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Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
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We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a
Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an
additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the
threshold energy 2 of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we
showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS
state to a Bose-Einstein condenséBEC) of the Noziges and Schmitt-Rink kind, in which the BCS-type
superfluid phase transition continuously changes into the BEC type as the threshold energy is decreased. In this
paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the
local-density approximation. We also give results for both weak and strong coupling to the Feshbach reso-
nance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density
profile at the superfluid phase-transition temperaiyrereflecting the change of the dominant particles going
from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear
well aboveT.. We also discuss the “phase diagram” abdleas a function of the tunable threshold energy
2v. We introduce a characteristic temperatlifg2v) describing the effective crossover in the normal phase
from a Fermi gas of atoms to a gas of stable molecules.
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I. INTRODUCTION spin-up Fermi gag.We showed that the stable bosons that
appear as we enter the BEC regime are a strongly hybridized
The search for the superfluid phase transition in a trappethixture of Feshbach molecules and preformed Cooper pairs.
gas of Fermi atoms is one of the most exciting problems ifrhe Feshbach component of these boson excitations ulti-
current physic§l]. This involves the formation of BCS Coo- mately dominates in the BEC limit.
per pairs made up of degenerate fermions of two different |n this paper, we extend our previous w¢fl] by includ-
hyperfine state¢“spin up” and “spin down”). Degenerate ing the effect of a harmonic trap potential. This extension is
Fermi gases have been realized 4K [2] and °Li [3-5]. clearly necessary since all experiments on Fermi gases are
Very recently, a Feshbach resonance was observelfin  done in some sort of trap potential. So far, the trapping po-
working with the two hyperfine statg9/2,—9/2) and|9/2,  tential has been examined within the mean-field BCS theory
—7/2) (Ref.[6]). In a Feshbach resonance, a quasimoleculausing the simple local density approximatidrDA) [10]. In
boson is formed, which can produce an attractive pairinghis paper, we also use the LDA but go past the mean-field
interaction between two Fermi atoms of opposite spinsapproximation to include the effect of particle-particle fluc-
[7—-11). As a result, one expects BCS-type superfluidity withtuations. We show how the BCS-BEC crossover can be ob-
a high phase-transition temperaturgdue to this strong at- served from characteristic changes in the static atomic den-
tractive interactio9]. However, such a strong interaction is sity profile, easily measured by standard techniques.
also known to enhance fluctuations, which can strongly sup- Besides the phase-transition temperafigit is also im-
pressT . predicted by the usual mean-field BCS theory. Thusportant to understand how strong-coupling fluctuation effects
the inclusion of these Cooper-pair channel fluctuations ignter aboveTl.. In particular, it is an interesting problem to
crucial in considering the higfz superfluidity induced by clarify at what temperature the stable Feshbach molecules
an atomic Feshbach resonance. and preformed Cooper pairs in the BEC regime first appear
In a previous papdrll], we have discussed how this fluc- in the normal-fluid phase abovg,. Our calculations show
tuation contribution affects the superfluid phase-transitiorthat aboveT,, there exists a characteristic temperatilite
temperature in aniform Fermi gas, extending the theory which describes the crossover from a free Fermi gas to a
developed by Nozies and Schmitt-Rink12—15. We as- molecular Bose gas.
sume thalN; =N, , whereN,, is the number of Fermi atoms In this paper, our treatment of the particle-particle fluctua-
with spin o, and that both fermion components have thetions assumes that their coupling to the Feshbach resonance
same single-particle energy. As the threshold energy of thas weak, and can be thus treated perturbatively. Most of our
Feshbach resonance is lowered, the character of the phadiscussion is for this case, in which the BCS-BEC crossover
transition is found to continuously change from the BCS typeis driven by decreasing the value of the Feshbach resonance
to Bose-Einstein condensat8EC) type. In the latter regime, threshold (2/) relative to twice the bare Fermi energy
T, is strongly suppressed compared with the usual mean2eg). When the Feshbach coupling strength is very large, as
field BCS theory, and it approach&s=0.218- in the BEC = Kokkelmans and co-workers have foufith], it is not clear
limit. (HereT is the Fermi temperature of the noninteractingthat our simple treatment of the particle-particle fluctuations
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is valid. However, in this limit, one finds that the BCS-BEC the effective pairing interaction strength can be strong due to
crossover occurs for valuesv22er because of the broad the effect of the coupling to the Feshbach resonance. In this
Feshbach resonandsee also Refl17]). Effectively, one is  paper, we do not discuss the question of how good the model
in the strong-coupling regime discussed by Neozseand Hamiltonian in Eq.(2.1) is in the context of ultracold Fermi
Schmitt-Rink[12], where the BEC phase is associated withgases, but simply refer to the literatra-10,18.

preformed Cooper pairs. When the threshold energybé- Since in this model, one Feshbach-indudedolecule
comes comparable tos2, our calculations again show that consists of two Fermi atoms, we have=2m, and we also

the Feshbach resonance takes over as the dominant compmpose the conservation of the total number of particles as
nent of the BEC phase.

This paper is organized as follows: In Sec. Il, we review
the coupled fermion-boson model used in earlier work and N:<% Cgocpv> +2<2q b;bQ>
discuss the LDA extension of the results we presented in Ref.

[11]. In Sec. lIl, we use this opportunity to expand on certain =Ng+2Ng. (2.2
aspects that were not discussed in detail in [REf] due to

lack of space. The BCS-BEC crossover in a trapped systers discussed in our previous papdrl], this constraint is

is discussed in Sec. IV. In Sec. V, we consider the charactgncorporated into the model Hamiltonian in EQ.1) by re-

of the composite bosons. The crossover from a free Fernplacing—H— uN, wherepu is the chemical potential. The
gas to a gas of long-lived molecular bosons abdyeis  resulting Hamiltonian has the same form as &ql), but the
discussed in Sec. VI. Section VII considers the case of &inetic energies of the fermions and bosons are now given by
strong Feshbach coupling. gp—&p— p and Eg—> ES—ZM, respectively.

The present paper makes use of standard finite tempera- Now we introduce the effect of a harmonic trap. In this
ture diagrammatic field theory techniquigl8]. For a more  paper, we consider an optical trap in which the two hyperfine
extended treatment of this formalism in the context of theFermi atom states feel the same trap potential given by
BCS-BEC crossover, we refer to Chaps. 2 and 3 of R,

1
— 2 2 2,2 2,2
Il. FORMULATION Vi 1) = 5 2 Ml woeXj + woyyj + worz; ], (2.3

A. Coupled fermion-boson gas in a trap . . .
wherer;=(X;,y;j,z;) is the position of thgth atom. In our

The gas of interacting Fermi atoms coupled to a Feshbachgdel, we also assume that the Feshbach molecules also feel
resonance can be described by the coupled fermion-bosgpig potential withm being replaced by the boson mads
model given[7—-11,20-22 by =2m. We could relax this last assumption to deal more re-

alistically with the dipole moment of the composite molecule

HD, gpc'f Cont >, (EC+21)blD but we leave this extension to future studies. Treating the

po~pa q q~d . ) .
por q resulting trapped fermion-boson gas within the L[28,24]
amounts to replacing the chemical potengiaby

-uX clcel c ey
pte—pl&—p'1%p1
PP’ p(r)=p—=Viadr). (2.4

+0,>, [bgc_p+qmcp+q,2T+H.c]. (2.1)  The constraint on the total number of Fermi atoms is then
P replaced byN= [dr[Ng(r)+2Ng(r)], where Ng(r) and
Ng(r) are the number density of Fermi atoms and Bose mol-
ecules, respectively.
The atomic hyperfine states may feel different trap poten-

Here c;gg is the creation operator of a Fermi atom with the
kinetic energye,= p2/2m. We assume that the system in-

\C/:olves two %tom'c hyp(;erfrllne states \?Ilh.'g.h W\'/I\ll Iedad t‘_)btials in a magnetic trap. This situation is similar to electron
ooper-pair bosons and hence superfluidity. We describgqiq iy superconducting metals under a magnetic field. In

these atomic states for simplicity using the pseudo-spin Ianthe theory of superconductivity, it is known that a magnetic
guageo=1,]. The quasimolecular boson of momentgm '

i ; : ; ield suppresses superconductivity and, under certain condi-
associated with the Feshbach resonance is described by t Bns, produces a nonuniform kind of superconducting state

T O A2/ - -
operatorbg . Eq=q°/2M is the kinetic energy of this boson cjieq the Fulde-Ferrell staf@5—-27. The effect of fluctua-

and 2v represents the bottom of this resonance Bose Spegiyns on this kind of Zeeman splitting in atomic Fermi gases
trum, to be referred to as the threshold energy of the Feshs considered in another papeas].

bach resonance. The coupling to this Feshbach resonance
boson is described by last term in EQ.1) with a strength

g, in which two Fermi atoms form onb-boson, and the
b-boson breaks into two free Fermi atoms. The Hamiltonian The superfluid phase-transition temperat(rg can be
also includes a standard BCS pairing interaction with theconveniently determined using the Thouless criterion
coupling constant-U<0, originating from nonresonant in- [12,29, in which the phase transition is characterized by a
teractions between two Fermi atoms=1,]). Even assum- singularity in the particle-particle scattering vertex function
ing that this direct attractive pairing interactidhis weak, I' atw=q=0, associated with the formation of Cooper pairs

B. Equations for T.: Thouless criterion
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FIG. 1. Generalized-matrix approximation for the particle-
particle scattering vertex functiof'(p, ,—p_,p},—p"). The
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> Go(piNG(—p”inI(p},—p”;pl,—p_ir)
p",w;;]

_ [U—gPDo(a;n)IM(a:r)
1-[U—g?Do(a;n) 1M (q;r)

Here TI(q;r)=1II(q,iv,;r) is the well-known particle-
particle correlation function of the Cooper-pair-field operator

defined by&(q,r;r)EEpc_erq,Zl(r;r)cp+q,2T(r;r) in the
absence ofJ andg, [11,12,32,3%

(2.7)

, B . R
I(q,ivy;r)= fo dre'" (T {A(q,7;r)AT(q,0;)})

solid and dashed lines represent the one-particle thermal fermion

Green’s functionG, and boson Green'’s functioD,, respectively.

