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Mott insulators in an optical lattice with high filling factors
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We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high
filling factors. We show that in this multiband situation, the long-wavelength physics is described by a single-
band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction
parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero tempera-
tures. We show that, in particular, for a one- or two-dimensional optical lattice, the Mott-insulator phase is
more difficult to realize than anticipated previously.
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I. INTRODUCTION

The behavior of trapped Bose-Einstein condensates o
a large amount of interesting features. Specifically, the ph
coherence of a condensate creates the prospect of va
interference experiments, as shown for the first time in
experiment performed by Andrewset al. @1#. In another ex-
periment, a large number of condensates trapped in a p
odic lattice potential have been made to interfere@2#. Having
shown experimentally that, in general, condensates are p
coherent and thus show off-diagonal long-range order,
question arises whether this long-range order can also
destroyed in a controllable way. This was only very recen
achieved in a beautiful experiment by Greineret al. @3#.

In this last experiment, a trapped Bose-Einstein cond
sate is put into a three-dimensional optical lattice. The nu
ber of atoms in the condensate is sufficiently large to ob
a filling factor of almost two atoms per site. By increasi
the intensity of the lattice light, a quantum phase transit
from a superfluid state to a Mott insulating state is achiev
In the insulating phase, all phase coherence is lost du
quantum fluctuations. The transition was predicted to oc
in this system by Jakschet al. @4#, and the observed critica
conditions for the transition are in good agreement with
results of an on-site mean-field theory@5#. This indicates that
the single-band Bose-Hubbard model used in Refs.@4,5# can
accurately describe a gas of ultracold bosonic atoms in
optical lattice when the filling factor of the lattice is of th
order of 1.

However, this model is no longer valid in the case
higher filling factors such as described in the experiments
Refs.@6,7#. The theories mentioned above use single-part
wave functions corresponding to the lowest band of the
tice to calculate the microscopic parameters of the sin
band Bose-Hubbard model as a function of the lattice par
eters. In the case of high filling factors more than one ban
generally populated, leading to a multiband Bose-Hubb
model. The interaction effects that occur under these circ
stances have not been considered previously. Furtherm
the effects of thermal fluctuations are also not understo
even in the single-band Bose-Hubbard model. There
studies that describe number squeezing in an optical lattic
nonzero temperature@8,9#, but they are not in the strongl
1050-2947/2003/67~3!/033606~4!/$20.00 67 0336
rs
se
us
n

ri-

se
e

be
y

n-
-

in

n
d.
to
r

e

n

f
f

le
t-
-
-

is
d
-

re,
d,
re
at

interacting limit that is relevant for the Mott insulator. Ou
main objective here is to develop an effective theory that
deal with these issues.

II. SOLVING THE MULTIBAND BOSE-HUBBARD MODEL

To solve the problems associated with high filling facto
we have to deal with the many-body physics at every s
Since the high filling factors of interest are experimenta
most relevant in low-dimensional lattices@6,7#, we discuss
the energy scales involved in those systems. In a lo
dimensional lattice, we can approximate the on-site trapp
potential by an anisotropic harmonic potential. The oscilla
frequenciesv i and v' correspond to the trapping frequen
cies in the directions parallel and perpendicular to the p
odicity of the lattice, respectively. Because the typical size
a lattice well in the parallel direction~s! is much smaller than
in the perpendicular direction~s!, we immediately have tha
\v'!\v i . Furthermore, for the experimental conditions
interest@6,7#, the temperature is in between the two trappi
frequencies, i.e.,\v'!kBT!\v i . This implies that in ev-
ery site the gas is in the parallel direction~s! in the ground
state of the potential, but that it occupies many states in
perpendicular direction~s!. In particular, this holds for the
thermal cloud of the gas. As a consequence, the effec
dimensionality of the gas at every site is reduced and
thermal excitations are only present in the perpendicular
rection~s!. It is under these conditions that we are able
solve the relevant multiband Bose-Hubbard model by us
the following two-step procedure.

First, we solve the many-body physics at every site. D
to the famous infrared problems of a one- or tw
dimensional Bose gas this is not an easy task, and an a
rate equation of state for these gases was developed
very recently in the weakly interacting limit@11#. This equa-
tion of state is found by treating phase fluctuations in
~quasi!condensate exactly and we can, in particular, use i
determine at every temperature the number of atoms in
~quasi!condensateN0(T). Furthermore, it is shown in Ref
@11# that even in the presence of phase fluctuations,
Gross-Pitaevskii equation can still be used to calculate
density profile of the~quasi!condensate.

