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Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
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We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a
Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an
additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the
threshold energy 2n of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we
showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS
state to a Bose-Einstein condensate~BEC! of the Nozières and Schmitt-Rink kind, in which the BCS-type
superfluid phase transition continuously changes into the BEC type as the threshold energy is decreased. In this
paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the
local-density approximation. We also give results for both weak and strong coupling to the Feshbach reso-
nance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density
profile at the superfluid phase-transition temperatureTc , reflecting the change of the dominant particles going
from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear
well aboveTc . We also discuss the ‘‘phase diagram’’ aboveTc as a function of the tunable threshold energy
2n. We introduce a characteristic temperatureT* (2n) describing the effective crossover in the normal phase
from a Fermi gas of atoms to a gas of stable molecules.

DOI: 10.1103/PhysRevA.67.033603 PACS number~s!: 03.75.Kk, 03.75.Ss, 74.20.Mn
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I. INTRODUCTION

The search for the superfluid phase transition in a trap
gas of Fermi atoms is one of the most exciting problems
current physics@1#. This involves the formation of BCS Coo
per pairs made up of degenerate fermions of two differ
hyperfine states~‘‘spin up’’ and ‘‘spin down’’!. Degenerate
Fermi gases have been realized in40K @2# and 6Li @3–5#.
Very recently, a Feshbach resonance was observed in40K
working with the two hyperfine statesu9/2,29/2& and u9/2,
27/2& ~Ref. @6#!. In a Feshbach resonance, a quasimolec
boson is formed, which can produce an attractive pair
interaction between two Fermi atoms of opposite sp
@7–11#. As a result, one expects BCS-type superfluidity w
a high phase-transition temperatureTc due to this strong at-
tractive interaction@9#. However, such a strong interaction
also known to enhance fluctuations, which can strongly s
pressTc predicted by the usual mean-field BCS theory. Th
the inclusion of these Cooper-pair channel fluctuations
crucial in considering the high-Tc superfluidity induced by
an atomic Feshbach resonance.

In a previous paper@11#, we have discussed how this fluc
tuation contribution affects the superfluid phase-transit
temperature in auniform Fermi gas, extending the theor
developed by Nozie`res and Schmitt-Rink@12–15#. We as-
sume thatN↑5N↓ , whereNs is the number of Fermi atom
with spin s, and that both fermion components have t
same single-particle energy. As the threshold energy of
Feshbach resonance is lowered, the character of the p
transition is found to continuously change from the BCS ty
to Bose-Einstein condensate~BEC! type. In the latter regime
Tc is strongly suppressed compared with the usual me
field BCS theory, and it approachesTc50.218TF in the BEC
limit. ~HereTF is the Fermi temperature of the noninteracti
1050-2947/2003/67~3!/033603~18!/$20.00 67 0336
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spin-up Fermi gas.! We showed that the stable bosons th
appear as we enter the BEC regime are a strongly hybrid
mixture of Feshbach molecules and preformed Cooper pa
The Feshbach component of these boson excitations
mately dominates in the BEC limit.

In this paper, we extend our previous work@11# by includ-
ing the effect of a harmonic trap potential. This extension
clearly necessary since all experiments on Fermi gases
done in some sort of trap potential. So far, the trapping
tential has been examined within the mean-field BCS the
using the simple local density approximation~LDA ! @10#. In
this paper, we also use the LDA but go past the mean-fi
approximation to include the effect of particle-particle flu
tuations. We show how the BCS-BEC crossover can be
served from characteristic changes in the static atomic d
sity profile, easily measured by standard techniques.

Besides the phase-transition temperatureTc , it is also im-
portant to understand how strong-coupling fluctuation effe
enter aboveTc . In particular, it is an interesting problem t
clarify at what temperature the stable Feshbach molec
and preformed Cooper pairs in the BEC regime first app
in the normal-fluid phase aboveTc . Our calculations show
that aboveTc , there exists a characteristic temperatureT* ,
which describes the crossover from a free Fermi gas t
molecular Bose gas.

In this paper, our treatment of the particle-particle fluctu
tions assumes that their coupling to the Feshbach reson
is weak, and can be thus treated perturbatively. Most of
discussion is for this case, in which the BCS-BEC crosso
is driven by decreasing the value of the Feshbach reson
threshold (2n) relative to twice the bare Fermi energ
(2«F). When the Feshbach coupling strength is very large
Kokkelmans and co-workers have found@16#, it is not clear
that our simple treatment of the particle-particle fluctuatio
©2003 The American Physical Society03-1
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is valid. However, in this limit, one finds that the BCS-BE
crossover occurs for values 2n@2«F because of the broa
Feshbach resonance~see also Ref.@17#!. Effectively, one is
in the strong-coupling regime discussed by Nozie`res and
Schmitt-Rink@12#, where the BEC phase is associated w
preformed Cooper pairs. When the threshold energy 2n be-
comes comparable to 2«F , our calculations again show tha
the Feshbach resonance takes over as the dominant co
nent of the BEC phase.

This paper is organized as follows: In Sec. II, we revie
the coupled fermion-boson model used in earlier work a
discuss the LDA extension of the results we presented in R
@11#. In Sec. III, we use this opportunity to expand on certa
aspects that were not discussed in detail in Ref.@11# due to
lack of space. The BCS-BEC crossover in a trapped sys
is discussed in Sec. IV. In Sec. V, we consider the chara
of the composite bosons. The crossover from a free Fe
gas to a gas of long-lived molecular bosons aboveTc is
discussed in Sec. VI. Section VII considers the case o
strong Feshbach coupling.

The present paper makes use of standard finite temp
ture diagrammatic field theory techniques@18#. For a more
extended treatment of this formalism in the context of
BCS-BEC crossover, we refer to Chaps. 2 and 3 of Ref.@19#.

II. FORMULATION

A. Coupled fermion-boson gas in a trap

The gas of interacting Fermi atoms coupled to a Feshb
resonance can be described by the coupled fermion-bo
model given@7–11,20–22# by

H(
ps

«pcps
† cps1(

q
~Eq

012n!bq
†bq

2U(
p,p8

cp↑
† c2p↓

† c2p8↓cp8↑

1gr(
p,q

@bq
†c2p1q/2↓cp1q/2↑1H.c#. ~2.1!

Here cps
† is the creation operator of a Fermi atom with t

kinetic energy«p5p2/2m. We assume that the system i
volves two atomic hyperfine states which will lead
Cooper-pair bosons and hence superfluidity. We desc
these atomic states for simplicity using the pseudo-spin
guages5↑,↓. The quasimolecular boson of momentumq
associated with the Feshbach resonance is described b
operatorbq

† . Eq
0[q2/2M is the kinetic energy of this boso

and 2n represents the bottom of this resonance Bose s
trum, to be referred to as the threshold energy of the Fe
bach resonance. The coupling to this Feshbach reson
boson is described by last term in Eq.~2.1! with a strength
gr , in which two Fermi atoms form oneb-boson, and the
b-boson breaks into two free Fermi atoms. The Hamilton
also includes a standard BCS pairing interaction with
coupling constant2U,0, originating from nonresonant in
teractions between two Fermi atoms (s5↑,↓). Even assum-
ing that this direct attractive pairing interactionU is weak,
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the effective pairing interaction strength can be strong du
the effect of the coupling to the Feshbach resonance. In
paper, we do not discuss the question of how good the mo
Hamiltonian in Eq.~2.1! is in the context of ultracold Ferm
gases, but simply refer to the literature@7–10,16#.

Since in this model, one Feshbach-inducedb-molecule
consists of two Fermi atoms, we haveM52m, and we also
impose the conservation of the total number of particles

N5K (
ps

cps
† cpsL 12K (

q
bq

†bqL
[NF12NB . ~2.2!

As discussed in our previous paper@11#, this constraint is
incorporated into the model Hamiltonian in Eq.~2.1! by re-
placingH→H2mN, wherem is the chemical potential. The
resulting Hamiltonian has the same form as Eq.~2.1!, but the
kinetic energies of the fermions and bosons are now given
«p→«p2m andEq

0→Eq
022m, respectively.

Now we introduce the effect of a harmonic trap. In th
paper, we consider an optical trap in which the two hyperfi
Fermi atom states feel the same trap potential given by

Vtrap~r !5
1

2 (
j

m@v0x
2 xj

21v0y
2 yj

21v0z
2 zj

2#, ~2.3!

wherer j5(xj ,yj ,zj ) is the position of thej th atom. In our
model, we also assume that the Feshbach molecules also
this potential withm being replaced by the boson massM
52m. We could relax this last assumption to deal more
alistically with the dipole moment of the composite molecu
but we leave this extension to future studies. Treating
resulting trapped fermion-boson gas within the LDA@23,24#
amounts to replacing the chemical potentialm by

m~r !5m2Vtrap~r !. ~2.4!

The constraint on the total number of Fermi atoms is th
replaced byN5*dr @NF(r )12NB(r )#, where NF(r ) and
NB(r ) are the number density of Fermi atoms and Bose m
ecules, respectively.

The atomic hyperfine states may feel different trap pot
tials in a magnetic trap. This situation is similar to electr
spins in superconducting metals under a magnetic field
the theory of superconductivity, it is known that a magne
field suppresses superconductivity and, under certain co
tions, produces a nonuniform kind of superconducting st
called the Fulde-Ferrell state@25–27#. The effect of fluctua-
tions on this kind of Zeeman splitting in atomic Fermi gas
is considered in another paper@28#.