The first line includes the ladder processes associated with the di-
rect pairing interaction-U. The second line includes the effect of

the Feshbach resonance with the couptingThe shaded bubble in

1
=3 pE Go(p+a/2iwm+ivyr)

XGo(—p+0a/2,—iwy;r)

the second line includes the ladder diagrams shown in the third line.

[30,31]. The four-point vertex functiod® within the gener-
alizedt-matrix approximation in terms df andg, is given

by the diagrams in Fig. 1. In this figure, the first line de-

1_f(3p+q/2_/u(r))_f(8pfqlz_ u(r))
Eptrg2t Ep—q2— 2p(r)—iv,

(2.9

scribes ladder processes associated with the attractive im%’neref (¢) is the Fermi distribution function. Substituting

action —U<0, processes familiar in strong-coupling super-

conductivity in electronic systemgl2,19. On the other

hand, the second line includes the effective fermion-fermion

interaction mediated by thb-boson propagatob, defined

in Eq. (2.6), scattering processes that only arise in atomic
Fermi gases coupled to a Feshbach resonance, such as in Eq.

(2.1). The equation of the vertex functidn is given by
C(ps,—p-:pf,—pl;n)
=—[U—gfDo(q;r)]+[U—gDo(q;r)]
>

y 1
B p”, ”

Ym

o(p’t;1)G(=p” ;1)

(2.5
p-=(p—02jioy, q

XT(p%,—p”;ps,—pL;r),

where p,=(p+a/2jwn+iv,),

Eqg. (2.7) into Eqg. (2.5, we obtain

U—g?Do(aivp;r)
1—-[U—=g%Do(q,ivn;r)ITI(Q,ivy;r) |
(2.9

We shall see that the effective attractive pairing interaction is
given by

I(q,ivyr)=—

(2.10

According to the Thouless criteriof,. is given as the
temperature at which the vertex functibifq,iv,;r) in EqQ.
(2.9 develops a pole aj=r,=0. Within the LDA, sincel’
depends on the position this condition is satisfied at dif-
ferent temperature$,(r) depending orr. In this approxi-
mation, we have to regard the high&sj(r) as the phase-

Ue(Q,ivn ;1) =U—0gZDo(q,ivy;r).

=(q,ivy), and B=1/T is the inverse of the temperature; transition temperature of the trapped ¢g&sl]. Since the
iwy, andi v, are the Fermi and Bose Matsubara frequenciesgensity of particles is maximum at the center of the trap, we
respectively.G, and D, represent the bare one-particle fer- have T.=To(r=0). Then the equation foll; within the

mion and boson thermal Green'’s functions given by

N 1
GO(pilwmlr)_iwm_sp_l_M(r) )
1
Do(q,ivy;r)=- (2.6

Ivn—Eg—Zv+ 2u(r) '

Since the modified chemical potentja(r) includes the trap
potential, the LDA Green'’s functions and vertex functibn
also depend on the positian Multiplying both the sides of
Eq.(2.5 by (1/8)Go(p. ;r)Go(—p-_ ;r) and summing over
oy andp, we obtain

LDA is given by

1=U 4I1(0,0;r =0), (2.12)

where

2
r

2v—2u

Uer=Ue(q=0,iv,=0;r=0)=U+ (2.12

is the static part of the effective pairing interaction in the
long-wavelength limit at =0. Equation(2.1]) indicates that
even if the direct pairing interactiod is weak, the effective
pairing interactionU.s in Eq. (2.12 can be large, ifg, is
large or when the chemical potential of tlheboson (ug
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Go 1 . .
80y (r) = EE e'ndin[1-UIl(q,ivy;r)]. (2.19
4 vn
(a) + + +oe . G , .
This is the contribution discussed in Ref2]. In Fig. 2b),
we show the additional fluctuation diagrams contributing to

Q(r) associated with the Feshbach coupling interactipn
Summing up to all orders, this gives

1 . ~
804 (== 2, €"In[1+g7Do(q,ivn;NIL(G,ivy;)],

ﬁ Q,vn
(2.195
where
FIG. 2. Fluctuation contributions to the thermodynamic poten- _ TH(q,iv,:r)
tial Q. (a) Ladder diagrams associated with the direct pairing inter- I(q,ivy;r)= —” (2.1
action —U. (b) Diagrams arising in the presence of the Feshbach 1-UlI(q,ivn;r)

resonance. The shaded bubble is the same as in Fig. 1. . . . . .
9 describes the particle-particle bubble including the effect of

=24) approaches the bottom of the boson bandati@ore Y in the ladder approximation.

explicitly, we note that Eq(2.11) can be written in the well- We note that the total fluctuation contribution é(r) is
known BCS form the sum of the two contributions in Eq&.14) and (2.15),
’ which can be combined to give
1 tanh(e,— w)/2T
1=(U+g? )Z Mep™WI2Te 5 15 1o _
2v—=2u] %5 2ep=2u 5Q(r)=E e "nIn{[1—UTI(q,ivy;r)]
q,vn
As shown in the literaturf29-31], the pole that develops ) _ -~

at T, at = »,=0 signals an instability of the normal Fermi X[1+9g7Do(q,ivy;r)IL(g,ivy;r)}]
gas. AtT<T,, the amplitude of this two-particle bound state 1
can be shown to grow exponentially with time. This instabil- =2 e"fIn[1—Ugs(Q,ivy:H)IL(Q,ivy;0)],
ity is removed by the appearance of a new superfluid phase B 4w,
below T., described by the Cooper-pair order parameter. (2.17)

C. Fluctuation contributions to the chemical potential where the effective pairing interactiod.(q,iv,;r) is as

defined in Eq.(2.10. In other words, the only effect of the
éjiagrams in Fig. th) is to renormalize the pairing interaction
as U—Ugx(q,iv,;r) in Eq. (2.14. We also note that the
collective fluctuations in Eq(2.17) (which are bosonsare
precisely those that are associated with the poles of the
particle-particle vertex functiolr in Eq. (2.9). The thermo-
dynamic potential for the contribution of the free fermions
and the bard-bosons is given by the sufi8] of

The chemical potentiak in Eq. (2.13 is determined by
the equation of the total number of Fermi atoms where
b-boson also counts as two Fermi atoms. In the weak
coupling BCS theory in the absence of theboson, this
equation simply giveg.=eg (Whereeg is the Fermi energy
in the absence of any-bosong, assuming that the tempera-
ture dependence qf can be neglected. Indeed, in most me-
tallic (weak-coupling superconductors, the deviation of

w(To) from e is negligibly small assu~ (T./ep)2<1 [35]. 2
On the other hand, wheg, is large, or the Feshbach reso- Qg(r): — 2 elomd|n Ggl(p,iwm;r),
nance strongly enhances the effective pairing interaction B pom

U, in analogy with the “strong-coupling” superconductiv-

. . N . _ . ._ 1 .
ity discussed by Nozies and Schmitt-Rink12], the chemi Qg(r): —E eivndin Dgl(p,i Vo)., (2.18

cal potentialu is expected to deviate remarkably frosm Bpon
due to the effect of fluctuations associated with the Cooper-
pair channel. We now discuss these fluctuations. Combining all these results and usihg= —9Q/du, we

The equation giving the number of Fermi atoms deter{ind the result
mines the chemical potential. This is obtained, as in Ref.
[12], from first calculating the thermodynamic potental _f 0 0/ 0y E iov,
=[drQ(r) and then using the identit=—dQ/du. The N= | dr| Ne(r)+2Ng(r) B q%n €
fluctuation contribution to the local thermodynamic potential

Q(r) is shown in terms of diagrams in Fig. 2. In Figa® 9 _ — o

we show the usual diagrams associated with the direct pair- Xa,uln[l Uer(Qhivn;DIL(q,ivnin]), (219
ing interaction—U. Working to all orders inU, this gives