Second, we consider the coupling between the sites. S
©2003 The American Physical Society06-1



e

t
a
ar

es
th

gy
-
e

ng

we

in

ee
t
lle
e
e
ou
r
v
u

io

a

rs

v
th

lle
r-
d

w
se
re

er
av
r,

n

d

ve

to
l of

ly

od
ay

ua-
t of
uid
ree-
cal-

he

n
ter-
n

s,
r
ec-

e in
t
ro-
o-

tion
n

itly
.
ion
in
-

e for
is

i-

van OOSTEN, van der STRATEN, AND STOOF PHYSICAL REVIEW A67, 033606 ~2003!
we have a~quasi!condensate at every site, the coupling b
tween sites will be dominated by tunneling from~quasi!con-
densate to~quasi!condensate as opposed to~quasi!conden-
sate to thermal cloud. This means that we can describe
coupling between sites by a single-band Bose-Hubb
model. The important parameters in the Bose-Hubb
model are the on-site interaction energyU and the energyt
associated with the tunneling of atoms between near
neighbor sites. Both energies can be calculated from
knowledge of the~quasi!condensate wave functionc0(x)
5An0(x)eiq, wheren0(x) is the density profile andq is the
global phase of the~quasi!condensate. The interaction ener
U is proportional to*dxuc0(x)u4, whereas the tunneling en
ergy t requires the evaluation of an overlap integral betwe
the ~quasi!condensate wave functions of two neighbori
sites in the parallel direction~s!.

To describe the effect of the interatomic interaction,
thus need to determine how the~quasi!condensate wave
function changes as a result of the on-site interactions. S
the mean-field interaction obeys\v'!N0U!\v i under the
experimental conditions of interest, we can write the thr
dimensional wave function of the condensate as a produc
a single-particle ground-state wave function in the para
direction~s! and the~quasi!condensate wave function in th
perpendicular direction~s!. If we substitute this product wav
function into the Gross-Pitaevskii equation and integrate
the parallel direction~s!, we arrive at an effective equation fo
the ~quasi!condensate wave function. Because of the abo
mentioned inequality, we can subsequently solve this eq
tion using the Thomas-Fermi or local-density approximat
@12#. To quantify the differences between the~quasi!conden-
sate wave function and the single-particle ground-state w
function, we define a dimensionless coupling constantg both
in the noninteracting and in the interacting case. The fi
parameter we call the bare coupling constantgB5UB /tB and
it is calculated with the single-particle ground-state wa
function in every site. The second parameter we call
renormalized coupling constantgR5UR/tR and it is calcu-
lated using the single-particle ground state in the para
direction~s! and a Thomas-Fermi density profile in the pe
pendicular direction~s!. Because we have already include
the on-site interaction effects in this coupling constant,
can now write down a renormalized single-band Bo
Hubbard model for the total optical lattice, where the c
ation and annihilation operatorsâi

† andâi , respectively, and

the number operatorn̂i are not associated with the Wanni
states of atoms in the lattice, but with the macroscopic w
function of the~quasi!condensate in each site. In particula
we have

Ĥ52tR(
^ i , j &

âi
†â j1

UR

2 (
i

n̂i~ n̂i21!2mR(
i

n̂i , ~1!

wheremR is the effective chemical potential. The interactio
parameter is given by UR5]2Fos/]N2uN5N0

[]mos/]NuN5N0
, whereFos is the on-site free energy an

mos is the on-site chemical potential. Formally, the effecti
chemical potential is given bymR5m2mos2UR/2, where
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the last term is substracted from the interaction energy
make the analogy to the single-band Bose-Hubbard mode
Refs.@4,5# complete.

It is important to understand that the hopping term on
describes the hopping between the~quasi!condensates in
neighboring sites. While it is clear that this is a very go
approximation in the case of neighboring condensates, it m
not be immediately obvious in the case of neighboring q
sicondensates. However, it should be noted that the effec
the hopping is large only when the system is in the superfl
phase, in which case all the sites couple to form a true th
dimensional condensate. The tunneling strength can be
culated in the tight-binding limit and depends only on t
overlap in the parallel direction~s!. As a result the bare and
renormalized values oft are equal. However, the interactio
energy is strongly reduced due to the repulsive on-site in
actions that spreadout the~quasi!condensate wave functio
considerably. We find for a two-dimensional gas that

gR5gBS p

2 D 1/4S , i

N0aD 1/2

}gBS ,'

RTF
D 2

~2!

and for a one-dimensional gas that

gR5gBS p

2 D 1/2S , i
2

3N0a,'
D 1/3

}gBS ,'

RTF
D . ~3!