B. Equations for Tc : Thouless criterion

The superfluid phase-transition temperatureTc can be
conveniently determined using the Thouless criter
@12,29#, in which the phase transition is characterized by
singularity in the particle-particle scattering vertex functi
G at v5q50, associated with the formation of Cooper pa
3-2
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@30,31#. The four-point vertex functionG within the gener-
alized t-matrix approximation in terms ofU andgr is given
by the diagrams in Fig. 1. In this figure, the first line d
scribes ladder processes associated with the attractive i
action2U,0, processes familiar in strong-coupling sup
conductivity in electronic systems@12,19#. On the other
hand, the second line includes the effective fermion-ferm
interaction mediated by theb-boson propagatorD0 defined
in Eq. ~2.6!, scattering processes that only arise in atom
Fermi gases coupled to a Feshbach resonance, such as
~2.1!. The equation of the vertex functionG is given by

G~p1 ,2p2 ;p18 ,2p28 ;r !

52@U2gr
2D0~q;r !#1@U2gr

2D0~q;r !#

3
1

b (
p9,vm9

G0~p19 ;r !G~2p29 ;r !

3G~p19 ,2p29 ;p18 ,2p28 ;r !, ~2.5!

where p1[(p1q/2,ivm1 inn), p2[(p2q/2,ivm), q
[(q,inm), and b[1/T is the inverse of the temperatur
ivm and inn are the Fermi and Bose Matsubara frequenc
respectively.G0 and D0 represent the bare one-particle fe
mion and boson thermal Green’s functions given by

G0~p,ivm ;r !5
1

ivm2«p1m~r !
,

D0~q,inn ;r !5
1

inn2Eq
022n12m~r !

. ~2.6!

Since the modified chemical potentialm(r ) includes the trap
potential, the LDA Green’s functions and vertex functionG
also depend on the positionr . Multiplying both the sides of
Eq. ~2.5! by (1/b)G0(p1 ;r )G0(2p2 ;r ) and summing over
vm andp, we obtain

FIG. 1. Generalizedt-matrix approximation for the particle
particle scattering vertex functionG(p1 ,2p2 ,p18 ,2p28 ). The
solid and dashed lines represent the one-particle thermal ferm
Green’s functionG0 and boson Green’s functionD0, respectively.
The first line includes the ladder processes associated with th
rect pairing interaction2U. The second line includes the effect o
the Feshbach resonance with the couplinggr . The shaded bubble in
the second line includes the ladder diagrams shown in the third
03360
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1

b (
p9,vm9

G0~p19 ;r !G~2p29 ;r !G~p19 ,2p29 ;p18 ,2p28 ;r !

52
@U2gr

2D0~q;r !#P~q;r !

12@U2gr
2D0~q;r !#P~q;r !

. ~2.7!

Here P(q;r )5P(q,inn ;r ) is the well-known particle-
particle correlation function of the Cooper-pair-field opera
defined by D̂(q,t;r )[(pc2p1q/2↓(t;r )cp1q/2↑(t;r ) in the
absence ofU andgr @11,12,32,33#:

P~q,inn ;r !5E
0

b

dteinnt^Tt$D̂~q,t;r !D̂†~q,0;r !%&

5
1

b (
p,vm

G0~p1q/2,ivm1 inn ;r !

3G0~2p1q/2,2 ivm ;r !

5(
p

12 f „«p1q/22m~r !…2 f „«p2q/22m~r !…

«p1q/21«p2q/222m~r !2 inn
,

~2.8!

where f («) is the Fermi distribution function. Substitutin
Eq. ~2.7! into Eq. ~2.5!, we obtain

G~q,inn ;r !52
U2gr

2D0~q,inn ;r !

12@U2gr
2D0~q,inn ;r !#P~q,inn ;r !

.

~2.9!

We shall see that the effective attractive pairing interaction
given by

Ueff~q,inn ;r !5U2gr
2D0~q,inn ;r !. ~2.10!

According to the Thouless criterion,Tc is given as the
temperature at which the vertex functionG(q,inn ;r ) in Eq.
~2.9! develops a pole atq5nn50. Within the LDA, sinceG
depends on the positionr , this condition is satisfied at dif-
ferent temperaturesT0(r ) depending onr . In this approxi-
mation, we have to regard the highestT0(r ) as the phase-
transition temperature of the trapped gas@34#. Since the
density of particles is maximum at the center of the trap,
have Tc5T0(r50). Then the equation forTc within the
LDA is given by

15UeffP~0,0;r50!, ~2.11!

where

Ueff[Ueff~q50,inn50;r50!5U1
gr

2

2n22m
~2.12!

is the static part of the effective pairing interaction in t
long-wavelength limit atr50. Equation~2.11! indicates that
even if the direct pairing interactionU is weak, the effective
pairing interactionUeff in Eq. ~2.12! can be large, ifgr is
large or when the chemical potential of theb-boson (mB

on

di-

e.
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[2m) approaches the bottom of the boson band at 2n. More
explicitly, we note that Eq.~2.11! can be written in the well-
known BCS form,

15S U1g2
1

2n22m D(
p

tanh~«p2m!/2Tc

2«p22m
. ~2.13!

As shown in the literature@29–31#, the pole that develops
at Tc at q5nn50 signals an instability of the normal Ferm
gas. AtT,Tc , the amplitude of this two-particle bound sta
can be shown to grow exponentially with time. This instab
ity is removed by the appearance of a new superfluid ph
below Tc , described by the Cooper-pair order parameter

C. Fluctuation contributions to the chemical potential

The chemical potentialm in Eq. ~2.13! is determined by
the equation of the total number of Fermi atoms wher
b-boson also counts as two Fermi atoms. In the we
coupling BCS theory in the absence of theb-boson, this
equation simply givesm5«F ~where«F is the Fermi energy
in the absence of anyb-bosons!, assuming that the tempera
ture dependence ofm can be neglected. Indeed, in most m
tallic ~weak-coupling! superconductors, the deviation o
m(Tc) from «F is negligibly small asdm;(Tc /«F)

2!1 @35#.
On the other hand, whengr is large, or the Feshbach res
nance strongly enhances the effective pairing interac
Ueff , in analogy with the ‘‘strong-coupling’’ superconductiv
ity discussed by Nozie`res and Schmitt-Rink@12#, the chemi-
cal potentialm is expected to deviate remarkably from«F
due to the effect of fluctuations associated with the Coop
pair channel. We now discuss these fluctuations.

The equation giving the number of Fermi atoms det
mines the chemical potentialm. This is obtained, as in Ref
@12#, from first calculating the thermodynamic potentialV
[*drV(r ) and then using the identityN52]V/]m. The
fluctuation contribution to the local thermodynamic potent
V(r ) is shown in terms of diagrams in Fig. 2. In Fig. 2~a!,
we show the usual diagrams associated with the direct p
ing interaction2U. Working to all orders inU, this gives
@12,13#

FIG. 2. Fluctuation contributions to the thermodynamic pote
tial V. ~a! Ladder diagrams associated with the direct pairing int
action 2U. ~b! Diagrams arising in the presence of the Feshb
resonance. The shaded bubble is the same as in Fig. 1.
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dVU~r !5
1

b(
q,nn

einndln@12UP~q,inn ;r !#. ~2.14!

This is the contribution discussed in Ref.@12#. In Fig. 2~b!,
we show the additional fluctuation diagrams contributing
V(r ) associated with the Feshbach coupling interactiongr .
Summing up to all orders, this gives

dVgr
~r !5

1

b (
q,nn

einndln@11gr
2D0~q,inn ;r !P̃~q,inn ;r !#,

~2.15!

where

P̃~q,inn ;r ![
P~q,inn ;r !

12UP~q,inn ;r !
~2.16!

describes the particle-particle bubble including the effect
U in the ladder approximation.

We note that the total fluctuation contribution toV(r ) is
the sum of the two contributions in Eqs.~2.14! and ~2.15!,
which can be combined to give

dV~r !5
1

b (
q,nn

einndln$@12UP~q,inn ;r !#

3@11gr
2D0~q,inn ;r !P̃~q,inn ;r !%#

5
1

b (
q,nn

einndln@12Ueff~q,inn ;r !P~q,inn ;r !#,

~2.17!

where the effective pairing interactionUeff(q,inn ;r ) is as
defined in Eq.~2.10!. In other words, the only effect of the
diagrams in Fig. 2~b! is to renormalize the pairing interactio
as U→Ueff(q,inn ;r ) in Eq. ~2.14!. We also note that the
collective fluctuations in Eq.~2.17! ~which are bosons! are
precisely those that are associated with the poles of
particle-particle vertex functionG in Eq. ~2.9!. The thermo-
dynamic potential for the contribution of the free fermio
and the bareb-bosons is given by the sum@18# of

VF
0~r !52

2

b (
p,vm

eivmdln G0
21~p,ivm ;r !,

VB
0~r !5

1

b(
p,nn

einndln D0
21~p,inn ;r !. ~2.18!