[12,13 where
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Ng:% eiwm5G0(q,iwm;r)=22 f(gp_lu(r))1 E(q-iVn;r):_grzﬁ(Q1iVn;r)a (33)
P om p

wherell has been defined in E¢R.16. Thus we have

1 ) ~ _ . _ ~
Ng=—= pZ e'an?DO(q,iyn;r):Ep ng(EQ+ 20— 2u(r)). D™*(q.ivy;r)=Dg ' +g7ll
(2.20 =iv,—[Eq+2v—g?II(q,ivyir)]
Hereng(E) represents the Bose distribution function. Equa- +2u(r). (3.9

tions (2.11) anql (2.19 providg us with a closgd set of two ¢ self-energy? in Eq. (3.3) describes the effect of the
coupled equations, from which we can obt@iiT,N) and  yecay of ab-boson into two Fermi atoms and their recombi-
Te(N). In solving the coupled equations numerically, We nation to ab-boson, treating the nonresonant interaction
have to take into account carefully the convergence factor |y within the ladder approximation. This self-energy can
e'"* in the last term in Eq(2.19. In the Appendix, We pe also obtained by summing up the diagrams shown in the
explain how to sum up the Matsubara frequencies in thighirg line in Fig. 1(shaded bubble in the figure

term. AboveT,, we need only solve Eq2.19 for u(T,N). One may verify that the first term in the square brackets in

the following section, however, we first discuss the physics o
involved in treating the fluctuations within the approximation 0 1 s 29/11Dg
developed in this section. This will allow us to better under- 2Ng(r)+ 22> e 1= U (I
. . ﬂq,vn effld
stand the nature of the bosons involved in the crossover to a
BEC regime. 2 - (1-UII)Dy
- _ e| vpo2 "/ 7Y
B a, 1-Uer(q)d
IIl. PHYSICS OF COUPLED b-BOSONS

AND COOPER PAIRS _ _% S @B (quivgr)
The contribution arising from the interaction in £§.19 - "
can be described in terms of Bose fluctuations given by the =2Ng(r). (3.9
solutions of We recall that in our interacting boson-fermion model
1=U Qoo+ 51)(q w1 51). (3.0) Hamiltonian, we havésee Eq(2.2)]

N=Ng+2Ng, (3.6
where we made the usual analytic continuation from the o
imaginary Bose Matsubara frequency to the real frequency¥nere, within the LDA,
axis asiv,—w+i6 [18]. While Eq.(3.1) appears relatively
simple, it describes a complex situation involving the forma- Np=f dr> <Cg(,(r)cp(,(r)>,
tion of preformed Cooper pairs and their coupling to the bare P
b-bosons in Eq(2.1) due to the Feshbach coupling interac-
tion g,. The preformed Cooper pairs and thenolecules are Ng= f drY, (bg(r)bq(r» (3.7
coupled to each other, which leads to hybridization and only q
one kind of composite Bose molecule. It is useful to try t0iye the number of fermions and bosons, respectively. As
disentang!e the'se' effects, although thgre 'seems no uniqs - ssed in many-body text is defined in terms of the
way of doing this in such a coupled excitation problem.  ronormajized  single-particleb-boson  Green's  function
Denoting the number density of atoms given by the las (Qivn:r). In fact, one sees thalg=Ng=[drNa(r)
[l ns . ) [

term in EQ.(2.19 as SNg (r), we have ! } ) ] . .
whereNg(r) is defined in Eq(3.5). This means thag in

1 S ol Eq. (3.7) is given by
ONp (r)=— €' 2gsIID5+ U -—
FL(r) B& Oy 0 eﬁ(Q)(m} Np= NE-I—ZNC, (3.9
1 where N is obtained from the second term in the square
X 1-Ug(qII)’ 3.2 brackets in Eq(3.2) as
1 oalf U

where for simplicity we denote II(q,iv,;r)=II, 2Ne=— >, dre'”n‘s—(%). (3.9
Do(a,ivn;r)=Dg, Uei(Q,ivy;r)=Ues(q), and we have B am Ip\1=Uex(q)

used the identitydDo/du=—2D5. The effect of the Equation(3.8) shows that the expression foN2 in Eq. (3.9
particle-particle fluctuations described bi(q,iv,;r) natu- s the natural definition of the number of Cooper-pair bosons
rally gives rise to a renormalizeé®boson propagatdd with that arise in the interacting fermion gas with an attractive
a self-energy given by interaction given byJ««(q).
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The preceding analysis leads to the following expressiomPutting this into Eq.(2.19, one finds that the termN& is

for N given in Ref.[11]: cancelled out by th®,, factor in Eq.(3.15, and we are left
with
N=N2+2Ng+ 2N, (3.10
szdr NE(r)+2Npy(r)]. 3.1
whereNg is the contribution from thé-bosons andN is the [NEr) u(r)] (310

contribution from the Cooper pairs, both being strongly
renormalized through the effect of the Feshbach resonan%
couplingg,. The problem with the decomposition given in
Eq. (3.10 is that wheng,#0, one must remember that the 1

ere the number density of composite molecular bosons,
m(r), is defined as

) J
b-bosons and the preformed Cooper pairs are strongly hy- 2Ny (r)=— —2 e”’n‘s(?—ln D,\_,,l, (3.17
bridized. As a result, they give rise to a single boson branch Baw, K
described by the pole dd in Eq. (3.4), namely, whereD, is defined in Eq(3.15),
wq=Eq+2v—gl1(q,ivg— wq+i8r) —2u(r). Dy t(Qivyir)=iv,—[Eq+2v+(U/Do—gH)IT]+2u(r).
(3.11) (3.18
One can understand the basic physics by going back to E&lote thatll enters here, ndil as in Eq.(3.4). This compos-
(2.17 and noting that ite molecule is a true hybrid of preformed Cooper pairs and
b-bosons, and cannot be associated with either component.
1-Ug(q)T=[1—UI][1+ ngDOﬁ] Howevei, one cgn ve.rlfy that thg polesdf, are identical to
those ofD as defined in Eq3.4), in that[see Eqgs(3.12 and
, 1 (3.15]
=[1-UI]+gII 5 .
o—[Eqt+2v—2u(r)] -, L ( U 2) L
1-UID *=Dy —|=——9;|II=Dy". (3.19
(3.12 (1-u) 0~y w' (319
This form shows clearly that the zeros of-Ueu(q)I1 cor- IV. TRANSITION TEMPERATURE IN THE BCS-BEC

respond to a hybridized spectrum associated with the pre- crROSSOVER WITH A FESHBACH RESONANCE
formed Cooper-pairf1-—UII=0] and the b-bosons[w

—[Eg+2v—2u(r)]=0] by the couplingg?Il. The zeros of A. Renormalization of U and g,
Eqg. (3.12 are seen to be given by In this section, we consider the case of an isotopic har-
monic trap wox= woy = wo,= wg) for simplicity. It is conve-
[1-Ull{w- [E8+ 2v—=2pu(r)]}+ g,ZH= 0. (3.13 nient to takes g as the unit of energgfor one Fermi specigs
As for the unit of length, we take the radi&& of a nonin-
One sees that the same hybridization physics is given by thiracting Fermi gas aff=0, defined by e(Rp)=¢¢
poles ofD, i.e., —mwiRZ/2=0, orR2=2¢-/mw?. We also take, as the unit
of the number of particles, the total number of Fermi atoms,
given by

{o—[Eq+2v—2u(N]}+g? 0. (3.19

1-UIl

4 (R PE(r) Mw,)3RE
N=;j Frzdrj F pzdpz(—O)F, (4.1)
0

. : . 24
All these versions emphasize that the renormalized bosons 0

formed Cooper pairs and the bdréosons. One can still ask the | DA. With this normalization, sincé&l and Re always

what is the relative “weighting” of these two components in appear with the coupling constarttsand g, asDEUN/RE

the renormalized boson spectrum given by the polB pfis ~2_ 2 /o3 . .
given by the values g andN¢ in Eq. (3.10. In Ref. [11], andg;=g;N/Rg, they can be absorbed into these coupling

we calculated both these contributions as a function of th&onstants(in the following, we simply write andg, asU

threshold 2 in the case of a uniform Fermi gas. andg,.) In our numerical calculations, we simply introduce
2, 2
Finally, we note that one can write a Gaussian cutof~°p/“c, with w.=2¢g, in the momentum
summation involved in the particle-particle response func-
1_Ueﬁ(q)1‘[:DO[Dal_Ueﬁ(q)Daln] tion II(q,iv,;r) defined in Eq.(2.8), and thus also in Eq.
(2.13.
DD 1| — 2l The interactions-U andg, used in this paper should be
s it D, 9 regarded as renormalized quantities effectively involving the
. effects of screening bgpseudospin and densjtfluctuations
=DoDpy" (3.19 and renormalization to incorporate high-energy processes.

