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Mott insulators in an optical lattice with high filling factors
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We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high
filling factors. We show that in this multiband situation, the long-wavelength physics is described by a single-
band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction
parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero tempera-
tures. We show that, in particular, for a one- or two-dimensional optical lattice, the Mott-insulator phase is
more difficult to realize than anticipated previously.
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[. INTRODUCTION interacting limit that is relevant for the Mott insulator. Our
main objective here is to develop an effective theory that can
The behavior of trapped Bose-Einstein condensates offeideal with these issues.
a large amount of interesting features. Specifically, the phase
goherence of a cqndensate creates the prospect_ of YariOH.SSOLVING THE MULTIBAND BOSE-HUBBARD MODEL
interference experiments, as shown for the first time in an
experiment performed by Andrevet al. [1]. In another ex- To solve the problems associated with high filling factors,
periment, a large number of condensates trapped in a penve have to deal with the many-body physics at every site.
odic lattice potential have been made to interf@f Having ~ Since the high filling factors of interest are experimentally
shown experimentally that, in general, condensates are phasest relevant in low-dimensional latticg§,7], we discuss
coherent and thus show off-diagonal long-range order, théhe energy scales involved in those systems. In a low-
question arises whether this long-range order can also b@imensional lattice, we can approximate the on-site trapping
destroyed in a controllable way. This was only very recentlypotential by an anisotropic harmonic potential. The oscillator
achieved in a beautiful experiment by Greimgral. [3]. frequenciesw; and w, correspond to the trapping frequen-
In this last experiment, a trapped Bose-Einstein condengies in the directions parallel and perpendicular to the peri-
sate is put into a three-dimensional optical lattice. The numedicity of the lattice, respectively. Because the typical size of
ber of atoms in the condensate is sufficiently large to obtaira lattice well in the parallel directids) is much smaller than
a filling factor of almost two atoms per site. By increasingin the perpendicular directi¢s), we immediately have that
the intensity of the lattice light, a quantum phase transition: w, <fiw|. Furthermore, for the experimental conditions of
from a superfluid state to a Mott insulating state is achievedinterest[6,7], the temperature is in between the two trapping
In the insulating phase, all phase coherence is lost due tbequencies, i.efw, <kgT<7%iw. This implies that in ev-
quantum fluctuations. The transition was predicted to occuery site the gas is in the parallel directienin the ground
in this system by Jakscét al. [4], and the observed critical state of the potential, but that it occupies many states in the
conditions for the transition are in good agreement with theperpendicular directig). In particular, this holds for the
results of an on-site mean-field thedB/. This indicates that thermal cloud of the gas. As a consequence, the effective
the single-band Bose-Hubbard model used in Rdf&] can  dimensionality of the gas at every site is reduced and the
accurately describe a gas of ultracold bosonic atoms in athermal excitations are only present in the perpendicular di-
optical lattice when the filling factor of the lattice is of the rection(s). It is under these conditions that we are able to
order of 1. solve the relevant multiband Bose-Hubbard model by using
However, this model is no longer valid in the case ofthe following two-step procedure.
higher filling factors such as described in the experiments of First, we solve the many-body physics at every site. Due
Refs.[6,7]. The theories mentioned above use single-particldo the famous infrared problems of a one- or two-
wave functions corresponding to the lowest band of the latdimensional Bose gas this is not an easy task, and an accu-
tice to calculate the microscopic parameters of the singlerate equation of state for these gases was developed only
band Bose-Hubbard model as a function of the lattice paramvery recently in the weakly interacting limit1]. This equa-
eters. In the case of high filling factors more than one band iion of state is found by treating phase fluctuations in the
generally populated, leading to a multiband Bose-Hubbardguasjcondensate exactly and we can, in particular, use it to
model. The interaction effects that occur under these circumdetermine at every temperature the number of atoms in the
stances have not been considered previously. Furthermor&uasjcondensatéNy(T). Furthermore, it is shown in Ref.
the effects of thermal fluctuations are also not understood,11] that even in the presence of phase fluctuations, the
even in the single-band Bose-Hubbard model. There ar&ross-Pitaevskii equation can still be used to calculate the
studies that describe number squeezing in an optical lattice aensity profile of thequasjcondensate.
nonzero temperaturg,9], but they are not in the strongly Second, we consider the coupling between the sites. Since
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we have a(quasjcondensate at every site, the coupling be-the last term is substracted from the interaction energy to
tween sites will be dominated by tunneling frqgquasjcon-  make the analogy to the single-band Bose-Hubbard model of
densate tolquasjcondensate as opposed (uasjconden-  Refs.[4,5] complete.
sate to thermal cloud. This means that we can describe the It is important to understand that the hopping term only
coupling between sites by a single-band Bose-Hubbardescribes the hopping between tkguasjcondensates in
model. The important parameters in the Bose-Hubbardeighboring sites. While it is clear that this is a very good
model are the on-site interaction enefdyand the energy  approximation in the case of neighboring condensates, it may
associated with the tunneling of atoms between nearestiot be immediately obvious in the case of neighboring qua-
neighbor sites. Both energies can be calculated from thsicondensates. However, it should be noted that the effect of
knowledge of the(quasjcondensate wave functiogy(x) the hopping is large only when the system is in the superfluid
= Jny(x)e'?, whereny(x) is the density profile and is the ~ phase, in which case all the sites couple to form a true three-
global phase of théquasjcondensate. The interaction energy dimensional condensate. The tunneling strength can be cal-
U is proportional tof dx| o(x)|*, whereas the tunneling en- culated in the tight-binding limit and depends only on the
ergyt requires the evaluation of an overlap integral betweerpverlap in the parallel directig¢s). As a result the bare and
the (quasjcondensate wave functions of two neighboringrenormalized values dfare equal. However, the interaction
sites in the parallel directidg). energy is strongly reduced due to the repulsive on-site inter-
To describe the effect of the interatomic interaction, weactions that spreadout tHguasjcondensate wave function
thus need to determine how thguasjcondensate wave considerably. We find for a two-dimensional gas that
function changes as a result of the on-site interactions. Since