Combining all these results and usingN52]V/]m, we
find the result

N5E dr FNF
0~r !12NB

0~r !2
1

b (
q,inn

eidnn

3
]

]m
ln@12Ueff~q,inn ;r !P~q,inn ;r !#G , ~2.19!

where

-
-
h

3-4
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NF
05

2

b (
p,vm

eivmdG0~q,ivm ;r !52(
p

f ~«p2m~r !!,

NB
052

1

b (
p,nn

einndD0~q,inn ;r !5(
p

nB~Eq
012n22m~r !!.

~2.20!

HerenB(E) represents the Bose distribution function. Equ
tions ~2.11! and ~2.19! provide us with a closed set of tw
coupled equations, from which we can obtainm(T,N) and
Tc(N). In solving the coupled equations numerically, w
have to take into account carefully the convergence fa
einnd in the last term in Eq.~2.19!. In the Appendix, we
explain how to sum up the Matsubara frequencies in
term. AboveTc , we need only solve Eq.~2.19! for m(T,N).
Our numerical results will be discussed in Secs. IV and V
the following section, however, we first discuss the phys
involved in treating the fluctuations within the approximati
developed in this section. This will allow us to better und
stand the nature of the bosons involved in the crossover
BEC regime.

III. PHYSICS OF COUPLED b-BOSONS
AND COOPER PAIRS

The contribution arising from the interaction in Eq.~2.19!
can be described in terms of Bose fluctuations given by
solutions of

15Ueff~q,v1 id;r !P~q,v1 id;r !, ~3.1!

where we made the usual analytic continuation from
imaginary Bose Matsubara frequency to the real freque
axis asinn→v1 id @18#. While Eq. ~3.1! appears relatively
simple, it describes a complex situation involving the form
tion of preformed Cooper pairs and their coupling to the b
b-bosons in Eq.~2.1! due to the Feshbach coupling intera
tion gr . The preformed Cooper pairs and theb molecules are
coupled to each other, which leads to hybridization and o
one kind of composite Bose molecule. It is useful to try
disentangle these effects, although there seems no un
way of doing this in such a coupled excitation problem.

Denoting the number density of atoms given by the l
term in Eq.~2.19! asdNFL(r ), we have

dNFL~r !5
1

b (
q,nn

einndF2gr
2PD0

21Ueff~q!
]P

]m G
3S 1

12Ueff~q!P D , ~3.2!

where for simplicity we denote P(q,inn ;r )[P,
D0(q,inn ;r )[D0 , Ueff(q,inn ;r )[Ueff(q), and we have
used the identity]D0 /]m522D0

2. The effect of the
particle-particle fluctuations described byP(q,inn ;r ) natu-
rally gives rise to a renormalizedb-boson propagatorD̃ with
a self-energy given by
03360
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S~q,inn ;r !52gr
2P̃~q,inn ;r !, ~3.3!

whereP̃ has been defined in Eq.~2.16!. Thus we have

D̃21~q,inn ;r ![D0
211gr

2P̃

5 inn2@Eq
012n2gr

2P̃~q,inn ;r !#

12m~r !. ~3.4!

The self-energyS in Eq. ~3.3! describes the effect of the
decay of ab-boson into two Fermi atoms and their recomb
nation to ab-boson, treating the nonresonant interactio
2U within the ladder approximation. This self-energy c
be also obtained by summing up the diagrams shown in
third line in Fig. 1~shaded bubble in the figure!.

One may verify that the first term in the square brackets
Eq. ~3.2! renormalizes the number ofb-bosons, giving

2NB
0~r !1

1

b(
q,nn

einnd
2gr

2PD0
2

12Ueff~q!P

52
2

b (
q,nn

einnd
~12UP!D0

12Ueff~q!P

52
2

b (
q,nn

einndD̃~q,inn ;r !

[2ÑB~r !. ~3.5!

We recall that in our interacting boson-fermion mod
Hamiltonian, we have@see Eq.~2.2!#

N5NF12NB , ~3.6!

where, within the LDA,

NF5E dr(
p,s

^cps
† ~r !cps~r !&,

NB5E dr(
q

^bq
†~r !bq~r !& ~3.7!

give the number of fermions and bosons, respectively.
discussed in many-body texts,NB is defined in terms of the
renormalized single-particleb-boson Green’s function
D̃(q,inn ;r ). In fact, one sees thatNB5ÑB[*dr ÑB(r ),
whereÑB(r ) is defined in Eq.~3.5!. This means thatNF in
Eq. ~3.7! is given by

NF5NF
012NC, ~3.8!

where 2NC is obtained from the second term in the squa
brackets in Eq.~3.2! as

2NC5
1

b (
q,nn

E dreinnd
]P

]m S Ueff~q!

12Ueff~q!P D . ~3.9!

Equation~3.8! shows that the expression for 2NC in Eq. ~3.9!
is the natural definition of the number of Cooper-pair boso
that arise in the interacting fermion gas with an attract
interaction given byUeff(q).
3-5
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The preceding analysis leads to the following express
for N given in Ref.@11#:

N5NF
012NB12NC, ~3.10!

whereNB is the contribution from theb-bosons andNC is the
contribution from the Cooper pairs, both being strong
renormalized through the effect of the Feshbach resona
coupling gr . The problem with the decomposition given
Eq. ~3.10! is that whengrÞ0, one must remember that th
b-bosons and the preformed Cooper pairs are strongly
bridized. As a result, they give rise to a single boson bra
described by the pole ofD̃ in Eq. ~3.4!, namely,

vq5Eq
012n2gr

2P̃~q,inn→vq1 id;r !22m~r !.

~3.11!

One can understand the basic physics by going back to
~2.17! and noting that

12Ueff~q!P5@12UP#@11gr
2D0P̃#

5@12UP#1gr
2P

1

v2@Eq
012n22m~r !#

.

~3.12!

This form shows clearly that the zeros of 12Ueff(q)P cor-
respond to a hybridized spectrum associated with the
formed Cooper-pair@12UP50# and the b-bosons †v
2@Eq

012n22m(r )#50‡ by the couplinggr
2P. The zeros of

Eq. ~3.12! are seen to be given by

@12UP#$v2@Eq
012n22m~r !#%1gr

2P50. ~3.13!

One sees that the same hybridization physics is given by
poles ofD̃, i.e.,

$v2@Eq
012n22m~r !#%1gr

2 P

12UP
50. ~3.14!

All these versions emphasize that the renormalized bos
given byD̃2150 are the hybridized version of the bare pr
formed Cooper pairs and the bareb-bosons. One can still as
what is the relative ‘‘weighting’’ of these two components
the renormalized boson spectrum given by the pole ofD̃, as
given by the values ofNB andNC in Eq. ~3.10!. In Ref. @11#,
we calculated both these contributions as a function of
threshold 2n in the case of a uniform Fermi gas.

Finally, we note that one can write

12Ueff~q!P5D0@D0
212Ueff~q!D0

21P#

5D0H D0
212F U

D0
2gr

2GPJ
[D0DM

21. ~3.15!
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Putting this into Eq.~2.19!, one finds that the term 2NB
0 is

cancelled out by theD0 factor in Eq.~3.15!, and we are left
with

N5E dr @NF
0~r !12NM~r !#. ~3.16!

Here the number density of composite molecular boso
NM(r ), is defined as

2NM~r ![2
1

b(
q,nn

einnd
]

]m
ln DM

21, ~3.17!

whereDM is defined in Eq.~3.15!,

DM
21~q,inn ;r ![ inn2@Eq

012n1~U/D02gr
2!P#12m~r !.

~3.18!

Note thatP enters here, notP̃ as in Eq.~3.4!. This compos-
ite molecule is a true hybrid of preformed Cooper pairs a
b-bosons, and cannot be associated with either compon
However, one can verify that the poles ofDM are identical to
those ofD̃ as defined in Eq.~3.4!, in that@see Eqs.~3.12! and
~3.15!#

~12UP!D̃215D0
212S U

D0
2gr

2DP5DM
21. ~3.19!

IV. TRANSITION TEMPERATURE IN THE BCS-BEC
CROSSOVER WITH A FESHBACH RESONANCE

A. Renormalization of U and gr

In this section, we consider the case of an isotopic h
monic trap (v0x5v0y5v0z[v0) for simplicity. It is conve-
nient to take«F as the unit of energy~for one Fermi species!.
As for the unit of length, we take the radiusRF of a nonin-
teracting Fermi gas atT50, defined by «F(RF)[«F

2mv0
2RF

2/250, or RF
252«F /mv0

2 . We also take, as the un
of the number of particles, the total number of Fermi atom
given by

N5
4

pE0

RF
r 2drE

0

pF(r )

p2dp5
~mv0!3RF

6

24
, ~4.1!

wherepF(r )5A2m«F(r ) is the Fermi momentum atr within
the LDA. With this normalization, sinceN and RF always
appear with the coupling constantsU andgr as Ũ[UN/RF

3

and g̃r
2[gr

2N/RF
3 , they can be absorbed into these coupli

constants.~In the following, we simply writeŨ and g̃r asU
andgr .) In our numerical calculations, we simply introduc

a Gaussian cutoffe2«p
2/vc

2
, with vc52«F , in the momentum

summation involved in the particle-particle response fu
tion P(q,inn ;r ) defined in Eq.~2.8!, and thus also in Eq
~2.13!.

