplo| expik’-ry,).
2
Here we introduced two relative momenta n 13—0k2<£> P4(cosek)J
k=3(k;—k,) and k' =3(kj—kj). (29

for quadrupolar interactions. In these expressiagsis a
. _ generalized scattering length9) andaZy andag? are off-
total linear momentum. Further we use partial-wave expangiagonal scattering length and volume defined by &3)

sion and Eq.(24), respectively.

The delta functionﬁkﬁké' k,+k, €Nsures conservation of the

explik’-ripl=4m > i'1j (K1) Y (K)Y) m (T1) VI. CONCLUSION
Iimq

. | rigorously derived the anisotropic pseudopotential aris-
and arrive at ing in the context of adiabatic collisions of two particles
polarized by an external field. Such a low-energy pseudopo-
f dflzeXF[—ik~flﬂl;lr’nm’(rlz)exr[ik’-rlﬂ te_ntial may be useful in describing collective properties of
dilute quantum gases, such as molecules polarized by an ex-
1 ternal electric field or metastabl®P, atoms polarized by
il —(k’)"k' YI*,m,(R')YIm(k)_ magnetic field. The pseudopotential is given by 8@). It is
naturally expressed in terms of the reacta(i¢ematrix. The
Finally, the matrix element of the anisotropic pseudopotentiapmem'6lI is non-Hermitian and velocity dependent. It is

mav be expressed in terms of relative momenta as worth noting that in the derivation | did not require the va-
y P lidity of the Born approximation as in Ref5]. Rather |

followed the method of Huang and Yarig] and at large
separations demanded the equality of solutions of the two-

1 1 body Schradinger equation with a full original potential and
x;(_(kl_ k)= (ki —kb) |, with a pseudopotential. Thus, compared to &j.by Yi and

2 2 You [5], the derived two-body pseudopotential is expected to
be also valid in the vicinity of scattering resonances.

| argued that in most applications the pseudopotential may

be represented as a sum of the traditional spherically sym-

_ 2
(4m)= 5

V(ky Kz K k)= Ot k) ky +k,

with

— 2 1 K (k) ; : !
vk )=—— = I/ =1 Im metric contact term and the anisotropic part, E2p). The_
M 7o k'’ former contribution may be parametrized by a generalized
| scattering lengti{19). We specialized discussion of the an-
k\21+2 . N isotropic part of the pseudopotential to dipolar and quadru-
K mYl'm’(k )Yim(K). (30 polar interactions and found that it can be characterized by

off-diagonal scattering length>y , Eq. (23), for dipolar in-

Let us once again specialize the discussion to dipolar anteractions and off-diagonal scattering vqua%Q, Eq. (24),
quadrupolar interactions. As in Sec. IV we assume that théor quadrupolar interactions. Although in a particular appli-
dominant anisotropic effect arises due to couplingsafidd  cation these parameters should be determined from a solu-
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tion of a multichannel scattering problem, | have deriefl _ = ,

andaggin the Born approximations. Keeping in mind many- Uim (1) = amP (k) + JO drig(r.r')
body applications, | have also derived a two-body matrix-

element in the plane-wave basis, E80). Thus in this work

| have rigorously derived an anisotropic pseudopotential for

polarized dilute quantum gases and investigated its proper-
ties.

X

oS <|m|V||'m'>u.fm,<r’>}, ™
1'm’

where constantsy,, are chosen to satisfy some boundary
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APPENDIX: OFF-DIAGONAL SCATTERING LENGTH a9
AND SCATTERING VOLUME agy IN THE BORN
APPROXIMATION

In the lowest order iV at larger one obtains

Ui (r)— ajmF(kr) + G, (kr) a
Here we obtain expressions for the reacta(¢ematrix im(r) imFi(kr) (k0 e

in the Born approximation. Using the derivédmatrix we 2 2u wd ,
estimate off-diagonal scattering Iengstfc',D and scattering X rF
volumeag? for dipolar (DD) and quadrupolafQQ) interac-
tions.

The full solution of the Schdinger equatior(6) may be

X{Im| V|l ’m’)ﬁ(kr’)}.
represented as

Uyn(T) By comparing with Eqs(7) and(9), we arrive at an expres-
d(r)= IE Yim(6,¢) TR (Al)  sion for elements of thK matrix in the Born approximation,
m
It can be shown that the radial functiong,(r) satisfy the m! pk (= ) .
following system of coupled differential equations: Kim ~-— 7 o Ji(kn)jp(kr){Im|V[I"m")dr.  (A5)
2 1(+1)
ar? r—2+k Uim(T) The Born approximation generally does not hold for low-

energy atomic collisions, since realistic interactions are sin-
gular at smallr. However, for dipolar interactions You and
=2, >, (m|V|I'm’ YUy (1), (A2)  co-workers[22,23 found numerically that away from reso-
I'm’ nances Born approximation works well for off-diagonal ma-
trix elements. Keeping this observation in mind, below we
derive off-diagonal scattering length and volume introduced
in the main body of the paper. These parameters were de-

(Im|V|I’m’>(r):fdQYl*m(Q)V(r)YI,m,(Q)_ (A3) fined as low-energy limits

with

It is convenient to introduce regular and irregular solutions oo . LKPPIEK)
of homogeneous radial equations Agg = —lierLT,
Fi(kr)=kr ji(kr),
K 50k)
Gy(kr)=—kr n(kr) aSQg?:—ano"
k—0

and corresponding standing-wave Green’s function

for DD and quadrupolar QQ interactions. In Sec. | the DD

1| Gi(kr")Fy(kr), r<r’ and QQ interactions were parametrized as

S A R T O S

Using these definitions, solutions to the system of inhomog- \V; :%p (cosé)
. _ DD 3 2 ’
enous equation€A2) regular atr =0 may be represented as
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C5 1 M

_ QQ_

Voo= e P4(cos6). Agg = 1260,}12C5. (A7)
Using these definitions and E(AS), we arrive at It is worth emphasizing that these results were derived in the

Born approximation. In a general case, to obtain parameters
entering anisotropic pseudopotentiaB), one has to numeri-

E@?:i %Ca, (A6) cgl]y_ solve the system of equationid2), especially in the
6\5 % vicinity of resonances.
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