. . . 1/4 2

the mean-field interaction obeyigo, <NoU <% w| under the gr=g €\I ch e_i )
experimental conditions of interest, we can write the three- RIB Noa B\ Rye
dimensional wave function of the condensate as a product of _ _
a single-particle ground-state wave function in the paralleend for a one-dimensional gas that
direction(s) and the(quasjcondensate wave function in the

) . . . . 12 € 1/3 ¢
perpendicular directids). If we substitute this product wave m I T R 3
function into the Gross-Pitaevskii equation and integrate out 9r=0%s 3Ngat | 9e Rreg)

the parallel directios), we arrive at an effective equation for

the (quasjcondensate wave function. Because of the aboveHerea is the positives-wave scattering length of the atoms,
mentioned inequality, we can subsequently solve this equat = J#i/mw| and €, = J#/mw, are the harmonic-oscillator
tion using the Thomas-Fermi or local-density approximationlengths in the parallel and perpendicular directions, respec-
[12]. To quantify the differences between tfgasjconden-  tively, andR¢g is the Thomas-Fermi radius of tliguasjcon-
sate wave function and the single-particle ground-state wavdensate. The physical interpretation of E@.and(3) is that
function, we define a dimensionless coupling constgembth  as a result of the repulsive interatomic interactions,(the-

in the noninteracting and in the interacting case. The firssi)condensate reduces its total energy by increasing its size in
parameter we call the bare coupling consgt Ug/tg and  the perpendicular directids). This can be seen from the fact

it is calculated with the single-particle ground-state wavethat the decrease in the coupling constant is inversely pro-
function in every site. The second parameter we call thgortional to the increase in the surface or length of the two-
renormalized coupling constagk=URg/tg and it is calcu- or one-dimensional gas, respectively. Note that this reduction
lated using the single-particle ground state in the parallels particularly important for the critical conditions, which can
direction(s) and a Thomas-Fermi density profile in the per-be written asggr>4zN, for large Ny [5]. In order to verify
pendicular directiofs). Because we have already included the consistency of our two-step approach, we explicitly
the on-site interaction effects in this coupling constant, wecheck the relevant energy scales using our results of 2)s.
can now write down a renormalized single-band Bose-and (3). First, we assumed that the mean-field interaction
Hubbard model for the total optical lattice, where the cre-energyNyUpg is much smaller than the trapping frequency in
ation and annihilation operatosg anda; , respectively, and the parallel directiofs) 7w . This requires that for a one-

the number operatat; are not associated with the Wannier dimensional lattice
states of atoms in the lattice, but with the macroscopic wave 7 ¢
function of the(quasjcondensate in each site. In particular oy Ml