The interactions2U andgr used in this paper should b
regarded as renormalized quantities effectively involving
effects of screening by~pseudospin and density! fluctuations
and renormalization to incorporate high-energy proces
3-6
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Gor’kov and Melik-Barkhudarov showed within the mea
field BCS theory that in the dilute limit,Tc is suppressed by
an effective interaction mediated by fluctuations describ
by particle-hole (p-h) bubble diagrams@36#. This effect was
also studied recently by Combescot@37# in connection with
the possibility of high-Tc superfluidity in 6Li. This reduction
of Tc can be physically understood as a screening effec
~pseudo! spin and density fluctuations, which weakens t
pairing interaction between Fermi atoms. One should un
stand that2U andgr in our model in Eq.~2.1! include this
p-h screening.

As for the renormalization of2U andgr by high-energy
processes, we note that our Fermi atomic gas has no phy
cutoff energy, in contrast to superconductivity in meta
where the lattice phonon Debye frequency acts the effec
cutoff in the BCS gap equation. However, a prescript
about the renormalization of the high-energy interactions
implicit when we introduce a cutoffvc in the momentum
summations. To see this, it is convenient to introduce
energy cutoffEc . This cutoff energy is assumed to be mu
higher thanvc andT, and it may be arbitrarily large. We ca
then divide the summation in the equation forTc in Eq.
~2.13! into a low-energy part («p5@0,vc#) and a high-energy
part («p5@vc ,Ec#). In this decomposition, whenEc@vc
@umu.Tc , we can take tanh(«p2m)/2Tc→1 in the high-
energy part. Since this replacement corresponds to igno
the influence of the Fermi distribution@recall that in Eq.
~2.13!, tanhx/2T5122 f (x)], the high-energy region can b
described as two atoms interacting in a vacuum. The effec
the surrounding gas and Fermi statistics are absent. The
decomposition of Eq.~2.13! is reduced@38# to

15Ueff (
[0,vc]

tanh~«p2m!/2Tc

2«p22m
1Ueff (

[vc ,Ec]

1

2«p22m
,

~4.2!

whereUeff5U1gr
2/(2n22m). This equation can be rewrit

ten as

15
Ueff

12Ueff (
[vc ,Ec]

1

2«p22m

(
[0,vc]

tanh~«p2m!/2Tc

2«p22m

[Ueff
R ~vc! (

[0,vc]

tanh~«p2m!/2Tc

2«p22m
. ~4.3!

In this equation forTc , high-energy two-particle scatterin
processes in the region@vc ,Ec# have been absorbed int
the renormalized coupling Ueff

R (vc)5UR(vc)
1@gr

R(vc)#2/@2nR(vc)22m# describing the low-energy
physics in the region@0,vc#. The renormalized interaction
UR(vc), the Feshbach couplinggr

R(vc), and the threshold
energy 2nR(vc) are thus given by

UR~vc!5
U

12U (
[vc ,Ec]

1

2«p22m

,
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R~vc!5

gr

12U (
[vc ,Ec]

1

2«p22m

,

2nR~vc!52n2gr
2

(
[vc ,Ec]

1

2«p22m

12U (
[vc ,Ec]

1

2«p22m

. ~4.4!

Physically,UR(vc) is the nonresonant fermion-fermion in
teraction enhanced by high-energy scattering processes
is diagrammatically described by Fig. 3~a!. The renormalized
Feshbach couplinggr

R(vc) involves the three-point vertex
correction coming from the high-energy processes in F
3~b!. Finally, the renormalized threshold energy 2nR(vc)
originates from the self-energy correction caused by
break of a Bose molecule into two Fermi atoms with hi
momenta, which can be described by the diagrams in
3~c!.

We should determine the renormalized quantities exp
mentally. In this regard, the renormalized quantities for
low-energy limit (vc50) can be introduced@16,17#. One
can write the renormalized parameters in Eq.~4.4! in terms
of their low-energy values (vc50) as follows:

UR~vc!5
UR~0!

11UR~0! (
[0,vc]

1

2«p22m

,

gr
R~vc!5

gr
R~0!

11UR~0! (
[0,vc]

1

2«p22m

,

2nR~vc!52nR~0!1gr
R~0!2

(
[0,vc]

1

2«p22m

11UR~0! (
[0,vc]

1

2«p22m

.

~4.5!
Written in terms of the renormalized variables given in E
~4.5!, the BCS gap equation in Eq.~4.3! no longer involves
Ec explicitly. Although we simply write the couplings as
2U, gr , and the threshold energy as 2n in our model, we
can regard them as renormalized quantities incorporating
high-energy two-particle scattering processes, as discu
above.

The present way of renormalization can reproduce
cutoff-free theories in Refs.@14,15,39#. When we write Eq.
~4.3! using the renormalized variables in terms of the lo
energy valueUeff

R (vc50) as given by Eq.~4.5!, we obtain

15
Ueff

R ~0!

11Ueff
R ~0! (

[0,vc]

1

2«p22m

(
[0,vc]

tanh~«p2m!/2Tc

2«p22m
.

~4.6!
3-7
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This equation can in turn be rewritten in the form

15Ueff
R ~0! (

[0,vc]
F tanh~«p2m!/2Tc

2«p22m
2

1

2«p22mG
.Ueff

R ~0! (
[0,`]

F tanh~«p2m!/2Tc

2«p22m
2

1

2«p22mG . ~4.7!

Since the two terms in the square brackets almost cance
each other in the high-energy region@vc ,`# ~we assume
thatvc@T), we can eliminate the finite upper limitvc in the
summation. This cutoff-free expression is similar to the o
used in Ref.@39#. The cutoff-free BCS equation forTc used
by Randeria and co-workers@14,15#. can be also obtained
from Eq. ~2.13!. Writing it as

15Ueff (
[0,Ec]

F tanh~«p2m!/Tc

2«p2m
2

1

2«p
1

1

2«p
G , ~4.8!

we can turn this into

15Ūeff (
[0,Ec]

F tanh~«p2m!/Tc

2«p2m
2

1

2«p
G , ~4.9!

where the renormalized interactionŪeff5Ū1ḡr
2/(2n̄22m)

is defined by

Ū5
U

12U (
[0,Ec]

1

2«p

,

ḡr5gr

1

12U (
[0,Ec]

1

2«p

,

FIG. 3. ~a! Renormalization of the nonresonant pairing intera
tion 2U, as given in Eq.~4.4!. The solid line with solid circle
means the fermion Green’s function in the high-energy reg
@vc ,Ec#. ~b! Renormalization of the Feshbach resonance coup
gr , which is described by the three-point vertex correction.~c!
Renormalization of theb-boson threshold energy 2n associated
with the self-energy correction.
03360
ut

e

2n̄52n2gr
2

(
[0,Ec]

1

2«p

12U (
[0,Ec]

1

2«p

. ~4.10!

The expressions for the equation forTc in Eqs.~2.13!, ~4.7!,
and ~4.9! give the same result, assuming that one takes
appropriate values for the renormalized parameters.

With regard to the renormalization of the coupling co
stants, recent work by Kokkelmanset al. @16# has discussed
the coupled fermion-boson model given in Eq.~2.1! and in-
corporated the full two-body scattering theory in an im
proved fashion. Milsteinet al. @17# have more recently de
rived equations identical to Eqs.~4! and ~6! in Ref. @11#
~these correspond to Eqs.~2.13! and ~2.19! for a trapped
Fermi gas!, which include the effect of particle-particle fluc
tuations and the appearance of Cooper pairs. They have
tended our analysis in Ref.@11# by renormalizing these equa
tions in a way that treats the two-body scattering and bo
states correctly. Their work thus leads to explicit numeri
values for the various parameters in a renormalized mo
corresponding to Eq.~2.1!.

In the rest of this section and in Secs. V and VI, w
discuss our results forTc and the region above, usingU
50.3«F andgr50.6«F . Our diagrammatic approximation fo
the fluctuations, as summarized in Figs. 1 and 2, assu
that the interactions are weak. In Sec. VII, we discuss
analogous results predicted by Eqs.~2.13! and~2.19! using a
valuegr@«F , such as found in Refs.@9,17#. In this case, the
Feshbach resonance is very broad and thus can have a
effect onTc even if the threshold 2n@2«F .

B. Crossover behavior atTc within LDA

Our numerical solution forTc and m(Tc ,N) from Eqs.
~2.13! and ~2.19! for a trapped Fermi gas gives results th
are very similar to those for a uniform Fermi gas obtained
Ref. @11#. Figure 4 shows the BCS-BEC crossover in
trapped Fermi gas. As the threshold energy 2n is lowered,
Fig. 4~a! shows thatTc deviates from the mean-field BC
theory~‘BCS’ in the figure! and approaches the BEC phas
transition temperature of a gas ofN/2 free bosons of mas
M52m ~‘‘BEC’’ in the figure!. The chemical potentialm
also changes remarkably in this crossover as shown in
4~b!. As expected from the mean-field BCS theory, we obt
m.«F for 2n*2«F ~BCS regime!, while m deviates from«F
and approachesn for n&0 ~BEC regime!. The latter result
reflects that theb bosons become the dominant contributi
in the BEC regime. As a result, the phase transition occ
when the chemical potential of theb-boson,mB (52m),
reaches the bottom of the Bose band (2n) at the center of the
trap~within our LDA!. We note that we can rewrite the equ
tion for Tc in Eq. ~2.11! in the form

2n52m1gr
2P̃~0,0,r50!. ~4.11!