033603-6



SUPERFLUID TRANSITION TEMPERATURE INA . .. PHYSICAL REVIEW A7, 033603 (2003

Gor’kov and Melik-Barkhudarov showed within the mean- . g

field BCS theory that in the dilute limifl, is suppressed by Or(we)= R
an effective interaction mediated by fluctuations described 1-U > —
by particle-hole p-h) bubble diagram§36]. This effect was [wg Ed 28p 24

also studied recently by Combes¢8%] in connection with

the possibility of highT . superfluidity in6Li. This reduction 1
of T, can be physically understood as a screening effect by R 5 lug Ed 2ep— 21
(pseudo spin and density fluctuations, which weakens the 2v () =2v—g; - 44

pairing interaction between Fermi atoms. One should under- 1-U PP
stand that- U andg, in our model in Eq.(2.1) include this [wg Ecl £8p™ <K

p-h screening. Phvsi R : — L
o . ysically, U™ (w¢) is the nonresonant fermion-fermion in
As for the renorm?]hzatlonFoFU_ andg, by hﬁjh—ener%y . telraction enhanced by high-energy scattering processes, and
processes, we note that our Fermi atomic gas has no physiGg diagrammatically described by Fig.a. The renormalized

cutoff energy, in contrast to superconductivity in metals, LR ; N
where the lattice phonon Debye frequency acts the e1’“fective|:eShbaCh coupling, («c) involves the three-point vertex

. 4 .~ correction coming from the high-energy processes in Fig.
cutoff in the BCS gap equation. However, a presc.rlptlon?)(b). Finally, the renormalized threshold energy™2w,)
about the renormalization of the high-energy interactions is .~ )

originates from the self-energy correction caused by the

implicit \_/vhen we mtrodgce_a_ cutofiog n the momentum break of a Bose molecule into two Fermi atoms with high

summations. To see this, it is convenient to introduce an . . . 2
. . momenta, which can be described by the diagrams in Fig.

energy cutoffE,. This cutoff energy is assumed to be much )

higher thanw. andT, and it may be arbitrarily large. We can .

then divide the summation in the equation fog in Eq.

(2.13 into a low-energy part{,=[0,0.]) and a high-energy
part (ep=[wc.Ecl). In this decomposition, WheBe>we  ooh \yiite the renormalized parameters in E&4) in terms

>|u|>T,, we can take tanb(—p)/2Tc—1 in the high- ¢y, o low-energy values,=0) as follows:
energy part. Since this replacement corresponds to ignoring

We should determine the renormalized quantities experi-
mentally. In this regard, the renormalized quantities for the
low-energy limit (w.=0) can be introduced16,17]. One

the influence of the Fermi distributiofrecall that in Eg. UR(0)
(2.13, tanh/2T=1-2f(x)], the high-energy region can be UR(wo) = ,
described as two atoms interacting in a vacuum. The effect of 1+ UR(0) E 1
the surrounding gas and Fermi statistics are absent. Then the 0o 28p— 24
decomposition of Eq(2.13 is reduced 38] to
tank( )/12T 1 9r(@e) ()
ann e — M c r\We)= ’
1=U — P " U —, 1
eﬂ[o,zwc] 28p—2p eﬁ[ch.Ec] 28p=2p LHURO) 2 2e,-2p
We.
4.2
whereU g4= U+g,2/(2v—2,u). This equation can be rewrit- ﬁ
ten as 00 28p— 21
2vR(we) =2v7(0) +gF(0)? - I
R
- Uit tanh(e,— u)/2T, 1+U (0)[0’2%] 2624
1 0o 2e,— 21
1-Uegs 2 2{:\le o p (4.5
loc Bl £&p™ oM Written in terms of the renormalized variables given in Eq.
o tanh(e,— u)/2T, (4.5, the BCS gap equation in E¢4.3) no longer involves
=US(wo) > ———— (4.3 E, explicitly. Although we simply write the couplings as

m 2e,—2
[0 Epm oM —U, g,, and the threshold energy a 2n our model, we

can regard them as renormalized quantities incorporating the

In this equation forT, high-energy two-particle scattering high-energy two-particle scattering processes, as discussed

processes in the regiofw,,E;] have been absorbed into . o

the o renormalized coupling Ugii(w) =U"(wc) The present way of renormalization can reproduce the
+[97(we)1?/[20R(wc) —2p] describing the low-energy cytoff-free theories in Refd14,15,39. When we write Eq.
physics in the regiofi0,w.]. The renormalized interaction (4.3) using the renormalized variables in terms of the low-
UR(w,), the Feshbach couplingr(wc), and the threshold  energy valueJ®R(w.=0) as given by Eq(4.5), we obtain
energy 2°(w,) are thus given by

y - UZ(0) tanh(e,— u)/2T,
R _ 1 — 2e,—2 )
ed T 1HUR(0) S 5 O S
1-U > 5—5- G 2ep= 21
[we . Edl 28p_2/'lf (46)
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Go = oo 1

R Z _
U (@) = U + + + _ [0E,] 2¢€
@ % 2u=2v—g$°—"l. (4.10

1-U —
[o,EEc] 2gp

The expressions for the equation iy in Egs.(2.13, (4.7),
and (4.9 give the same result, assuming that one takes the
appropriate values for the renormalized parameters.

With regard to the renormalization of the coupling con-
stants, recent work by Kokkelmams al. [16] has discussed
the coupled fermion-boson model given in E@.1) and in-

_ corporated the full two-body scattering theory in an im-
@ oy = <::> * * * proved fashion. Milsteiret al. [17] have more recently de-
rived equations identical to Eq$4) and (6) in Ref. [11]

FIG. 3. (@ Renormalization of the nonresonant pairing interac- (these correspond to Egq&.13 and (2.19 for a trapped
tion —U, as given in Eq.(4.4). The solid line with solid circle  Fermi gag, which include the effect of particle-particle fluc-
means the fermion Green's function in the high-energy regionyyations and the appearance of Cooper pairs. They have ex-
[we ,EC]. (b_) Renorr_nalization of the Fesh_bach resonance (_:ouplingended our analysis in Refl1] by renormalizing these equa-
g, which is described by the three-point vertex correcti®).  tjons in a way that treats the two-body scattering and bound
Renormalization of theb-boson threshold energys2associated  giates correctly. Their work thus leads to explicit numerical
with the self-energy correction. values for the various parameters in a renormalized model
corresponding to Eq2.1).

In the rest of this section and in Secs. V and VI, we

This equation can in turn be rewritten in the form

tant(e,— w)/2T 1 discuss our results fof, and the region above, usingd
1=U%(0) > P c_ } =0.3s andg,=0.6e. Our diagrammatic approximation for
[0.0¢] 2ep—2p 2ep—2p the fluctuations, as summarized in Figs. 1 and 2, assumes
tant(e,— w)/2T 1 that the interactions are weak. In Sec. VII, we discuss the
=UR(0) > P c_ . (4.7  analogous results predicted by E¢&.13 and(2.19 using a
[0.%°] 2ep— 21 2ep=2p valueg,>¢eg, such as found in Ref§9,17]. In this case, the

) ) Feshbach resonance is very broad and thus can have a huge
Since the two terms in the square brackets almost cancel odffect onT, even if the threshold 2> 2¢.

each other in the high-energy regipw.,>~] (we assume
thatw.>T), we can eliminate the finite upper limit. in the

. . N B.C behavi tT . within LDA
summation. This cutoff-free expression is similar to the one rossover behavior at T within

used in Ref[39]. The cutoff-free BCS equation fdr. used Our numerical solution foiT, and w(T.,N) from Egs.
by Randeria and co-workefd4,15. can be also obtained (2.13 and(2.19 for a trapped Fermi gas gives results that
from Eq.(2.13. Writing it as are very similar to those for a uniform Fermi gas obtained in

Ref. [11]. Figure 4 shows the BCS-BEC crossover in a

tanh(ep—u)/T, 1 trapped Fermi gas. As the threshold energyi2 lowered,
1:Ueff[0§E:] T 2e0-p 2. T oa | (4.8 Fig. 4a) shows thatT, deviates from the mean-field BCS
e P P P theory (‘BCS’ in the figure and approaches the BEC phase-
we can turn this into transition temperature of a gas Nf2 free bosons of mass

M=2m (“BEC” in the figure). The chemical potentiak

_ tanh(e,—u)/T, 1 also changes remarkably in this crossover as shown in Fig.