Herea is the positives-wave scattering length of the atom
, i5A\/mv i and ,'5A\/mv' are the harmonic-oscillato
lengths in the parallel and perpendicular directions, resp
tively, andRTF is the Thomas-Fermi radius of the~quasi!con-
densate. The physical interpretation of Eqs.~2! and~3! is that
as a result of the repulsive interatomic interactions, the~qua-
si!condensate reduces its total energy by increasing its siz
the perpendicular direction~s!. This can be seen from the fac
that the decrease in the coupling constant is inversely p
portional to the increase in the surface or length of the tw
or one-dimensional gas, respectively. Note that this reduc
is particularly important for the critical conditions, which ca
be written asgR.4zN0 for largeN0 @5#. In order to verify
the consistency of our two-step approach, we explic
check the relevant energy scales using our results of Eqs~2!
and ~3!. First, we assumed that the mean-field interact
energyN0UR is much smaller than the trapping frequency
the parallel direction~s! \v i . This requires that for a one
dimensional lattice

N0!S \v i

\v'
D 2

A2p
, i

a
. ~4!

Second, we also assumed that the crossover temperatur
the formation of a~quasi!condensate in two dimensions
much lower than\v i . This results in

\v'S N

z~2! D
1/2

!\v i , ~5!

whereN is the total number of atoms at every site. For typ
cal numbers used in the experiments by Orzelet al. @6#, we
6-2
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find the conditionN0<N!105, which means that our as
sumptions are valid for even the largest filling factor r
ported. For the case of the two-dimensional lattice of Grei
et al. @7#, a similar inequality can be derived. It is found th
this experiment is also in the regime where our assumpt
are valid. Note that the use of the Thomas-Fermi approxim
tion also imposes a lower limit on the filling factor, name
N0a@ l' . However, when the filling factor is below thi
limit, we are in the regime where we can safely use the b
coupling constant. We thus conclude that depending on
filling factor, either our renormalized or the bare theory
applicable to these experiments.

III. THERMAL EFFECTS

Besides the effect of thermal fluctuations on the num
of ~quasi!condensate atoms per siteN0(T), which is ac-
counted for by the equation of state of the low-dimensio
Bose gas@11#, there is also the effect of thermal fluctuatio
on the renormalized single-band Bose-Hubbard model its
These thermal fluctuations are also present in a lattice w
low filling factor. To study these thermal fluctuations, we u
an on-site mean-field Hamiltonian that we can derive fr
Eq. ~1!, using the approach presented in Ref.@5#. We de-
couple the tunneling term, by introducing a complex me
field parameterc as follows: âi

†â j5câ j1âi
†c* 2ucu2.

Physically, c is the superfluid order parameter that w
choose to be real in the following. Performing the abo
substitution, we find

Ĥ~c!52ztc~ â†1â!1
UR

2
n̂~ n̂21!2mRn̂1ztc2, ~6!

with z being the coordination number. Since this is an on-s
Hamiltonian, we have dropped the site indices for simplic

FIG. 1. Phase diagram of the Bose-Hubbard model in term
the dimensionless chemical potentialmR /zt and the dimensionles
coupling constantUR /zt. The solid and dotted lines correspond
T50 andT50.1Uc ~whereUc is the criticalUR for the N05100
lobe!, respectively. The inset shows a qualitative phase diagram
terms of the temperatureT and the coupling constantg. N, SF, and
MI indicate the normal gas phase, the superfluid, and the M
insulating phase, respectively.
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Moreover, we assumed that the chemical potential is cho
such that the expectation value of the number operatorn̂ is
equal to the number of quasi~condensate! particlesN0(T) in
every site.