This equation reduces to 2n52m (5mB) in the BEC limit,
where the Fermi atoms and hence the particle-particle fl

-

n
g
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tuations described byP are absent. Since in this BEC regim
the dominant excitations areN/2 free bosons, we find the
usual result for a trapped free Bose gasTc
5v0@N/2z(3)#1/3 ~Ref. @40#!, wherev0 is the trap frequency
andz(x) is the usual zeta function~we set\51). Using the
fact that TF5(6N↑)1/3v0 is the Fermi temperature for
trapped free Fermi gas~with N↑5N/2), we can write this
expression forTc in terms ofTF to give

FIG. 4. BCS-BEC crossover in a trapped Fermi gas, for
parametersU/«F50.3 andgr /«F50.6. ~a! The superfluid phase
transition temperatureTc as a function ofn. In this figure, BCS is
the result neglecting particle-particle fluctuations while BEC is
value for Tc for a gas ofN/2 bosons of massM52m. ~b! The
chemical potentialm at Tc as a function ofn. The dashed line
(2m52n) shows the chemical potential for a trapped gas ofN/2
b-bosons.~c! Change in the character of particles through the BC
BEC crossover region. We note that scattering contributionNC

sc be-
comes negative belown/«F.0.18, where the stable Feshbach m
ecule (NB

g50) and preformed Cooper-pair (NC
g50) components first

appear. The sumNC
g501NC

sc is positive.
03360
Tc5S 1

6z~3! D
1/3

«F50.518TF . ~4.12!

Figure 4~a! shows that thisTc is obtained in the BEC regime
as the limiting maximum value in the trapped Fermi gas.
recall that Fig. 4 is forU50.3«F andgr50.6«F .

We note that this upper limit forTc is much higher than
that of a uniform Fermi gas in the absence of a trap@11#. In
the uniform system,Tc in the BEC regime is given@11,15#
by

Tc52S 1

6Apz~3/2!
D 2/3

«F50.218TF , ~4.13!

where the Fermi temperature in the uniform system is giv
by TF5(6p2N↑)2/3/2m ~Ref. @35#!. One reason for the dif-
ferent maximumTc’s between the two cases comes from t
different expression forTF . In addition, one should note tha
the harmonic trap potential enhancesTc through the effective
density of states~DOS! of Bose molecules. When we carr
out the spatial integration in the equation for the total nu
ber of trapped particles in the BEC regime@N
52*drNB(r )#, this equation is reduced@40# to

153E
0

`

dEE2
1

eb̄E21
~T5Tc!, ~4.14!

whereb̄[TF /T and the energy in the integral is normalize
in units of «F . The corresponding equation in the unifor
system is given by

153A2E
0

`

dEAE
1

eb̄E21
. ~4.15!

This shows that the low-energy region of the DOS has lar
weight in the uniform gas~DOS }AE) than in the trapped
one~DOS}E2). As a result, the transition temperature~rela-
tive to TF for each case! must be higher in the trapped ga
than in the uniform gas.

V. LONG-LIVED COMPOSITE BOSONS

A. Damping of b-bosons and condition for stable
molecules atTc

The decay ofb-boson into two Fermi atoms associate
with the Feshbach resonance is described by the imagi
part of the~analytic-continued! self-energy of the renormal
ized Bose Green’s function in Eq.~3.4!,

g[2ImS~q,inn→v1 id;r !5gr
2ImP̃~q,v1 id;r !.

~5.1!

Since ImP(q,v1 id;r ) is given by

e

e

-

3-9
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ImP~q,v1 id;r !5
mAm

4pbAEq
0

Q@v12m~r !2Eq
0#

3 ln

cosh
b

2
S v

2
1A@v12m~r !2Eq

0#Eq
0D

cosh
b

2
S v

2
2A@v12m~r !2Eq

0#Eq
0D ,

~5.2!

whereQ(x) is the step function, the damping rateg is finite
only in the regionv>v th[Eq

022m(r ). This step function
restriction is clear when we note that the denominator of
~2.8! can be written as@ inn12m(r )2Eq

0#22«p . At q50,
Eq. ~5.2! can be simplified to

ImP~q50,v1 id;r !

5
mAm

4p
Q@v12m~r !#Av12m~r !tanh

bv

4
.

~5.3!

Since the energy to dissociate oneb-boson~with center of
mass momentumq) into two Fermi atoms is given by
@«p1q/22m(r )#1@«2p1q/22m(r )#, the threshold energyv th
is found to correspond to theminimumenergy to destroy one
b-boson withq50.

The damping rateg leads to a finite lifetime of the
b-boson, or equivalently, it gives a finite width to the peak
the spectral density of the~renormalized! Bose excitation
spectrum given by

rB~q,v;r ![2
1

p
ImD̃~q,inn→v1 id;r !. ~5.4!

In the BCS regime, whereg is always finite forv.0 @see
the inset in Fig. 5~a!#, the quasiparticleb-boson spectral den
sity shows a broad peak, as shown in Fig. 5~a!. This b-boson
thus has a finite lifetime, which is given by the inverse of t
peak width, due to decay into two Fermi atoms by the c
pling to the Feshbach resonance. As one approaches the
regime,v th.0 is realized@as shown in the insets in Figs
5~b! and 5~c!#. In this case, when theb-boson pole given by
Eq. ~3.11!,

vq5@Eq
022m~r !#1@2n2gr

2P̃~q,vq1 id;r !#, ~5.5!

appears belowv th , its lifetime is infinite. It thus appears as
d-function peak in theb-boson excitation spectral densityrB
given by Eq.~5.4!. We show this case in Figs. 5~b! and 5~c!.
In Fig. 5~b!, the excitation spectrum is still accompanied
a incoherent part in high-energy region (v.v th), in addition
to the undamped bound-state pole belowv th . On the other
hand, the incoherent part is seen to be almost absent in
BEC regime in Fig. 5~c!, giving evidence that a stabl
b-molecule dominates the two-particle excitation spectru

The condition@11# for such a stableb-boson is simply that
03360
.

-
EC

he

.

2ñ[2n2gr
2P̃~q,vq1 id;r !,0 @Eq

022m~r !.0#.

~5.6!

This means that the renormalized threshold energy defi
by 2ñ in Eq. ~5.6! must be negative for the stable undamp
b-Bose molecules to appear@11#. In the regionv5q50, this
condition can be approximately written as 2ñ.2n

2gr
2P̃(0,0;r ),0. SinceP(0,0,r ) can be shown to be posi

tive and also decreases asr increases, the condition 2ñ,0 is
first satisfied at the center of the trap.

FIG. 5. The spectral densityrB of the renormalized Bose

Green’s functionD̃, for T5Tc and r50 andq5pF , wherepF is
the Fermi momentum for a free gas ofN/2 spin-up fermions. In
each panel, the inset shows the frequency dependence of
b-boson dampingg(v).
3-10
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We can divide the numberNB of renormalizedb-bosons
in Eq. ~3.10! into the contribution from stable long-lived pa
(NB

g50) and a Feshbach resonating contribution with a fin
lifetime ~denoted byNB

g.0). In order to evaluate the contri
bution from the stable partNB

g50 , it is convenient to intro-
duce the spectral representation of the renormalized bo
Green’s function@12# as

D̃~q,inn ;r !52
1

pE2`

`

dz
1

inn2z
ImD̃~q,inn→z1 id;r !.

~5.7!

Using this expression, the summation in terms of the B
Matsubara frequency inNB in Eq. ~3.10! can be carried ou
to give

NB52
1

p (
q
E drE

2`

`

dznB~z!ImD̃~q,z1 id;r !.

~5.8!

Using this, the contribution from the stable poles~with no
imaginary part! is given by

NB
g505E dr (

q

poles E
2`

`

dzd~z2@Eq22m~r !

12n2gr
2P̃~q,z1 id;r !# !nB~z!

5E dr (
q

poles

Z~q;r !nB~vq!. ~5.9!

Here, Z(q;r ) arises from what is called mass renormaliz
tion, and is given by

Z~q;r !21[11gr
2]P̃~q,vq ,r !

]vq
. ~5.10!

The sum in Eq.~5.9! is over the solutionsvq satisfying Eq.
~5.5!.

Besides this Feshbach component of the two-part
bound state given by Eq.~5.9!, there is a component from
Cooper pair associated withNC as defined in Eq.~3.9!. One
can rewrite Eq.~3.9! in the form

2NC5
1

b(
q,nn

E dr
D̃

D0

Ueff~q!

12UP

]P

]m
. ~5.11!

We next use the fact that

]P̃

]m
5S 1

12UP D 2]P

]m
, ~5.12!

and that forv5vq @given by Eq.~5.5!#, one has the identi-
ties D0

2152gr
2P̃ and Ueff(q)5P21. With these relations

the contributionNC
g50 of undamped bosons associated w

Cooper pairing can be reduced@11# to the expression
03360
e

on

e

-

le

NC
g505

gr
2

2 E dr (
q

poles
]P̃~q,vq ;r !