1= Ueﬁ[é] R P g} (4.9  4(b). As expected from the mean-field BCS theory, we obtain

Ec p p

u=ggfor 2v=2¢ (BCS regime, while u deviates froneg

) , = = = — and approaches for <0 (BEC regimg. The latter result
where the renormalized interactidfe=U+9;/(2v—24)  reflects that thés bosons become the dominant contribution
is defined by in the BEC regime. As a result, the phase transition occurs
when the chemical potential of theboson, ug (=2u),

U= U reaches the bottom of the Bose band) &t the center of the
1-U 2 1’ trap (within our LDA). We note that we can rewrite the equa-
N (%, z_sp tion for T, in Eq. (2.11) in the form
N 1 2v=2u+g?11(0,05=0). (4.1D)
9r=0r 1
1-U z _ This equation reduces tovZ2u (= ug) in the BEC limit,
[0E] 2€p where the Fermi atoms and hence the particle-particle fluc-
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0.6 v?\gr=0.6ép,U=.]®3.%s§ — T :( 1
U * T . \— Cc
BEC -1 64(3)

0.5 \

1/3
) er=0.518T. (4.12

04 | “\ Figure 4a) shows that thig . is obtained in the BEC regime
& \‘ as the limiting maximum value in the trapped Fermi gas. We
% 03} AY recall that Fig. 4 is folJ=0.3¢ andg,=0.6e.
= " We note that this upper limit fof . is much higher than
02t ".‘ that of a uniform Fermi gas in the absence of a {rhp. In
0 A\ the uniform systemT. in the BEC regime is givefll,15
NI A

by

0

1 213
Tc:2< m) er=0.218T, (4.13

: | where the Fermi temperature in the uniform system is given
8=0.66r,U=0.3r — by Te=(672N,)?%2m (Ref.[35]). One reason for the dif-
H=v 1 ferent maximumr ;s between the two cases comes from the
different expression fof . In addition, one should note that
the harmonic trap potential enhandeshrough the effective
density of statesDOS) of Bose molecules. When we carry
out the spatial integration in the equation for the total num-
ber of trapped particles in the BEC regimgN

W(To)/e

=2[drNg(r)], this equation is reducdd0] to
— ” 2 —
1-3[0 dEE o — (T=To), (4.14

WhereﬁE Te/T and the energy in the integral is normalized
in units of eg. The corresponding equation in the uniform
system is given by

Number of Bosons (T.) /N

» 1
V/e: 1=3ﬁfo dEJEeBE_l. (4.15

FIG. 4. BCS-BEC crossover in a trapped Fermi gas, for the
parameterd)/er=0.3 andg,/eg=0.6. (@) The superfluid phase- This shows that the low-energy region of the DOS has larger
transition temperaturg; as a function ofv. In this figure, BCS is  \yeight in the uniform gagDOS o \E) than in the trapped
the result neglecting particle-particle fluctuations while BEC is theone(DOSOCEz). As a result, the transition temperaturela-

value for T for a gas ofN/2 bosons of mas#1=2m. (b) The e 1o T_ for each casemust be higher in the trapped gas
chemical potentialu at T, as a function ofv. The dashed line than in the uniform gas

(2u=2v) shows the chemical potential for a trapped gas\d
b-bosons(c) Change in the character of particles through the BCS-

BEC crossover region. We note that scattering contributigrbe- V. LONG-LIVED COMPOSITE BOSONS
comes negative below/e=0.18, where the stable Feshbach mol- . -

ecule (\N3~°) and preformed Cooper-paiNg=% components first A. Damping of b-bosons and condition for stable
appear. The surhiz~°+ N is positive. molecules atT

The decay ofb-boson into two Fermi atoms associated
tuations described by are absent. Since in this BEC regime With the Feshbach resonance is described by the imaginary
the dominant excitations and/2 free bosons, we find the part of the(analytic-continuefiself-energy of the renormal-
usual result for a trapped free Bose ga3, ized Bose Green's function in E(3.4),
= wo[ N/2£(3)]*3 (Ref.[40]), wherewy is the trap frequency

andZ(x) is the usual zeta functiofwe seth =1). Using the y=—ImX(q,ivi—w+i&n=gfimil(qo+ism).
fact that Te=(6N;)"3w, is the Fermi temperature for a (5.1)
trapped free Fermi gagvith N;=N/2), we can write this

expression foiT. in terms of Tg to give Since InlI(q,w+148;r) is given by
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m\/a T=TC, q=pF
ImH(q,w+i5;r)=—0®[w+2,u(r)—E8] - - - -
4mpE (a) V=g
25 ¢t
B|w 5 & 03
coshz— E+ \/[erZ,u(r)—Eq]Eq 5| é
X In 3 , Il o2
w | P
cosh—(—— \/[w+2,u(r)—Eg]Eg> L5 3
2\2 0.1
1} =
(5.2 o
0 1 2 3 4 5
where® (x) is the step function, the damping ragds finite 05T W/Er
only in the regionw= wy,= Eg—z,u(r). This step function .
restriction is clear when we note that the denominator of Eq. 0 ' '
(2.8) can be written agiv,+2u(r)—ES]-2¢,. At q=0, . (b) v=0
Eq. (5.2 can be simplified to w 257 .
s &y 0.3
IMIT(q=0,w+i8:r) n 2y s
= N o2
mym ® I e
:%—@)[mzﬂ(r)]\/w+2ﬂ(r)tanhﬁf. SERE S
= &
= 17 =)
(5.3 o =
& R N
Since the energy to dissociate obéoson(with center of Q05 0
mass momentuny) into two Fermi atoms is given by ~—
[ep+g2— m(r)]+[&_pig2— m(r)], the threshold energiy, 0 ’ ' ; ;
is found to correspond to thminimumenergy to destroy one (C) V=-&
b-boson withgq=0. 251 N
The damping ratey leads to a finite lifetime of the Y 0.3
b-boson, or equivalently, it gives a finite width to the peak in 27 )
the spectral density of théenormalizedl Bose excitation s | I o2
spectrum given by : g
L L gm
pe(q,w;r)=——ImD(q,iv,— w+i8;r). (5.4 ~
™ " 05 | = 035 7 5
. . . Q)/Er
In the BCS regime, where is always finite foro>0 [see 0 . . .
the inset in Fig. B9)], the quasiparticlé-boson spectral den- 0 1 2 3 4 5
sity shows a broad peak, as shown in Figa)5This b-boson
thus has a finite lifetime, which is given by the inverse of the a)/eF

pe_ak width, due to decay into two Fermi atoms by the cou- FIG. 5. The spectral densitpg of the renormalized Bose
pling to the Feshbach resonance. As one approaches the BEC functiord. for T= dre do= h ,
regime, wy,>0 is realized[as shown in the insets in Figs. C'éeNn's functio, for T=T, andr=0 andq=pg, wherepg is

: . the Fermi momentum for a free gas WNf2 spin-up fermions. In
E(s)(gnfbac)]' In this case, when thi-boson pole given by each panel, the inset shows the frequency dependence of the

b-boson dampingy(w).
wg=[Eq—2u(N]+[2v=gfll(qwq+is&n], (5.5

2v=2v—g{1l(q,wq+i8r)<0  [Eq—2u(r)>0].
appears belowwy,, its lifetime is infinite. It thus appears as a (5.6)
S-function peak in thé-boson excitation spectral densjiy '
given by Eq.(5.4). We show this case in Figs(t9 and §¢).  This means that the renormalized threshold energy defined
In Fig. 5b), the excitation spectrum is still accompanied by by 27 in Eq. (5.6) must be negative for the stable undamped

a incoherent part in high-energy regioa* wy,), in addition b-Bose molecules to appeirl]. In the regiono=q=0, this

to the undamped bound-state pole beley. On the other diti b imatel it =29
hand, the incoherent part is seen to be almost absent in ggenaiion can - be approximately written - asv=zv

BEC regime in Fig. k), giving evidence that a stable —9r11(0,0;r)<0. Sincell(0,05) can be shown to be posi-
b-molecule dominates the two-particle excitation spectrum. tive and also decreasesmamicreases, the conditionv2 0 is
The conditior 11] for such a stable-boson is simply that  first satisfied at the center of the trap.
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We can divide the numbeXg of renormalizedb-bosons

in Eqg. (3.10 into the contribution from stable long-lived part
(Ngzo) and a Feshbach resonating contribution with a finite
lifetime (denoted byNg>°). In order to evaluate the contri-

bution from the stable pafl}~°, it is convenient to intro-

duce the spectral representation of the renormalized boson

Green’s functior{12] as

- 1(= 1 ~
D(q,ivn;r)z—;j dziV _ZImD(q,ivn—>z+i6;r).
o n

(5.7

Using this expression, the summation in terms of the Bose

Matsubara frequency iNg in Eqg. (3.10 can be carried out
to give

No=—— 3 [ar [ dznmmbiaz+ion.

T q

(5.9
Using this, the contribution from the stable polggith no
imaginary partis given by

poles

fdrzf dzd(z—[Eq—2u(r)

+2v— ng(q z+i8;r)])ng(2)
poles

fdrz Z(q;r)ng(wg). (5.9

PHYSICAL REVIEW A7, 033603 (2003
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FIG. 6. The number of bosonhly, [see Eqs(3.16) and(3.17)],
as a function of the threshold energy The number of Fermi at-
oms, N2, is also shown.

poles

N“/OngE

(q’ @90 5 g wg),

(5.13

whereZ(q;r) has been defined in E¢6.10. There is also a
contribution from scattering states, and hence we Hdye
=NZ %+ N, whereN represents the scattering contribu-
tion associated with damped particle-partigler Cooper
channel fluctuations.

Figure 4c) shows the change of the character of the ex-
citations in the BCS-BEC crossover in the trap. As low-
ered and approaches, the Feshbach resonance molecular
state starts to play a role and the Feshbach damped mol-
ecules (\I7>°) appear. These bosons are replaced by the

Here, Z(q;r) arises from what is called mass renormaliza-gaple moleculesNg~ 0) around »=0.18& for the param-

tion, and is given by

&ﬁ(q,wq )
dw ’

q

Z(q;r) t=1+g? (5.10

The sum in Eq(5.9) is over the solutions satisfying Eq.