(quas) p : No< \/277 :
we have hw

4

R L o R Second, we also assumed that the crossover temperature for
H= —tRE ala;+ E ni(ni—1)—ur> Ni, (1)  the formation of a(quasjcondensate in two dimensions is
! : much lower tham.w) . This results in

whereug is the effective chemical potential. The interaction N
parameter is  given by Ug=dF°¥IN?[\_y, ﬁ“’i(@
=du"IIN|y=n, whereFis the on-site free energy and

n®is the on-site chemical potential. Formally, the effectivewhereN is the total number of atoms at every site. For typi-
chemical potential is given byig=u—u°*—URg/2, where cal numbers used in the experiments by Oeedl. [6], we

1/2
) <ﬁwH , (5)
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FIG. 1. Phase diagram of the Bose-Hubbard model in terms of r
the dimensionless chemical potentiak/zt and the dimensionless
coupling constantg/zt. The solid and dotted lines correspond to
T=0 andT=0.1U. (whereUy, is the criticalUg for the Ny=100 — 0.2F
lobe), respectively. The inset shows a qualitative phase diagram in/'\ r
terms of the temperature and the coupling constagt N, SF, and =
MI indicate the normal gas phase, the superfluid, and the Mott-i
insulating phase, respectively. “‘Zo 0.1%
find the conditionNyg<N<10°, which means that our as-
sumptions are valid for even the largest filling factor re- i
ported. For the case of the two-dimensional lattice of Greiner 0.0 ~_r -
et al.[7], a similar inequality can be derived. It is found that ~ 4.34x10* 4.38x10* 4.42x10* 4.46x10*
this experiment is also in the regime where our assumptions pf zt

are valid. Note that the use of the Thomas-Fermi approxima-
tion also imposes a lower limit on the filling factor, namely, (b) as functions of the dimensionless coupling constant, kigF

'?'0"?‘>'r Ho'wever, When the filling factor is below this =0, 0.08J, and 0.14% (solid, dashed, and dotted lines, respec-
limit, we are in the regime where we can safely use the barﬁvely). The coupling constanttygz/zt=440 (the dashed line in
coupling constant. We thus conclude that depending on thEig. 2.

filling factor, either our renormalized or the bare theory is
applicable to these experiments.