]m
Z~q;r !nB~vq!,

~5.13!

whereZ(q;r ) has been defined in Eq.~5.10!. There is also a
contribution from scattering states, and hence we haveNC

5NC
g501NC

sc, whereNC
sc represents the scattering contrib

tion associated with damped particle-particle~or Cooper
channel! fluctuations.

Figure 4~c! shows the change of the character of the e
citations in the BCS-BEC crossover in the trap. Asn is low-
ered and approaches«F , the Feshbach resonance molecu
state starts to play a role and the Feshbach damped
ecules (NB

g.0) appear. These bosons are replaced by
stable molecules (NB

g50) aroundn50.18«F for the param-
eters used in Fig. 4~c!. At the same time, a contribution from
preformed Cooper pairs (NC

g50) appear. In the BEC regime
stable Feshbach molecules become dominant andNB

g50 ap-
proaches 0.5 (5N/2). The contribution from preformed
Cooper pairs are seen to again disappear in the BEC l
n,0. The increase in the total number of molecules is, ho
ever, slower than that found in the uniform system@11#. This
is simply because the stable molecules initially only begin
appear at the center of the trap, rather than throughout
system as in the uniform gas case.

Figure 6 shows the number of composite bosons,NM
[*drNM(r ), as a function ofn @whereNM(r ) is defined in
Eq. ~3.17!#. Although each component of the boson (NB

g50 ,
NB

g.0 , NC
g50 , and NC

sc) shows a singular behavior aroun
n50.18«F in Fig. 4~c!, NM ([NB

g501NB
g.01NC

g501NC
sc) is

found to increase smoothly as the threshold energy 2n is
lowered, as expected.

As we have discussed in detail in Sec. III, the stro
hybridization induced by the Feshbach coupling interact
gr means that there is only a single two-particle bos
branch, whose energy is given by the solution of Eq.~5.5!.
Thus NB

g50 and NC
g50 only represent the relative spectr

weights of the two components~corresponding to long-lived
b-bosons and stable preformed Cooper pairs! of this compos-
ite boson. This decomposition is only meant as a way

FIG. 6. The number of bosons,NM @see Eqs.~3.16! and~3.17!#,
as a function of the threshold energyn. The number of Fermi at-
oms,NF

0 , is also shown.
3-11
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Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 033603 ~2003!
understanding the physics of the BCS-BEC crossover
arises in the model given by Eq.~2.1!. This interpretation is,
however, very useful to understand the difference betw
the present BCS-BEC crossover and that in strong-coup
superconductivity with no Feshbach resonance. In the la
case, the preformed Cooper pairs are the dominant ex
tions in the strong coupling BEC regime@12,14,15#. In the
present case, for the values of the parametersU50.3«F and
gr50.6«F used in Fig. 4, although preformed Cooper pa
make a contribution, the stable Feshbach molecules do
nate the excitation spectrum in the BEC limit (n,0).

B. The binding energy of composite bosons

The binding energy of the long-lived composite boson
the energy to break this molecule into two Fermi atoms. T
dissociation energy can be evaluated from the energy di
ence between the bound-state energyvq in Eq. ~5.5! and the
excitation spectrum of the free Fermi gas measured from
chemical potentialm. In particular, the binding energy of th
zero-energy (vq5050) two-particle bound state withq50,
which appears atTc , is given by

Ebinding52@«q502m~r50!#2vq50

52umu

52uñ~q50,vq50;r50!u,

~5.14!

where we have usedm(r50),0 and Eq.~5.6! to obtain
expressions on the right-hand side. This result means
Ebinding is equal to the absolute value of the energy o
renormalizedb-molecule at the bottom of the renormalize
boson spectrum.

The threshold energyv th(q50) of the two-particle spec
trum is defined as where ImP(q50,v;r50) given in Eq.
~5.2! becomes finite~see Fig. 5!. We recall that ImP de-
scribes the excitation spectrum of the Cooper-pair chan
fluctuations. This frequencyv th(q50) is the same as th
threshold energy of the continuum spectrum of the renorm
ized b-boson self-energy in Eq.~3.3!, since g52ImS

5gr
2ImP̃( inn→v1 id)}ImP(v1 id). When a stable

b-boson atvq5050 is excited to a state with energyE
>v th , this excitedb-boson will decay into two Fermi atoms
leading to a finite lifetime for this excited state. We conclu
that v th(q50)5Ebinding, i.e., the particle-particle threshol
energyv th(q50) is equal to the binding energy of a stab
two-particle bound state.

Since the chemical potentialm approachesn in the BEC
limit as shown in Fig. 4~b!, we find from Eq.~5.14! that
Ebinding→2unu in this regime. This energy 2unu is just equal
to the energy needed to transfer a freeb-boson at the bottom
of the Bose energy band (Eq50

0 12n522unu) to two Fermi
atoms with zero energy (2«q5050). This result is consisten
with the fact that the preformed Cooper-pair componen
the bound state is absent in the BEC limit, leaving t
b-molecule component.

The binding energy of the preformed Cooper pair in t
strong-coupling BEC regime has been also discussed in
perconductivity@12,14,15,41#, and it is useful to understan
how the present results are related to the previous work
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see this, let us recall the cutoff-free equation forTc given by
Eq. ~4.9!. Sincem!0 in the BEC limit, one can approxi
mately take tanh(«p2m)/2T51. Summing overp in Eq.
~4.9!, we obtain

152S Ū1ḡr
2 1

2n̄22m
D mA2mumu

4p
. ~5.15!

When we write the renormalized attractive interaction
Ūeff[Ū1ḡr

2/(2n̄22m)[24pas /m, whereas is ans-wave
scattering length, Eq.~5.15! gives umu51/2mas

2 , which is
formally the same expression as that obtained in stro
coupling superconductivity discussions@14,15,41#. In the
present model, where the pairing interaction mediated by
Feshbach resonance is dominant in the BEC regime, we
neglect the nonresonant partŪ in Ūeff . Then in the case of
n̄,0, the solution of Eq.~5.15! is given @42# by

m

n̄
511

m3ḡr
4

64p2n̄
FA11

128p2un̄u

m3ḡr
4

21G . ~5.16!

The right-hand side of this equation is reduced to unity in
BEC limit n̄→2`, namely, the chemical potential for th
b-boson (2m) approaches the~renormalized! threshold en-
ergy 2n̄, as one expects.

The relation betweenm and the binding energy of a boun
state in a two-particle system can be also obtained by exte
ing the previous discussions for the superconductivity c
@14,15,41#. When we consider two Fermi atoms in a vacuu
and employ relative coordinates, the scatteringt-matrix for
one Fermi atom with reduced massm/2 and energyv is
given by

T~v!5S 2U1gr
2 1

v22n D1S 2U1gr
2 1

v22n D
3(

p

1

v22«p
S 2U1gr

2 1

v22n D1•••

52

U1gr
2 1

2n2v

12S U1gr
2 1

2n2v D(
p

1

2«p2v

. ~5.17!

The q50 two-particle bound state is given by the pole
T(v), namely,

15Ueff8 (
p

1

2«p2v
, ~5.18!

whereUeff8 [U1gr
2/(2n2v). When we renormalize the in

teraction in Eq.~5.18! as we have done to obtain Eq.~4.9!,
Eq. ~5.18! is reduced to

15Ūeff8 (
p

F 1

2«p2v
2

1

2«p
G , ~5.19!
3-12
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SUPERFLUID TRANSITION TEMPERATURE IN A . . . PHYSICAL REVIEW A67, 033603 ~2003!
where Ūeff8 [Ū1ḡr
2/(2n̄2v), in which the renormalized

variables are given in Eq.~4.10!. This equation is the same a
Eq. ~4.9! in the BEC limit @m!0, where tanh(«p2m)/2T
→1] when we replacev→2m. Thus the energy of the
bound state is related to the chemical potential by the r
tion v52umu, which is consistent with our earlier result i
Eq. ~5.14!.

VI. STRONG-COUPLING EFFECTS ABOVE Tc

A. BCS-BEC crossover effect on the atomic density profile

As expected, the change of the character of the parti
from the fermion to boson in the BCS-BEC crossover sho
in Fig. 4~c! strongly affects the density profile of atoms in th
trap. This is shown in Fig. 7~a!. In the BCS regime, the

FIG. 7. Atomic density profile as a function of position in th
trap in the BCS-BEC crossover.~a! T5Tc . ~b! T51.5Tc . Inset in
~a!: Density profiles ofNF

0(r ), NB
g50(r ), andNC

g50(r ) at T5Tc in
the case ofn50. Inset in~b!: Density profile aboveTc when the
temperature is fixed asT50.75TF . These results are forU/«F

50.3 andgr /«F50.6. The number density of atoms,N(r ), is re-
lated to the total number of atomsN as N5*drN(r ). One boson
counts as two Fermi atoms in this figure. We note that the transi
temperatures are different for the three values ofn. SinceTc in-
creases asn is lowered@see Fig. 4~a!#, the transition temperature fo
n5«F is the lowest among the three cases plotted. As a result
spatial spread of atoms in the density profile originating from
increase of the~averaged! kinetic energy of atoms due to a finit
temperature is weakest in the case ofn5«F , and hence the densit
profile at the trap center is largest@see panel~b!#.
03360
a-

es
n

density profile is spread out, as shown by the result fon
5«F . In this regime, the density profile is mainly compos
of Fermi atoms, and the Pauli exclusion principle betwe
Fermi atoms effectively acts as a repulsive interaction. T
pushes the atoms away from the center of the trap. As
system approaches the BEC regime (n,0), the number of
stable bosons gradually increases, and thus the repulsiv
fect of the Pauli exclusion principle becomes less importa
As expected for bosons, the particles are now seen to clu
near the center of the trap asn is lowered, as shown by Fig
7~a! @see also the inset in Fig. 7~a! for n50]. These results
indicate that the easily measured atomic density profile m
be a very useful signature in looking for the BCS-BEC cro
over phenomenon experimentally, especially as one g
close toTc .