(5.9.

eters used in Fig.(4). At the same time, a contribution from
preformed Cooper pairsI\QZO) appear. In the BEC regime,
stable Feshbach molecules become dominantNgid ap-
proaches 0.5 £N/2). The contribution from preformed
Cooper pairs are seen to again disappear in the BEC limit
v<<0. The increase in the total number of molecules is, how-
ever, slower than that found in the uniform systgit|. This

Besides this Feshbach component of the two-particles simply because the stable molecules initially only begin to
bound state given by Ed5.9), there is a component from appear at the center of the trap, rather than throughout the

Cooper pair associated witlic as defined in Eq(3.9). One
can rewrite Eq(3.9) in the form

D Ueff CI) oIl
2Nc= qun fd e 1-UIl 7 (5.19)
We next use the fact that
Al (1 |2l 61
gu\1-UM) (512

and that foro = wq [given by Eq.(5.5)], one has the identi-
ties D’l——ng and U4(q)=11"1. With these relations,

system as in the uniform gas case.

Figure 6 shows the number of composite bosaxg,
=[drNy(r), as a function ofv [whereN,(r) is defined in
Eq. (3.17)]. Although each component of the bosdW}(°,
NZ~%, NZ°, andN) shows a singular behavior around
v=0.18&¢in Fig. 40), Ny (=NZTO+ N2+ NE P+ N is
found to increase smoothly as the threshold energyi
lowered, as expected.

As we have discussed in detail in Sec. lll, the strong
hybridization induced by the Feshbach coupling interaction
g, means that there is only a single two-particle boson
branch, whose energy is given by the solution of Ex5).
Thus N3~° and NX~° only represent the relative spectral
Welghts of the two componentsorresponding to long-lived

the contributionNZ=° of undamped bosons associated withb-bosons and stable preformed Cooper paifghis compos-

Cooper pairing can be reducgtil] to the expression

ite boson. This decomposition is only meant as a way of

033603-11



Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 033603 (2003

understanding the physics of the BCS-BEC crossover thaee this, let us recall the cutoff-free equation Trgiven by
arises in the model given by E(2.1). This interpretation is, gq. (4.9). Since <0 in the BEC limit, one can approxi-
however, very useful to understand the difference betweepately take tanh{,— )/2T=1. Summing overp in Eq.
the present BCS-BEC crossover and that in strong-coupling4.9)' we obtain

superconductivity with no Feshbach resonance. In the latter

case, the preformed Cooper pairs are the dominant excita- T T
tions in the strong coupling BEC reginjé2,14,13. In the 1=—|U+g? _1 m 2m|’“|_ (5.15
present case, for the values of the parametersd.3s¢ and 2v—2u 4

0,=0.6e¢ used in Fig. 4, although preformed Cooper pairs

make a contribution, the stable Feshbach molecules domWhen we write the renormalized attractive interaction as

nate the excitation spectrum in the BEC limit<0). Uer=U+g%(2v—2u)=—4mas/m, wherea, is ans-wave

scattering length, Eq(5.19 gives |x|=1/2maZ, which is

formally the same expression as that obtained in strong-
The binding energy of the long-lived composite boson iscoupling superconductivity discussiori44,15,41. In the

the energy to break this molecule into two Fermi atoms. Thigpresent model, where the pairing interaction mediated by the

dissociation energy can be evaluated from the energy diffef-eshbach resonance is dominant in the BEC regime, we can

enc_::‘ l;etween E[he bm;r:ﬁ—s]:tate Enerqyn Eq.(5.9 ar:jdfthe thneglect the nonresonant pastin Ugs. Then in the case of

excitation spectrum of the free Fermi gas measured from ; S

chemical potentiak. In particular, the binding energy of the 50, the solution of Ea(5.19 s given[42] by

B. The binding energy of composite bosons

zero-energy z@q:o=0_) tV\_/o-particIe bound state with=0, ,u msaf 12872[1]
which appears at ., is given by ==1+ — | 1+ ———1/1. (5.16
v 64wy m3gﬁ1

Ebinding: Z[Sq:O_M(rIO)]_wq:O
— 24 (5.14) The right-hgnd side of this equation is reduced to unity in the
K ' BEC limit v— —, namely, the chemical potential for the
=2|7/(q=0,wq:O;r=0)|, b-bosql (%) approaches thérenormalizedl threshold en-
, ergy 2v, as one expects.
where we have use@(r=0)<0 and Eq.(5.6) to obtain The relation betweep and the binding energy of a bound
expressions on the right-hand side. This result means thatate in a two-particle system can be also obtained by extend-
Ebinding IS €qual to the absolute value of the energy of &jng the previous discussions for the superconductivity case
renormalizedb-molecule at the bottom of the renormalized [14,15,41. When we consider two Fermi atoms in a vacuum
boson spectrum. _ and employ relative coordinates, the scatteringatrix for
The threshold energy,(q=0) of the two-particle spec-  gne Fermi atom with reduced mass2 and energyw is
trum is defined as where If(q=0,0;r=0) given in Eq. given by
(5.2 becomes finite(see Fig. 5 We recall that Inbl de-
scribes the excitation spectrum of the Cooper-pair channel
fluctuations. This frequencwy,(q=0) is the same as the T(w)=
threshold energy of the continuum spectrum of the renormal-
ized b-boson self-energy in EQq(3.3), since y=—Im%, 1
— 2mil(ivy—w+id)<Imll(w+id). When a stable sz w—2¢,
b-boson atw,-o=0 is excited to a state with enerdy
= wy,, this excitedb-boson will decay into two Fermi atoms,
leading to a finite lifetime for this excited state. We conclude
that w(q=0)=Epinding, i-€., the particle-particle threshold =- 1 7 617
energywy,(q=0) is equal to the binding energy of a stable 1- ( U+gr2 )2
two-particle bound state. 2v-w|py 28y~ w
Since the chemical potentiagd approaches in the BEC
limit as shown in Fig. &), we find from Eq.(5.14 that
Epinding— 2| | in this regime. This energy|2| is just equal
to the energy needed to transfer a flelboson at the bottom 1
of the Bose energy bandf_,+2v=—2|v|) to two Fermi 1=UlL> ——, (5.18
atoms with zero energy €2,-,=0). This result is consistent p 2ep— 0
with the fact that the preformed Cooper-pair component in , 5 ) _
the bound state is absent in the BEC limit, leaving theVN€réUes=U+g;/(2v—w). When we renormalize the in-
b-molecule component. teraction in Eq.(5.18 as we have done to obtain E@.9),
The binding energy of the preformed Cooper pair in theEd- (5.18 is reduced to
strong-coupling BEC regime has been also discussed in su-
perconductivity{12,14,15,4], and it is useful to understand 1=U’ 2
how the present results are related to the previous work. To o

~U+g? ~U+g?

J’_

w—2v w—ZV)

7 4.

1
(—U+95w_—

U+gr22v—w

The q=0 two-particle bound state is given by the pole of
T(w), namely,

1 1

28p—w 28p

, (5.19
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3 " y T T y density profile is spread out, as shown by the resultifor
. (a) T=T. V‘f=86 . =¢g. In this regime, the density profile is mainly composed
2.5 % 1 of Fermi atoms, and the Pauli exclusion principle between
Fermi atoms effectively acts as a repulsive interaction. This
2 pushes the atoms away from the center of the trap. As the
system approaches the BEC regime<(), the number of
—_ L5 r stable bosons gradually increases, and thus the repulsive ef-
“g LI fect of the Pauli exclusion principle becomes less important.
'z As expected for bosons, the particles are now seen to cluster
<& near the center of the trap ass lowered, as shown by Fig.
v 09 7(a) [see also the inset in Fig(a) for v=0]. These results
g 0 indicate that the easily measured atomic density profile may
=1 be a very useful signature in looking for the BCS-BEC cross-
4 25 | over phenomenon experimentally, especially as one gets
o 1.0 V=-& - close toT..
%‘ 2} 08| T=0.75T: 1 We note that the atomic density profile shows a steep
é 06 F V=er — decrease near the trap centerTat[Fig. 7(a)], but this is
8 1.5 T v=0 absent aff =1.5T [Fig. 7(b)]. The cusplike behavior &,
originates from the boson componemig and N¢) in the
L density, as shown in the inset of Fig@y. In the extreme
BEC limit, since the gas is described Ny2 free Bose atoms
0.5 21 in a trap, the density of atoms is proportionalgg.(z(r))
0 o , (Ref. [40]), wheregs(2)==7_,2"/n%?, and the fugacity is
0 02 04 06 08 1 12 14 z(r)=el?r—2v Z_Vtrarm]”. At T, since the BEC is realized
when the chemical potential of bosonsPreaches the bot-
/R tom of the boson excitation spectrum 2 we find z(r)

—1 at the trap center. From the well-known behavior of
Osp(2) at z=1, the atomic density profile shows a finite
slope atr=0 atT.. In contrast, this sharp cusp at the trap