FIG. 2. Condensate fractig@m) and particle number fluctuations

Moreover, we assumed that the chemical potential is chosen

IIl. THERMAL EFEECTS such that the expectation value of the number openatisr
equal to the number of quasondensateparticlesNg(T) in
Besides the effect of thermal fluctuations on the numbeevery site.
of (quasjcondensate atoms per sitéy(T), which is ac- The zero-temperature phase diagram of this mean-field
counted for by the equation of state of the low-dimensionatheory can be solved exactl$,10] and is shown in Fig. 1,
Bose gag11], there is also the effect of thermal fluctuations where the Mott-insulator phases correspond to the various
on the renormalized single-band Bose-Hubbard model itselfobes. For nonzero temperatures the model can no longer be
These thermal fluctuations are also present in a lattice witRolved analytically and we have to resort to numerical meth-
low filling factor. To study these thermal fluctuations, we useods. If we putyy=0, we find that the eigenstates of H@)
an on-site mean-field Hamiltonian that we can derive fromgre given by number states. Using a basis consisting of these
Eq. (1), using the approach presented in Réf]. We de-  number states, running from a certain minimum filling factor
couple the tunneling term, by introducing a complex mean{\.. to a certain maximumN,,,,, we can calculate the
field parametery as follows: ala;=ya;+a/y* —|¢|%  grand-canonical partition functiofi(y) = Tr(e™"(/keT) by
Physically, s is the superfluid order parameter that we diagonalizing the mean-field Hamiltonian given in E@).
choose to be real in the following. Performing the aboveNext we determine the thermodynamic potenta(y)=
substitution, we find —kgT InZ(y) as a function of the order parametgr For
zero temperature the calculation converges wNep,~=Ng
A Ap oA R~ ~ A +4 and N,,;,=Ny—4, whereN, is the filling factor of the
H(y)=—ztp(a'+a)+ 7n(n—1)—MR”+thZ' ©®  relevant Mn(])”'gt-insoulator lobe. Foor nonzero tgmperatures, more
states must be included.
with z being the coordination number. Since this is an on-site  To obtain the relevant thermodynamic quantities, we
Hamiltonian, we have dropped the site indices for simplicity.minimize the grand potentid () and the value of} at the
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minimum of Q () corresponds physically to the square roottransition at zero temperature and the dotted lines indicate
of the number of atoms that is superfluid in the diredtpn the superfluid to normal transition at nonzero temperature.
parallel to the periodicity of the lattice. In the Mott insulator, The inset shows the phase diagram in terms of the tempera-
the gas is only insulating in the directi@h parallel to the ture and the coupling constant. This diagram agrees very
periodicity of the optical lattice, whereas it is always a su-well with the general description given by Sachd&a].

perfluid in the perpendicular directi@). The other quantity

of int_ertlast is the value of theT number flugtuations. This num- IV. CONCLUSION
ber is important because in the Mott-insulator phase the
number fluctuations are exactly zero. We have shown that for low-dimensional lattices, which

The final results of the calculations are shown in Fig. 2. Ingenerally have a filling factor much larger than 1, we should,
these figures, the longitudinal superfluid fraction and then principle, solve a many-band Bose-Hubbard model. This
number fluctuations are plotted along the dashed line in Figcan be achieved by first solving the on-site many-body prob-
1 for different temperatures. It can clearly be seen from Figlem, and then deriving an effective theory that describes the
2(a) that the superfluid part of the phase diagram decreasezupling between the sites in the optical lattice in terms of a
with increasing temperature. In addition Figbpshows that renormalized single-band Hubbard model. We have calcu-
at zero temperature the density fluctuations drop exactly téated the effects of thermal excitations in this renormalized
zero in the Mott-insulating regions, but this does not happermodel and we have shown that the number fluctuations in the
at nonzero temperature. This is a result of the fact that thabove model can only drop to zero in the absence of thermal
superfluid to Mott insulator transition is a quantum phasefluctuations. However, if the temperature is sufficiently low,
transition. The reason that there is still a reduction inthe number fluctuations are exponentially suppressed. This
particle-number fluctuations at nonzero temperature is thaneans that at a certain nonzero temperature, the crossover to
the excitation spectrum of a fluctuation is gapped in thisthe Mott-insulator phase can still be observed if the coupling
region [5], which means that the fluctuations are exponen<onstant is increased to a value larger than the zero-
tially suppressed. Due to this strong suppression of the nuntemperature critical valuéef. Fig. 1). It is important to real-
ber fluctuations, one will be able to observe a phase that ie that to experimentally obtain the Mott insulator with a
formally not a Mott insulator, but experimentally has very large filling factorNg, the coupling constargr=URg/t must
similar features. Another feature we can clearly see in Figbe larger than #N,. However, Eqs(2) and(3) show that the
2(b) is that the part of the phase diagram where the numberenormalized coupling constant is much smaller than the
fluctuations are suppressed also decreases with increasibgre coupling constant for a low-dimensional optical lattice.
temperature, and shrinks in the opposite direction of that of\e therefore conclude that in terms of the bare coupling
the superfluid part. constant, which is the experimentally relevant control param-

On the basis of the above calculations, we can draw theter, the Mott-insulator phase is much more difficult to ob-
nonzero temperature phase diagram shown in Fig. 1. In thigin than is naively anticipated on the basis of a purely
figure, the solid lines indicate the superfluid to Mott insulatorsingle-band Bose-Hubbard model.
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