We note that the atomic density profile shows a ste
decrease near the trap center atTc @Fig. 7~a!#, but this is
absent atT51.5Tc @Fig. 7~b!#. The cusplike behavior atTc
originates from the boson component (NB and NC) in the
density, as shown in the inset of Fig. 7~a!. In the extreme
BEC limit, since the gas is described byN/2 free Bose atoms
in a trap, the density of atoms is proportional tog3/2„z(r )…
~Ref. @40#!, whereg3/2(z)[(n51

` zn/n3/2, and the fugacity is
z(r )[e[2m22n22Vtrap(r )]/T. At Tc , since the BEC is realized
when the chemical potential of bosons (2m) reaches the bot-
tom of the boson excitation spectrum (2n), we find z(r )
→1 at the trap center. From the well-known behavior
g3/2(z) at z51, the atomic density profile shows a finit
slope atr50 at Tc . In contrast, this sharp cusp at the tra
center is absent for temperatures aboveTc , where 2m
,2n, and hence the fugacityz(r ) is no longer close to unity
@40#. We also show in the inset of Fig. 7~b! the density pro-
file aboveTc when the temperature is fixed asT50.75TF . In
this case, the density profile becomes more spatially diff
as n is increased. This is because of the increasing do
nance of the fermions and the resulting enhancement of
effect of the Pauli exclusion principle.

B. Crossover from a Fermi gas to a Bose gas aboveTc

It is useful to clarify when and how the stable boso
(NB

g50 andNC
g50) at Tc shown in Fig. 4~c! disappear as the

temperature is increased aboveTc . Figure 8~a! shows the
temperature dependence of the number of particles abovTc

~for n50). The number of stable bosons (NB
g50 andNC

g50),
the finite lifetime bosons (NB

g.0), and the scattering contri
bution (NC

sc) are all found to decrease at higher temperatur
This result is also obtained whenn,0. Thus only the free
Fermi atoms contribute at higher temperatures well ab
Tc .

The reason that the Fermi atom contribution dominate
high temperatures has a very simple explanation in the
ference of the chemical potentials between a Fermi a
(mF5m) and ab-boson (mB52m). As the temperature is
increased, the chemical potentialm must decrease so as t
conserve the total number of atoms@N5(Fermi atoms)12
3(Bose molecules)#, as shown in Fig. 8~b!. Thus for T
@Tc , the boson excitation energyEq

012n22m always in-

n

he
e

3-13



ion

th

re
is
ra

b

s

n
e

f t

h

r of
nti-

on-
d by
ed

ses
is
eat-
ch

the

at

of
-

in
m

he

Fig.
l
the
the

For

era-
les.

Coo-

Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 033603 ~2003!
creases faster than the excitation energy of the ferm
(«p2m), simply due to the factor two in front ofm in the
boson excitation energy. As a result, the occupation of
boson energy band always approaches zero forT@Tc , even
though the bosons can be the dominant excitation atTc in the
BEC regime.

However, Fig. 8 still shows that there is a significant
gion aboveTc where the number of long-lived bosons
substantial. It is thus useful to define a ‘‘crossover tempe
ture’’ T* that separates the Fermi gas and the Bose gas
gimes, even though the increase in the number of sta
bosons occurs continuously. Wedefine T* as the temperature
at which NB

g5050.05, or when 10% of the Fermi atom
combine to form stableb-molecules~Fig. 9!. Figure 9 shows
that T* rapidly increases whenn is small or negative, for
which case stable bosons appear atTc (n/«F&0.18 for the
parameters used!. Even for n.0, T* ;«F is considerably
larger thanTc . Since this ‘‘Bose gas regime’’ lying betwee
Tc and T* is fairly wide, one might expect to observe th
formation of the stable molecules somewhat aboveTc if we
can decrease the threshold energy 2n enough, namely, to
values where the superfluid transition atTc would be of the
BEC type~see Fig. 4!.

Figure 10 compares the temperature dependence o
number of particles and the chemical potential~lines in the
figure! for n52«F with the case of a free (U5gr50)
fermion-boson mixture~filled circles and squares!. In the
noninteracting fermion-boson mixture, we only impose t
constraint that the total number of atoms is conserved@N

FIG. 8. ~a! The number of particles aboveTc when the threshold
energy is zero, forU/«F50.3 andgr /«F50.6. ~b! Temperature de-
pendence of the chemical potentialm aboveTc .
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5(Fermi atoms)123(Bose molecules)#. Figure 10 shows
that deep in the BEC regime (n52«F), this constraint alone
determines the temperature dependence of the numbe
particles and the chemical potential. As far as these qua
ties are concerned, the effect of including the interactionsgr
andU is clearly negligible.

VII. THE CASE OF STRONG FESHBACH COUPLING

In all the numerical results presented so far, we have c
sidered the case of a weak Feshbach coupling describe
gr50.6«F . In this regard, recent calculations have argu
that strong coupling (gr@«F) is a more realistic description
of Feshbach resonances observed in ultracold ga
@9,16,17#. In this section, we investigate what arises in th
strong Feshbach coupling regime, although the present tr
ment of fluctuations implicitly assumes a weak Feshba
coupling. We present some numerical results forTc in the
limit of a large Feshbach coupling~broad resonance! for a
uniform gas. In this regard, we note that our analysis in
present paper and in Ref.@11# has shown that the BCS-BEC
crossover in a trap is very similar to that in a uniform gas,
least for the case of weak Feshbach-coupling.

Figure 11 show the BCS-BEC crossover in the case
gr520«F@«F . Figures 11~a! and 11~b! show that the cross
over behavior already occurs aroundn5150«F , which is
much higher than«F . Results similar to this are presented
Ref. @17#. Since the bottom of the boson excitation spectru
2n is then still much higher than the fermion band, t
Feshbach relatedb-bosons described byNB5NB

g501NB
g.0

are almost absent in this crossover regime, as shown in
11~c!. The high-energyb-bosons only contribute to virtua
scattering processes involving fermions, which mediate
pairing interaction between the Fermi atoms. Thus, when

FIG. 9. Schematic phase diagram for Bose molecule phase.
a given value ofn, the temperatureT* (n) is defined where the
number of stable Feshbach molecules,NB

g50 , equals 0.05N. These
results are forU/«F50.3 andgr /«F50.6. AboveT* (n), the system
can be regarded as a gas of Fermi atoms, while below this temp
ture, one has an increasing fraction of pairing into stable molecu
The number of stable Feshbach molecules and the preformed
per pairs atTc are also shown.
3-14
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Feshbach couplinggr is very strong, the character of th
BCS-BEC crossover becomes identical to that in the cas
strong-coupling superconductivity as discussed by Nozie`res
and Schmitt-Rink@12#. The fact that the crossover to th
BEC region occurs at such large values of 2n is easy to
understand. Since the chemical potentialm is always of order
of «F or less, at large values of 2n and gr , we haveUeff

5U1gr
2/(2n22m).gr

2/2n. Since the strong-coupling ef
fect should be most pronounced whenUeff becomes compa
rable to «F , the BCS-BEC crossover will occur atUeff

;«F , which gives 2n;gr
2/«F . For gr520«F , this predicts

that the crossover will occur atn;200«F , consistent with
the numerical results in Fig. 11~a!.

The case of a very broad Feshbach resonance (gr@«F) is
equivalent to the case studied in Refs.@12,15#. This is shown
clearly by the fact that stable preformed Cooper pairs are
dominant excitation@see Fig. 11~c!# in the crossover region
at n;150«F . The Feshbachb-molecule component only be
comes dominant whenn&0. This result is in contrast to ou
results for a weak Feshbach couplinggr50.6«F as shown in
Fig. 4. In that case, theb-molecule becomes the domina
component at the BCS-BEC crossover.

Figure 12 shows the total number of composite bos
(NM[NB

g501NB
g.01NC

g501NC
sc) as a function ofn, for gr

FIG. 10. ~a! The number of Fermi atoms,NF
0 , and the stable

Feshbach molecule componentNB
g50 for temperatures aboveTc ,

for n52«F . ~b! The chemical potentialm aboveTc . The lines
show the results forU/«F50.3 andgr /«F50.6. The circles and
squares are the results for a noninteracting boson-fermion gaU
5gr50), but with the constraint that the total number of the p
ticles,N@5Fermi atoms12(Bose molecules)#, is fixed.
03360
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520«F . Although the individual Cooper-pair componen
NC

g50 andNC
sc show@see Fig. 11~c!# singular behavior in the

BCS-BEC crossover regime~at n;150«F), NM itself in-
creases smoothly as the threshold energy is decreased.