FIG. 7. Atomic density profile as a function of position in the
trap in the BCS-BEC crossoveda) T=T,. (b) T=1.5T,. Inset in
(a): Density profiles ofN2(r), NZ=°(r), andNZ=°(r) at T=T in ;
the case ofv=0. Inset in(b): Density profile abovel . when the center is absent for temperatures abolig where 2u

temperature is fixed a3 =0.75T.. These results are fod/eg <4(2)V’V3nd lhencr? th? fuaac_n;(r) 'Sf r|1:0 Iongﬁr c(ljose _to unity
=0.3 andg,/e=0.6. The number density of atomi(r), is re- [, |. We also show in the inset o Fig(y) the density pro-
lated to the total number of atomé asN= [drN(r). One boson file aboveT; when the temperature is fixed @s=0.75T¢. In

counts as two Fermi atoms in this figure. We note that the transitioliS case, the density profile becomes more spatially diffuse
temperatures are different for the three valuesroBinceT, in-  as v is increased. This is because of the increasing domi-

creases as is lowered[see Fig. 43)], the transition temperature for nance of the fermions and the resulting enhancement of the
v=e¢ is the lowest among the three cases plotted. As a result, theffect of the Pauli exclusion principle.

spatial spread of atoms in the density profile originating from the

increase of théaveragell kinetic energy of atoms due to a finite B. Crossover from a Fermi gas to a Bose gas abovi,
temperature is weakest in the casevefer, and hence the density

profile at the trap center is largdsiee panel(b)]. It is useful to clarify when and how the stable bosons

(N3~% andNE=%) at T, shown in Fig. 4c) disappear as the
temperature is increased aboVg. Figure &a) shows the

T/ Y11 <2 _ . . .
whgre Ui=U -.|-gr/.(21/—(1)), in yvhlch the renOfma“ZGd temperature dependence of the number of particles abgve
variables are given in E@4.10. This equation is the same as (for v=0). The number of stable bosori’sj(o anngZO)

Eq. (4.9 in the BEC limit[x<0, where tanh{,— u)/2T .0 finite lifetime bosonsN%~°), and the scattering contri-
—1] when we replacew—2u. Thus the energy of the

. s .

bound state is related to the chemical potential by the reIa_It-)_uFIon (Ne) are all foun(_j to decrease at higher temperatures.

: _ L : : : .~ “This result is also obtained when<0. Thus only the free

tion w=2|u|, which is consistent with our earlier result in . . :

Eq. (5.14 Fermi atoms contribute at higher temperatures well above
.(5.14. T,

The reason that the Fermi atom contribution dominates at

VI. STRONG-COUPLING EFFECTS ABOVE T, high temperatures has a very simple explanation in the dif-

ference of the chemical potentials between a Fermi atom

(ug=pw) and ab-boson wg=2u). As the temperature is
As expected, the change of the character of the particlegicreased, the chemical potentjal must decrease so as to

from the fermion to boson in the BCS-BEC crossover showrconserve the total number of atorfld = (Fermi atoms)- 2

in Fig. 4(c) strongly affects the density profile of atoms in the X (Bose moleculeg) as shown in Fig. @). Thus for T

trap. This is shown in Fig. (8. In the BCS regime, the >T., the boson excitation energ§/8+2v—2,u always in-

A. BCS-BEC crossover effect on the atomic density profile
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_ (a)

T/Te

Number of particles /N

-1 -0.5 0 0.5 1 1.5 2
V/&

FIG. 9. Schematic phase diagram for Bose molecule phase. For
a given value ofy, the temperaturd™*(v) is defined where the
number of stable Feshbach moleculﬂgfo, equals 0.08. These
results are fotJ/ez=0.3 andg,/eg=0.6. AboveT* (v), the system
can be regarded as a gas of Fermi atoms, while below this tempera-
ture, one has an increasing fraction of pairing into stable molecules.
The number of stable Feshbach molecules and the preformed Coo-
per pairs afT; are also shown.

/&

0 02505 075 10 125 15 1.75 2.0
T/Te

FIG. 8. (a) The number of particles abovie when the threshold
energy is zero, fotd/ez=0.3 andg,/e=0.6. (b) Temperature de-
pendence of the chemical potentialaboveT,.

=(Fermi atoms)- 2 X (Bose moleculeg) Figure 10 shows
that deep in the BEC regime & — &), this constraint alone
determines the temperature dependence of the number of
particles and the chemical potential. As far as these quanti-
ties are concerned, the effect of including the interactipns

creases faster than the excitation energy of the fermiong, () is clearly negligible.

(gp—n), simply due to the factor two in front g& in the
boson excitation energy. As a result, the occupation of the
boson energy band always approaches zerd foff ., even
though the bosons can be the dominant excitatior. & the In all the numerical results presented so far, we have con-
BEC regime. sidered the case of a weak Feshbach coupling described by
However, Fig. 8 still shows that there is a significant re-g,=0.6e¢. In this regard, recent calculations have argued
gion aboveT, where the number of long-lived bosons is that strong couplingd,> ) is a more realistic description
substantial. It is thus useful to define a “crossover temperaef Feshbach resonances observed in ultracold gases
ture” T* that separates the Fermi gas and the Bose gas r§9,16,17. In this section, we investigate what arises in this
gimes, even though the increase in the number of stablstrong Feshbach coupling regime, although the present treat-
bosons occurs continuously. \WWefine T as the temperature ment of fluctuations implicitly assumes a weak Feshbach
at which N3~°=0.05, or when 10% of the Fermi atoms coupling. We present some numerical results Torin the
combine to form stable-molecules(Fig. 9). Figure 9 shows limit of a large Feshbach couplin@proad resonangeor a
that T* rapidly increases whem is small or negative, for uniform gas. In this regard, we note that our analysis in the
which case stable bosons appeaiTat(v/e<0.18 for the present paper and in R¢fl1] has shown that the BCS-BEC
parameters us¢dEven for v=0, T* ~g¢ is considerably crossover in a trap is very similar to that in a uniform gas, at
larger thanT,. Since this “Bose gas regime” lying between least for the case of weak Feshbach-coupling.
T. and T* is fairly wide, one might expect to observe the  Figure 11 show the BCS-BEC crossover in the case of
formation of the stable molecules somewhat ab®yéf we  9,=20eg>er. Figures 11a) and 11b) show that the cross-
can decrease the threshold energy @iough, namely, to over behavior already occurs aroumd- 150, which is
values where the superfluid transitionTatwould be of the much higher thar . Results similar to this are presented in
BEC type(see Fig. 4. Ref.[17]. Since the bottom of the boson excitation spectrum
Figure 10 compares the temperature dependence of tid is then still much higher than the fermion band, the
number of particles and the chemical potentlales in the  Feshbach relatet-bosons described bMBzNg=°+ Ng>°
figure) for v=—¢¢ with the case of a free {=g,=0) are almost absent in this crossover regime, as shown in Fig.
fermion-boson mixture(filled circles and squargsin the  11(c). The high-energyb-bosons only contribute to virtual
noninteracting fermion-boson mixture, we only impose thescattering processes involving fermions, which mediate the
constraint that the total number of atoms is conserMdd pairing interaction between the Fermi atoms. Thus, when the

VII. THE CASE OF STRONG FESHBACH COUPLING
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FIG. 10. (8) The number of Fermi atoms\g, and the stable g 10.6
Feshbach molecule componeXg =" for temperatures above,, g
for v=—gg. (b) The chemical potentials aboveT,. The lines a 10.4
show the results fold/e=0.3 andg,/eg=0.6. The circles and e {02
squares are the results for a noninteracting boson-fermion\gas ( 3 .
=g,=0), but with the constraint that the total number of the par- g 0
ticles, N[ = Fermi atoms- 2(Bose moleculeg) is fixed. Z
-0.2

. . -100 0 100 200 300 400 500
Feshbach coupling, is very strong, the character of the

BCS-BEC crossover becomes identical to that in the case of V/&

strong-coupling superconductivity as discussed by Neszie . . . .

and Schmitt-Rink[12]. The fact that the crossover to the FIG. 11. BCS-BEC crossover m_a uniform Fermi gzis in the case
BEC region occurs at such large values of B easy to of a strong Feshbach coupling/sg=20. We takeU/er=0.3. (a)

. . . T. as a function ofv. (b) The chemical potentiak at T.. (¢
understand. Since the chemical potenjidb always of order Change of the character of particles through the BCS-BEC cross-
of eg or less, at large values ofi2and g,, we haveU 4

5 > X X over. The number of stable Cooper paif}=°, exceedsN/2
=U+gy/(2v—2pn)=g;/2v. Since the strong-coupling ef- (-0 5\) around the sharp peak shown in paf@l However, this

fect should be most pronounced whiegy becomes compa- s canceled by the negative value of the scattering contribign
rable to e, the BCS-BEC crossover will occur e The total number of bosons is always smaller 2 (see the
~e¢gg, Which gives 2/~gr2/sF. For g,=20eg, this predicts graph ofNy, in Fig. 12.

that the crossover will occur at~200Cg, consistent with

the numerical results in Fig. ). S .