The zero-temperature phase diagram of this mean-fi
theory can be solved exactly@5,10# and is shown in Fig. 1,
where the Mott-insulator phases correspond to the vari
lobes. For nonzero temperatures the model can no longe
solved analytically and we have to resort to numerical me
ods. If we putc50, we find that the eigenstates of Eq.~6!
are given by number states. Using a basis consisting of th
number states, running from a certain minimum filling fact
Nmin to a certain maximumNmax, we can calculate the
grand-canonical partition functionZ(c)5Tr(e2H(c)/kBT) by
diagonalizing the mean-field Hamiltonian given in Eq.~6!.
Next we determine the thermodynamic potentialV(c)5
2kBT ln Z(c) as a function of the order parameterc. For
zero temperature the calculation converges whenNmax.N0
14 and Nmin.N024, whereN0 is the filling factor of the
relevant Mott-insulator lobe. For nonzero temperatures, m
states must be included.

To obtain the relevant thermodynamic quantities,
minimize the grand potentialV(c) and the value ofc at the

of

in

t-

FIG. 2. Condensate fraction~a! and particle number fluctuation
~b! as functions of the dimensionless coupling constant, forkBT
50, 0.08U, and 0.145U ~solid, dashed, and dotted lines, respe
tively!. The coupling constant:UR /zt5440 ~the dashed line in
Fig. 1!.
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minimum ofV(c) corresponds physically to the square ro
of the number of atoms that is superfluid in the direction~s!
parallel to the periodicity of the lattice. In the Mott insulato
the gas is only insulating in the direction~s! parallel to the
periodicity of the optical lattice, whereas it is always a s
perfluid in the perpendicular direction~s!. The other quantity
of interest is the value of the number fluctuations. This nu
ber is important because in the Mott-insulator phase
number fluctuations are exactly zero.

The final results of the calculations are shown in Fig. 2.
these figures, the longitudinal superfluid fraction and
number fluctuations are plotted along the dashed line in
1 for different temperatures. It can clearly be seen from F
2~a! that the superfluid part of the phase diagram decrea
with increasing temperature. In addition Fig. 2~b! shows that
at zero temperature the density fluctuations drop exactl
zero in the Mott-insulating regions, but this does not happ
at nonzero temperature. This is a result of the fact that
superfluid to Mott insulator transition is a quantum pha
transition. The reason that there is still a reduction
particle-number fluctuations at nonzero temperature is
the excitation spectrum of a fluctuation is gapped in t
region @5#, which means that the fluctuations are expon
tially suppressed. Due to this strong suppression of the n
ber fluctuations, one will be able to observe a phase tha
formally not a Mott insulator, but experimentally has ve
similar features. Another feature we can clearly see in F
2~b! is that the part of the phase diagram where the num
fluctuations are suppressed also decreases with increa
temperature, and shrinks in the opposite direction of tha
the superfluid part.

On the basis of the above calculations, we can draw
nonzero temperature phase diagram shown in Fig. 1. In
figure, the solid lines indicate the superfluid to Mott insula
e
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transition at zero temperature and the dotted lines indic
the superfluid to normal transition at nonzero temperatu
The inset shows the phase diagram in terms of the temp
ture and the coupling constant. This diagram agrees v
well with the general description given by Sachdev@10#.

IV. CONCLUSION

We have shown that for low-dimensional lattices, whi
generally have a filling factor much larger than 1, we shou
in principle, solve a many-band Bose-Hubbard model. T
can be achieved by first solving the on-site many-body pr
lem, and then deriving an effective theory that describes
coupling between the sites in the optical lattice in terms o
renormalized single-band Hubbard model. We have ca
lated the effects of thermal excitations in this renormaliz
model and we have shown that the number fluctuations in
above model can only drop to zero in the absence of ther
fluctuations. However, if the temperature is sufficiently lo
the number fluctuations are exponentially suppressed. T
means that at a certain nonzero temperature, the crossov
the Mott-insulator phase can still be observed if the coupl
constant is increased to a value larger than the ze
temperature critical value~cf. Fig. 1!. It is important to real-
ize that to experimentally obtain the Mott insulator with
large filling factorN0, the coupling constantgR5UR/t must
be larger than 4zN0. However, Eqs.~2! and~3! show that the
renormalized coupling constant is much smaller than
bare coupling constant for a low-dimensional optical lattic
We therefore conclude that in terms of the bare coupl
constant, which is the experimentally relevant control para
eter, the Mott-insulator phase is much more difficult to o
tain than is naively anticipated on the basis of a pur
single-band Bose-Hubbard model.
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