Since the BCS-BEC crossover aroundn5150«F shown in
Fig. 11 is intrinsically the same phenomenon as discusse
Nozières and Schmitt-Rink@12#, the origin of the small peak
in Tc shown in Fig. 11~a! is the analog of the one found als
in the case of strong-coupling superconductivity@12,14,15#.
However, Haussmann@43,44# has shown that the slight pea
in Tc obtained at the BCS-BEC crossover in strong-coupl

(
-

FIG. 11. BCS-BEC crossover in a uniform Fermi gas in the c
of a strong Feshbach couplinggr /«F520. We takeU/«F50.3. ~a!
Tc as a function ofn. ~b! The chemical potentialm at Tc . ~c!
Change of the character of particles through the BCS-BEC cr
over. The number of stable Cooper pairs,NC

g50 , exceedsN/2
(50.5N) around the sharp peak shown in panel~c!. However, this
is canceled by the negative value of the scattering contributionNC

sc.
The total number of bosons is always smaller thanN/2 ~see the
graph ofNM in Fig. 12!.
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Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 033603 ~2003!
superconductivity disappears when one uses a self-consi
t-matrix approximation. This means that Eq.~2.8! should be
calculated using the renormalized fermion Green’s functi
that include the self-energy arising from bound pairs t
have a finite lifetime@44#. Thus, we regard the small-peakTc
in Fig. 11~a! as probably an artifact of our non-sel
consistentt-matrix approximation. As in the weak Feshba
coupling case shown in Fig. 4, we expect that the maxim
transition temperatureTc will again be given by the BEC
expressions in Eqs.~4.12! and ~4.13!.

VIII. SUMMARY

To summarize, we have extended our recent work@11#
and investigated the effect of particle-particle fluctuations
conjunction with an atomic Feshbach resonance on the
perfluid phase transition in a gas of Fermi atoms in a h
monic trap, using a simple LDA approach. The BCS-BE
crossover predicts a maximum transition temperature oTc
50.518TF , somewhat larger thanTc50.218TF in a uniform
gas @11#. In the BEC regime, the excitation spectrum
dominated by the stable long-lived Feshbach-related m
ecules in the case of a small Feshbach coupling param
gr . This is in contrast with the results for the BCS-BE
crossover with no Feshbach resonance@12,15#, where the
preformed Cooper pairs are the dominant bound states. F
very broad Feshbach resonance (gr@«F) as studied in Refs
@9,16,17#, we find that the crossover region is also domina
by preformed Cooper pairs.

The BCS-BEC crossover is shown to strongly affect
atomic density profile in the trap, which can be measured
the BCS regime, where Fermi atoms are the dominant e
tations, the spatial distribution of the atoms is spread
from the trap center due to the Pauli exclusion principle. T
atoms increasingly cluster at the center of the trap as
threshold energy of theb-boson excitation spectrum is low
ered and the the number of stable composite bosons
creases.

FIG. 12. Change of the number of bosons,NM , in the BCS-
BEC crossover in the case of strong Feshbach coupling, ta
gr /«F520 and U/«F50.3. In this figure, the contribution from
NB

g.0 is negligible. Compare with the analogous results for we
Feshbach coupling in a trapped Fermi gas shown in Fig. 6.
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In the BEC regime, we show that stable molecules c
exist aboveTc . As the temperature increases, however,
number of these bosons decreases. We introduce a cros
temperatureT* defined as the temperature aboveTc at which
10% of the Fermi atoms have formed long-live
b-molecules. PlottingT* as a function of the threshold 2n
gives a sort of ‘‘phase diagram’’ in the normal phase, whi
may be useful in experimental searches for the BCS-B
crossover.

The experimental observation of Cooper pairs in trapp
Fermi gases will be a very exciting milestone in physic
What makes this topic even more interesting is the poss
ity that we can observe the BCS-BEC crossover in such s
tems. As we have shown in this paper, this crossover
volves very interesting physics and, moreover, it leads
characteristic changes in the properties of the trapped
The changes in the atomic density profile may provide
crucial experimental signature for the existence of Coo
pairing and superfluidity.

We will discuss the BCS-BEC crossover in the superflu
region belowTc in a future paper. In particular, we will dis
cuss how the collective modes vary as we pass through
crossover region@45#.

After this paper had been submitted, a related paper@46#
appeared, which gives a microscopic many-body theory
Feshbach resonance in atomic Bose gases.
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APPENDIX: CALCULATION OF THE FLUCTUATION
CONTRIBUTION TO THE NUMBER

The density of atoms associated with fluctuations giv
by dNFL(r ) in Eq. ~2.19! can be split into two contributions
@using Eq.~2.17!# ~Ref. @47#!,

dNFL~r !5
1

b (
q,nn

einnd
U

12UP

]P

]m

2
1

b (
q,nn

einnd
]

]m
ln@11gr

2D0P̃#. ~A1!

Since the second term involving (]/]m)ln@11gr
2D0P̃# goes

asnn
22 in the large-nn limit, the convergence factoreinnd has

no effect. However, this convergence factor cannot
dropped in the first term in Eq.~A1! because the quantity
U/(12UP)(]P/]m) only goes asnn

21 for largenn . In nu-
merical calculations, it is difficult to sum up the Matsuba
frequencies directly taking into account the convergence
tor involving an infinitesimally small numberd. One method
to avoid this difficulty is to employ a spectral representati
as carried out by Nozie`res and Schmitt-Rink@12#. However,
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this method requires high numerical accuracy in execu
the resulting energy integration. We used a different
proach.

To calculate the first term in Eq.~A1! @[dNFL
(1)(r )# with-

out employing a spectral representation, we comp
dNFL

(1)(r ) to the expression without the convergence facto

dNFL
(2)~r ![

1

b (
q,nn

U

12UP

]P

]m
. ~A2!

This quantity is easy to calculate numerically. When
transform the summation over the discrete Matsubara
quencies into an integral in the complex plane in the us
way, we obtain

dNFL
(1)~r !5

1

2p i (
q
E

C0

dzedznB~z!

3
U

12UP~ inn→z!

]P~ inn→z!

]m
,

dNFL
(2)~r !5

1

2p i (
q
E

C0

dznB~z!

3
U

12UP~ inn→z!

]P~ inn→z!

]m
, ~A3!

where the pathC0 is shown in Fig. 13. We are allowed to ad
the circular contoursC1 and C2 for the integration in
dNFL

(1)(r ) without changing the result, because the contrib
tions from C1 and C2 vanish in the large-radius limit (R
→`) due to, respectively, the factorsnB(z) and edz. The
integration indNFL

(1)(r ) is thus reduced to summing up th
poles inside the closed contoursC01C1 andC01C2 shown
in Fig. 13.

We next show howdNFL
(1)(r ) is related todNFL

(2)(r ) defined
in Eq. ~A2!. First, we note that when dealing withdNFL

(2)(r ),
the integration along the pathC2 gives a finite contribution

FIG. 13. Path for the complex integration discussed in the A
pendix. The dots show the discrete imaginary Bose Matsubara
quenciesinn .
03360
g
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when we add the pathsC1 andC2 due to the absence of th
convergence factor. However, if we write the integration
dNFL

(2)(r ) as

E
C0

dz5E
C01C11C2

dz2E
C2

dz, ~A4!

we find that the first term can be calculated by summing
the contribution from the poles inside the closed pathsC0

1C1 and C01C2, and the result is identical todNFL
(1)(r ).

The last term in Eq.~A4! @[dNFL
corr(r )# can be evaluated to

give ~in the limit R→`),

dNFL
corr~r !52

U

2p (
p,q

e2«p
2/vc

2

3E
C2

duF] f „«p1q/22m~r !…

]m
1

] f „«p2q/22m~r !…

]m G
5U(

p,q
e2«p

2/vc
2 ] f „«p1q/22m~r !…

]m
. ~A5!

Here,e2«p
2/vc

2
is the Gaussian cutoff introduced in Sec. I

and we have used Eq.~2.8! and changed the integration var
able usingz5Reiu. Thus we have shown thatdNFL

(1)(r ) in-
volving the convergence factor is related toNFL

(2)(r ) without
the convergence factor by

dNFL
(1)~r !5dNFL

(2)~r !2dNFL
corr~r !. ~A6!

Using this expression, we can calculatedNFL
(1)(r ) numerically

by evaluating the simpler expressiondNFL
(2)(r ).

The essence of this prescription may be easily underst
from the following example. Consider the two quantities:

NB
(1)~q!52

1

b (
nn

einnd
1

inn2Eq
,

NB
(2)~q!52

1

b (
nn

1

inn2Eq
. ~A7!

In this case, the frequency sum inNB
(1)(q) can be easily done

analytically and reduced to the Bose distribution functi
nB(Eq). The sum inNB

(2) gives

NB
(2)~q!5

1

b (
nn

Eq

nn
21Eq

2
5

1

2
coth

bEq

2
. ~A8!

The contribution fromC2 in the last term in Eq.~A4! is
given by

dNB
corr[2

1

2p i EC2 :R→`
dz

1

z2Eq
5

1

2
. ~A9!

Thus we can easily verify thatNB
(1)5NB

(2)2dNB
corr, as in Eq.

~A6!.
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