The case of a very broad Feshbach resonagge £f) is _VZB(fF' Alt?COUQh the |nQ|V|duaI C_ooper-palr cqmponents
equivalent to the case studied in Rdfs2,15. This is shown N¢  andN¢ show[see Fig. 1lc)] singular behavior in the
clearly by the fact that stable preformed Cooper pairs are thBCS-BEC crossover regiméat v~15C¢), Ny itself in-
dominant excitatiojsee Fig. 1(c)] in the crossover region creases smoothly as the threshold energy is decreased.
at v~ 150 (. The Feshbach-molecule component only be-  Since the BCS-BEC crossover aroung 150 shown in
comes dominant when<0. This result is in contrast to our Fig. 11 is intrinsically the same phenomenon as discussed by
results for a weak Feshbach coupligg=0.6e as shown in  Nozieres and Schmitt-Rink12], the origin of the small peak
Fig. 4. In that case, the-molecule becomes the dominant in T, shown in Fig. 11a) is the analog of the one found also

component at the BCS-BEC crossover. in the case of strong-coupling superconductiyit?,14,15.
Figure 12 shows the total number of composite boson$iowever, Haussman3,44 has shown that the slight peak
(Nu=NZ %+ NZ7%+ NZ %+ N as a function ofy, for g,  in T, obtained at the BCS-BEC crossover in strong-coupling
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Z 05 ' ' ' 1.0 In the BEC regime, we show that stable molecules can
—_— 2,=20er,U=0.3¢p ) exist aboveT;. As the temperature increases, however, the
P('J number of these bosons decreases. We introduce a crossover
‘; 0.4 1 108 temperaturd™* defined as the temperature abdveat which
g < Nu\ 10% of the Fermi atoms have formed long-lived
2 03 N LT 106 b-molecules. Plottingr* as a function of the thresholdv2
M gives a sort of “phase diagram” in the normal phase, which
w02 / 104 may be useful in experimental searches for the BCS-BEC
° S Np —> crossover.
_8 0.1 ,," 10.2 The experimental observation of Cooper pairs in trapped
= Fermi gases will be a very exciting milestone in physics.
5 0 el . . . 0 What makes this topic even more interesting is the possibil-
Z 100 0 100 200 300 400 500 ity that we can observe the BCS-BEC crossover in such sys-
V/E: tems. As we have shown in this paper, this crossover in-

volves very interesting physics and, moreover, it leads to
FIG. 12. Change of the number of bosol,, in the BCS-  characteristic changes in the properties of the trapped gas.
BEC crossover in the case of strong Feshbach coupling, takinghe changes in the atomic density profile may provide a
0,/er=20 andU/e=0.3. In this figure, the contribution from crucial experimental signature for the existence of Cooper
NZ~° is negligible. Compare with the analogous results for weakpairing and superfluidity.
Feshbach coupling in a trapped Fermi gas shown in Fig. 6. We will discuss the BCS-BEC crossover in the superfluid
region belowT. in a future paper. In particular, we will dis-
superconductivity disappears when one uses a self-consistetitss how the collective modes vary as we pass through the
t-matrix approximation. This means that Eg.8) should be  crossover regiof45].
calculated using the renormalized fermion Green’s functions After this paper had been submitted, a related papéy
that include the self-energy arising from bound pairs tha@ppeared, which gives a microscopic many-body theory of
have a finite lifetimg44]. Thus, we regard the small-pedk ~ Feshbach resonance in atomic Bose gases.
in Fig. 11(a) as probably an artifact of our non-self-
consistent-matrix approximation. As in the weak Feshbach ACKNOWLEDGMENTS
coupling case shown in Fig. 4, we expect that the maximum
transition temperaturd; will again be given by the BEC
expressions in Eqs4.12 and (4.13.
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and investigated the effect of particle-particle fluctuations in

conjunction with an .a_tom.ic Feshbach resonance on the sU- A\ppENDIX: CALCULATION OF THE FLUCTUATION

perﬂwd phase transition in a gas of Fermi atoms in a har- CONTRIBUTION TO THE NUMBER

monic trap, using a simple LDA approach. The BCS-BEC

crossover predicts a maximum transition temperatur& of The density of atoms associated with fluctuations given
=0.518T, somewhat larger thafi,=0.2187¢ in a uniform by 6Ng (r) in Eq. (2.19 can be split into two contributions
gas[11]. In the BEC regime, the excitation spectrum is[using Eq.(2.17)] (Ref.[47]),
dominated by the stable long-lived Feshbach-related mol-

ecules in the case of a small Feshbach coupling parameter 5NFL(F)=E elvnd U ﬁ
g,. This is in contrast with the results for the BCS-BEC B 4w, 1-UIT dp
crossover with no Feshbach resonanft@,15, where the

preformed Cooper pairs are the dominant bouyd ;tates. For a _ 1 2 el Vn5i|n[1+gr2D0ﬁ]_ (A1)
very broad Feshbach resonancggsteg) as studied in Refs. B 4, I

[9,16,17, we find that the crossover region is also dominated _ ) oo =

by preformed Cooper pairs. Since the second term involving/@u)In[1+g;DoII] goes

The BCS-BEC crossover is shown to strongly affect theasv, % in the largew, limit, the convergence fact@ "»° has
atomic density profile in the trap, which can be measured. Imo effect. However, this convergence factor cannot be
the BCS regime, where Fermi atoms are the dominant excidropped in the first term in EqAl) because the quantity
tations, the spatial distribution of the atoms is spread outJ/(1—UII)(dIl/du) only goes as{l for large v, . In nu-
from the trap center due to the Pauli exclusion principle. Themerical calculations, it is difficult to sum up the Matsubara
atoms increasingly cluster at the center of the trap as th&equencies directly taking into account the convergence fac-
threshold energy of thb-boson excitation spectrum is low- tor involving an infinitesimally small numbef. One method
ered and the the number of stable composite bosons irte avoid this difficulty is to employ a spectral representation
creases. as carried out by Nozies and Schmitt-Rink12]. However,
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Im [z] when we add the paths; andC, due to the absence of the
convergence factor. However, if we write the integration in
SNE)(r) as
C2 C C1
C 0 f dz=f dz—f dz, (A4)
0 Co Co+Cy1+Cy c2
R
e[z] we find that the first term can be calculated by summing up
the contribution from the poles inside the closed pailys
+C,; and Co+C,, and the result is identical toN&(r).
. / The last term in Eq(A4) [=6NE"(r)] can be evaluated to
1Vn give (in the limit R— ),
corr U — 62l w?
(=5 % e /v
FIG. 13. Path for the complex integration discussed in the Ap- f ‘9f(sp+q/2 (1)) +af(ep g2~ 1)
pendix. The dots show the discrete imaginary Bose Matsubara fre- du
quencies v, .
U e 2(7f(8p+q/2 M(r)) (A5)
this method requires high numerical accuracy in executing X o
the resulting energy integration. We used a different ap-
proach.

Here,e™® olog c is the Gaussian cutoff introduced in Sec. 1V,
and we have used E¢R.8) and changed the integration vari-
Gble usingz=Ré&’. Thus we have shown thaN(r) in-
volving the convergence factor is reIatedNézL(r) without

U aH the convergence factor by
(A2)

To calculate the first term in EGAL) [=sNY)(r)] with-
out employing a spectral representation, we compar
m(r) to the expression without the convergence factor,

L) i

@)1=
ONFL(N= 3 2 T-UTT op

SNED(r) = 6N (r)— NE(r). (AB)

This quantity is easy to calculate numerically. When We Jcing this ex ression, we can calculam(l)(r) numericall
transform the summation over the discrete Matsubara fre=~"9 P y

(2)
guencies into an integral in the complex plane in the usualf’y evaluating the simpler expressiag'(r).
way, we obtain The essence of this prescription may be easily understood

from the following example. Consider the two quantities:

(1) - Z
D(r)= E f dzeng(z N<1>(q)=—l2 v
B B iv,— Eq'
U ll(iv,—2z)
><1—UH(ivn—>Z) o ' N®)(q) = 1 1 A7
B (Q)_ Evn iVn_Eq. ( )
N =5 S J, dzneca
In this case, the frequency suml‘irgl)(q) can be easily done
U (i v,—2) analytically and reduced to the Bose distribution function
> : n (A3)  Ng(Eg. The sum inNg gives
1-Ull(iv,—2) u '
) o ) 1 Eq 1 BE,
where the pati€, is shown in Fig. 13. We are allowed to add N@(q)=— 5—— = Coth——. (A8)
the circular contoursC, and C, for the integration in B vt Eq 2 2

SNE(r) without changing the result, because the contribu-
tions from C,; and C, vanish in the large-radius limitR  The contribution fromC, in the last term in Eq(A4) is
—) due to, respectively, the factors;(z) and e®?. The  given by
integration inSNS)(r) is thus reduced to summing up the
poles inside the closed contoutg+ C,; andCy+ C, shown SNE= — if dz . _ (A9)
in Fig. 13. 2mi Jc, R Z—Ey

We next show howsN&(r) is related toSNE)(r) defined
in Eq. (A2). First, we note that when dealing wiiN&)(r),  Thus we can easily verify thadV=N@ — SN, as in Eq.
the integration along the path, gives a finite contribution (A6).

N| -
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